CN114941890A - Central air conditioner fault diagnosis method and system based on image and depth blurring - Google Patents
Central air conditioner fault diagnosis method and system based on image and depth blurring Download PDFInfo
- Publication number
- CN114941890A CN114941890A CN202210571075.XA CN202210571075A CN114941890A CN 114941890 A CN114941890 A CN 114941890A CN 202210571075 A CN202210571075 A CN 202210571075A CN 114941890 A CN114941890 A CN 114941890A
- Authority
- CN
- China
- Prior art keywords
- data
- image
- fault diagnosis
- layer
- central air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000003745 diagnosis Methods 0.000 title claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000004378 air conditioning Methods 0.000 claims description 18
- 238000013480 data collection Methods 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 238000013507 mapping Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/54—Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/048—Fuzzy inferencing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/28—Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/763—Non-hierarchical techniques, e.g. based on statistics of modelling distributions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Automation & Control Theory (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明提出了一种基于图像和深度模糊的中央空调故障诊断方法及系统,该系统主要包含四个模块:数据处理模块,数图转换模块,残差深度模糊模块,故障诊断模块;数据处理模块对数据集进行特征提取和特征排序;数图转换模块将特征提取后的数据集转换为相应的二维灰度图像,并使用滑动窗口方法生成丰富的图像数据集;残差深度模糊模块通过使用二维灰度图像数据集训练残差深度模糊模型用于故障诊断。中央空调的实时故障诊断模块可以通过多个传感器采集数据,并将其输入到故障诊断模型中进行故障存在与否的判断。本发明采用核慢特征分析算法、数图转换算法和残差深度模糊模型相结合的策略构建中央空调的故障诊断模型,可以高效、准确的进行故障诊断。
The invention proposes a fault diagnosis method and system for a central air conditioner based on images and depth blur. The system mainly includes four modules: a data processing module, a digital-to-map conversion module, a residual depth fuzzy module, a fault diagnosis module, and a data processing module. Perform feature extraction and feature sorting on the dataset; the digital-to-map conversion module converts the feature-extracted dataset into a corresponding two-dimensional grayscale image, and uses the sliding window method to generate a rich image dataset; the residual depth blur module uses Residual deep fuzzy models are trained on a 2D grayscale image dataset for fault diagnosis. The real-time fault diagnosis module of the central air conditioner can collect data through multiple sensors and input it into the fault diagnosis model to judge whether the fault exists or not. The invention adopts the strategy of combining the kernel slow feature analysis algorithm, the digital image conversion algorithm and the residual deep fuzzy model to construct the fault diagnosis model of the central air conditioner, and can carry out the fault diagnosis efficiently and accurately.
Description
技术领域technical field
本发明属于空调故障诊断领域,具体涉及一种基于图像和深度模糊的中央空调故障诊断方法及系统。The invention belongs to the field of air-conditioning fault diagnosis, and in particular relates to a central air-conditioning fault diagnosis method and system based on images and depth blur.
背景技术Background technique
中央空调可通过调节不同房间和区域的空气温湿度,来提供舒适的室内环境。由于部件多,运行环境复杂多变,操作不当或受自然因素腐蚀,中央空调可能会出现各种故障。空调在故障状态下长时间运行不仅会缩短设备的使用寿命,而且会导致严重的能源浪费。因此,有必要探寻一种高效、准确的中央空调故障诊断方法及系统。Central air conditioners can provide a comfortable indoor environment by adjusting the air temperature and humidity in different rooms and areas. Due to many components, complex and changeable operating environment, improper operation or corrosion by natural factors, various failures of central air conditioners may occur. The long-term operation of the air conditioner in the fault state will not only shorten the service life of the equipment, but also cause serious energy waste. Therefore, it is necessary to explore an efficient and accurate central air-conditioning fault diagnosis method and system.
中央空调随外界环境变化呈现出多种运行模式,具有极强的时间动态特性和非线性特性,并且各个特征变量之间相互关联呈现出空间关联特性。而现有中央空调故障诊断方法普遍未考虑上述特性,存在以下问题:(1)建立故障诊断模型时使用未处理的原始数据集,其特征变量复杂,故障特征不明显;(2)主要利用数值数据建立模型,破坏了各个特征变量之间的空间关联特性;(3)故障诊断模型结构复杂且不具有可解释性。The central air conditioner presents a variety of operating modes with the change of the external environment, with strong temporal dynamic characteristics and nonlinear characteristics, and the correlation between various characteristic variables shows spatial correlation characteristics. The existing central air-conditioning fault diagnosis methods generally do not consider the above characteristics, and there are the following problems: (1) The unprocessed original data set is used to establish the fault diagnosis model, and the characteristic variables are complex and the fault characteristics are not obvious; (2) The numerical value is mainly used. The data builds a model, which destroys the spatial correlation between each characteristic variable; (3) The structure of the fault diagnosis model is complex and not interpretable.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术中存在的问题,提供了一种基于图像和深度模糊的中央空调故障诊断方法及系统。In order to solve the above-mentioned problems in the prior art, a method and system for diagnosing faults of a central air conditioner based on images and depth blur are provided.
本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:
本技术方案提出了一种基于图像和深度模糊的中央空调故障诊断方法,包括如下步骤:This technical solution proposes a fault diagnosis method for central air conditioners based on images and depth blur, including the following steps:
步骤(1):数据处理Step (1): Data Processing
对中央空调正常运行和各种故障运行的数据进行数据采集与标注;对采集的数据进行预处理;建立核慢特征分析模型进行数据的特征提取和特征排序,得到核慢特征数据集;Collect and label the data of the normal operation of the central air conditioner and various faulty operations; preprocess the collected data; establish a kernel slow feature analysis model to extract and sort the features of the data, and obtain a kernel slow feature data set;
步骤(2):数图转换Step (2): Digital map conversion
将特征提取后的核慢特征数据集转换为相应的二维灰度图像,并使用滑动窗口方法生成丰富的图像数据集;Convert the kernel slow feature dataset after feature extraction into the corresponding two-dimensional grayscale image, and use the sliding window method to generate a rich image dataset;
步骤(3):建立并训练残差深度模糊模型Step (3): Build and train a residual deep fuzzy model
建立残差深度模糊模型;通过获取的二维灰度图像数据集,训练残差深度模糊模型进行故障诊断;Establish a residual depth fuzzy model; through the acquired two-dimensional grayscale image data set, train the residual deep fuzzy model for fault diagnosis;
步骤(4):中央空调故障诊断Step (4): Central Air Conditioning Fault Diagnosis
测量并采集中央空调运行时的数据,得到新采集的数据,对新采集的数据执行步骤一和步骤二,并将处理后的数据输入至建立好的残差深度模糊模型中,进行故障存在与否的判断。Measure and collect the data during the operation of the central air conditioner, obtain the newly collected data, perform
所述步骤(1)中,数据采集与标注的具体方法为:通过在中央空调多个位置安装传感器,采集正常运行和各种故障运行的数据;数据采集均以一天为单位,采样时间间隔为一分钟;将采集的原始数据集表示为其包含N天的数据,并且每天的数据有T个时刻样本和P个特征变量。因此,某一天的数据可以表示为其中t∈[1,2,...,T]表示时间范围,为连续T个时间序列中第p个特征变量对应的值;数据采集完成之后,将数据标注上对应的运行工况标签。In the step (1), the specific method of data collection and labeling is as follows: by installing sensors in multiple positions of the central air conditioner, the data of normal operation and various faulty operations are collected; the data collection is in units of one day, and the sampling time interval is One minute; represent the collected raw data set as It contains N days of data, and each day's data has T time samples and P feature variables. Therefore, the data for a certain day can be expressed as where t∈[1,2,...,T] denotes the time range, is the value corresponding to the p-th characteristic variable in consecutive T time series; after the data collection is completed, the data is marked with the corresponding operating condition label.
所述步骤(1)中,数据预处理的具体方法为:In described step (1), the concrete method of data preprocessing is:
使用Z-score算法对原始数据集X以每一天为单位进行标准化处理,具体如下:Use the Z-score algorithm to normalize the original data set X in units of each day, as follows:
其中,mean(xp(t))为xp(t)的均值,std(xp(t))为xp(t)的标准差;Among them, mean(x p (t)) is the mean of x p (t), and std(x p (t)) is the standard deviation of x p (t);
将某一天标准化后的数据定义为其中由此,对每一天的数据均进行标准化处理后可得到数据集 The normalized data for a day is defined as in Thus, the data set can be obtained by normalizing the data of each day
所述步骤(1)中,特征提取的具体方法为:利用标准化后的正常运行数据确定最优参数,建立核慢特征分析模型;首先,使用隐式非线性映射函数φ(·)将数据映射到高维数然后,通过求解下述优化问题获得慢特征:In the step (1), the specific method of feature extraction is: use the normalized normal operation data to determine the optimal parameters, and establish a kernel slow feature analysis model; first, use the implicit nonlinear mapping function φ(·) to convert the data into map to higher dimensions Then, slow features are obtained by solving the following optimization problem:
其中,输出数据yj(t)是从输入数据中xφ(t)提取出的第j个慢特征,是yj(t)对时间变量t的一阶导数,<.>定义为K为采样间隔;where the output data y j (t) is the jth slow feature extracted from the input data x φ (t), is the first derivative of y j (t) with respect to the time variable t, <.> is defined as K is the sampling interval;
进而,将特征提取后的数据表示为基于训练完成的核慢特征分析模型,从所有故障数据集中提取出变化缓慢的特征,得到N天核慢特征数据集,记为 Furthermore, the data after feature extraction is expressed as Based on the trained kernel slow feature analysis model, the slowly changing features are extracted from all fault data sets, and the N-day kernel slow feature data set is obtained, denoted as
所述步骤(2)中,数图转换的具体方法为:In the described step (2), the concrete method of digital image conversion is:
①对特征提取后的核慢特征数据集Y中每一天的数据分别进行Min-Max归一化处理并将输出结果乘以255,其公式如下:① Perform Min-Max normalization on the data of each day in the kernel slow feature dataset Y after feature extraction and multiply the output result by 255. The formula is as follows:
其中,min(yη(t))和max(yη(t))分别是yη(t)(η=1,2,...,R)向量的最小值和最大值,并将获取的N天的数据集记为 where min(y η (t)) and max(y η (t)) are the minimum and maximum values of the y η (t) (η=1,2,...,R) vector, respectively, and will obtain The N-day dataset is denoted as
②将上述步骤得到的数据集Z转换为相应的二维灰度图像;在图像中,根据特征变量的缓慢变化程度来排列特征变量;具体而言,将变化最慢的特征变量转换为图像第一列中的像素,再将变化第二慢的特征变量转换为图像第二列中的像素,以此类推,得到转换后的二维灰度图像;其中,数据到图像的转换是通过将输入数据转换成无符号8整数类型,随后使用数据格式转换指令进行的;数值越大,则灰度越深;② Convert the data set Z obtained in the above steps into a corresponding two-dimensional grayscale image; in the image, arrange the feature variables according to the slow change degree of the feature variables; specifically, convert the slowest-changing feature variable into the image The pixels in one column are converted into pixels in the second column of the image, and the second slowest-changing feature variable is converted to obtain the converted two-dimensional grayscale image; wherein, the data-to-image conversion is performed by converting the input The data is converted into an unsigned 8 integer type, which is then performed using the data format conversion instruction; the larger the value, the darker the grayscale;
③利用滑动窗口方法来扩充生成的图像数据集;将滞后参数设为L,则第一个图像是由第M行到(M+L-1)行的数据生成的;设滑动窗口的滑动距离为q,则从(M+q)行数据开始截取,到(M+L+q-1)行数据结束生成第二幅图像,以此类推;若一天内的数据共有R个特征变量和T个样本,重复上述操作,可以得到(T-l)/q+1幅图像,其大小均为L×R。③Using the sliding window method to expand the generated image dataset; set the lag parameter to L, then the first image is generated from the data from the Mth row to (M+L-1) row; set the sliding distance of the sliding window If it is q, start intercepting from (M+q) line of data, and generate the second image at the end of (M+L+q-1) line of data, and so on; if the data in one day has a total of R characteristic variables and T For each sample, repeating the above operation can obtain (T-l)/q+1 images, all of which are L×R in size.
所述步骤(3)中的残差深度模糊模型包括输入层、隐藏层、以及输出层;该模型是通过以自下而上、逐层的方式堆叠模糊推理模块来实现的;该模型的详细结构及原理如下:The residual depth fuzzy model in the step (3) includes an input layer, a hidden layer, and an output layer; the model is realized by stacking fuzzy inference modules in a bottom-up, layer-by-layer manner; the details of the model are The structure and principle are as follows:
1)由输入层初步获取输入的各故障类型图像信息,通过等价映射的节点传递给隐藏层;1) Preliminarily obtain the input image information of each fault type from the input layer, and pass it to the hidden layer through the nodes of the equivalent mapping;
2)在隐藏层中,模糊推理模块逐层堆栈,共有s层;第1隐藏层中有s个模糊推理模块,第2隐藏层中有(s-1)个模糊推理模块,以次类推,第s个隐藏层中只有一个模糊推理模块;2) In the hidden layer, the fuzzy inference modules are stacked layer by layer, with a total of s layers; there are s fuzzy inference modules in the first hidden layer, and (s-1) fuzzy inference modules in the second hidden layer, and so on. There is only one fuzzy inference module in the sth hidden layer;
3)在隐藏层中,前一层的所有模糊推理模块的输出变量yl和期望结果的残差通过加权后作为下一层模糊推理模块的输入量,第l层的输出为:3) In the hidden layer, the output variables y l of all fuzzy inference modules in the previous layer and the residuals of the expected results are weighted as the input of the next layer of fuzzy inference modules, and the output of the first layer is:
其中,l=1,2,…,s,εl-1代表层的输出,为输出向量,代表权重向量;Among them, l=1, 2,...,s, ε l-1 represents the output of the layer, is the output vector, represents the weight vector;
4)在隐藏层中,基于各故障类型图像信息,采用模糊C均值聚类算法获取相应的初始模糊规则,通过求解正则优化问题得到各模糊推理模块中的模糊规则的权重向量值wl=[λ1I+(yl)T(yl)]-1(yl)Tzl,其中I为单位矩阵,λ1代表正则化系数,zl=(z1,z2,…,zl)为期望的输出残差向量,z1=y,y为期望输出,当l=2,…,s时zl=zl-1-εl-2;4) In the hidden layer, based on the image information of each fault type, the fuzzy C-means clustering algorithm is used to obtain the corresponding initial fuzzy rules, and the canonical optimization problem is solved by solving the problem. Obtain the weight vector value of the fuzzy rules in each fuzzy inference module w l =[λ 1 I+(y l ) T (y l )] -1 (y l ) T z l , where I is the identity matrix, and λ 1 represents the regular z l =(z 1 ,z 2 ,...,z l ) is the expected output residual vector, z 1 =y,y is the expected output, when l=2,...,s, z l =z l -1 -ε l-2 ;
5)在输出层中,输出层连接着隐藏层,通过对所有中间加权值逐层累加得到输出结果其中代表最终输出的故障类型。5) In the output layer, the output layer is connected to the hidden layer, and the output result is obtained by accumulating all the intermediate weighted values layer by layer in Represents the fault type of the final output.
本发明还提出了一种基于图像和深度模糊的中央空调故障诊断系统,包括:The present invention also proposes a central air-conditioning fault diagnosis system based on images and deep blur, including:
数据处理模块,该模块用于执行步骤(1)的方法;A data processing module, the module is used to execute the method of step (1);
数图转换模块,该模块用于执行步骤(2)的方法;A digital image conversion module, the module is used to execute the method of step (2);
残差深度模糊模块,该模块用于执行步骤(3)的方法;Residual depth blur module, the module is used to perform the method of step (3);
故障诊断模块,该模块用于执行步骤(4)的方法。A fault diagnosis module, which is used for executing the method of step (4).
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.该方法使用核慢特征分析算法从动态的空调运行数据中提取缓慢变化的特征,并按照其缓慢变化程度对特征变量进行排序,使故障特征得到增强;1. The method uses the kernel slow feature analysis algorithm to extract slowly changing features from the dynamic air-conditioning operation data, and sorts the feature variables according to their slow changing degree, so that the fault features are enhanced;
2.数图转换方法将特征增强后的数据转换为图像,充分挖掘了特征变量之间邻域信息和空间关联特性;2. The digital map conversion method converts the feature-enhanced data into images, and fully exploits the neighborhood information and spatial correlation characteristics between the feature variables;
3.滑动窗口方法可以生成丰富的图像数据集,为故障诊断模型的准确建立提供了必要条件;3. The sliding window method can generate rich image data sets, which provides necessary conditions for the accurate establishment of fault diagnosis models;
4.残差深度模糊模型可快速、准确地识别图像进行故障诊断,并且使得所构建的故障诊断模型具有可解释性。4. The residual deep fuzzy model can quickly and accurately identify images for fault diagnosis, and make the constructed fault diagnosis model interpretable.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是本发明结构框图。Fig. 1 is a structural block diagram of the present invention.
图2是由数值数据转换的二维灰度图像结构示意图。FIG. 2 is a schematic diagram of the structure of a two-dimensional grayscale image converted from numerical data.
图3是滑动窗口方法使用示例结构示意图。FIG. 3 is a schematic structural diagram of an example of using the sliding window method.
图4是残差深度模糊模型的结构示意图。FIG. 4 is a schematic structural diagram of a residual depth blur model.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
如图1-4所示,为了有效解决背景技术中的问题,本发明采用核慢特征分析算法、数图转换算法和残差深度模糊模型相结合的策略构建中央空调的故障诊断模型。As shown in Figures 1-4, in order to effectively solve the problems in the background technology, the present invention adopts the strategy of combining the kernel slow feature analysis algorithm, the digital image conversion algorithm and the residual deep fuzzy model to construct the fault diagnosis model of the central air conditioner.
核慢特征分析算法可以从输入数据中推导出缓慢变化的输出变量,并将特征变量按照其缓慢变化程度进行排序。数图转换方法可以将获得的数值数据转换为相应的二维灰度图像,以挖掘特征变量的邻域信息和空间关联性。残差深度模糊模型具有较好的可解释特性,故障诊断结果的输出判断有据可依。Kernel slow feature analysis algorithms can derive slowly changing output variables from the input data, and rank the feature variables according to their slowness. The digital map conversion method can convert the obtained numerical data into corresponding two-dimensional grayscale images to mine the neighborhood information and spatial correlation of feature variables. The residual deep fuzzy model has good interpretability characteristics, and the output judgment of fault diagnosis results can be based on evidence.
针对上述情况,本发明提出了一种基于图像和深度模糊的中央空调故障诊断方法及系统。该系统主要包含四个模块:数据处理模块,数图转换模块,残差深度模糊模块,故障诊断模块。其中,数据处理模块对数据集进行特征提取和特征排序;随后数图转换模块将特征提取后的数据集转换为相应的二维灰度图像,并使用滑动窗口方法生成丰富的图像数据集;残差深度模糊模块通过使用二维灰度图像数据集训练残差深度模糊模型用于故障诊断。中央空调的实时故障诊断模块可以通过多个传感器采集数据,并将其输入到故障诊断模型中进行故障存在与否的判断。In view of the above situation, the present invention proposes a fault diagnosis method and system for a central air conditioner based on images and depth blur. The system mainly includes four modules: data processing module, digital image conversion module, residual depth fuzzy module, and fault diagnosis module. Among them, the data processing module performs feature extraction and feature sorting on the data set; then the digital image conversion module converts the feature-extracted data set into a corresponding two-dimensional grayscale image, and uses the sliding window method to generate a rich image data set; The differential depth blur module is used for fault diagnosis by training a residual depth blur model using a 2D grayscale image dataset. The real-time fault diagnosis module of the central air conditioner can collect data through multiple sensors and input it into the fault diagnosis model to judge whether the fault exists or not.
本实施例提出了一种基于图像和深度模糊的中央空调故障诊断方法,包括如下步骤:This embodiment proposes a fault diagnosis method for a central air conditioner based on images and depth blur, including the following steps:
步骤(1):数据处理Step (1): Data Processing
对中央空调正常运行和各种故障运行的数据进行数据采集与标注;对采集的数据进行预处理;建立核慢特征分析模型进行数据的特征提取和特征排序,得到核慢特征数据集;Collect and label the data of the normal operation of the central air conditioner and various faulty operations; preprocess the collected data; establish a kernel slow feature analysis model to extract and sort the features of the data, and obtain a kernel slow feature data set;
步骤(2):数图转换Step (2): Digital map conversion
将特征提取后的核慢特征数据集转换为相应的二维灰度图像,并使用滑动窗口方法生成丰富的图像数据集;Convert the kernel slow feature dataset after feature extraction into the corresponding two-dimensional grayscale image, and use the sliding window method to generate a rich image dataset;
步骤(3):建立并训练残差深度模糊模型Step (3): Build and train a residual deep fuzzy model
建立残差深度模糊模型;通过获取的二维灰度图像数据集,训练残差深度模糊模型进行故障诊断;Establish a residual depth fuzzy model; through the acquired two-dimensional grayscale image data set, train the residual deep fuzzy model for fault diagnosis;
步骤(4):中央空调故障诊断Step (4): Central Air Conditioning Fault Diagnosis
测量并采集中央空调运行时的数据,得到新采集的数据,对新采集的数据执行步骤一和步骤二,并将处理后的数据输入至建立好的残差深度模糊模型中,进行故障存在与否的判断。Measure and collect the data during the operation of the central air conditioner, obtain the newly collected data, perform
下面做进一步详细解释:The following is explained in further detail:
1.数据处理模块1. Data processing module
该模块用于执行步骤(1)的方法;该模块的作用是通过建立核慢特征分析模型进行数据的特征提取和特征排列,以解决中央空调的时间动态特性和非线性问题。该模块包含以下具体步骤:This module is used to execute the method of step (1); the function of this module is to perform feature extraction and feature arrangement of data by establishing a kernel slow feature analysis model, so as to solve the temporal dynamic characteristics and nonlinear problems of central air conditioners. The module contains the following specific steps:
1.1步骤(1)中,数据采集与标注的具体方法为:通过在中央空调多个位置安装传感器(在中央空调的送回风管道、新风阀、回风阀和送回风机等核心位置安装传感器),采集正常运行和各种故障运行的数据;数据采集均以一天为单位,采样时间间隔为一分钟;将采集的原始数据集表示为其包含N天的数据,并且每天的数据有T个时刻样本和P个特征变量。因此,某一天的数据可以表示为其中t∈[1,2,...,T]表示时间范围,为连续T个时间序列中第p个特征变量对应的值;数据采集完成之后,将数据标注上对应的运行工况标签。1.1 In step (1), the specific method of data collection and labeling is: by installing sensors in multiple positions of the central air conditioner (installing sensors at the core positions such as the supply and return air ducts, fresh air valves, return air valves and return fans of the central air conditioners) ) to collect data of normal operation and various faulty operations; data collection is in units of one day, and the sampling interval is one minute; the collected original data set is expressed as It contains N days of data, and each day's data has T time samples and P feature variables. Therefore, the data for a certain day can be expressed as where t∈[1,2,...,T] denotes the time range, is the value corresponding to the p-th characteristic variable in consecutive T time series; after the data collection is completed, the data is marked with the corresponding operating condition label.
1.2步骤(1)中,数据预处理的具体方法为:1.2 In step (1), the specific method of data preprocessing is:
使用Z-score算法对原始数据集X以每一天为单位进行标准化处理,具体如下:Use the Z-score algorithm to normalize the original data set X in units of each day, as follows:
其中,mean(xp(t))为xp(t)的均值,std(xp(t))为xp(t)的标准差;Among them, mean(x p (t)) is the mean of x p (t), and std(x p (t)) is the standard deviation of x p (t);
将某一天标准化后的数据定义为其中由此,对每一天的数据均进行标准化处理后可得到数据集 The normalized data for a day is defined as in Thus, the data set can be obtained by normalizing the data of each day
1.3步骤(1)中,特征提取的具体方法为:利用标准化后的正常运行数据确定最优参数,建立核慢特征分析模型;首先,使用隐式非线性映射函数φ(·)将数据映射到高维数然后,通过求解下述优化问题获得慢特征:1.3 In step (1), the specific method of feature extraction is: use the normalized normal operation data to determine the optimal parameters, and establish a kernel slow feature analysis model; first, use the implicit nonlinear mapping function φ( ) to convert the data into map to higher dimensions Then, slow features are obtained by solving the following optimization problem:
其中,输出数据yj(t)是从输入数据中xφ(t)提取出的第j个慢特征,是yj(t)对时间变量t的一阶导数,<.>定义为K为采样间隔;where the output data y j (t) is the jth slow feature extracted from the input data x φ (t), is the first derivative of y j (t) with respect to the time variable t, <.> is defined as K is the sampling interval;
进而,将特征提取后的数据表示为基于训练完成的核慢特征分析模型,从所有故障数据集中提取出变化缓慢的特征,得到N天核慢特征数据集,记为 Furthermore, the data after feature extraction is expressed as Based on the trained kernel slow feature analysis model, the slowly changing features are extracted from all fault data sets, and the N-day kernel slow feature data set is obtained, denoted as
2.数图转换模块2. Digital image conversion module
该模块用于执行步骤(2)的方法;该模块的作用是按照数据处理模块提供的数据集,以每一天为单位将数值数据转化为相应的二维灰度图像,进而增强特征变量之间的邻域信息和空间关联特性。该模块包含以下步骤:This module is used to execute the method of step (2); the function of this module is to convert the numerical data into corresponding two-dimensional grayscale images in units of each day according to the data set provided by the data processing module, thereby enhancing the relationship between the characteristic variables. The neighborhood information and spatial correlation characteristics of . The module contains the following steps:
2.1步骤(2)中,数图转换的具体方法为:2.1 In step (2), the specific method of digital image conversion is:
①对特征提取后的核慢特征数据集Y中每一天的数据分别进行Min-Max归一化处理并将输出结果乘以255,其公式如下:① Perform Min-Max normalization on the data of each day in the kernel slow feature dataset Y after feature extraction and multiply the output result by 255. The formula is as follows:
其中,min(yη(t))和max(yη(t))分别是yη(t)(η=1,2,...,R)向量的最小值和最大值,并将获取的N天的数据集记为 where min(y η (t)) and max(y η (t)) are the minimum and maximum values of the y η (t) (η=1,2,...,R) vector, respectively, and will obtain The N-day dataset is denoted as
②将上述步骤得到的数据集Z转换为相应的二维灰度图像;在图像中,根据特征变量的缓慢变化程度来排列特征变量;具体而言,将变化最慢的特征变量转换为图像第一列中的像素,再将变化第二慢的特征变量转换为图像第二列中的像素,以此类推,得到转换后的二维灰度图像,图2为转换后的二维灰度图像示例;其中,数据到图像的转换是通过将输入数据转换成无符号8整数类型,随后使用数据格式转换指令进行的;数值越大,则灰度越深;② Convert the data set Z obtained in the above steps into a corresponding two-dimensional grayscale image; in the image, arrange the feature variables according to the slow change degree of the feature variables; specifically, convert the slowest-changing feature variable into the image The pixels in one column are converted into the pixels in the second column of the image, and the second-slowest-changing feature variables are converted into pixels in the second column of the image, and so on to obtain the converted two-dimensional grayscale image. Figure 2 shows the converted two-dimensional grayscale image. Example; where the data-to-image conversion is performed by converting the input data into an unsigned 8 integer type, followed by a data format conversion instruction; the larger the value, the darker the grayscale;
③利用滑动窗口方法来扩充生成的图像数据集;将滞后参数设为L,则第一个图像是由第M行到(M+L-1)行的数据生成的;设滑动窗口的滑动距离为q,则从(M+q)行数据开始截取,到(M+L+q-1)行数据结束生成第二幅图像,以此类推;若一天内的数据共有R个特征变量和T个样本,重复上述操作,可以得到(T-l)/q+1幅图像,其大小均为L×R,图3为滑动窗口方法使用示例。③Using the sliding window method to expand the generated image dataset; set the lag parameter to L, then the first image is generated from the data from the Mth row to (M+L-1) row; set the sliding distance of the sliding window If it is q, start intercepting from (M+q) line of data, and generate the second image at the end of (M+L+q-1) line of data, and so on; if the data in one day has a total of R characteristic variables and T By repeating the above operations, (T-l)/q+1 images can be obtained, all of which are L×R in size. Figure 3 shows an example of using the sliding window method.
3.残差深度模糊模块3. Residual depth blur module
该模块用于执行步骤(3)的方法;该模块的作用是通过获取的二维灰度图像数据集,训练残差深度模糊模型进行故障诊断,图4给出了该模型结构。This module is used to execute the method of step (3); the function of this module is to train the residual depth fuzzy model for fault diagnosis through the acquired two-dimensional grayscale image data set. Figure 4 shows the structure of the model.
步骤(3)中的残差深度模糊模型包括输入层、隐藏层、以及输出层;该模型是通过以自下而上、逐层的方式堆叠模糊推理模块来实现的;该模型的详细结构及原理如下:The residual depth fuzzy model in step (3) includes an input layer, a hidden layer, and an output layer; the model is realized by stacking fuzzy inference modules in a bottom-up, layer-by-layer manner; the detailed structure of the model and The principle is as follows:
1)由输入层初步获取输入的各故障类型图像信息,通过等价映射的节点传递给下一层(隐藏层);1) The input image information of each fault type is initially obtained by the input layer, and is passed to the next layer (hidden layer) through the nodes of the equivalent mapping;
2)在隐藏层中,模糊推理模块逐层堆栈,共有s层;第1隐藏层中有s个模糊推理模块,第2隐藏层中有(s-1)个模糊推理模块,以次类推,第s个隐藏层中只有一个模糊推理模块;2) In the hidden layer, the fuzzy inference modules are stacked layer by layer, with a total of s layers; there are s fuzzy inference modules in the first hidden layer, and (s-1) fuzzy inference modules in the second hidden layer, and so on. There is only one fuzzy inference module in the sth hidden layer;
3)在隐藏层中,前一层的所有模糊推理模块的输出变量yl和期望结果的残差通过加权后作为下一层模糊推理模块的输入量,第l层的输出为:3) In the hidden layer, the output variables y l of all fuzzy inference modules in the previous layer and the residuals of the expected results are weighted as the input of the next layer of fuzzy inference modules, and the output of the first layer is:
其中,l=1,2,…,s,εl-1代表层的输出,为输出向量,Among them, l=1, 2,...,s, ε l-1 represents the output of the layer, is the output vector,
代表权重向量; represents the weight vector;
4)在隐藏层中,基于各故障类型图像信息,采用模糊C均值聚类算法获取相应的初始模糊规则,通过求解正则优化问题得到各模糊推理模块中的模糊规则的权重向量值wl=[λ1I+(yl)T(yl)]-1(yl)Tzl,其中I为单位矩阵,λ1代表正则化系数,zl=(z1,z2,…,zl)为期望的输出残差向量,z1=y,y为期望输出,当l=2,…,s时zl=zl-1-εl-2;4) In the hidden layer, based on the image information of each fault type, the fuzzy C-means clustering algorithm is used to obtain the corresponding initial fuzzy rules, and the canonical optimization problem is solved by solving the problem. Obtain the weight vector value of the fuzzy rules in each fuzzy inference module w l =[λ 1 I+(y l ) T (y l )] -1 (y l ) T z l , where I is the identity matrix, and λ 1 represents the regular z l =(z 1 ,z 2 ,...,z l ) is the expected output residual vector, z 1 =y,y is the expected output, when l=2,...,s, z l =z l -1 -ε l-2 ;
5)在输出层中,输出层连接着隐藏层,通过对所有中间加权值逐层累加得到输出结果其中代表最终输出的故障类型。5) In the output layer, the output layer is connected to the hidden layer, and the output result is obtained by accumulating all the intermediate weighted values layer by layer in Represents the fault type of the final output.
4.故障诊断模块4. Fault diagnosis module
该模块用于执行步骤(4)的方法;该模块的作用是对中央空调进行故障诊断。通过多个传感器测量并采集空调运行时的数据,并输入至建立好的故障诊断模型中。首先,数据转换为二维灰度图像,随后使用残差深度模糊模型进行故障诊断。The module is used to execute the method of step (4); the function of the module is to perform fault diagnosis on the central air conditioner. The data during the operation of the air conditioner is measured and collected by multiple sensors, and input into the established fault diagnosis model. First, the data is converted into a 2D grayscale image, followed by a residual depth blur model for fault diagnosis.
通过以上实施例,可以看出:(1)该方法使用核慢特征分析算法从动态的空调运行数据中提取缓慢变化的特征,并按照其缓慢变化程度对特征变量进行排序,使故障特征得到增强;(2)数图转换方法将特征增强后的数据转换为图像,充分挖掘了特征变量之间邻域信息和空间关联特性;(3)滑动窗口方法可以生成丰富的图像数据集,为故障诊断模型的准确建立提供了必要条件;(4)残差深度模糊模型可快速、准确地识别图像进行故障诊断,并且使得所构建的故障诊断模型具有可解释性。Through the above embodiments, it can be seen that: (1) the method uses the kernel slow feature analysis algorithm to extract slowly changing features from the dynamic air-conditioning operation data, and sorts the feature variables according to the degree of slow change, so that the fault features are enhanced ; (2) The digital-to-map conversion method converts the feature-enhanced data into images, and fully exploits the neighborhood information and spatial correlation characteristics between the feature variables; (3) The sliding window method can generate rich image datasets for fault diagnosis. The accurate establishment of the model provides the necessary conditions; (4) The residual deep fuzzy model can quickly and accurately identify images for fault diagnosis, and make the constructed fault diagnosis model interpretable.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210571075.XA CN114941890B (en) | 2022-05-24 | 2022-05-24 | A central air conditioning fault diagnosis method and system based on image and depth fuzzy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210571075.XA CN114941890B (en) | 2022-05-24 | 2022-05-24 | A central air conditioning fault diagnosis method and system based on image and depth fuzzy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114941890A true CN114941890A (en) | 2022-08-26 |
CN114941890B CN114941890B (en) | 2024-04-30 |
Family
ID=82908875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210571075.XA Active CN114941890B (en) | 2022-05-24 | 2022-05-24 | A central air conditioning fault diagnosis method and system based on image and depth fuzzy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114941890B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117556202A (en) * | 2023-11-09 | 2024-02-13 | 南通大学 | Industrial process micro fault detection method based on probability correlation slow feature analysis |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080219336A1 (en) * | 2007-03-05 | 2008-09-11 | General Electric Company | System and method for fault detection and localization in time series and spatial data |
CN110880024A (en) * | 2019-12-05 | 2020-03-13 | 山东建筑大学 | Fault identification method and system for nonlinear process based on discriminant kernel slow feature analysis |
US20200285900A1 (en) * | 2019-03-06 | 2020-09-10 | Wuhan University | Power electronic circuit fault diagnosis method based on optimizing deep belief network |
CN112214006A (en) * | 2020-10-13 | 2021-01-12 | 山东建筑大学 | Intermittent process fault detection method and system considering two-dimensional dynamic characteristics |
CN113869339A (en) * | 2021-05-18 | 2021-12-31 | 华能沁北发电有限责任公司 | Deep learning classification model for fault diagnosis and fault diagnosis method |
CN114021275A (en) * | 2021-10-29 | 2022-02-08 | 上海海事大学 | A Fault Diagnosis Method of Rolling Bearing Based on Deep Convolutional Fuzzy System |
-
2022
- 2022-05-24 CN CN202210571075.XA patent/CN114941890B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080219336A1 (en) * | 2007-03-05 | 2008-09-11 | General Electric Company | System and method for fault detection and localization in time series and spatial data |
US20200285900A1 (en) * | 2019-03-06 | 2020-09-10 | Wuhan University | Power electronic circuit fault diagnosis method based on optimizing deep belief network |
CN110880024A (en) * | 2019-12-05 | 2020-03-13 | 山东建筑大学 | Fault identification method and system for nonlinear process based on discriminant kernel slow feature analysis |
CN112214006A (en) * | 2020-10-13 | 2021-01-12 | 山东建筑大学 | Intermittent process fault detection method and system considering two-dimensional dynamic characteristics |
CN113869339A (en) * | 2021-05-18 | 2021-12-31 | 华能沁北发电有限责任公司 | Deep learning classification model for fault diagnosis and fault diagnosis method |
CN114021275A (en) * | 2021-10-29 | 2022-02-08 | 上海海事大学 | A Fault Diagnosis Method of Rolling Bearing Based on Deep Convolutional Fuzzy System |
Non-Patent Citations (1)
Title |
---|
张汉元等: "基于改进核慢特征分析的间歇过程故障检测", 山东建筑大学学报, vol. 35, no. 01, 15 February 2020 (2020-02-15), pages 42 - 49 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117556202A (en) * | 2023-11-09 | 2024-02-13 | 南通大学 | Industrial process micro fault detection method based on probability correlation slow feature analysis |
CN117556202B (en) * | 2023-11-09 | 2024-06-11 | 南通大学 | A method for detecting minor faults in industrial processes based on probabilistic correlation slow feature analysis |
Also Published As
Publication number | Publication date |
---|---|
CN114941890B (en) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110849626B (en) | Self-adaptive sparse compression self-coding rolling bearing fault diagnosis system | |
Peng et al. | An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network | |
CN112101085B (en) | An Intelligent Fault Diagnosis Method Based on Importance Weighted Domain Adversarial Adaptive | |
CN112763214B (en) | Fault diagnosis method of rolling bearing based on multi-label zero-sample learning | |
CN107730044A (en) | A kind of hybrid forecasting method of renewable energy power generation and load | |
CN116894187A (en) | A gearbox fault diagnosis method based on deep transfer learning | |
CN108509701B (en) | A Direct Intelligent Diagnosis Method for Rotating Machinery Faults Based on Vibration Signals | |
CN113984389B (en) | A Fault Diagnosis Method for Rolling Bearings Based on Multiple Receptive Fields and Improved Capsule Graph Neural Network | |
CN113157732A (en) | Underground scraper fault diagnosis method based on PSO-BP neural network | |
CN114358124A (en) | Rotary machine new fault diagnosis method based on deep-antithetical-convolution neural network | |
CN115953666B (en) | A Substation Field Progress Recognition Method Based on Improved Mask-RCNN | |
CN111753891A (en) | A rolling bearing fault diagnosis method based on unsupervised feature learning | |
CN115290326A (en) | Rolling bearing fault intelligent diagnosis method | |
CN114037079A (en) | Cylinder cover multi-fault integral diagnosis method based on graph neural network and knowledge graph | |
CN115508073A (en) | Fault diagnosis method for mechanical equipment based on prototype adaptation based on multi-scale attention | |
CN115376019A (en) | An object-level change detection method for heterogeneous remote sensing images | |
CN116821811A (en) | Coal mill unit fault diagnosis method and system based on multi-layer graph convolution neural network | |
CN117191396A (en) | Gear box fault diagnosis method based on two-stage migration | |
CN114941890B (en) | A central air conditioning fault diagnosis method and system based on image and depth fuzzy | |
CN111428772B (en) | Photovoltaic system depth anomaly detection method based on k-nearest neighbor adaptive voting | |
CN115146718B (en) | Wind turbine anomaly detection method based on deep representation | |
CN114202028B (en) | MAMTL-based rolling bearing life stage identification method | |
CN111190072A (en) | Centralized meter reading system diagnosis model establishing method, fault diagnosis method and fault diagnosis device | |
CN118690276A (en) | A high-speed rail wheel-rail sensing adversarial learning damage identification method | |
CN114781507B (en) | A chiller fault diagnosis method based on 1DCNN-DS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |