CN114937067A - Image registration method of sub-aperture polarization camera - Google Patents
Image registration method of sub-aperture polarization camera Download PDFInfo
- Publication number
- CN114937067A CN114937067A CN202210670279.9A CN202210670279A CN114937067A CN 114937067 A CN114937067 A CN 114937067A CN 202210670279 A CN202210670279 A CN 202210670279A CN 114937067 A CN114937067 A CN 114937067A
- Authority
- CN
- China
- Prior art keywords
- image
- sub
- polarization
- polarized
- polarized sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000009466 transformation Effects 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000011426 transformation method Methods 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims 1
- 238000003384 imaging method Methods 0.000 abstract description 11
- 230000006870 function Effects 0.000 description 5
- 238000005314 correlation function Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/14—Transformations for image registration, e.g. adjusting or mapping for alignment of images
- G06T3/147—Transformations for image registration, e.g. adjusting or mapping for alignment of images using affine transformations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Studio Devices (AREA)
- Exposure Control For Cameras (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明属于图像配准技术领域,具体涉及到一种分孔径偏振相机的图像配准方法。The invention belongs to the technical field of image registration, and particularly relates to an image registration method of a split-aperture polarization camera.
背景技术Background technique
偏振成像技术能够从复杂背景中突出场景目标的细节信息,可显著提升恶劣天气条件下的图像质量,在去除伪装与穿烟去雾成像等方面具有广泛的应用。为了满足不同的需求,多种类型的偏振成像系统被研制开发出来。与分时偏振成像系统、分振幅偏振成像系统和分焦平面偏振成像系统相比,分孔径偏振成像系统具有结构小巧紧凑、易于实现且成本较低、能够同时获取场景全偏振信息的优点。然而,即使分孔径偏振相机经过人为调整与装配后可以达到较好的使用状态,但获取的偏振子图像之间依然不可避免地存在位置偏差。Polarization imaging technology can highlight the details of scene targets from complex backgrounds, and can significantly improve image quality under severe weather conditions. In order to meet different needs, various types of polarization imaging systems have been developed. Compared with the time division polarization imaging system, the amplitude division polarization imaging system and the focal plane polarization imaging system, the aperture division polarization imaging system has the advantages of compact structure, easy implementation and low cost, and can simultaneously obtain the full polarization information of the scene. However, even if the aperture polarization camera can achieve a better use state after artificial adjustment and assembly, there is still an inevitable positional deviation between the acquired polarized sub-images.
在偏振成像技术领域,分孔径偏振相机的广泛应用需解决的技术问题是提供一种精度高、速度快、全自动的分孔径偏振相机的图像配准方法。In the field of polarization imaging technology, the technical problem that needs to be solved in the wide application of the split aperture polarization camera is to provide an image registration method of the split aperture polarization camera with high precision, high speed and full automation.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于克服上述现有技术的缺点,提供一种精度高、速度快、全自动的分孔径偏振相机的图像配准方法。The technical problem to be solved by the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide an image registration method for a split-aperture polarization camera with high precision, high speed and full automaticity.
解决上述技术问题所采用的技术方案是由下述步骤组成:The technical solution adopted to solve the above technical problems is composed of the following steps:
(1)获取偏振子图像(1) Acquisition of polarized sub-images
用分孔径偏振相机拍摄目标,获取原始帧图像,将原始帧图像裁切为四幅偏振子图像,选取四幅偏振子图像中的任意一幅偏振子图像作为参考偏振子图像,其余三幅偏振子图像作为待配准偏振子图像。Shoot the target with a split-aperture polarization camera, obtain the original frame image, cut the original frame image into four polarization sub-images, select any one of the four polarization sub-images as the reference polarization sub-image, and the remaining three polarization sub-images as the polarized sub-image to be registered.
(2)偏振子图像粗配准(2) Coarse registration of polarized sub-images
按式(1)确定参考偏振子图像的傅里叶变换F(ωx,ωy):Determine the Fourier transform F(ω x ,ω y ) of the reference polarizer image according to equation (1):
F(ωx,ωy)=F{f(x,y)} (1)F(ω x ,ω y )=F{f(x,y)} (1)
其中,f(x,y)为坐标(x,y)的参考偏振子图像,F{}表示取傅里叶变换。Among them, f(x, y) is the reference polarized sub-image of the coordinate (x, y), and F{} represents the Fourier transform.
按式(2)确定待配准偏振子图像的傅里叶变换G(ωx,ωy):Determine the Fourier transform G(ω x ,ω y ) of the polarized sub-image to be registered according to formula (2):
G(ωx,ωy(=F{g(x,y)} (2)G(ω x ,ω y (=F{g(x,y)} (2)
其中,g(x,y)为坐标(x,y)的待配准偏振子图像。Among them, g(x, y) is the polarized sub-image to be registered with coordinates (x, y).
按式(3)确定冲激函数δ(x-dx,y-dy):Determine the impulse function δ(x-dx, y-dy) according to formula (3):
其中,dx为待配准偏振子图像在水平方向的位移量,dy为待配准偏振子图像在垂直方向的位移量,F-1{}为逆傅里叶变换,F*(ωx,ωy)为F(ωx,ωy)的复共轭。Among them, dx is the displacement of the polarized sub-image to be registered in the horizontal direction, dy is the displacement of the polarized sub-image to be registered in the vertical direction, F -1 {} is the inverse Fourier transform, F * (ω x , ω y ) is the complex conjugate of F(ω x ,ω y ).
按式(4)确定粗配准偏振子图像的坐标(x′,y′):Determine the coordinates (x', y') of the roughly registered polarized sub-image according to formula (4):
其中,(x0,y0)为待配准偏振子图像的坐标。Among them, (x 0 , y 0 ) are the coordinates of the polarized sub-image to be registered.
按式(5)确定粗配准偏振子图像Irough(x0,y0):Determine the rough registration polarized sub-image I rough (x 0 , y 0 ) according to formula (5):
Irough(x0,y0)=I(x′,y′) (5)I rough (x 0 ,y 0 )=I(x′,y′) (5)
其中,I(x′,y′)为待配准偏振子图像在坐标(x′,y′)处的强度。Among them, I(x', y') is the intensity of the polarized sub-image to be registered at the coordinates (x', y').
(3)提取偏振子图像特征点(3) Extract the feature points of polarized sub-images
分别提取参考偏振子图像与粗配准偏振子图像的特征点,对于参考偏振子图像中的任意一个特征点,选择粗配准偏振子图像中与其欧式距离最小和次最小的两个特征点,按照最小欧式距离与次最小欧式距离之比不大于所设置的阈值条件,参考偏振子图像中所选特征点与粗配准偏振子图像中欧式距离最小的特征点形成一个特征点对,其他特征点形成特征点对的判断方法同上。Extract the feature points of the reference polarization sub-image and the coarse registration polarization sub-image respectively. For any feature point in the reference polarization sub-image, select the two feature points with the smallest and second smallest Euclidean distances from the coarse registration polarization sub-image, According to the ratio of the smallest Euclidean distance to the second smallest Euclidean distance is not greater than the set threshold condition, the selected feature point in the reference polarized sub-image and the feature point with the smallest Euclidean distance in the coarsely registered polarized sub-image form a feature point pair, other features The method for judging that points form feature point pairs is the same as above.
(4)确定偏振子图像内点数目(4) Determine the number of points in the polarizer image
按式(6)确定粗配准偏振子图像与参考偏振子图像间的仿射变换矩阵A:Determine the affine transformation matrix A between the roughly registered polarization sub-image and the reference polarization sub-image according to formula (6):
其中,和分别为参考偏振子图像和粗配准偏振子图像的第一个特征点对的坐标;和分别为参考偏振子图像和粗配准偏振子图像的第二个特征点对的坐标;和分别为参考偏振子图像和粗配准偏振子图像的第三个特征点对的坐标。in, and are the coordinates of the first feature point pair of the reference polarizer image and the roughly registered polarizer image, respectively; and are the coordinates of the second feature point pair of the reference polarizer image and the roughly registered polarizer image, respectively; and are the coordinates of the third feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image, respectively.
按式(7)确定粗配准偏振子图像的其余特征点的变换坐标(xcal,ycal):Determine the transformation coordinates (x cal , y cal ) of the remaining feature points of the roughly registered polarized sub-image according to formula (7):
其中,(xrough,yrough)为粗配准偏振子图像中其余特征点的坐标。Among them, (x rough , y rough ) are the coordinates of the remaining feature points in the roughly registered polarized sub-image.
粗配准偏振子图像的特征点变换坐标与参考偏振子图像的对应特征点坐标的差的绝对值小于0.5,该特征点记为一个内点,确定偏振子图像中的内点数目。The absolute value of the difference between the feature point transformation coordinates of the roughly registered polarized sub-image and the corresponding feature point coordinates of the reference polarized sub-image is less than 0.5, and the feature point is recorded as an interior point to determine the number of interior points in the polarized sub-image.
(5)获取偏振子图像的最优配准系数(5) Obtain the optimal registration coefficient of the polarized sub-image
选取特征点对中的其余任意3个特征点对,重复步骤(4),直至遍历所有的特征点对。Select any remaining three feature point pairs in the feature point pair, and repeat step (4) until all feature point pairs are traversed.
按式(8)确定最优配准系数A′:Determine the optimal registration coefficient A' according to formula (8):
其中,和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第一个特征点对的坐标;和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第二个特征点对的坐标;和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第三个特征点对的坐标。in, and are the coordinates of the first feature point pair of the reference polarized sub-image and the roughly registered polarized sub-image when the number of inner points is the largest; and are the coordinates of the second feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image when the number of inner points is the largest; and are the coordinates of the third feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image when the number of inner points is the largest, respectively.
(6)完成偏振图像配准(6) Complete polarization image registration
按式(9)确定配准后的偏振子图像的坐标(xreg,yreg):Determine the coordinates (x reg , y reg ) of the polarized sub-image after registration according to formula (9):
按式(10)得到配准后的偏振图像Ireg(x′,y′):According to formula (10), the registered polarization image I reg (x′, y′) is obtained:
Ireg(x′,y′)=Irough(xreg,yreg) (10)其中,Irough(xreg,yreg)为粗配准偏振子图像在坐标(xreg,yreg)处的强度。I reg (x', y')=I rough (x reg , y reg ) (10) where I rough (x reg , y reg ) is the coarsely registered polarizer image at coordinates (x reg , y reg ) Strength of.
在本发明的(1)获取偏振子图像步骤中,所述的获取原始帧图像包括一帧含有0°线偏振图像、45°线偏振图像、90°线偏振图像、圆偏振图像的分孔径偏振图像;所述的将原始帧图像裁切为四幅偏振子图像包括大小相同的0°线偏振子图像、45°线偏振子图像、90°线偏振子图像、圆偏振子图像。In the step (1) of the present invention for acquiring the polarized sub-image, the acquiring the original frame image includes a frame of divided aperture polarization including a 0° linearly polarized image, a 45° linearly polarized image, a 90° linearly polarized image, and a circularly polarized image. Image; the original frame image is cut into four polarized sub-images including 0° linearly polarized sub-image, 45° linearly polarized sub-image, 90° linearly polarized sub-image, and circularly polarized sub-image with the same size.
在本发明的(3)提取偏振子图像特征点步骤中,所述的分别提取参考偏振子图像与粗配准偏振子图像的特征点的方法为尺度不变特征变换方法或加速鲁棒特征方法。In the step of (3) extracting feature points of polarized sub-images of the present invention, the method for extracting the feature points of the reference polarized sub-image and the roughly registered polarized sub-images respectively is a scale-invariant feature transformation method or an accelerated robust feature method .
在本发明的(3)提取偏振子图像特征点步骤中,所述的按照最小欧式距离与次最小欧式距离之比不大于所设置的阈值条件,阈值取值为0.5~0.8。In the step of (3) extracting feature points of polarized sub-images of the present invention, the ratio of the minimum Euclidean distance to the next-minimum Euclidean distance is not greater than the set threshold condition, and the threshold value is 0.5-0.8.
本发明采用对偏振子图像进行粗配准,减少了提取偏振子图像特征点时的计算量,通过遍历特征点确定偏振子图像内点数目最多时的最优配准系数,完成了偏振子图像之间高精度、快速度、全自动的配准,解决了分孔径偏振子图像之间存在位置偏差的技术问题,提升了使用分孔径偏振相机进行偏振成像时的图像质量,可用于分孔径偏振相机在偏振成像。The invention adopts the coarse registration of the polarized sub-image, which reduces the amount of calculation when extracting the feature points of the polarized sub-image, and determines the optimal registration coefficient when the number of points in the polarized sub-image is the largest by traversing the feature points to complete the polarized sub-image. The high-precision, fast and fully automatic registration between the two cameras solves the technical problem of positional deviation between the sub-images of the sub-aperture polarization, and improves the image quality of the polarization imaging using the sub-aperture polarization camera, which can be used for the polarization of the sub-aperture. The camera is imaging polarized.
附图说明Description of drawings
图1是本发明实施例1的流程图。FIG. 1 is a flow chart of Embodiment 1 of the present invention.
图2是本发明实施例1的0°线偏振子图像。FIG. 2 is a 0° linearly polarized sub-image of Example 1 of the present invention.
图3是本发明实施例1中的45°线偏振子图像的配准结果。FIG. 3 is a registration result of a 45° linearly polarized sub-image in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于下述的实施方式。The present invention will be further described in detail below with reference to the accompanying drawings and examples, but the present invention is not limited to the following embodiments.
实施例1Example 1
本实施例的分孔径偏振相机的图像配准方法下述步骤组成(参见图1):The image registration method of the sub-aperture polarization camera of the present embodiment consists of the following steps (see FIG. 1 ):
(1)获取偏振子图像(1) Acquisition of polarized sub-images
用分孔径偏振相机拍摄目标,获取原始帧图像,将原始帧图像裁切为四幅偏振子图像,选取四幅偏振子图像中的任意一幅偏振子图像作为参考偏振子图像,其余三幅偏振子图像作为待配准偏振子图像。Shoot the target with a split-aperture polarization camera, obtain the original frame image, cut the original frame image into four polarization sub-images, select any one of the four polarization sub-images as the reference polarization sub-image, and the remaining three polarization sub-images as the polarized sub-image to be registered.
本实施例的获取原始帧图像包括一帧含有0°线偏振图像、45°线偏振图像、90°线偏振图像、圆偏振图像的分孔径偏振图像;所述的将原始帧图像裁切为四幅偏振子图像包括大小相同的0°线偏振子图像、45°线偏振子图像、90°线偏振子图像、圆偏振子图像。0°线偏振子图像作为参考偏振子图像(参见图2)。The acquisition of the original frame image in this embodiment includes a frame of aperture-divided polarized image including a 0° linearly polarized image, a 45° linearly polarized image, a 90° linearly polarized image, and a circularly polarized image; the original frame image is cut into four images. The polarized sub-images include 0° linearly polarized sub-images, 45° linearly polarized sub-images, 90° linearly polarized sub-images, and circularly polarized sub-images with the same size. The 0° linearly polarized sub-image serves as the reference polarized sub-image (see Figure 2).
(2)偏振子图像粗配准(2) Coarse registration of polarized sub-images
按式(1)确定参考偏振子图像的傅里叶变换F(ωx,ωy):Determine the Fourier transform F(ω x ,ω y ) of the reference polarizer image according to equation (1):
F(ωx,ωy)=F{f(x,y)} (1)F(ω x ,ω y )=F{f(x,y)} (1)
其中,f(x,y)为坐标(x,y)的参考偏振子图像,F{}表示取傅里叶变换。Among them, f(x, y) is the reference polarized sub-image of the coordinate (x, y), and F{} represents the Fourier transform.
按式(2)确定待配准偏振子图像的傅里叶变换G(ωx,ωy):Determine the Fourier transform G(ω x ,ω y ) of the polarized sub-image to be registered according to formula (2):
G(ωx,ωy)=F{g(x,t)} (2)G(ω x ,ω y )=F{g(x,t)} (2)
其中,g(x,y)为坐标(x,y)的待配准偏振子图像。Among them, g(x, y) is the polarized sub-image to be registered with coordinates (x, y).
按式(3)确定冲激函数δ(x-dx,y-dy):Determine the impulse function δ(x-dx, y-dy) according to formula (3):
其中,dx为待配准偏振子图像在水平方向的位移量,dy为待配准偏振子图像在垂直方向的位移量,F-1{}为逆傅里叶变换,F*(ωx,ωy)为F(ωx,ωy)的复共轭。Among them, dx is the displacement of the polarized sub-image to be registered in the horizontal direction, dy is the displacement of the polarized sub-image to be registered in the vertical direction, F -1 {} is the inverse Fourier transform, F * (ω x , ω y ) is the complex conjugate of F(ω x ,ω y ).
按式(4)确定粗配准偏振子图像的坐标(x′,y′):Determine the coordinates (x', y') of the roughly registered polarized sub-image according to formula (4):
其中,(x0,y0)为待配准偏振子图像的坐标。Among them, (x 0 , y 0 ) are the coordinates of the polarized sub-image to be registered.
按式(5)确定粗配准偏振子图像Irough(x0,y0):Determine the rough registration polarized sub-image I rough (x 0 , y 0 ) according to formula (5):
Irough(x0,y0)=I(x′,y′) (5)I rough (x 0 ,y 0 )=I(x′,y′) (5)
其中,I(x′,y′)为待配准偏振子图像在坐标(x′,y′)处的强度。Among them, I(x', y') is the intensity of the polarized sub-image to be registered at the coordinates (x', y').
(3)提取偏振子图像特征点(3) Extract the feature points of polarized sub-images
分别提取参考偏振子图像与粗配准偏振子图像的特征点,本实施例采用尺度不变特征变换方法,尺度不变特征变换方法已在Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.公开。对于参考偏振子图像中的任意一个特征点,选择粗配准偏振子图像中与其欧式距离最小和第二最小的两个特征点,按照最小欧式距离与第二最小欧式距离之比不大于所设置的阈值条件,阈值取值为0.5~0.8,本实施例的阈值取值为0.6。The feature points of the reference polarizer image and the roughly registered polarizer image are extracted respectively. In this embodiment, the scale-invariant feature transformation method is used. The scale-invariant feature transformation method has been described in Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. Disclosure. For any feature point in the reference polarized sub-image, select the two feature points with the smallest Euclidean distance and the second smallest Euclidean distance in the rough registration polarized sub-image, according to the ratio of the smallest Euclidean distance to the second smallest Euclidean distance is not greater than the set The threshold condition is 0.5 to 0.8, and the threshold in this embodiment is 0.6.
参考偏振子图像中所选特征点与粗配准偏振子图像中欧式距离最小的特征点形成一个特征点对,其他特征点形成特征点对的判断方法同上。The selected feature point in the reference polarization sub-image and the feature point with the smallest Euclidean distance in the coarse registration polarization sub-image form a feature point pair, and the judgment method for other feature points to form a feature point pair is the same as above.
(4)确定偏振子图像内点数目(4) Determine the number of points in the polarizer image
按式(6)确定粗配准偏振子图像与参考偏振子图像间的仿射变换矩阵A:Determine the affine transformation matrix A between the roughly registered polarization sub-image and the reference polarization sub-image according to formula (6):
其中,和分别为参考偏振子图像和粗配准偏振子图像的第一个特征点对的坐标;和分别为参考偏振子图像和粗配准偏振子图像的第二个特征点对的坐标;和分别为参考偏振子图像和粗配准偏振子图像的第三个特征点对的坐标。in, and are the coordinates of the first feature point pair of the reference polarizer image and the roughly registered polarizer image, respectively; and are the coordinates of the second feature point pair of the reference polarizer image and the roughly registered polarizer image, respectively; and are the coordinates of the third feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image, respectively.
按式(7)确定粗配准偏振子图像的其余特征点的变换坐标(xcal,ycal):Determine the transformation coordinates (x cal , y cal ) of the remaining feature points of the roughly registered polarized sub-image according to formula (7):
其中,(xrough,yrough)为粗配准偏振子图像中其余特征点的坐标。Among them, (x rough , y rough ) are the coordinates of the remaining feature points in the roughly registered polarized sub-image.
粗配准偏振子图像的特征点变换坐标与参考偏振子图像的对应特征点坐标的差的绝对值小于0.5,该特征点记为一个内点,确定偏振子图像中的内点数目。The absolute value of the difference between the feature point transformation coordinates of the roughly registered polarized sub-image and the corresponding feature point coordinates of the reference polarized sub-image is less than 0.5, and the feature point is recorded as an interior point to determine the number of interior points in the polarized sub-image.
(5)获取偏振子图像的最优配准系数(5) Obtain the optimal registration coefficient of the polarized sub-image
选取特征点对中的其余任意3个特征点对,重复步骤(4),直至遍历所有的特征点对。Select any remaining three feature point pairs in the feature point pair, and repeat step (4) until all feature point pairs are traversed.
按式(8)确定最优配准系数A′:Determine the optimal registration coefficient A' according to formula (8):
其中,和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第一个特征点对的坐标;和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第二个特征点对的坐标;和分别为内点数最多时的参考偏振子图像和粗配准偏振子图像的第三个特征点对的坐标。in, and are the coordinates of the first feature point pair of the reference polarized sub-image and the roughly registered polarized sub-image when the number of inner points is the largest; and are the coordinates of the second feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image when the number of inner points is the largest; and are the coordinates of the third feature point pair of the reference polarized sub-image and the coarsely registered polarized sub-image when the number of inner points is the largest.
(6)完成偏振图像配准(6) Complete polarization image registration
按式(9)确定配准后的偏振子图像的坐标(xreg,yreg):Determine the coordinates (x reg , y reg ) of the polarized sub-image after registration according to formula (9):
按式(10)得到配准后的偏振图像Ireg(x′,y′):According to formula (10), the registered polarization image I reg (x′, y′) is obtained:
Ireg(x′,y′)=Irough(xreg,yreg) (10)I reg (x′,y′)=I rough (x reg ,y reg ) (10)
其中,Irough(xreg,yreg)为粗配准偏振子图像在坐标(xreg,yreg)处的强度。Wherein, I rough (x reg , y reg ) is the intensity of the roughly registered polarized sub-image at coordinates (x reg , y reg ).
完成分孔径偏振相机的图像配准方法。得到配准后的45°线偏振子图像(参见图3),由图2和图3可以看出,本发明实现了分孔径偏振子图像的图像配准。Complete the image registration method of the split aperture polarization camera. A 45° linearly polarized sub-image after registration is obtained (see FIG. 3 ). It can be seen from FIG. 2 and FIG. 3 that the present invention realizes the image registration of the sub-image of the polarization sub-image with different apertures.
实施例2Example 2
本实施例的分孔径偏振相机的图像配准方法由下述步骤组成:The image registration method of the sub-aperture polarization camera of the present embodiment consists of the following steps:
(1)获取偏振子图像(1) Acquisition of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(2)偏振子图像粗配准(2) Coarse registration of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(3)提取偏振子图像特征点(3) Extract the feature points of polarized sub-images
分别提取参考偏振子图像与粗配准偏振子图像的特征点,对于参考偏振子图像中的任意一个特征点,选择粗配准偏振子图像中与其欧式距离最小和第二最小的两个特征点,按照最小欧式距离与第二最小欧式距离之比不大于所设置的阈值条件,阈值取值为0.5~0.8,本实施例的阈值取值为0.5。Extract the feature points of the reference polarization sub-image and the coarse registration polarization sub-image respectively. For any feature point in the reference polarization sub-image, select the two feature points with the smallest Euclidean distance and the second smallest in the coarse registration polarization sub-image. , according to the condition that the ratio of the minimum Euclidean distance to the second minimum Euclidean distance is not greater than the set threshold condition, the threshold value is 0.5-0.8, and the threshold value in this embodiment is 0.5.
参考偏振子图像中所选特征点与粗配准偏振子图像中欧式距离最小的特征点形成一个特征点对,其他特征点形成特征点对的判断方法同上。The selected feature point in the reference polarization sub-image and the feature point with the smallest Euclidean distance in the coarse registration polarization sub-image form a feature point pair, and the judgment method for other feature points to form a feature point pair is the same as above.
其它步骤与实施例1相同。Other steps are the same as in Example 1.
完成分孔径偏振相机的图像配准方法。Complete the image registration method of the split aperture polarization camera.
实施例3Example 3
本实施例的分孔径偏振相机的图像配准方法由下述步骤组成:The image registration method of the sub-aperture polarization camera of the present embodiment consists of the following steps:
(1)获取偏振子图像(1) Acquisition of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(2)偏振子图像粗配准(2) Coarse registration of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(3)提取偏振子图像特征点(3) Extract the feature points of polarized sub-images
分别提取参考偏振子图像与粗配准偏振子图像的特征点,对于参考偏振子图像中的任意一个特征点,选择粗配准偏振子图像中与其欧式距离最小和第二最小的两个特征点,按照最小欧式距离与第二最小欧式距离之比不大于所设置的阈值条件,阈值取值为0.5~0.8,本实施例的阈值取值为0.8。Extract the feature points of the reference polarization sub-image and the coarse registration polarization sub-image respectively. For any feature point in the reference polarization sub-image, select the two feature points with the smallest Euclidean distance and the second smallest in the coarse registration polarization sub-image. , according to the condition that the ratio of the minimum Euclidean distance to the second minimum Euclidean distance is not greater than the set threshold condition, the threshold value is 0.5-0.8, and the threshold value in this embodiment is 0.8.
参考偏振子图像中所选特征点与粗配准偏振子图像中欧式距离最小的特征点形成一个特征点对,其他特征点形成特征点对的判断方法同上。The selected feature point in the reference polarization sub-image and the feature point with the smallest Euclidean distance in the coarse registration polarization sub-image form a feature point pair, and the judgment method for other feature points to form a feature point pair is the same as above.
其它步骤与实施例1相同。Other steps are the same as in Example 1.
完成分孔径偏振相机的图像配准方法。Complete the image registration method of the split aperture polarization camera.
实施例4Example 4
在以上实施例1~3中,本实施例的分孔径偏振相机的图像配准方法由下述步骤组成:In the above embodiments 1 to 3, the image registration method of the split aperture polarization camera of this embodiment consists of the following steps:
(1)获取偏振子图像(1) Acquisition of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(2)偏振子图像粗配准(2) Coarse registration of polarized sub-images
该步骤与实施例1相同。This procedure is the same as in Example 1.
(3)提取偏振子图像特征点(3) Extract the feature points of polarized sub-images
分别提取参考偏振子图像与粗配准偏振子图像的特征点,本实施例采用加速鲁棒特征方法,对于参考偏振子图像中的任意一个特征点,选择粗配准偏振子图像中与其欧式距离最小和第二最小的两个特征点,按照最小欧式距离与第二最小欧式距离之比不大于所设置的阈值条件,阈值取值为0.5~0.8,本实施例的阈值取值与相应的实施例相同。The feature points of the reference polarizer image and the roughly registered polarizer image are extracted respectively. In this embodiment, the accelerated robust feature method is used. For any feature point in the reference polarizer image, the Euclidean distance from the roughly registered polarizer image is selected. The minimum and second minimum feature points, according to the ratio of the minimum Euclidean distance to the second minimum Euclidean distance is not greater than the set threshold condition, the threshold value is 0.5 to 0.8, the threshold value of this embodiment and the corresponding implementation Example is the same.
参考偏振子图像中所选特征点与粗配准偏振子图像中欧式距离最小的特征点形成一个特征点对,其他特征点形成特征点对的判断方法同上。The selected feature point in the reference polarization sub-image and the feature point with the smallest Euclidean distance in the coarse registration polarization sub-image form a feature point pair, and the judgment method for other feature points to form a feature point pair is the same as above.
其它步骤与实施例1相同。Other steps are the same as in Example 1.
完成分孔径偏振相机的图像配准方法。Complete the image registration method of the split aperture polarization camera.
为了验证本发明的有益效果,发明人采用本发明实施例1的分孔径偏振相机的图像配准方法对分孔径偏振相机的图像进行了实验,实验情况如下。In order to verify the beneficial effects of the present invention, the inventor conducts experiments on the images of the sub-aperture polarization camera using the image registration method of the sub-aperture polarization camera according to Embodiment 1 of the present invention, and the experimental conditions are as follows.
1、实验条件1. Experimental conditions
实验测试环境为Windows l0(64位)操作系统的惠普电脑,其配置为Inter Corei3-10105F、16GB内存,在MATLAB R2019b平台上进行实验操作。The experimental test environment is a HP computer with Windows l0 (64-bit) operating system, and its configuration is Inter Corei3-10105F, 16GB memory, and the experimental operation is performed on the MATLAB R2019b platform.
2、实验数据介绍2. Introduction of experimental data
分孔径偏振相机所拍摄的原始帧图像由陕西师范大学先进光学成像实验室的分孔径偏振相机拍摄。The original frame images captured by the SAR camera were captured by the SAR camera at the Advanced Optical Imaging Laboratory of Shaanxi Normal University.
3、评价指标3. Evaluation indicators
使用结构相似性指数(SSIM)和归一化互信息(NMI)作为评价指标。按式(11)确定结构相似性指数:Structural similarity index (SSIM) and normalized mutual information (NMI) were used as evaluation metrics. Determine the structural similarity index according to formula (11):
SSIM(R,T)=L(R,T)C(R,T)S(R,T) (11)SSIM(R,T)=L(R,T)C(R,T)S(R,T) (11)
其中,R和T表示分辨率相同的两幅图像,L(R,T)表示两图像的亮度相关函数,C(R,T)表示两图像的对比度相关函数,S(R,T)表示两图像的结构相关函数,μR和μT分别代表两幅图像各自的灰度均值,σR和σT分别表示两幅图像各自的灰度标准差,σRT代表图像R和图像T之间的灰度协方差,C1、C2和C3均为很小的正常数,旨在避免分母为0或接近于0时引起的不稳定。Among them, R and T represent two images with the same resolution, L(R, T) represents the luminance correlation function of the two images, C(R, T) represents the contrast correlation function of the two images, and S(R, T) represents the two images. Structural correlation function of the image, μ R and μ T represent the respective gray mean values of the two images, σ R and σ T represent the respective gray standard deviations of the two images, and σ RT represents the difference between the image R and the image T. The grayscale covariances, C 1 , C 2 and C 3 are small positive constants designed to avoid instability when the denominator is 0 or close to 0.
按式(12)确定归一化互信息:Determine the normalized mutual information according to formula (12):
其中,M和N表示相同分辨率和相同灰阶的两幅图像,H(M)表示图像M的平均信息量,H(N)表示图像N的平均信息量,H(M,N)表示图像M和图像N之间的相关平均信息量,m和n分别表示图像M和图像N中任意像素点的灰度值,PM(m)表示图像M的边缘概率密度函数,PN(n)表示图像N的边缘概率密度函数,PMN(m,n)表示图像M和图像N之间的联合概率密度函数。Among them, M and N represent two images of the same resolution and the same gray level, H(M) represents the entropy of image M, H(N) represents the entropy of image N, and H(M, N) represents the image The relative mean information between M and image N, m and n represent the gray value of any pixel in image M and image N, respectively, P M (m) represents the edge probability density function of image M, P N (n) represents the edge probability density function of image N, and PMN (m,n) represents the joint probability density function between image M and image N.
将分孔径偏振相机图像配准前与未配准的图像相似程度进行定量评价。Quantitative evaluation of the similarity between the pre-registered and unregistered images of the aperture polarization camera.
按照实施例1的方法进行试验,分孔径偏振图像间的结构相似性指数见表1,分孔径偏振图像间的归一化互信息见表2。The test was carried out according to the method of Example 1, the structural similarity index between the polarization images with different apertures is shown in Table 1, and the normalized mutual information between the polarization images with different apertures is shown in Table 2.
表1每两幅分孔径偏振图像的结构相似性指数(SSIM)Table 1 Structural Similarity Index (SSIM) of every two polarized images of sub-aperture
表2每两幅分孔径偏振图像的归一化互信息(NMI)Table 2 Normalized Mutual Information (NMI) of every two polarized images of sub-aperture
在表1中,SSIM_0_45表示0°线偏振子图像与45°线偏振子图像的结构相似性指数;SSIM_0_90表示0°线偏振子图像与90°线偏振子图像的结构相似性指数;SSIM_0_C表示0°线偏振子图像与圆偏振子图像的结构相似性指数;SSIM_45_90表示45°线偏振子图像与90°线偏振子图像的结构相似性指数;SSIM_45_C表示45°线偏振子图像与圆偏振子图像的结构相似性指数;SSIM_90_C表示90°线偏振子图像与圆偏振子图像的结构相似性指数。In Table 1, SSIM_0_45 represents the structural similarity index between the 0° linearly polarized sub-image and the 45° linearly polarized sub-image; SSIM_0_90 represents the structural similarity index between the 0° linearly polarized sub-image and the 90° linearly polarized sub-image; SSIM_0_C represents 0 ° Structural similarity index between linearly polarized sub-image and circularly polarized sub-image; SSIM_45_90 represents the structural similarity index between 45° linearly polarized sub-image and 90° linearly polarized sub-image; SSIM_45_C represents 45° linearly polarized sub-image and circularly polarized sub-image The structural similarity index of ; SSIM_90_C represents the structural similarity index of the 90° linearly polarized sub-image and the circularly polarized sub-image.
在表2中,NMI_0_45表示0°线偏振子图像与45°线偏振子图像的归一化互信息;NMI_0_90表示0°线偏振子图像与90°线偏振子图像的归一化互信息;NMI_0_C表示0°线偏振子图像与圆偏振子图像的归一化互信息;NMI_45_90表示45°线偏振子图像与90°线偏振子图像的归一化互信息;NMI_45_C表示45°线偏振子图像与圆偏振子图像的归一化互信息;NMI_90_C表示90°线偏振子图像与圆偏振子图像的归一化互信息。In Table 2, NMI_0_45 represents the normalized mutual information of 0° linearly polarized sub-image and 45° linearly polarized sub-image; NMI_0_90 represents the normalized mutual information of 0° linearly polarized sub-image and 90° linearly polarized sub-image; NMI_0_C Represents the normalized mutual information of the 0° linearly polarized sub-image and the circularly polarized sub-image; NMI_45_90 represents the normalized mutual information of the 45° linearly polarized sub-image and the 90° linearly polarized sub-image; NMI_45_C represents the 45° linearly polarized sub-image and the The normalized mutual information of the circularly polarized sub-image; NMI_90_C represents the normalized mutual information of the 90° linearly polarized sub-image and the circularly polarized sub-image.
由表1、表2可见,本发明配准后的四幅偏振图像相比于未配准的四幅偏振图像,结构相似性指数平均提升了72.08%,归一化互信息平均提升了18.5%,表明本发明能够很好地实现分孔径偏振相机的图像配准。It can be seen from Table 1 and Table 2 that, compared with the four unregistered polarized images, the average structural similarity index of the four polarized images after registration in the present invention is increased by 72.08%, and the normalized mutual information is increased by 18.5% on average, indicating that The invention can well realize the image registration of the split-aperture polarization camera.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670279.9A CN114937067B (en) | 2022-06-14 | 2022-06-14 | Image registration method of split-aperture polarization camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670279.9A CN114937067B (en) | 2022-06-14 | 2022-06-14 | Image registration method of split-aperture polarization camera |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114937067A true CN114937067A (en) | 2022-08-23 |
CN114937067B CN114937067B (en) | 2023-01-31 |
Family
ID=82866432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210670279.9A Active CN114937067B (en) | 2022-06-14 | 2022-06-14 | Image registration method of split-aperture polarization camera |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114937067B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160267348A1 (en) * | 2013-12-16 | 2016-09-15 | Sony Corporation | Image processing device and image processing method |
CN107392948A (en) * | 2017-07-10 | 2017-11-24 | 大连理工大学 | A kind of method for registering images of point of amplitude real-time polarization imaging system |
CN108765476A (en) * | 2018-06-05 | 2018-11-06 | 安徽大学 | Polarized image registration method |
CN109886883A (en) * | 2019-01-21 | 2019-06-14 | 吉林大学 | Real-time polarized fog-penetrating imaging image enhancement processing method |
CN111882594A (en) * | 2020-07-27 | 2020-11-03 | 北京环境特性研究所 | ORB feature point-based polarization image rapid registration method and device |
US20210335013A1 (en) * | 2020-04-27 | 2021-10-28 | Huazhong University Of Science And Technology | Method for characterizing polarization image information and method for computing characterization parameters |
-
2022
- 2022-06-14 CN CN202210670279.9A patent/CN114937067B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160267348A1 (en) * | 2013-12-16 | 2016-09-15 | Sony Corporation | Image processing device and image processing method |
CN107392948A (en) * | 2017-07-10 | 2017-11-24 | 大连理工大学 | A kind of method for registering images of point of amplitude real-time polarization imaging system |
CN108765476A (en) * | 2018-06-05 | 2018-11-06 | 安徽大学 | Polarized image registration method |
CN109886883A (en) * | 2019-01-21 | 2019-06-14 | 吉林大学 | Real-time polarized fog-penetrating imaging image enhancement processing method |
US20210335013A1 (en) * | 2020-04-27 | 2021-10-28 | Huazhong University Of Science And Technology | Method for characterizing polarization image information and method for computing characterization parameters |
CN111882594A (en) * | 2020-07-27 | 2020-11-03 | 北京环境特性研究所 | ORB feature point-based polarization image rapid registration method and device |
Non-Patent Citations (4)
Title |
---|
万钇良等: "一种基于相位相关与子图像的偏振图像配准方法", 《液晶与显示》 * |
巨海娟等: "全偏振态同时探测实时彩色偏振成像技术", 《红外与毫米波学报》 * |
杨长久等: "同时偏振成像探测系统的偏振图像配准研究", 《红外与激光工程》 * |
褚金奎等: "偏振探测系统的图像配准", 《光学精密工程》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114937067B (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109410207B (en) | NCC (non-return control) feature-based unmanned aerial vehicle line inspection image transmission line detection method | |
CN114299275A (en) | Hough transform-based license plate inclination correction method | |
Joze et al. | Imagepairs: Realistic super resolution dataset via beam splitter camera rig | |
CN110992263B (en) | Image stitching method and system | |
CN104732231B (en) | A kind of recognition methods of valuable bills | |
JP2010041417A (en) | Image processing unit, image processing method, image processing program, and imaging apparatus | |
CN110909750B (en) | Image difference detection method and device, storage medium and terminal | |
WO2014183385A1 (en) | Terminal and image processing method therefor | |
CN111382722B (en) | License plate image optimization method, image processing device and device with storage function | |
CN114897705A (en) | Unmanned aerial vehicle remote sensing image splicing method based on feature optimization | |
CN113096016A (en) | Low-altitude aerial image splicing method and system | |
US20110085026A1 (en) | Detection method and detection system of moving object | |
CN113920065B (en) | Imaging quality evaluation method for visual detection system of industrial site | |
CN111583315A (en) | Novel visible light image and infrared image registration method and device | |
CN111833384B (en) | Method and device for rapidly registering visible light and infrared images | |
CN114937067B (en) | Image registration method of split-aperture polarization camera | |
US20120033888A1 (en) | Image processing system, image processing method, and computer readable medium | |
CN118762059A (en) | Image registration method for multi-camera imaging system | |
CN110674817B (en) | License plate anti-counterfeiting method and device based on binocular camera | |
CN106357958A (en) | Region-matching-based fast electronic image stabilization method | |
CN115035168B (en) | Photovoltaic panel multi-source image registration method, device and system based on multiple constraints | |
CN115249255A (en) | Rock core image fusion method for optimizing Poisson fusion | |
CN109086762A (en) | A kind of fuzzy license plate identification method based on more mesh cameras | |
CN111402281B (en) | Book edge detection method and device | |
CN113793372A (en) | Optimal registration method and system for different-source images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |