CN114937765B - A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery - Google Patents
A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery Download PDFInfo
- Publication number
- CN114937765B CN114937765B CN202210588124.0A CN202210588124A CN114937765B CN 114937765 B CN114937765 B CN 114937765B CN 202210588124 A CN202210588124 A CN 202210588124A CN 114937765 B CN114937765 B CN 114937765B
- Authority
- CN
- China
- Prior art keywords
- silicon
- composite material
- lithium
- lithium silicate
- dianhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 161
- 239000010703 silicon Substances 0.000 title claims abstract description 161
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 229910052912 lithium silicate Inorganic materials 0.000 title claims abstract description 106
- 239000004642 Polyimide Substances 0.000 title claims abstract description 73
- 229920001721 polyimide Polymers 0.000 title claims abstract description 73
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 56
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 45
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 160
- 239000002131 composite material Substances 0.000 claims abstract description 130
- 239000011247 coating layer Substances 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000000498 ball milling Methods 0.000 claims abstract description 14
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 10
- 239000000178 monomer Substances 0.000 claims description 67
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 51
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 48
- 239000003575 carbonaceous material Substances 0.000 claims description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 150000004985 diamines Chemical class 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 15
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 15
- 239000002041 carbon nanotube Substances 0.000 claims description 14
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 14
- 229910003002 lithium salt Inorganic materials 0.000 claims description 14
- 159000000002 lithium salts Chemical class 0.000 claims description 14
- 238000006116 polymerization reaction Methods 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- 238000001694 spray drying Methods 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 10
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 10
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229910010941 LiFSI Inorganic materials 0.000 claims description 9
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000006230 acetylene black Substances 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 8
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 5
- 229910013188 LiBOB Inorganic materials 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 5
- 235000010290 biphenyl Nutrition 0.000 claims description 5
- 239000004305 biphenyl Substances 0.000 claims description 5
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 claims description 5
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 3
- 239000012965 benzophenone Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000010405 anode material Substances 0.000 claims 2
- NYJFVPGIOAESNA-UHFFFAOYSA-N 4-(4-propylphenoxy)benzene-1,3-diamine Chemical compound NC1=C(C=CC(=C1)N)OC1=CC=C(C=C1)CCC NYJFVPGIOAESNA-UHFFFAOYSA-N 0.000 claims 1
- 101150058243 Lipf gene Proteins 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 11
- 230000002441 reversible effect Effects 0.000 abstract description 9
- 238000007599 discharging Methods 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000003139 buffering effect Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 24
- 239000012299 nitrogen atmosphere Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 11
- 235000012239 silicon dioxide Nutrition 0.000 description 11
- 238000001723 curing Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 8
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000011343 solid material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical group C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 4
- MVQLIXUQBRPZGS-UHFFFAOYSA-N 4-[4-[2-[4-(2,4-diaminophenoxy)phenyl]propan-2-yl]phenoxy]benzene-1,3-diamine Chemical compound NC1=C(C=CC(=C1)N)OC1=CC=C(C=C1)C(C)(C)C1=CC=C(C=C1)OC1=C(C=C(C=C1)N)N MVQLIXUQBRPZGS-UHFFFAOYSA-N 0.000 description 4
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/023—Preparation by reduction of silica or free silica-containing material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1028—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
- C08G73/1032—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
本发明提供了一种硅复合材料,包括硅/硅酸锂复合材料以及包覆在硅/硅酸锂复合材料上的改性聚酰亚胺包覆层;所述改性聚酰亚胺为锂离子掺杂的聚酰亚胺。该具有特定结构的改性聚酰亚胺包覆硅/硅酸锂负极材料,硅/硅酸锂复合材料具有纳米硅颗粒均匀分散于硅酸锂相的结构。本发明中的硅酸锂相可提升锂离子电导率,同时缓冲硅在充放电过程中的体积膨胀。聚酰亚胺包覆层具有优异的力学性能且经锂离子修饰后保障了材料具有较高的首效,可逆容量高,循环性能优良。本发明提供的制备方法,通过简单的机械球磨制备硅/硅酸锂复合材料,能耗低,节约成本,绿色环保,制备工艺简单,可工业化生产,实用化程度高,在锂离子电池负极方面具有广阔的应用前景。The present invention provides a silicon composite material, including a silicon/lithium silicate composite material and a modified polyimide coating layer coated on the silicon/lithium silicate composite material; the modified polyimide is a lithium ion doped polyimide. The modified polyimide coated silicon/lithium silicate negative electrode material with a specific structure, the silicon/lithium silicate composite material has a structure in which nano silicon particles are uniformly dispersed in the lithium silicate phase. The lithium silicate phase in the present invention can improve the lithium ion conductivity, while buffering the volume expansion of silicon during the charging and discharging process. The polyimide coating layer has excellent mechanical properties and after being modified with lithium ions, it ensures that the material has a high first effect, high reversible capacity, and excellent cycle performance. The preparation method provided by the present invention prepares the silicon/lithium silicate composite material by simple mechanical ball milling, has low energy consumption, saves cost, is green and environmentally friendly, has a simple preparation process, can be industrialized, has a high degree of practicality, and has broad application prospects in lithium ion battery negative electrodes.
Description
技术领域Technical Field
本发明属于硅复合材料技术领域,涉及一种硅复合材料及其制备方法、锂离子电池,尤其涉及一种改性聚酰亚胺包覆硅/硅酸锂负极材料及其制备方法、锂离子电池。The present invention belongs to the technical field of silicon composite materials, and relates to a silicon composite material and a preparation method thereof, and a lithium ion battery, and in particular to a modified polyimide-coated silicon/lithium silicate negative electrode material and a preparation method thereof, and a lithium ion battery.
背景技术Background technique
锂离子电池由于具有能量密度高、输出电压高、循环寿命长、环境污染小等优点,在电子产品、电动汽车、储能等领域有着极其重要的应用。当前商业化的锂离子电池负极材料主要是石墨类负极材料,其理论容量只有372mAh/g,实际容量在340~360mAh/g之间,无法满足高比能量电池的设计要求。因此,开发出比容量高、循环稳定性和倍率性能好的下一代新型负极材料以实现在电子产品和电动汽车上的广泛使用已经成为电池领域研究的关键课题。Lithium-ion batteries have extremely important applications in electronic products, electric vehicles, energy storage and other fields due to their advantages such as high energy density, high output voltage, long cycle life and low environmental pollution. The current commercial lithium-ion battery negative electrode material is mainly graphite negative electrode material, with a theoretical capacity of only 372mAh/g and an actual capacity between 340 and 360mAh/g, which cannot meet the design requirements of high specific energy batteries. Therefore, the development of the next generation of new negative electrode materials with high specific capacity, good cycle stability and rate performance to achieve widespread use in electronic products and electric vehicles has become a key research topic in the battery field.
硅基材料来源丰富,且具有较高的比容量(4200mAh/g),同时,其嵌锂电位(0.4V)接近于石墨的嵌锂电位(0.1V),是高比能量电池的理想负极材料。但由于硅材料本身导电性能差,并且,在电化学嵌脱锂时产生的严重体积效应,造成材料结构的破坏和机械粉化,导致电极材料间及电极材料与集流体的分离,进而失去电接触,导致电极的循环性能急剧下降。目前解决这一问题的方法有采用较低膨胀系数的材料作为基体,将活性硅镶嵌或封装于这些基体材料中,以缓解由于锂离子的嵌入和脱出造成的体积变化。基体材料起着缓冲机械应力的作用。较为常见的基体材料为碳类材料、聚合物材料。但相对于硅而言,碳类材料虽然具有较好的力学性能,更低的体积膨胀率(仅为9%,远低于硅的400%),但由于绝对体积膨胀依然存在,因此,这类复合材料的构造方法,能够在一定程度上缓解硅的体积效应,但硅类材料的长期电化学循环稳定性并未得到显著提高。而且,在后续循环中,随着循环反应的继续进行,基体材料与硅活性中心由于体积膨胀的失配,其二者之间的界面结合也将受到严重破坏,造成电化学循环性能的衰减。如公开号为CN108321368A的专利申请了一种聚合物包覆硅/偏硅酸锂负极材料及其制备方法,通过活性锂粉与氧化亚硅在惰性气氛下进行球磨制备硅/硅酸锂复合材料,在复合材料表面原位聚合聚苯胺、聚吡咯、聚多巴胺等聚合物。首先,锂粉活性比较高,对环境要求苛刻,不适合工业化生产。同时,聚合物中的极性杂原子会消耗电解液中的锂离子,降低首次循环效率,其制备的电极材料的首次效率仅为70%,不满足负极材料商业化产品的要求。Silicon-based materials are abundant in sources and have a high specific capacity (4200mAh/g). At the same time, their lithium insertion potential (0.4V) is close to that of graphite (0.1V), making them ideal negative electrode materials for high specific energy batteries. However, due to the poor conductivity of silicon materials themselves and the severe volume effect produced during electrochemical lithium insertion and extraction, the material structure is destroyed and mechanically pulverized, resulting in separation between electrode materials and between electrode materials and current collectors, and then loss of electrical contact, resulting in a sharp decline in the cycle performance of the electrode. The current method to solve this problem is to use materials with lower expansion coefficients as the matrix, embed or encapsulate active silicon in these matrix materials to alleviate the volume changes caused by the insertion and extraction of lithium ions. The matrix material plays a role in buffering mechanical stress. The more common matrix materials are carbon materials and polymer materials. However, compared with silicon, although carbon materials have better mechanical properties and lower volume expansion rate (only 9%, far lower than 400% of silicon), the absolute volume expansion still exists. Therefore, the construction method of this type of composite material can alleviate the volume effect of silicon to a certain extent, but the long-term electrochemical cycle stability of silicon materials has not been significantly improved. Moreover, in the subsequent cycles, as the cycle reaction continues, the interface bonding between the matrix material and the silicon active center will also be severely damaged due to the mismatch of volume expansion, resulting in the attenuation of electrochemical cycle performance. For example, the patent application with publication number CN108321368A applies for a polymer-coated silicon/lithium metasilicate negative electrode material and a preparation method thereof, wherein a silicon/lithium silicate composite material is prepared by ball milling active lithium powder and silicon oxide in an inert atmosphere, and polymerizing polyaniline, polypyrrole, polydopamine and other polymers in situ on the surface of the composite material. First, lithium powder is relatively active, has strict environmental requirements, and is not suitable for industrial production. At the same time, the polar heteroatoms in the polymer will consume lithium ions in the electrolyte and reduce the first cycle efficiency. The first efficiency of the electrode material prepared by it is only 70%, which does not meet the requirements of commercial products of negative electrode materials.
因此,如何找到更为适宜的方式,解决现有的用于硅负极存在的上述问题,到一种可逆容量高,循环性能优良,可商业化的硅碳负极产品,而且适于工业化推广和应用,已成为诸多一线研究人员和科研型企业亟待解决的问题之一。Therefore, how to find a more appropriate way to solve the above-mentioned problems existing in the existing silicon negative electrode and to produce a commercial silicon-carbon negative electrode product with high reversible capacity, excellent cycle performance, and suitable for industrial promotion and application has become one of the urgent problems to be solved by many front-line researchers and scientific research enterprises.
发明内容Summary of the invention
有鉴于此,本发明要解决的技术问题在于提供一种硅复合材料及其制备方法、锂离子电池,特别是一种锂离子电池改性聚酰亚胺包覆硅/硅酸锂负极材料。本发明提供的硅复合材料具有可逆容量高,循环性能优良等特点,且过程工艺简单易行,便于规模化生产,实用化程度高,在锂离子电池负极方面具有广阔的应用前景。In view of this, the technical problem to be solved by the present invention is to provide a silicon composite material and a preparation method thereof, a lithium ion battery, and in particular a lithium ion battery modified polyimide coated silicon/lithium silicate negative electrode material. The silicon composite material provided by the present invention has the characteristics of high reversible capacity, excellent cycle performance, etc., and the process is simple and easy to operate, convenient for large-scale production, high degree of practicality, and has broad application prospects in the negative electrode of lithium ion batteries.
本发明提供了一种硅复合材料,包括硅/硅酸锂复合材料以及包覆在硅/硅酸锂复合材料上的改性聚酰亚胺包覆层;The present invention provides a silicon composite material, comprising a silicon/lithium silicate composite material and a modified polyimide coating layer coated on the silicon/lithium silicate composite material;
所述改性聚酰亚胺为锂离子掺杂的聚酰亚胺。The modified polyimide is lithium ion doped polyimide.
优选的,所述硅/硅酸锂复合材料中,纳米硅颗粒分散在硅酸锂材料中;Preferably, in the silicon/lithium silicate composite material, nano silicon particles are dispersed in the lithium silicate material;
所述纳米硅颗粒的粒径大于等于10nm;The particle size of the nano silicon particles is greater than or equal to 10 nm;
所述锂离子掺杂的聚酰亚胺包括锂离子修饰的聚酰亚胺。The lithium ion doped polyimide includes lithium ion modified polyimide.
优选的,所述硅复合材料中,所述硅/硅酸锂复合材料的质量含量为93%~99%;Preferably, in the silicon composite material, the mass content of the silicon/lithium silicate composite material is 93% to 99%;
所述硅复合材料的D50粒径为1~10μm;The D50 particle size of the silicon composite material is 1 to 10 μm;
所述硅复合材料为锂离子电池负极材料。The silicon composite material is a negative electrode material for lithium-ion batteries.
优选的,所述硅复合材料中,还包括导电碳材料;Preferably, the silicon composite material further comprises a conductive carbon material;
所述导电碳材料包括导电炭黑、乙炔黑、碳纳米管、石墨烯和碳纤维中的一种或多种;The conductive carbon material includes one or more of conductive carbon black, acetylene black, carbon nanotubes, graphene and carbon fibers;
所述导电碳材料包括复合在所述硅/硅酸锂复合材料上的导电碳材料、包覆在所述硅/硅酸锂复合材料上的导电碳材料、掺杂在所述改性聚酰亚胺包覆层中的导电碳材料和复合在所述改性聚酰亚胺包覆层上的导电碳材料中的一种或多种。The conductive carbon material includes one or more of a conductive carbon material composited on the silicon/lithium silicate composite material, a conductive carbon material coated on the silicon/lithium silicate composite material, a conductive carbon material doped in the modified polyimide coating layer, and a conductive carbon material composited on the modified polyimide coating layer.
本发明提供了一种硅复合材料的制备方法,包括以下步骤:The present invention provides a method for preparing a silicon composite material, comprising the following steps:
1)在保护性气氛下,将氧化亚硅、氢氧化锂和混合溶液进行球磨后,得到硅/硅酸锂复合材料;1) Under a protective atmosphere, ball-milling silicon dioxide, lithium hydroxide and a mixed solution to obtain a silicon/lithium silicate composite material;
2)将上述步骤得到的硅/硅酸锂复合材料、聚合物单体和含锂盐的溶剂混合后,进行聚合反应,再经过喷雾干燥和加热固化后,得到硅复合材料。2) The silicon/lithium silicate composite material obtained in the above steps, the polymer monomer and the solvent containing lithium salt are mixed, and then subjected to polymerization reaction, and then spray-dried and heated for curing to obtain a silicon composite material.
优选的,所述氧化亚硅的粒径为3~10μm;Preferably, the particle size of the silicon oxide is 3 to 10 μm;
所述氧化亚硅中Si与O的原子比为n,0.8≤n<1.6;The atomic ratio of Si to O in the silicon oxide is n, 0.8≤n<1.6;
所述氧化亚硅与氢氧化锂的摩尔比为(6~9):1;The molar ratio of silicon oxide to lithium hydroxide is (6-9):1;
所述混合溶液包括水和醇的混合溶液;The mixed solution includes a mixed solution of water and alcohol;
所述球磨的时间为6~10h。The ball milling time is 6 to 10 hours.
优选的,所述聚合物单体包括二酐单体和二胺单体;Preferably, the polymer monomers include dianhydride monomers and diamine monomers;
所述二酐单体包括均苯四甲酸二酐、二苯酮二酐、联苯二酐、二苯醚二酐和1,2,4,5-均苯四甲酸二酐中的一种或多种;The dianhydride monomer includes one or more of pyromellitic dianhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride and 1,2,4,5-pyromellitic dianhydride;
所述二胺单体包括对苯二胺、4,4’-二氨基-3,3’-二甲基联苯、4,4’-二氨基二苯砜、2,2-双[4-(2,4-二氨基苯氧基)苯基]丙烷和1,4-二氨基环己烷中的一种或多种;The diamine monomer includes one or more of p-phenylenediamine, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diaminodiphenyl sulfone, 2,2-bis[4-(2,4-diaminophenoxy)phenyl]propane and 1,4-diaminocyclohexane;
所述二酐单体和二胺单体的摩尔比为(1~1.05):1;The molar ratio of the dianhydride monomer to the diamine monomer is (1-1.05):1;
所述步骤2)中还包括导电碳材料。The step 2) also includes a conductive carbon material.
优选的,所述导电碳材料包括导电炭黑、乙炔黑、碳纳米管、石墨烯和碳纤维中的一种或多种;Preferably, the conductive carbon material includes one or more of conductive carbon black, acetylene black, carbon nanotubes, graphene and carbon fiber;
所述锂盐包括LiBOB、LiPF6和LiFSI中的一种或多种;The lithium salt includes one or more of LiBOB, LiPF 6 and LiFSI;
所述锂盐与所述二酐单体的摩尔比为(1~15):100;The molar ratio of the lithium salt to the dianhydride monomer is (1-15):100;
所述溶剂包括丙酮、二甲基亚砜和N,N-二甲基甲酰胺中一种或多种;The solvent includes one or more of acetone, dimethyl sulfoxide and N,N-dimethylformamide;
所述步骤2)具体为:The step 2) is specifically as follows:
将导电碳材料、锂盐、二酐单体和溶剂先混合后,再加入二胺单体进行聚合反应后,然后加入上述步骤得到的硅/硅酸锂复合材料,最后经过喷雾干燥和加热固化后,得到硅复合材料。The conductive carbon material, lithium salt, dianhydride monomer and solvent are first mixed, and then the diamine monomer is added for polymerization reaction, and then the silicon/lithium silicate composite material obtained in the above steps is added, and finally the silicon composite material is obtained after spray drying and heating curing.
优选的,所述聚合反应的温度为40~70℃;Preferably, the polymerization reaction temperature is 40 to 70°C;
所述聚合反应的时间为1~4h;The polymerization reaction time is 1 to 4 hours;
所述喷雾干燥的温度为150~200℃;The spray drying temperature is 150-200°C;
所述加热固化的温度为300~450℃;The temperature of the heating and curing is 300-450°C;
所述加热固化的时间为2~6h。The heating and curing time is 2 to 6 hours.
本发明还提供了一种锂离子电池,包括正极和负极;The present invention also provides a lithium ion battery, comprising a positive electrode and a negative electrode;
所述负极包括硅复合负极材料;The negative electrode comprises a silicon composite negative electrode material;
所述硅复合负极材料包括上述技术方案任意一项所述的硅复合材料或上述技术方案任意一项所述的制备方法所制备的硅复合材料。The silicon composite negative electrode material includes the silicon composite material described in any one of the above technical solutions or the silicon composite material prepared by the preparation method described in any one of the above technical solutions.
本发明提供了一种硅复合材料,包括硅/硅酸锂复合材料以及包覆在硅/硅酸锂复合材料上的改性聚酰亚胺包覆层;所述改性聚酰亚胺为锂离子掺杂的聚酰亚胺。与现有技术相比,本发明针对现有的硅碳负极材料改性主要通过碳包覆之后,经过预锂化工艺提升电池性能,不仅成本较高,且碳包覆层与活性物质在循环过程中易发生失配,影响电化学性能;而现阶段中采用的聚合物包覆硅碳负极材料,其聚合物中的极性杂原子会消耗电解液中的锂离子,影响电池首次循环效率等问题。本发明基于研究认为,聚合物包覆层中含有的杂原子会消耗电解液中的锂离子,进而造成首次不可逆容量的提升。The present invention provides a silicon composite material, including a silicon/lithium silicate composite material and a modified polyimide coating layer coated on the silicon/lithium silicate composite material; the modified polyimide is a lithium ion doped polyimide. Compared with the prior art, the present invention aims at modifying the existing silicon-carbon negative electrode material mainly by carbon coating and then undergoing a pre-lithiation process to improve the battery performance, which is not only costly, but also prone to mismatch between the carbon coating layer and the active material during the cycle process, affecting the electrochemical performance; and the polymer-coated silicon-carbon negative electrode material currently used, the polar heteroatoms in the polymer will consume lithium ions in the electrolyte, affecting the battery's first cycle efficiency and other issues. Based on research, the present invention believes that the heteroatoms contained in the polymer coating will consume lithium ions in the electrolyte, thereby causing an increase in the first irreversible capacity.
基于此,本发明创造性的设计了一种具有特定结构的硅复合材料,这种改性聚酰亚胺包覆硅/硅酸锂负极材料,包括硅/硅酸锂复合材料和包覆在复合材料外的改性聚酰亚胺包覆层,所述硅/硅酸锂复合材料具有纳米硅颗粒(<10nm)均匀分散于硅酸锂相的结构,而且改性聚酰亚胺包覆层由二酐单体和二胺单体在含锂离子的溶剂中聚合而得。本发明中的硅酸锂相可提升锂离子电导率,同时缓冲硅在充放电过程中的体积膨胀。聚酰亚胺包覆层具有优异的力学性能且经锂离子修饰后保障了材料具有较高的首效,可逆容量高,循环性能优良。Based on this, the present invention creatively designs a silicon composite material with a specific structure. This modified polyimide-coated silicon/lithium silicate negative electrode material includes a silicon/lithium silicate composite material and a modified polyimide coating layer coated outside the composite material. The silicon/lithium silicate composite material has a structure in which nano silicon particles (<10nm) are uniformly dispersed in the lithium silicate phase, and the modified polyimide coating layer is obtained by polymerizing dianhydride monomers and diamine monomers in a solvent containing lithium ions. The lithium silicate phase in the present invention can improve the lithium ion conductivity and buffer the volume expansion of silicon during the charge and discharge process. The polyimide coating layer has excellent mechanical properties and after being modified with lithium ions, it ensures that the material has a high first effect, high reversible capacity, and excellent cycle performance.
本发明还提供了改性聚酰亚胺包覆硅/硅酸锂负极材料的制备方法,通过简单的机械球磨制备了硅/硅酸锂复合材料,摒弃了传统制备方法中的高温煅烧,大幅降低能耗,节约成本,绿色环保,具有制备工艺简单,对环境要求不高,可工业化生产,实用化程度高等特点,在锂离子电池负极方面具有广阔的应用前景。The present invention also provides a method for preparing a modified polyimide-coated silicon/lithium silicate negative electrode material. The silicon/lithium silicate composite material is prepared by simple mechanical ball milling, which abandons the high-temperature calcination in the traditional preparation method, greatly reduces energy consumption, saves costs, is green and environmentally friendly, has the characteristics of simple preparation process, low environmental requirements, industrial production, high degree of practicality, etc., and has broad application prospects in lithium-ion battery negative electrodes.
实验结果表明,本发明制备的改性聚酰亚胺包覆硅/硅酸锂负极材料中硅酸锂的复合,可以明显提升材料的离子电导率,同时可以缓冲硅在充放电过程中的体积效应(体积膨胀),有利于提升锂离子电导率;而聚酰亚胺包覆层具有优异的力学性能且经锂离子修饰后保障了材料具有较高的首效、可逆容量及较好的循环性能。Experimental results show that the composite of lithium silicate in the modified polyimide-coated silicon/lithium silicate negative electrode material prepared by the present invention can significantly improve the ionic conductivity of the material, and at the same time can buffer the volume effect (volume expansion) of silicon during the charging and discharging process, which is beneficial to improving the lithium ion conductivity; the polyimide coating layer has excellent mechanical properties and after lithium ion modification, it ensures that the material has a higher first effect, reversible capacity and better cycle performance.
具体实施方式Detailed ways
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点,而不是对发明权利要求的限制。In order to further understand the present invention, preferred embodiments of the present invention are described below in conjunction with examples, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention, rather than limiting the claims of the invention.
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法制备的即可。All raw materials of the present invention are not particularly limited in their sources and can be purchased from the market or prepared according to conventional methods well known to those skilled in the art.
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或锂离子负极制备领域内使用的常规纯度。There is no particular limitation on the purity of all raw materials in the present invention. The present invention preferably uses analytically pure materials or materials of conventional purity used in the field of lithium ion negative electrode preparation.
本发明提供了一种硅复合材料,包括硅/硅酸锂复合材料以及包覆在硅/硅酸锂复合材料上的改性聚酰亚胺包覆层;The present invention provides a silicon composite material, comprising a silicon/lithium silicate composite material and a modified polyimide coating layer coated on the silicon/lithium silicate composite material;
所述改性聚酰亚胺为锂离子掺杂的聚酰亚胺。The modified polyimide is lithium ion doped polyimide.
在本发明中,所述锂离子掺杂的聚酰亚胺优选包括锂离子修饰的聚酰亚胺。In the present invention, the lithium ion doped polyimide preferably includes lithium ion modified polyimide.
在本发明中,所述硅/硅酸锂复合材料中,纳米硅颗粒优选分散在硅酸锂材料中。In the present invention, in the silicon/lithium silicate composite material, the nano silicon particles are preferably dispersed in the lithium silicate material.
在本发明中,所述纳米硅颗粒的粒径优选大于等于10nm,更优选大于等于12nm,更优选大于等于14nm。In the present invention, the particle size of the nano-silicon particles is preferably greater than or equal to 10 nm, more preferably greater than or equal to 12 nm, and more preferably greater than or equal to 14 nm.
在本发明中,所述硅复合材料中,所述硅/硅酸锂复合材料的质量含量优选为93%~99%,更优选为94%~98%,更优选为95%~97%。In the present invention, in the silicon composite material, the mass content of the silicon/lithium silicate composite material is preferably 93% to 99%, more preferably 94% to 98%, and more preferably 95% to 97%.
在本发明中,所述硅复合材料的D50粒径优选为1~10μm,更优选为3~8μm,更优选为5~6μm。In the present invention, the D50 particle size of the silicon composite material is preferably 1 to 10 μm, more preferably 3 to 8 μm, and even more preferably 5 to 6 μm.
在本发明中,所述硅复合材料优选为锂离子电池负极材料。In the present invention, the silicon composite material is preferably a negative electrode material for a lithium ion battery.
在本发明中,所述硅复合材料中,优选包括导电碳材料。In the present invention, the silicon composite material preferably includes a conductive carbon material.
在本发明中,所述导电碳材料优选包括导电炭黑、乙炔黑、碳纳米管、石墨烯和碳纤维中的一种或多种,更优选为导电炭黑、乙炔黑、碳纳米管、石墨烯或碳纤维。In the present invention, the conductive carbon material preferably includes one or more of conductive carbon black, acetylene black, carbon nanotubes, graphene and carbon fibers, and more preferably conductive carbon black, acetylene black, carbon nanotubes, graphene or carbon fibers.
在本发明中,所述导电碳材料优选包括复合在所述硅/硅酸锂复合材料上的导电碳材料、包覆在所述硅/硅酸锂复合材料上的导电碳材料、掺杂在所述改性聚酰亚胺包覆层中的导电碳材料和复合在所述改性聚酰亚胺包覆层上的导电碳材料中的一种或多种,更优选为复合在所述硅/硅酸锂复合材料上的导电碳材料、包覆在所述硅/硅酸锂复合材料上的导电碳材料、掺杂在所述改性聚酰亚胺包覆层中的导电碳材料和复合在所述改性聚酰亚胺包覆层上的导电碳材料。In the present invention, the conductive carbon material preferably includes one or more of a conductive carbon material composited on the silicon/lithium silicate composite material, a conductive carbon material coated on the silicon/lithium silicate composite material, a conductive carbon material doped in the modified polyimide coating layer, and a conductive carbon material composited on the modified polyimide coating layer, and more preferably includes a conductive carbon material composited on the silicon/lithium silicate composite material, a conductive carbon material coated on the silicon/lithium silicate composite material, a conductive carbon material doped in the modified polyimide coating layer, and a conductive carbon material composited on the modified polyimide coating layer.
本发明为完整和细化整体技术方案,更好的保证复合材料特定的结构和形貌,更好的抑制硅体积膨胀,进而提升电池的首效,可逆容量以及循环性能,上述改性聚酰亚胺包覆硅/硅酸锂负极材料,具体可以为:The present invention is to complete and refine the overall technical solution, better ensure the specific structure and morphology of the composite material, better inhibit the volume expansion of silicon, and thus improve the first effect, reversible capacity and cycle performance of the battery. The modified polyimide-coated silicon/lithium silicate negative electrode material can be specifically:
由硅/硅酸锂复合材料和包覆在复合材料外的改性聚酰亚胺包覆层组成。其中,所述硅/硅酸锂复合材料具有纳米硅颗粒(<10nm)均匀分散于硅酸锂相的结构,所述改性聚酰亚胺包覆层由二酐单体和二胺单体在含锂离子的溶剂中聚合而得。It is composed of a silicon/lithium silicate composite material and a modified polyimide coating layer coated on the outside of the composite material. The silicon/lithium silicate composite material has a structure in which nano silicon particles (<10nm) are uniformly dispersed in a lithium silicate phase, and the modified polyimide coating layer is obtained by polymerizing a dianhydride monomer and a diamine monomer in a solvent containing lithium ions.
具体的,所述硅/硅酸锂复合材料在负极材料中的重量含量为93%~99%,改性聚酰亚胺包覆层在负极材料中的重量含量为0.5%~7%。Specifically, the weight content of the silicon/lithium silicate composite material in the negative electrode material is 93% to 99%, and the weight content of the modified polyimide coating layer in the negative electrode material is 0.5% to 7%.
具体的,所述改性聚酰亚胺包覆硅/硅酸锂负极材料,其粒子尺寸D50为1~10μm,优选为3~7μm。Specifically, the modified polyimide-coated silicon/lithium silicate negative electrode material has a particle size D50 of 1 to 10 μm, preferably 3 to 7 μm.
本发明提供了一种硅复合材料的制备方法,包括以下步骤:The present invention provides a method for preparing a silicon composite material, comprising the following steps:
1)在保护性气氛下,将氧化亚硅、氢氧化锂和混合溶液进行球磨后,得到硅/硅酸锂复合材料;1) Under a protective atmosphere, ball-milling silicon dioxide, lithium hydroxide and a mixed solution to obtain a silicon/lithium silicate composite material;
2)将上述步骤得到的硅/硅酸锂复合材料、聚合物单体和含锂盐的溶剂混合后,进行聚合反应,再经过喷雾干燥和加热固化后,得到硅复合材料。2) The silicon/lithium silicate composite material obtained in the above steps, the polymer monomer and the solvent containing lithium salt are mixed, and then subjected to polymerization reaction, and then spray-dried and heated for curing to obtain a silicon composite material.
本发明手续在保护性气氛下,将氧化亚硅、氢氧化锂和混合溶液进行球磨后,得到硅/硅酸锂复合材料。The method of the present invention is to ball-mill silicon dioxide, lithium hydroxide and a mixed solution under a protective atmosphere to obtain a silicon/lithium silicate composite material.
在本发明中,所述氧化亚硅的粒径优选为3~10μm,更优选为5~9μm,更优选为6~8μm。In the present invention, the particle size of silicon 2 oxide is preferably 3 to 10 μm, more preferably 5 to 9 μm, and more preferably 6 to 8 μm.
在本发明中,所述氧化亚硅中Si与O的原子比为n,优选0.8≤n<1.6,更优选0.9≤n≤1.5,更优选1.0≤n≤1.4,更优选1.1≤n≤1.3。In the present invention, the atomic ratio of Si to O in the silicon monoxide is n, preferably 0.8≤n<1.6, more preferably 0.9≤n≤1.5, more preferably 1.0≤n≤1.4, more preferably 1.1≤n≤1.3.
在本发明中,所述氧化亚硅与氢氧化锂的摩尔比优选为(6~9):1,更优选为(6.5~8.5):1,更优选为(7~8):1。In the present invention, the molar ratio of silicon monoxide to lithium hydroxide is preferably (6-9):1, more preferably (6.5-8.5):1, and more preferably (7-8):1.
在本发明中,所述混合溶液优选包括水和醇的混合溶液。In the present invention, the mixed solution preferably includes a mixed solution of water and alcohol.
在本发明中,所述球磨的时间优选为6~10h,更优选为6.5~9.5h,更优选为7~9h,更优选为7.5~8.5h。In the present invention, the ball milling time is preferably 6 to 10 h, more preferably 6.5 to 9.5 h, more preferably 7 to 9 h, and more preferably 7.5 to 8.5 h.
本发明再将上述步骤得到的硅/硅酸锂复合材料、聚合物单体和含锂盐的溶剂混合后,进行聚合反应,再经过喷雾干燥和加热固化后,得到硅复合材料。The present invention further mixes the silicon/lithium silicate composite material obtained in the above steps, polymer monomers and a solvent containing lithium salt, performs polymerization reaction, and then spray-dries and heat-cures to obtain a silicon composite material.
在本发明中,所述聚合物单体优选包括二酐单体和二胺单体。In the present invention, the polymer monomers preferably include dianhydride monomers and diamine monomers.
在本发明中,所述二酐单体优选包括均苯四甲酸二酐、二苯酮二酐、联苯二酐、二苯醚二酐和1,2,4,5-均苯四甲酸二酐中的一种或多种,更优选为均苯四甲酸二酐、二苯酮二酐、联苯二酐、二苯醚二酐或1,2,4,5-均苯四甲酸二酐。In the present invention, the dianhydride monomer preferably includes one or more of pyromellitic dianhydride, dibenzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride and 1,2,4,5-pyromellitic dianhydride, and more preferably pyromellitic dianhydride, dibenzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride or 1,2,4,5-pyromellitic dianhydride.
在本发明中,所述二胺单体优选包括对苯二胺、4,4’-二氨基-3,3’-二甲基联苯、4,4’-二氨基二苯砜、2,2-双[4-(2,4-二氨基苯氧基)苯基]丙烷和1,4-二氨基环己烷中的一种或多种,更优选为对苯二胺、4,4’-二氨基-3,3’-二甲基联苯、4,4’-二氨基二苯砜、2,2-双[4-(2,4-二氨基苯氧基)苯基]丙烷或1,4-二氨基环己烷。In the present invention, the diamine monomer preferably includes one or more of p-phenylenediamine, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diaminodiphenyl sulfone, 2,2-bis[4-(2,4-diaminophenoxy)phenyl]propane and 1,4-diaminocyclohexane, and more preferably p-phenylenediamine, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diaminodiphenyl sulfone, 2,2-bis[4-(2,4-diaminophenoxy)phenyl]propane or 1,4-diaminocyclohexane.
在本发明中,所述二酐单体和二胺单体的摩尔比优选为(1~1.05):1,更优选为(1.01~1.04):1,更优选为(1.02~1.03):1。In the present invention, the molar ratio of the dianhydride monomer to the diamine monomer is preferably (1-1.05):1, more preferably (1.01-1.04):1, and more preferably (1.02-1.03):1.
在本发明中,所述步骤2)中优选包括导电碳材料。In the present invention, the step 2) preferably includes a conductive carbon material.
在本发明中,所述导电碳材料优选包括导电炭黑、乙炔黑、碳纳米管、石墨烯和碳纤维中的一种或多种,更优选为导电炭黑、乙炔黑、碳纳米管、石墨烯或碳纤维。In the present invention, the conductive carbon material preferably includes one or more of conductive carbon black, acetylene black, carbon nanotubes, graphene and carbon fibers, and more preferably conductive carbon black, acetylene black, carbon nanotubes, graphene or carbon fibers.
在本发明中,所述锂盐优选包括LiBOB、LiPF6和LiFSI中的一种或多种,更优选为LiBOB、LiPF6或LiFSI。In the present invention, the lithium salt preferably includes one or more of LiBOB, LiPF6 and LiFSI, and more preferably LiBOB, LiPF6 or LiFSI.
在本发明中,所述锂盐与所述二酐单体的摩尔比优选为(1~15):100,更优选为(4~12):100,更优选为(7~9):100。In the present invention, the molar ratio of the lithium salt to the dianhydride monomer is preferably (1-15):100, more preferably (4-12):100, and even more preferably (7-9):100.
在本发明中,所述溶剂优选包括丙酮、二甲基亚砜和N,N-二甲基甲酰胺中一种或多种,更优选为丙酮、二甲基亚砜或N,N-二甲基甲酰胺。In the present invention, the solvent preferably includes one or more of acetone, dimethyl sulfoxide and N,N-dimethylformamide, more preferably acetone, dimethyl sulfoxide or N,N-dimethylformamide.
在本发明中,所述步骤2)具体优选为:In the present invention, the step 2) is preferably:
将导电碳材料、锂盐、二酐单体和溶剂先混合后,再加入二胺单体进行聚合反应后,然后加入上述步骤得到的硅/硅酸锂复合材料,最后经过喷雾干燥和加热固化后,得到硅复合材料。The conductive carbon material, lithium salt, dianhydride monomer and solvent are first mixed, and then the diamine monomer is added for polymerization reaction, and then the silicon/lithium silicate composite material obtained in the above steps is added, and finally the silicon composite material is obtained after spray drying and heating curing.
在本发明中,所述聚合反应的温度优选为40~70℃,更优选为45~65℃,更优选为50~60℃。In the present invention, the polymerization reaction temperature is preferably 40 to 70°C, more preferably 45 to 65°C, and more preferably 50 to 60°C.
在本发明中,所述聚合反应的时间优选为1~4h,更优选为1.5~3.5h,更优选为2~3h。In the present invention, the polymerization reaction time is preferably 1 to 4 hours, more preferably 1.5 to 3.5 hours, and more preferably 2 to 3 hours.
在本发明中,所述喷雾干燥的温度优选为150~200℃,更优选为160~190℃,更优选为170~180℃。In the present invention, the spray drying temperature is preferably 150 to 200°C, more preferably 160 to 190°C, and even more preferably 170 to 180°C.
在本发明中,所述加热固化的温度优选为300~450℃,更优选为330~420℃,更优选为360~390℃。In the present invention, the temperature of the heating and curing is preferably 300 to 450°C, more preferably 330 to 420°C, and even more preferably 360 to 390°C.
在本发明中,所述加热固化的时间优选为2~6h,更优选为2.5~5.5h,更优选为3~5h,更优选为3.5~4.5h。In the present invention, the heating and curing time is preferably 2 to 6 hours, more preferably 2.5 to 5.5 hours, more preferably 3 to 5 hours, and more preferably 3.5 to 4.5 hours.
本发明为完整和细化整体制备工艺,更好的保证复合材料特定的结构和形貌,更好的抑制硅体积膨胀,进而提升电池的首效,可逆容量以及循环性能,上述改性聚酰亚胺包覆硅/硅酸锂负极材料的制备方法,具体可以为:The present invention is to complete and refine the overall preparation process, better ensure the specific structure and morphology of the composite material, better inhibit the volume expansion of silicon, and thus improve the first effect, reversible capacity and cycle performance of the battery. The preparation method of the modified polyimide-coated silicon/lithium silicate negative electrode material can be specifically:
改性聚酰亚胺包覆硅/硅酸锂负极材料的制备方法,包括以下步骤:The preparation method of modified polyimide coated silicon/lithium silicate negative electrode material comprises the following steps:
S1、制备硅/硅酸锂复合材料:取氧化亚硅和氢氧化锂、水/乙醇混合溶液(2:3),在氮气气氛下进行球磨,得到硅/硅酸锂复合材料;S1. Preparation of silicon/lithium silicate composite material: taking silicon oxide, lithium hydroxide, and a water/ethanol mixed solution (2:3), ball milling under a nitrogen atmosphere to obtain a silicon/lithium silicate composite material;
S2、制备改性聚酰亚胺包覆层:将S1中的硅/偏硅酸锂复合材料、导电碳材料和聚合物单体均匀分散于含锂盐溶剂中,进行聚合反应,经喷雾干燥和加热固化得到所述改性聚酰亚胺包覆硅/偏硅酸锂负极材料。S2. Preparation of modified polyimide coating layer: uniformly dispersing the silicon/lithium metasilicate composite material, conductive carbon material and polymer monomer in S1 in a lithium salt-containing solvent, performing polymerization reaction, spray drying and heating to obtain the modified polyimide-coated silicon/lithium metasilicate negative electrode material.
具体的,所述S1中,所述氧化亚硅的粒径为3~10μm;所述氢氧化锂的浓度为1moL/L,所述氮气的纯度为99.99%;所述氧化亚硅中Si、O原子比为n,0.8≤n<1.6。Specifically, in the S1, the particle size of the silicon monoxide is 3 to 10 μm; the concentration of the lithium hydroxide is 1 mol/L, and the purity of the nitrogen is 99.99%; the atomic ratio of Si to O in the silicon monoxide is n, 0.8≤n<1.6.
具体的,在S1中,所述氧化亚硅、氢氧化锂的摩尔比为9:1~6:1。球磨时间为6~10h,所述球磨为机械球磨。Specifically, in S1, the molar ratio of silicon dioxide to lithium hydroxide is 9:1 to 6:1. The ball milling time is 6 to 10 hours, and the ball milling is mechanical ball milling.
具体的,在S2中,所述导电碳材料为导电炭黑、乙炔黑、碳纳米管、石墨烯、碳纤维中的一种或者多种的混合物;所述锂盐为LiBOB、LiPF6、LiFSI中的一种,添加量为二酐单体的1%~15%。Specifically, in S2, the conductive carbon material is one or a mixture of conductive carbon black, acetylene black, carbon nanotubes, graphene, and carbon fibers; the lithium salt is one of LiBOB, LiPF 6 , and LiFSI, and the added amount is 1% to 15% of the dianhydride monomer.
具体的,在S2中,所述聚合物单体为二酐单体和二胺单体,其二酐和二胺的比例为1-1.05:1-1。所需溶剂为丙酮、二甲基亚砜,N,N-二甲基甲酰胺中的至少一种。Specifically, in S2, the polymer monomers are dianhydride monomers and diamine monomers, and the ratio of dianhydride to diamine is 1-1.05:1-1. The required solvent is at least one of acetone, dimethyl sulfoxide, and N,N-dimethylformamide.
具体的,所述二酐单体包括均苯四甲酸二酐、二苯酮二酐、联苯二酐、二苯醚二酐、1,2,4,5-均苯四甲酸二酐中的至少一种。所述二胺单体为对苯二胺、4,4’-二氨基-3,3’-二甲基联苯、4,4’-二氨基二苯砜、2,2-双[4-(2,4-二氨基苯氧基)苯基]丙烷、1,4-二氨基环己烷中的至少一种。Specifically, the dianhydride monomer includes at least one of pyromellitic acid dianhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride, and 1,2,4,5-pyromellitic acid dianhydride. The diamine monomer is at least one of p-phenylenediamine, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diaminodiphenyl sulfone, 2,2-bis[4-(2,4-diaminophenoxy)phenyl]propane, and 1,4-diaminocyclohexane.
具体的,在S2中所述喷雾干燥温度为150~200℃,加热固化条件为300~450℃,加热时间为2~6h。Specifically, in S2, the spray drying temperature is 150-200° C., the heating curing condition is 300-450° C., and the heating time is 2-6 hours.
本发明提供了一种锂离子电池,包括正极和负极;The present invention provides a lithium ion battery, comprising a positive electrode and a negative electrode;
在本发明中,所述负极优选包括硅复合负极材料In the present invention, the negative electrode preferably comprises a silicon composite negative electrode material
在本发明中,所述硅复合负极材料优选包括上述技术方案中任意一项所述的硅复合材料或上述技术方案中任意一项所述的制备方法所制备的硅复合材料。In the present invention, the silicon composite negative electrode material preferably includes the silicon composite material described in any one of the above technical solutions or the silicon composite material prepared by the preparation method described in any one of the above technical solutions.
本发明上述步骤提供了一种改性聚酰亚胺包覆硅/硅酸锂负极材料及其制备方法、锂离子电池。这是一种具有特定结构的改性聚酰亚胺包覆硅/硅酸锂负极材料,包括硅/硅酸锂复合材料和包覆在复合材料外的改性聚酰亚胺包覆层,所述硅/硅酸锂复合材料具有纳米硅颗粒(<10nm)均匀分散于硅酸锂相的结构,而且改性聚酰亚胺包覆层由二酐单体和二胺单体在含锂离子的溶剂中聚合而得。本发明中的硅酸锂相可提升锂离子电导率,同时缓冲硅在充放电过程中的体积膨胀。聚酰亚胺包覆层具有优异的力学性能且经锂离子修饰后保障了材料具有较高的首效,可逆容量高,循环性能优良。The above steps of the present invention provide a modified polyimide-coated silicon/lithium silicate negative electrode material and a preparation method thereof, and a lithium ion battery. This is a modified polyimide-coated silicon/lithium silicate negative electrode material with a specific structure, including a silicon/lithium silicate composite material and a modified polyimide coating layer coated outside the composite material. The silicon/lithium silicate composite material has a structure in which nano silicon particles (<10nm) are uniformly dispersed in the lithium silicate phase, and the modified polyimide coating layer is obtained by polymerization of dianhydride monomers and diamine monomers in a solvent containing lithium ions. The lithium silicate phase in the present invention can improve the lithium ion conductivity and buffer the volume expansion of silicon during the charging and discharging process. The polyimide coating has excellent mechanical properties and after being modified with lithium ions, it ensures that the material has a high first effect, high reversible capacity, and excellent cycle performance.
本发明还提供了改性聚酰亚胺包覆硅/硅酸锂负极材料的制备方法,通过简单的机械球磨制备了硅/硅酸锂复合材料,摒弃了传统制备方法中的高温煅烧,大幅降低能耗,节约成本,绿色环保,具有制备工艺简单,对环境要求不高,可工业化生产,实用化程度高等特点,在锂离子电池负极方面具有广阔的应用前景。The present invention also provides a method for preparing a modified polyimide-coated silicon/lithium silicate negative electrode material. The silicon/lithium silicate composite material is prepared by simple mechanical ball milling, which abandons the high-temperature calcination in the traditional preparation method, greatly reduces energy consumption, saves costs, is green and environmentally friendly, has the characteristics of simple preparation process, low environmental requirements, industrial production, high degree of practicality, etc., and has broad application prospects in lithium-ion battery negative electrodes.
实验结果表明,本发明制备的改性聚酰亚胺包覆硅/硅酸锂负极材料中硅酸锂的复合,可以明显提升材料的离子电导率,同时可以缓冲硅在充放电过程中的体积效应(体积膨胀),有利于提升锂离子电导率;而聚酰亚胺包覆层具有优异的力学性能且经锂离子修饰后保障了材料具有较高的首效、可逆容量及较好的循环性能。Experimental results show that the composite of lithium silicate in the modified polyimide-coated silicon/lithium silicate negative electrode material prepared by the present invention can significantly improve the ionic conductivity of the material, and at the same time can buffer the volume effect (volume expansion) of silicon during the charging and discharging process, which is beneficial to improving the lithium ion conductivity; the polyimide coating layer has excellent mechanical properties and after lithium ion modification, it ensures that the material has a higher first effect, reversible capacity and better cycle performance.
为了进一步说明本发明,以下结合实施例对本发明提供的一种硅复合材料及其制备方法、锂离子电池进行了详细描述,但是应当理解,这些实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制,本发明的保护范围也不限于下述的实施例。In order to further illustrate the present invention, a silicon composite material and a preparation method thereof, and a lithium-ion battery provided by the present invention are described in detail in combination with the following examples. However, it should be understood that these examples are implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating processes are given only to further illustrate the features and advantages of the present invention, rather than to limit the claims of the present invention, and the protection scope of the present invention is not limited to the following examples.
实施例1Example 1
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere, and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.2g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入0.02mmoL的LiPF6溶解后,再加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) Disperse 0.2 g of carbon nanotubes in 100 mL of NMP solution, disperse by ultrasonication, add 0.02 mmol of LiPF 6 to dissolve, then add 1 mmol of 1,2,4,5-pyromellitic dianhydride, and stir at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.02:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.02:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
实施例2Example 2
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere, and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.2g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入0.02mmoL的LiFSI溶解后,再加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) Disperse 0.2 g of carbon nanotubes in 100 mL of NMP solution, disperse by ultrasonication, add 0.02 mmol of LiFSI to dissolve, then add 1 mmol of 1,2,4,5-pyromellitic dianhydride, and stir at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.02:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.02:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
实施例3Example 3
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere, and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.2g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入0.04mmoL的LiFSI溶解后,再加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) 0.2 g of carbon nanotubes were dispersed in 100 mL of NMP solution, ultrasonically dispersed, 0.04 mmol of LiFSI was added to dissolve, and then 1 mmol of 1,2,4,5-pyromellitic dianhydride was added and stirred at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.02:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.02:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
实施例4Example 4
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere, and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.2g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入0.04mmoL的LiFSI溶解后,再加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) 0.2 g of carbon nanotubes were dispersed in 100 mL of NMP solution, ultrasonically dispersed, 0.04 mmol of LiFSI was added to dissolve, and then 1 mmol of 1,2,4,5-pyromellitic dianhydride was added and stirred at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.04:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.04:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
实施例5Example 5
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.4g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入0.04mmoL的LiFSI溶解后,再加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) 0.4 g of carbon nanotubes were dispersed in 100 mL of NMP solution, ultrasonically dispersed, 0.04 mmol of LiFSI was added to dissolve, and then 1 mmol of 1,2,4,5-pyromellitic dianhydride was added and stirred at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.04:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.04:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
对比例1Comparative Example 1
选用球磨原料硅作为负极材料。Ball-milled raw silicon is selected as the negative electrode material.
对比例2Comparative Example 2
将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere and vacuum-dried to obtain a silicon/lithium silicate composite material;
对比例3Comparative Example 3
(1)将15.0g氧化亚硅、5.4g氢氧化锂,15g水/乙醇混合溶液(2:3)在氮气气氛下机械球磨8h,真空干燥得到硅/硅酸锂复合材料;(1) 15.0 g of silicon dioxide, 5.4 g of lithium hydroxide, and 15 g of a water/ethanol mixed solution (2:3) were mechanically ball-milled for 8 h under a nitrogen atmosphere, and vacuum-dried to obtain a silicon/lithium silicate composite material;
(2)将0.2g的碳纳米管分散在100mL的NMP溶液中,超声分散,加入1mmol的1,2,4,5-均苯四甲酸二酐,常温搅拌2h;(2) Dispersing 0.2 g of carbon nanotubes in 100 mL of NMP solution, ultrasonically dispersing, adding 1 mmol of 1,2,4,5-pyromellitic dianhydride, and stirring at room temperature for 2 h;
(3)向上述溶液中加热保温50℃,按二胺单体:二酐单体摩尔比1:1.01将4,4'-二氨基二苯醚滴加到含锂离子的NMP溶液中,反应2h;(3) heating the above solution to 50° C., adding 4,4′-diaminodiphenyl ether dropwise to the NMP solution containing lithium ions at a molar ratio of diamine monomer to dianhydride monomer of 1:1.01, and reacting for 2 h;
(4)将所得混合体系中加入步骤(1)中制备的硅/硅酸锂复合材料,聚酰亚胺单体二酐和单体二胺的重量之和与硅/硅酸锂复合材料的重量比为0.02:1,搅拌1h;(4) adding the silicon/lithium silicate composite material prepared in step (1) to the obtained mixed system, wherein the weight ratio of the sum of the weight of the polyimide monomer dianhydride and the monomer diamine to the silicon/lithium silicate composite material is 0.02:1, and stirring for 1 hour;
(5)将上述分散液经过喷雾干燥得到的固体材料进行筛分,氮气氛围下,400℃处理2h。最终得到锂离子掺杂的聚酰亚胺包覆的硅/硅酸锂负极材料。(5) The solid material obtained by spray drying the above dispersion was sieved and treated at 400° C. for 2 h under a nitrogen atmosphere to finally obtain a lithium ion-doped polyimide-coated silicon/lithium silicate negative electrode material.
实施例6Example 6
将实施例1~5和对比例1~3中制得的硅负极材料进行电性能检测,主要步骤包括:The silicon negative electrode materials prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were tested for electrical properties, and the main steps included:
按活性物质:导电剂:粘结剂=8:1:1的质量比进行混料(固含为40-45%),;将浆料涂覆在铜箔上,并经真空干燥、辊压、裁片,制备成极片;采用锂片作为对电极,聚乙烯-聚丙烯复合隔膜为隔膜,含5%FEC的1.0mol/L LiPF6(EC/DMC/EMC=1:1:1)为电解液,组装成纽扣电池。充放电电流为0.1C,电压区间为0.002~2.0V。The active material: conductive agent: binder are mixed in a mass ratio of 8:1:1 (solid content is 40-45%); the slurry is coated on copper foil, and vacuum dried, rolled, and cut into pieces to prepare pole pieces; a lithium sheet is used as a counter electrode, a polyethylene-polypropylene composite diaphragm is used as a diaphragm, and 1.0 mol/L LiPF 6 (EC/DMC/EMC=1:1:1) containing 5% FEC is used as an electrolyte to assemble a button battery. The charge and discharge current is 0.1C, and the voltage range is 0.002-2.0V.
参见表1,表1为本发明实施例和对比例制备的硅负极材料电性能检测数据。See Table 1, which shows the electrical performance test data of silicon negative electrode materials prepared in the examples and comparative examples of the present invention.
表1Table 1
由表1中测试结果可知,本发明中改性聚酰亚胺包覆硅/硅酸锂负极材料通过硅酸锂的复合提升了负极材料的离子电导率,聚酰亚胺包覆层具有优异的力学性能且经过锂离子修饰后减小了不可逆容量的释放。通过相互之间的协同作用,提升了材料的首次效率及循环性能。From the test results in Table 1, it can be seen that the modified polyimide-coated silicon/lithium silicate negative electrode material in the present invention improves the ionic conductivity of the negative electrode material through the composite of lithium silicate, and the polyimide coating layer has excellent mechanical properties and reduces the release of irreversible capacity after lithium ion modification. Through the synergistic effect between each other, the initial efficiency and cycle performance of the material are improved.
以上对本发明提供的一种改性聚酰亚胺包覆硅/硅酸锂负极材料及其制备方法、锂离子电池进行了详细的介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。The above is a detailed introduction to a modified polyimide-coated silicon/lithium silicate negative electrode material and its preparation method and lithium-ion battery provided by the present invention. Specific examples are used in this article to illustrate the principles and implementation methods of the present invention. The description of the above embodiments is only used to help understand the method and its core ideas of the present invention, including the best mode, and also enables any technician in the field to practice the present invention, including the manufacture and use of any device or system, and the implementation of any combined method. It should be pointed out that for ordinary technicians in this technical field, without departing from the principles of the present invention, the present invention can also be improved and modified in several ways, and these improvements and modifications also fall within the scope of protection of the claims of the present invention. The scope of patent protection of the present invention is defined by the claims and may include other embodiments that can be thought of by those skilled in the art. If these other embodiments have structural elements that are not different from the text of the claims, or if they include equivalent structural elements that are not substantially different from the text of the claims, then these other embodiments should also be included in the scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210588124.0A CN114937765B (en) | 2022-05-27 | 2022-05-27 | A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210588124.0A CN114937765B (en) | 2022-05-27 | 2022-05-27 | A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114937765A CN114937765A (en) | 2022-08-23 |
CN114937765B true CN114937765B (en) | 2024-04-19 |
Family
ID=82867533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210588124.0A Active CN114937765B (en) | 2022-05-27 | 2022-05-27 | A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114937765B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115895255B (en) * | 2022-11-24 | 2024-05-17 | 浙江锂宸新材料科技有限公司 | Preparation method of carbon nanotube modified silicon oxide composite material, product and application thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101262076A (en) * | 2007-03-08 | 2008-09-10 | 复旦大学 | An aqueous solution rechargeable lithium battery |
CN107464919A (en) * | 2017-09-12 | 2017-12-12 | 合肥国轩高科动力能源有限公司 | Method for pre-lithiating negative pole piece of lithium ion battery |
CN107834049A (en) * | 2017-11-29 | 2018-03-23 | 中航锂电(洛阳)有限公司 | A kind of lithium battery silicon composite and preparation method thereof, lithium battery |
CN108321368A (en) * | 2017-12-28 | 2018-07-24 | 合肥国轩高科动力能源有限公司 | Polymer-coated silicon/lithium metasilicate negative electrode material and preparation method thereof |
CN110707312A (en) * | 2019-11-06 | 2020-01-17 | 联动天翼新能源有限公司 | Production process of modified polyimide coated ternary material |
CN111048769A (en) * | 2019-12-27 | 2020-04-21 | 中国科学院化学研究所 | Double-layer coated silicon-based composite anode material and preparation method thereof |
CN111792646A (en) * | 2020-07-21 | 2020-10-20 | 苏州华赢新能源材料科技有限公司 | Polyimide modified nano silicon negative electrode material and preparation method and application thereof |
CN112635769A (en) * | 2020-12-22 | 2021-04-09 | 桂林电器科学研究院有限公司 | Binder for lithium ion battery negative electrode, preparation method thereof, negative electrode containing binder and lithium ion battery |
CN112940156A (en) * | 2021-01-25 | 2021-06-11 | 珠海冠宇电池股份有限公司 | Pre-lithiation polymer and preparation method and application thereof |
CN113161528A (en) * | 2021-04-25 | 2021-07-23 | 天津市捷威动力工业有限公司 | Preparation method of double-layer composite silicon-coated material and lithium ion battery thereof |
CN113224384A (en) * | 2021-04-12 | 2021-08-06 | 中南大学 | Composite polymer solid electrolyte and preparation method thereof |
CN113270586A (en) * | 2021-07-19 | 2021-08-17 | 北京壹金新能源科技有限公司 | Preparation and application of in-situ polymerization coated modified silicon-based negative electrode material |
CN113594429A (en) * | 2021-06-02 | 2021-11-02 | 浙江中科玖源新材料有限公司 | Polyamide acid modified nano-silicon negative electrode active material and preparation method thereof |
WO2022016951A1 (en) * | 2020-07-22 | 2022-01-27 | 贝特瑞新材料集团股份有限公司 | Silicon-based negative electrode material, negative electrode, and lithium-ion battery and preparation method therefor |
WO2022042266A1 (en) * | 2020-08-31 | 2022-03-03 | 贝特瑞新材料集团股份有限公司 | Silicon-oxygen composite negative electrode material, preparation method therefor, and lithium ion battery |
CN114400306A (en) * | 2021-12-20 | 2022-04-26 | 惠州亿纬锂能股份有限公司 | Silicon-based composite anode material, preparation method thereof and electrochemical energy storage device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8936874B2 (en) * | 2008-06-04 | 2015-01-20 | Nanotek Instruments, Inc. | Conductive nanocomposite-based electrodes for lithium batteries |
KR101933288B1 (en) * | 2014-03-12 | 2018-12-27 | 산요가세이고교 가부시키가이샤 | Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery |
US10957905B2 (en) * | 2017-11-02 | 2021-03-23 | Unimaterial Technologies, Llc | Porous silicon flake anode material for li ion batteries |
-
2022
- 2022-05-27 CN CN202210588124.0A patent/CN114937765B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101262076A (en) * | 2007-03-08 | 2008-09-10 | 复旦大学 | An aqueous solution rechargeable lithium battery |
CN107464919A (en) * | 2017-09-12 | 2017-12-12 | 合肥国轩高科动力能源有限公司 | Method for pre-lithiating negative pole piece of lithium ion battery |
CN107834049A (en) * | 2017-11-29 | 2018-03-23 | 中航锂电(洛阳)有限公司 | A kind of lithium battery silicon composite and preparation method thereof, lithium battery |
CN108321368A (en) * | 2017-12-28 | 2018-07-24 | 合肥国轩高科动力能源有限公司 | Polymer-coated silicon/lithium metasilicate negative electrode material and preparation method thereof |
CN110707312A (en) * | 2019-11-06 | 2020-01-17 | 联动天翼新能源有限公司 | Production process of modified polyimide coated ternary material |
CN111048769A (en) * | 2019-12-27 | 2020-04-21 | 中国科学院化学研究所 | Double-layer coated silicon-based composite anode material and preparation method thereof |
CN111792646A (en) * | 2020-07-21 | 2020-10-20 | 苏州华赢新能源材料科技有限公司 | Polyimide modified nano silicon negative electrode material and preparation method and application thereof |
WO2022016951A1 (en) * | 2020-07-22 | 2022-01-27 | 贝特瑞新材料集团股份有限公司 | Silicon-based negative electrode material, negative electrode, and lithium-ion battery and preparation method therefor |
WO2022042266A1 (en) * | 2020-08-31 | 2022-03-03 | 贝特瑞新材料集团股份有限公司 | Silicon-oxygen composite negative electrode material, preparation method therefor, and lithium ion battery |
CN112635769A (en) * | 2020-12-22 | 2021-04-09 | 桂林电器科学研究院有限公司 | Binder for lithium ion battery negative electrode, preparation method thereof, negative electrode containing binder and lithium ion battery |
CN112940156A (en) * | 2021-01-25 | 2021-06-11 | 珠海冠宇电池股份有限公司 | Pre-lithiation polymer and preparation method and application thereof |
CN113224384A (en) * | 2021-04-12 | 2021-08-06 | 中南大学 | Composite polymer solid electrolyte and preparation method thereof |
CN113161528A (en) * | 2021-04-25 | 2021-07-23 | 天津市捷威动力工业有限公司 | Preparation method of double-layer composite silicon-coated material and lithium ion battery thereof |
CN113594429A (en) * | 2021-06-02 | 2021-11-02 | 浙江中科玖源新材料有限公司 | Polyamide acid modified nano-silicon negative electrode active material and preparation method thereof |
CN113270586A (en) * | 2021-07-19 | 2021-08-17 | 北京壹金新能源科技有限公司 | Preparation and application of in-situ polymerization coated modified silicon-based negative electrode material |
CN114400306A (en) * | 2021-12-20 | 2022-04-26 | 惠州亿纬锂能股份有限公司 | Silicon-based composite anode material, preparation method thereof and electrochemical energy storage device |
Non-Patent Citations (3)
Title |
---|
Developing a Diamine-Assisted Polymerization Method To Synthesize Nano-LiMnPO4 with N-Doped Carbon from Polyamides for High-Performance Li-Ion Batteries;Hao Yang等;《American Chemical Society》;第13302-13311页 * |
碳基负极材料的制备及其电化学性能研究;周景艳;《工程科技Ⅰ辑》(第6期);第1-79页 * |
锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制;李敏;王艳丽;吴晓燕;段磊;张春明;何丹农;;化学进展(第12期);第1526-1536页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114937765A (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110085853A (en) | Aoxidize sub- silicon substrate carbon negative pole material, cathode pole piece and preparation method thereof and lithium ion battery | |
CN109103399B (en) | Functional separator for lithium-sulfur battery, preparation method thereof, and application in lithium-sulfur battery | |
CN105428611B (en) | A kind of Porous hollow composite negative pole material and its preparation method and application | |
CN103078087B (en) | A kind of preparation method of lithium titanate/carbon nano tube composite cathode material | |
CN105355908A (en) | Composite negative electrode material for lithium ion battery, preparing method thereof, negative electrode using material and lithium ion battery | |
WO2022166007A1 (en) | Three-dimensional silicon-carbon composite material and preparation method therefor | |
CN103715416B (en) | For anode material for lithium ion battery with high power capacity Li [Li 0.201ni 0.133co 0.133mn 0.533] O 2preparation method | |
CN108448090A (en) | A preparation method of silicon-carbon composite negative electrode material for lithium battery | |
WO2022193498A1 (en) | Method for preparing high-initial-coulombic-efficiency sio/graphite composite negative electrode material | |
CN110048114A (en) | A kind of bivalve silicon carbon material and preparation method thereof | |
CN107611360A (en) | Silicon monoxide graphene composite nano material, preparation method thereof and application thereof in lithium ion battery | |
CN109473664B (en) | Preparation method of silicon-carbon composite material | |
CN115132982A (en) | Preparation method of silicon-based negative electrode material | |
CN114937765B (en) | A modified polyimide-coated silicon/lithium silicate negative electrode material and preparation method thereof, and a lithium-ion battery | |
CN116093300A (en) | Simple pre-lithium metal doped silicon oxygen carbon negative electrode material and preparation method thereof | |
WO2017197675A1 (en) | Lithium titanate-modified material and manufacturing method thereof | |
CN101826612B (en) | A kind of preparation method of silicon carbon negative electrode material of lithium ion battery | |
CN106207120A (en) | A kind of silicon/polymer composites and its preparation method and application | |
CN112520732A (en) | Silicon-carbon composite negative electrode material and preparation method thereof | |
CN113948679B (en) | A method for preparing pole pieces to improve the performance of silicon-based negative electrode lithium-ion batteries | |
CN118117051A (en) | Silicon-based anode modified material, preparation method and application thereof | |
CN115215335A (en) | Modified graphite and its preparation method and application | |
CN115172680A (en) | High-capacity high-rate lithium ion battery and preparation method thereof | |
CN106410161A (en) | Composite microsphere negative electrode material with core-shell structure, preparation method and application of composite microsphere negative electrode material | |
CN118398766B (en) | A secondary battery and its preparation method, and electric equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220823 Assignee: Shandong Yiwei New Material Co.,Ltd. Assignor: Shandong Haike Innovation Research Institute Co.,Ltd. Contract record no.: X2024980015313 Denomination of invention: A modified polyimide coated silicon/lithium silicate negative electrode material and its preparation method, lithium-ion battery Granted publication date: 20240419 License type: Common License Record date: 20240914 |