CN114943684A - Curved surface anomaly detection method by using confrontation to generate self-coding neural network - Google Patents

Curved surface anomaly detection method by using confrontation to generate self-coding neural network Download PDF

Info

Publication number
CN114943684A
CN114943684A CN202210396491.0A CN202210396491A CN114943684A CN 114943684 A CN114943684 A CN 114943684A CN 202210396491 A CN202210396491 A CN 202210396491A CN 114943684 A CN114943684 A CN 114943684A
Authority
CN
China
Prior art keywords
detection
image
neural network
defect
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210396491.0A
Other languages
Chinese (zh)
Other versions
CN114943684B (en
Inventor
李红
方正豪
王怀震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Bosner Intelligent Technology Co ltd
Original Assignee
Shanghai Bosner Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Bosner Intelligent Technology Co ltd filed Critical Shanghai Bosner Intelligent Technology Co ltd
Priority to CN202210396491.0A priority Critical patent/CN114943684B/en
Publication of CN114943684A publication Critical patent/CN114943684A/en
Application granted granted Critical
Publication of CN114943684B publication Critical patent/CN114943684B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/762Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

A curved surface anomaly detection method using a countermeasure generated self-coding neural network comprises the following steps: acquiring defect-free images by using a plurality of industrial camera groups and combining the images; importing the non-defective image into an abnormal detection neural network, pre-training, and storing the position information of the false detection defect; finally, storing the result after the error detection is eliminated as the final result of the abnormal detection; and loading the final result preview of the anomaly detection into the shared memory, and returning an inference end signal to the client through the Socket. The invention overcomes the defects of the prior art, and realizes efficient and accurate abnormality detection by applying the abnormality detection method combining the countermeasure generating network and the self-encoder in the field of abnormality detection and by processing the convolutional neural network and the traditional image.

Description

Curved surface anomaly detection method by using confrontation to generate self-coding neural network
Technical Field
The invention relates to the technical field of defect image identification, in particular to a curved surface anomaly detection method for generating a self-coding neural network by using confrontation.
Background
The production involves a plurality of procedures, and the problem of surface defects of the curved surface is usually inevitable. The method is promoted by the development of industrial automation, the unmanned production process is basically realized at present, but the quality inspection process still needs to depend on a large amount of manual operation, and the method has the defects of high human resource consumption, low efficiency, high omission factor and the like. The detection of the surface abnormality of the curved surface is taken as an important link of product quality management, and the realization of automation and the improvement of the detection accuracy rate become a technical bottleneck which needs to be broken through urgently.
The curved surface anomaly detection technology based on the convolutional neural network and the traditional image processing has become a mainstream method which is widely applied to curved surface anomaly detection of products such as ceramics, glass, floors, steel rails and the like, and has the characteristics of high efficiency and high reliability. And by combining an automatic detection platform, an anomaly detection scheme with strong stability, high detection speed and low cost can be realized. Common abnormity detection for complex curved surfaces such as tires is based on laser signals and vacuum extraction in a physical mode, and the like, and due to the fact that the non-plane surface of the curved surface has height difference and a large amount of complex patterns and marked character information, the problems of printing dislocation, texture dislocation, character error and the like of the curved surface cannot be identified by a traditional detection method, a large amount of manual detection cannot be avoided, and optical drawing of the surface of the full curved surface is very difficult.
Therefore, how to provide an automatic curved surface anomaly detection method based on a convolutional neural network is a problem that needs to be solved urgently by those skilled in the art.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a curved surface anomaly detection method by utilizing a countermeasure generation self-coding neural network, which overcomes the defects of the prior art, and realizes efficient and accurate anomaly detection by applying an anomaly detection method combining the countermeasure generation network and a self-coder in the anomaly detection field and processing a convolutional neural network and a traditional image.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a curved surface anomaly detection method using a countermeasure generated self-coding neural network comprises the following steps:
step S1: acquiring a complete curved surface characteristic image by using an industrial camera set, and establishing a defect image library;
step S2: performing automatic image cutting on the defect image acquired in the step S1 by using an edge detection algorithm, and accurately positioning the area; dividing the surface characteristic image of the curved surface into a plurality of detection sectors according to the repeatability of the patterns, intercepting areas, and combining to obtain an image;
step S3: performing data enhancement processing on the image data set obtained in step S2;
step S4: establishing an abnormal discrimination neural network based on the surface defects of the curved surface of the convolutional neural network;
step S5: inputting the defect image subjected to enhancement processing into an abnormality discrimination neural network, and training the target abnormality discrimination neural network to obtain an optimized abnormality discrimination neural network;
step S6: solidifying the model parameters trained in the step S5, deploying the model parameters to a high-speed reasoning engine, realizing the butt joint with any language compiling software by using a mode of combining Socket communication and shared memory, and simultaneously carrying out anomaly detection;
step S7: and eliminating false detection caused by complex lines.
Preferably, in step S1, the image library is composed of high resolution images collected by various industrial cameras, and the main data is a high precision scanning image.
Preferably, the step S2 specifically includes the following steps:
step S21: and performing gaussian filtering smoothing processing on the defect image acquired in the step S1 to reduce the interference of the background noise, wherein a calculation formula of the gaussian filtering smoothing is as follows:
Figure BDA0003599211160000031
where f (m, n) is the gray value of the position (m, n), σ is the width of the Gaussian filter, determines the degree of smoothing, g σ (m, n) is a gray value of the position (m, n) after Gaussian filtering;
step S22: and estimating the edge strength and the gradient direction of each point by calculating the gradient amplitude, wherein the calculation formula of the edge strength and the calculation formula of the gradient direction are respectively as follows:
Figure BDA0003599211160000032
Figure BDA0003599211160000033
wherein, g x (m, n) and g y (m, n) are gradient values in two directions;
step S23: according to the gradient direction, carrying out non-maximum suppression on the gradient amplitude, and then connecting the edges;
step S24: dividing the surface of the curved surface into a plurality of detection sectors according to the repeatability of the patterns, intercepting areas, and combining to obtain an image.
Preferably, the step S3 specifically includes the following steps:
step S31: carrying out data enhancement processing on the image by using random rotation and turnover operation to expand a defect data set;
step S32: and marking the enhanced defect image according to the defect type, and dividing the marked image into a training set, a verification set and a test set.
Preferably, in step S4, the anomaly discrimination neural network is constructed by using a self-encoder and a convolutional neural network, and the training is performed by using a countermeasure generation method.
Preferably, the implementation steps of the abnormality detection method in step S6 are as follows:
step S61: carrying out edge detection and cutting on the scanned image;
step S62, before each detection, a batch of defect-free pre-training is used as a data model for eliminating false detection;
step S63, image reasoning is carried out by using an accelerated reasoning engine deployed to TensorRT;
in step S64, the detection result is confirmed by the data model excluding the erroneous detection, and the result is output.
Preferably, the result delivery step of the abnormality detection method in step S6 is:
step S65: acquiring an instruction from a software end by using Socket communication, and acquiring a real-time image from a shared memory by adopting an Mmap technology;
step S66: carrying out preprocessing operations such as cutting, zooming, turning and the like on the image and then executing an inference process;
step S67: and storing the result locally, loading the result preview image into the shared memory and returning a Socket signal representing the completion of execution.
Preferably, in step S7, the step of eliminating false detection caused by complex texture includes:
step S71: loading a pattern template on the surface of the curved surface;
step S72, detecting a batch of defect-free objects and recording the positions of all detected defect objects;
step S73, a clustering algorithm is adopted for the target position of each type of defect to obtain the coordinate position of each clustering center point, and a false-positive detection model is formed together;
step S74, for the detection result obtained by model inference, using FLANN nearest neighbor algorithm to search whether the detection target is close to a certain point in the anti-false detection model, and judging whether the point is false detection;
in step S75, the detection result excluding the erroneous detection is output.
The invention provides a curved surface anomaly detection method by using a confrontation self-coding neural network. The method has the following beneficial effects: the invention designs a neural network aiming at the characteristics of anomaly detection, and combines a TensorRT high-speed reasoning engine to realize high-efficiency surface anomaly detection of the curved surface. Compared with the traditional anomaly detection method, the method has the advantages that the detection accuracy is improved, the requirement for collecting a large number of marking defects is reduced, and the labor cost is greatly saved.
Drawings
In order to more clearly illustrate the present invention or the prior art solutions, the drawings that are needed in the description of the prior art will be briefly described below.
FIG. 1 is a general flowchart of a curved surface abnormality detection method according to the present invention (taking a tire as an example);
fig. 2 is a flowchart of step S4 in the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the technical solutions of the present invention will be described clearly and completely with reference to the accompanying drawings.
Examples
As shown in fig. 1 to 2, a method for detecting surface anomalies by countering a self-coding neural network includes the following steps:
step S1: shooting at different angles by using an industrial camera set to obtain complete curved surface characteristic pictures, and establishing a defect image library; the image library consists of high-resolution images acquired by various industrial cameras, and main data are high-precision scanning images;
step S2: the defect image collected in the step S1 is automatically cut by using an edge detection algorithm in the traditional image processing, the background image is cut off, and the area is accurately positioned, so that the step can avoid the influence of the image background on the abnormal detection, and simultaneously reduce the detection range, thereby improving the detection efficiency; the specific method comprises the following steps:
firstly, gaussian filtering smoothing processing is performed on the defect image acquired in step S1 to reduce noise floor interference, wherein a calculation formula of gaussian filtering smoothing is as follows:
Figure BDA0003599211160000051
where f (m, n) is the gray level at position (m, n), σ is the width of the Gaussian filter, determining the degree of smoothing, g σ (m, n) is a gray value of the position (m, n) after Gaussian filtering; calculating the specific gray value g of each coordinate after Gaussian filtering through the formula σ (m, n), namely, the Gaussian smoothing processing of the whole image can be completed;
then, the gradient values g of each point of the image in two directions are calculated x (m, n) and g y (m,n):
The edge strength of each point in the image estimated by the gradient value is calculated according to the following formula:
Figure BDA0003599211160000061
the gradient direction of each point in the image estimated by the gradient value is calculated according to the following formula:
Figure BDA0003599211160000062
then according to the gradient direction, carrying out non-maximum suppression on the gradient amplitude, and then connecting the edges;
and dividing the surface of the curved surface into a plurality of detection sectors according to the repeatability of the patterns, intercepting areas, and combining to obtain an image of the defect.
Step S3: performing data enhancement processing on the image data set obtained in step S2; the method comprises the following steps:
firstly, carrying out data enhancement processing on an image by using random rotation and turnover operation to expand a defect data set;
and classifying and labeling the unclassified, qualified and unqualified images of the defect image after the enhancement processing, and dividing the labeled image and the corresponding labeled file into a training set, a verification set and a test set according to a proportion.
Step S4: establishing an abnormal discrimination neural network based on the surface defects of the curved surface of the convolutional neural network;
the invention utilizes an autoencoder and a convolution neural network to construct an abnormal discrimination neural network, and utilizes a countermeasure generation mode to train, wherein the model construction mode is as follows:
in the coding stage, a multi-head self-attention mechanism and a ResNest18 basic structure of a variable convolutional layer are used, so that the sensing and extracting capabilities of the network on small target features and position information are improved and the small target features and the position information are used as a judgment network;
theory based on the classical GAN structure: in the early stage, an unlabelled picture is used as a positive sample, a self-encoder restored picture is used as a negative sample, and the restoration capability of the self-encoder and the recognition capability of a judgment network pair are trained; after the training reaches a certain degree, the qualified sample passing through the self-encoder is taken as a positive sample, the unqualified sample passing through the self-encoder is taken as a negative sample, the confrontation training is further carried out, and the classification capability of the self-encoder to the positive and negative samples is trained:
step S5: inputting the training set and the defect marking file which are subjected to enhancement processing into an abnormal judgment neural network, training the abnormal judgment neural network, and obtaining an optimized abnormal judgment neural network through multiple times of model parameter tuning and training;
step S6: the method for realizing efficient anomaly detection by combining the neural network with the TensorRT comprises the following specific steps:
firstly, solidifying the model parameters trained in the step S5, and deploying the trained anomaly discrimination neural network to a TensorRT high-speed reasoning engine;
then, the function of the inference engine part is used as a server, and a connection relation is established with client software in a Socket communication mode;
then the client maps the defect image collected by the industrial camera set into the memory through the Mmap technology, the server reads the defect image scanned in real time from the shared memory, and performs preprocessing such as cutting, rotating, overturning and the like on the image;
then, using TensorRT to detect the abnormality;
finally, storing the defect picture and the inferred defect position information to the local;
and acquiring a final result of the anomaly detection, loading the result preview image into the shared memory, and returning an inference end signal to the client through the Socket.
In this step, the anomaly detection method is implemented by the steps of:
step S61: carrying out edge detection and cutting on the scanned image;
step S62, before each detection, a batch of defect-free pre-training is used as a data model for eliminating false detection;
step S63, image reasoning is carried out by using an accelerated reasoning engine deployed to TensorRT;
in step S64, the detection result is confirmed by the data model excluding the erroneous detection, and the result is output.
In this step, the result transmission step of the abnormality detection method is:
step S65: acquiring an instruction from a software end by using Socket communication, and acquiring a real-time image from a shared memory by adopting an Mmap technology;
step S66: carrying out preprocessing operations such as cutting, zooming, turning and the like on the image and then executing an inference process;
step S67: and storing the result locally, loading the result preview image into the shared memory and returning a Socket signal representing the completion of execution.
Step S7: eliminating false detection caused by complex lines; the concrete implementation steps are as follows:
firstly, loading a pattern template on the surface of a curved surface;
detecting a batch of defect-free targets, and recording the positions of all detected defect targets;
then, a clustering algorithm is adopted for the target position of each type of defect to obtain the coordinate position of each clustering center point, and a false-detection resisting model is formed together;
then, for the detection result obtained by model inference, searching whether the detection target is close to a certain point in the anti-false-detection model by using a FLANN nearest neighbor algorithm, and judging whether the point is false-detected;
and finally, outputting the detection result after the error detection is eliminated.
In general, compared with the current artificial anomaly detection method, the technical scheme provided by the invention can achieve the following beneficial effects:
the method for detecting the surface anomaly of the curved surface provided by the invention is characterized in that a neural network is designed according to the anomaly detection characteristics, and a TensorRT high-speed reasoning engine is combined to realize high-efficiency surface anomaly detection of the curved surface.
As shown in fig. 1, taking the tire industry as an example, a lot of people are needed to perform manual sorting, trimming and finished product detection after the industry is finished, and the manpower input for the process in each factory is hundreds of people. And about 90% of the later stage does not need any treatment, and the part is selected in advance, so that the workload of manual trimming and sorting can be greatly reduced.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (8)

1. A curved surface anomaly detection method using a confrontation generated self-coding neural network, characterized by: the method comprises the following steps:
step S1: acquiring a complete curved surface characteristic image by using an industrial camera set, and establishing a defect image library;
step S2: utilizing an edge detection algorithm to cut the image of the defect collected in the step S1; dividing the surface characteristic image of the curved surface into a plurality of detection sectors according to the repeatability of the patterns, intercepting areas, and combining to obtain an image;
step S3: performing data enhancement processing on the image data set obtained in step S2;
step S4: establishing an abnormal discrimination neural network based on the surface defects of the curved surface of the convolutional neural network;
step S5: inputting the defect image subjected to enhancement processing into an abnormality discrimination neural network, and training the target abnormality discrimination neural network to obtain an optimized abnormality discrimination neural network;
step S6: and solidifying the model parameters trained in the step S5, deploying the model parameters to a high-speed reasoning engine, and performing anomaly detection.
2. The method of claim 1, wherein the method comprises: in step S1, the image library is composed of high-resolution images acquired by a plurality of industrial cameras, and the main data is a high-precision scanned image.
3. The method of claim 1, wherein the method comprises: the step S2 specifically includes the following steps:
step S21: and performing gaussian filtering smoothing processing on the defect image acquired in the step S1 to reduce the interference of the background noise, wherein a calculation formula of the gaussian filtering smoothing is as follows:
Figure FDA0003599211150000011
where f (m, n) is the gray value of the position (m, n), σ is the width of the Gaussian filter, determines the degree of smoothing, g σ (m, n) is a gray value of the position (m, n) after Gaussian filtering;
step S22: and estimating the edge strength and the gradient direction of each point by calculating the gradient amplitude, wherein the calculation formula of the edge strength and the calculation formula of the gradient direction are respectively as follows:
Figure FDA0003599211150000021
Figure FDA0003599211150000022
wherein, g x (m, n) and g y (m, n) are gradient values in two directions;
step S23: according to the gradient direction, carrying out non-maximum suppression on the gradient amplitude, and then connecting the edges;
step S24: dividing the surface of the curved surface into a plurality of detection sectors according to the repeatability of the patterns, intercepting areas, and combining to obtain an image.
4. The method of claim 1, wherein the method comprises: the step S3 specifically includes the following steps:
step S31: carrying out data enhancement processing on the image by using random rotation and turnover operation to expand a defect data set;
step S32: and marking the enhanced defect image according to the defect type, and dividing the marked image into a training set, a verification set and a test set.
5. The method for detecting surface anomaly using robust self-coding neural network as claimed in claim 1, wherein: in step S4, an abnormal discrimination neural network is constructed by using the self-encoder and the convolutional neural network, and training is performed by using a countermeasure generation method.
6. The method for detecting surface anomaly using robust self-coding neural network as claimed in claim 1, wherein: the method for detecting an abnormality in step S6 includes:
step S61: carrying out edge detection and cutting on the scanned image;
step S62, before each detection, a batch of defect-free pre-training is used as a data model for eliminating false detection;
step S63, using an accelerated inference engine deployed to TensorRT to perform image inference;
in step S64, the data model from which erroneous detection is excluded is used to confirm the detection result and output the result.
7. The method of claim 6, wherein the method comprises: the result delivery step of the abnormality detection method in step S6 is:
step S65: acquiring an instruction from a software end by using Socket communication, and acquiring a real-time image from a shared memory by adopting an Mmap technology;
step S66: carrying out preprocessing operations such as cutting, zooming, turning and the like on the image and then executing an inference process;
step S67: and storing the result locally, loading the result preview image into the shared memory and returning a Socket signal representing the completion of execution.
8. The method of claim 1, wherein the method comprises: further comprising step S7: eliminating false detection caused by complex lines; the method comprises the following implementation steps:
step S71: loading a pattern template on the surface of the curved surface;
step S72, detecting a batch of defect-free objects and recording the positions of all detected defect objects;
step S73, a clustering algorithm is adopted for the target position of each type of defect to obtain the coordinate position of each clustering center point, and a false-positive detection model is formed together;
step S74, for the detection result obtained by model inference, using FLANN nearest neighbor algorithm to search whether the detection target is close to a certain point in the anti-false detection model, and judging whether the point is false detection;
in step S75, the detection result excluding the erroneous detection is output.
CN202210396491.0A 2022-04-15 2022-04-15 Curved surface anomaly detection method by using confrontation to generate self-coding neural network Active CN114943684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210396491.0A CN114943684B (en) 2022-04-15 2022-04-15 Curved surface anomaly detection method by using confrontation to generate self-coding neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210396491.0A CN114943684B (en) 2022-04-15 2022-04-15 Curved surface anomaly detection method by using confrontation to generate self-coding neural network

Publications (2)

Publication Number Publication Date
CN114943684A true CN114943684A (en) 2022-08-26
CN114943684B CN114943684B (en) 2023-04-07

Family

ID=82907827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210396491.0A Active CN114943684B (en) 2022-04-15 2022-04-15 Curved surface anomaly detection method by using confrontation to generate self-coding neural network

Country Status (1)

Country Link
CN (1) CN114943684B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808237A (en) * 2010-03-09 2010-08-18 西安科技大学 Image acquisition terminal for embedded system web server and image acquisition method
US20140086453A1 (en) * 2011-05-17 2014-03-27 Toyo Tire & Rubber Co. Ltd. Tire defect detection method
CN105430006A (en) * 2015-12-25 2016-03-23 深圳市研唐科技有限公司 Method for adjusting spice image quality dynamically in real time
CN107680086A (en) * 2017-09-27 2018-02-09 电子科技大学 A kind of existing arc-shaped side has the material profile defect inspection method of straight line again
CN107886509A (en) * 2017-11-24 2018-04-06 苏州珂锐铁电气科技有限公司 A kind of image deflects recognition methods, electronic equipment, storage medium and system
CN108961217A (en) * 2018-06-08 2018-12-07 南京大学 A kind of detection method of surface flaw based on positive example training
CN112528975A (en) * 2021-02-08 2021-03-19 常州微亿智造科技有限公司 Industrial quality inspection method, device and computer readable storage medium
US20210374928A1 (en) * 2020-05-26 2021-12-02 Fujitsu Limited Defect detection method and apparatus
CN113901947A (en) * 2021-11-04 2022-01-07 浙江大学高端装备研究院 Intelligent identification method for tire surface flaws under small sample
CN113935953A (en) * 2021-09-18 2022-01-14 南通豪派金属制品有限公司 Steel coil defect detection method based on image processing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808237A (en) * 2010-03-09 2010-08-18 西安科技大学 Image acquisition terminal for embedded system web server and image acquisition method
US20140086453A1 (en) * 2011-05-17 2014-03-27 Toyo Tire & Rubber Co. Ltd. Tire defect detection method
CN105430006A (en) * 2015-12-25 2016-03-23 深圳市研唐科技有限公司 Method for adjusting spice image quality dynamically in real time
CN107680086A (en) * 2017-09-27 2018-02-09 电子科技大学 A kind of existing arc-shaped side has the material profile defect inspection method of straight line again
CN107886509A (en) * 2017-11-24 2018-04-06 苏州珂锐铁电气科技有限公司 A kind of image deflects recognition methods, electronic equipment, storage medium and system
CN108961217A (en) * 2018-06-08 2018-12-07 南京大学 A kind of detection method of surface flaw based on positive example training
US20210374928A1 (en) * 2020-05-26 2021-12-02 Fujitsu Limited Defect detection method and apparatus
CN112528975A (en) * 2021-02-08 2021-03-19 常州微亿智造科技有限公司 Industrial quality inspection method, device and computer readable storage medium
CN113935953A (en) * 2021-09-18 2022-01-14 南通豪派金属制品有限公司 Steel coil defect detection method based on image processing
CN113901947A (en) * 2021-11-04 2022-01-07 浙江大学高端装备研究院 Intelligent identification method for tire surface flaws under small sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAIQIAO WEN 等: "Detecting the Surface Defects of the Magnetic- Tile Based on Improved YOLACT ++", 《2021 IEEE 21ST INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY》 *

Also Published As

Publication number Publication date
CN114943684B (en) 2023-04-07

Similar Documents

Publication Publication Date Title
CN110543878B (en) Pointer instrument reading identification method based on neural network
US10803573B2 (en) Method for automated detection of defects in cast wheel products
CN109840900B (en) Fault online detection system and detection method applied to intelligent manufacturing workshop
CN113362326A (en) Method and device for detecting welding spot defects of battery
CN111815572B (en) Method for detecting welding quality of lithium battery based on convolutional neural network
CN114994061B (en) Machine vision-based steel rail intelligent detection method and system
CN113393426B (en) Steel rolling plate surface defect detection method
CN112037219A (en) Metal surface defect detection method based on two-stage convolution neural network
CN110751604A (en) Machine vision-based steel pipe weld defect online detection method
CN113627435B (en) Defect detection and identification method and system for ceramic tile
CN111591715A (en) Belt longitudinal tearing detection method and device
CN109693140A (en) A kind of intelligent flexible production line and its working method
CN115131268A (en) Automatic welding system based on image feature extraction and three-dimensional model matching
CN115035092A (en) Image-based bottle detection method, device, equipment and storage medium
CN111524154B (en) Image-based tunnel segment automatic segmentation method
TWI822968B (en) Color filter inspection device, inspection device, color filter inspection method, and inspection method
CN114612471B (en) Method for detecting surface defects of complex-texture ceramic tiles
CN117649404A (en) Medicine packaging box quality detection method and system based on image data analysis
Kähler et al. Anomaly detection for industrial surface inspection: application in maintenance of aircraft components
US20240046617A1 (en) Machine Learning-Based Generation of Rule-Based Classification Recipes for Inspection System
CN117455917B (en) Establishment of false alarm library of etched lead frame and false alarm on-line judging and screening method
Ekambaram et al. Identification of defects in casting products by using a convolutional neural network
CN113705564A (en) Pointer type instrument identification reading method
CN114943684B (en) Curved surface anomaly detection method by using confrontation to generate self-coding neural network
CN117252840A (en) Photovoltaic array defect elimination evaluation method and device and computer equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant