CN114936517B - 一种基于深度学习的金属焊接信号特征曲线特征建模方法 - Google Patents

一种基于深度学习的金属焊接信号特征曲线特征建模方法 Download PDF

Info

Publication number
CN114936517B
CN114936517B CN202210460042.8A CN202210460042A CN114936517B CN 114936517 B CN114936517 B CN 114936517B CN 202210460042 A CN202210460042 A CN 202210460042A CN 114936517 B CN114936517 B CN 114936517B
Authority
CN
China
Prior art keywords
signal characteristic
curve
feature
characteristic curve
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210460042.8A
Other languages
English (en)
Other versions
CN114936517A (zh
Inventor
李红
王怀震
朱鹏臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Bosner Intelligent Technology Co ltd
Original Assignee
Shanghai Bosner Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Bosner Intelligent Technology Co ltd filed Critical Shanghai Bosner Intelligent Technology Co ltd
Priority to CN202210460042.8A priority Critical patent/CN114936517B/zh
Publication of CN114936517A publication Critical patent/CN114936517A/zh
Application granted granted Critical
Publication of CN114936517B publication Critical patent/CN114936517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种基于深度学习的金属焊接信号特征曲线特征建模方法,包括以下步骤:标识信号特征曲线;收集的金属焊接数据组成大型数据集,并将数据集分为训练集、验证集和测试集;将多种信号特征曲线进行处理和组合;设置信号特征曲线编码器和曲线解码器;训练和评估编码器‑解码器;提取特征编码;评估特征编码的性能。本发明克服了只依赖传统人工特征建模方法的局限性,融合人工特征建模技术与深度神经网络自动特征建模技术,实现了对多种信号特征曲线进行统一建模。定义特征编码的三大评估指标,从压缩率、编码精度和编码速度三个角度科学地评估特征编码的性能。利用三大评估指标,根据业务需求可对多种特征编码方法针对某一侧重点进行横向比较。

Description

一种基于深度学习的金属焊接信号特征曲线特征建模方法
技术领域
本发明涉及计算机辅助设计技术领域,具体涉及一种基于深度学习的金属焊接信号特征曲线特征建模方法。
背景技术
金属焊接作为金属连接工艺在制造业中有广泛应用。在金属焊接质量评价技术领域,利用过程信号进行质量指标的间接推断被认为是一种可行的方案。基于统计和机器学习方法的方案首先需要对过程信号进行特征建模,即从单一过程信号或多个过程信号中提取若干信号特征。因此,焊接过程信号的数据特征建模质量直接影响后续焊接质量评估技术实施的难度与质量。
在金属焊接的数据特征建模领域,使用高频数采设备采集焊接过程信号,包括电学信号、压力信号、声学信号等,形成信号特征曲线,再依据焊接行业机理使用人工建模方法从信号特征曲线中抽取信号特征。人工特征建模的问题包括:非常依赖科研和技术人员的经验;不同焊接工况的过程信号曲线特征差异较大,为特征信息提取造成很大困难;不同的人工特征建模方案会损失一定的有用信息。
发明内容
针对现有技术的不足,本发明提供了一种基于深度学习的金属焊接信号特征曲线特征建模方法,克服了传统人工特征建模方法的局限性,实现了对多种信号特征曲线进行统一建模。定义特征编码的三大评估指标,从压缩率、编码精度和编码速度三个角度科学地评估特征编码的性能。利用三大评估指标,根据业务需求可对多种特征编码方法针对某一侧重点进行横向比较。
为实现以上目的,本发明通过以下技术方案予以实现:
一种基于深度学习的金属焊接信号特征曲线特征建模方法,包括以下步骤:
步骤S1:标识信号特征曲线;
步骤S2:构建并划分数据集;
步骤S3:预处理信号特征曲线;
步骤S4:设置信号特征曲线编码器;
步骤S5:设置信号特征曲线解码器和多任务分类器;
步骤S6:训练和评估深度神经网络;
步骤S7:提取特征编码;
步骤S8:评估特征编码的性能。
优选地,所述步骤S1中的信号特征曲线标识方法为:通过信号特征曲线类型、焊接位置编号、控制器名称、焊接程序号、被焊零件属性和时间戳9大类属性标识一条信号特征曲线。
优选地,所述步骤S2具体包括以下步骤:
步骤S21:每次焊接形成一个焊接曲线组,由信号类型不同且其他信息相同的信号特征曲线组成。一个焊接曲线组被称为一条焊接数据,它描述了一次焊接过程中不同类型信号的变化。
步骤S22:多条焊接数据构成数据集,通过按比例随机抽样将整个数据集分为训练集、验证集和测试集三部分。
优选地,所述步骤S3具体包括以下步骤:
步骤S31:统一信号特征曲线量纲;
步骤S32:定义信号特征曲线统一横轴截断长度为CUT_TIME;
步骤S33:对每条焊接数据中的各类信号特征曲线进行曲线预处理。优选地,使用标准化方法处理焊接曲线:
Figure BDA0003621354680000031
其中,C表示原始曲线,C*表示标准化后的曲线;
优选地,所述步骤S4中具体包括以下步骤:
步骤S41:设置0至多种信号特征曲线人工特征子编码器;
步骤S42:设置1至多种信号特征曲线深度神经网络子编码器和用于输出后处理的Bottleneck模块;
步骤S43:多种子编码器的输出通过特征拼接融合构建联合特征;
步骤S44:设置深度神经网络主编码器和用于输出后处理的Bottleneck模块,步骤S43的子编码器联合特征接入主编码器。
步骤S45:设置主特征编码长度。
优选地,所述步骤S5中具体包括以下步骤:
步骤S51:设置信号特征曲线深度神经网络解码器;
步骤S52:根据步骤S45的主特征编码长度设置信号特征曲线深度神经网络解码器的输入维度;
步骤S53:根据步骤S3处理后的信号特征曲线矩阵形状设置解码器的输出维度;
步骤S54:根据输入维度和输出维度设置深度神经网络解码器网络的层数和每层网络神经元数;
步骤S55:根据数据标注可设置多任务分类器,与解码器共用输入;
步骤S56:步骤S4的编码器网络与解码器网络、多任务分类器网络共同组成完整的端到端焊接电学曲线深度神经网络编码器,通过多任务训练方式促进编码器学习到有效的焊接特征。
优选地,所述步骤S6具体包括以下步骤:
步骤S61:设置模型训练的Loss函数,由深度神经网络子编码器编码-解码的差异损失LossE-D、深度神经子编码器和主编码器的Bottleneck模块的损失LossBTNK-S和LossBTNK-M、多任务分类器的识别损失LossC损四大部分组成:
Loss=LossE-D+αLossBTNK-S+βLossBTNK-M+λLossC
其中,α,β,λ是人工设置参数。
步骤S62:设置深度神经网络训练的优化器、学习率、学习率变化方案、训练轮数等其他超参数,进行模型训练。
优选地,所述步骤S7具体包括:将一条数据输入至已完成训练的模型,提取深度神经网络主编码器Bottleneck模块输出的向量即为该条数据的特征编码。
优选地,所述步骤S8中有关信号特征曲线特征编码的性能评估包括如下指标:
曲线压缩率r:为特征编码长度与原始曲线长度的比例;
Figure BDA0003621354680000041
特征编码精度:使用解码器对测试集进行精度评估,基于平均绝对误差为特征编码精度建立精度评估指标M。
Figure BDA0003621354680000042
其中,Cin表示解码器原始曲线矩阵,Cpred表示解码器利用特征编码进行预测的曲线矩阵,可知|Cin-Cpred|表示使用特征编码还原数据的还原度;n表示评估数据集规模;r设为曲线压缩率;α为平衡曲线压缩率与平均绝对误差的平衡系数;
特征编码速度:使用编码器进行编码速度评估;基于每秒帧率概念定义特征编码速度指标FPSE
Figure BDA0003621354680000043
其中,n表示评估数据集规模;t表示评估整体时间。
本发明提供了一种基于深度学习的金属焊接信号特征曲线特征建模方法。具备以下有益效果:通过使用深度学习方法对多种信号特征曲线进行统一、高效、智能、可用的特征建模。然后,针对建模效果提出了科学实用的评估方法。克服了传统人工特征建模方法的局限性,实现了对多种信号特征曲线进行统一建模,按需设置编码长度。定义特征编码的三大评估指标,从压缩率、编码精度和编码速度三个角度科学地评估特征编码的性能。利用三大评估指标,根据业务需求可对多种特征编码方法针对某一侧重点进行横向比较。在基于数据分析的焊接质量智能预测系统中,本发明的智能特征建模方法同时对多种曲线进行统一建模、高效提炼数据信息、降低数据维度、提升数据质量,保证统计分析、机器学习等方法进行高效学习。可广泛应用于焊接等金属连接工艺的质量评估与控制领域。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对现有技术描述中所需要使用的附图作简单地介绍。
图1本发明的步骤流程框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。
实施例
如图1所示,一种基于深度学习的金属焊接信号特征曲线特征建模方法,包括以下步骤:
步骤S1:标识信号特征曲线;
在电阻点焊中,主要通过焊接控制器上的高频传感器获得电流曲线I、电压曲线U和压力曲线p。根据电流、电压曲线可计算出电阻动态曲线R和功率曲线P;因此,一次电阻点焊可形成至少5条信号特征曲线。这5条信号特征曲线被成为一条焊接数据,描述了一次点焊过程中I,U,R,P,p五类信号的变化;
再使用曲线类型(C_TYPE)、焊点名称(SPOT_NAME)、控制器名称(TIMER_NAME)、程序号(PROG_NO)、零件层数(PART_LAYERS)、零件厚度(PART_THICKNESS)、零件材料组合(PART_MATERIAL)、涂胶(GLUING)和时间戳(DATETIME)共9种属性标识一条信号特征曲线。
其中,焊点名称(SPOT_NAME)、控制器名称(TIMER_NAME)、程序号(PROG_NO)表征焊点设置信息;零件层数(PART_LAYERS)、零件厚度(PART_THICKNESS)、零件材料组合(PART_MATERIAL)、涂胶(GLUING)表征焊点对应的零件板材、搭接和厚度信息,时间戳(DATETIME)表征时间信息,信号特征曲线类型(C_TYPE)表征曲线类别。
步骤S2:收集的电阻点焊数据构建并划分数据集。按照一定比例通过随机抽样将数据集分为训练集、验证集和测试集三个部分;
步骤S21:每次焊接形成一个焊接曲线组,由信号类型不同且其他信息相同的信号特征曲线组成。其中,定义一条金属焊接数据为:由具有相同的焊点名称(SPOT_NAME)、控制器名称(TIMER_NAME)、程序号(PROG_NO)和时间戳(DATETIME)、不同的信号特征曲线类型(C_TYPE)组成的信号特征曲线组。例如一条数据的属性信息为:SPOT_NAME=“spot001”,TIMER_NAME=“timer1”,PROG_NO=“101”,DATETIME=“2010.01.0110:57:25”,C_TYPE包括[I,U,R,P],表示焊接控制器timer1下使用程序号101在2010.01.0110:57:25这一时刻完成了一次名为spot001焊点的焊接,生成了5条信号特征曲线I,U,R,P,p。
步骤S22:多条焊接数据构成数据集,通过按比例随机抽样将整个数据集分为训练集、验证集和测试集三部分。训练集用于训练深度神经网络;验证集用于在训练过程中调试各项超参数理想值;测试集用于在训练结束后评估信号特征曲线编码效果。三种数据集划分比例可调节,标识为TRAIN_PROP、VAL_PROP、TEST_PROP。例如:TRAIN_PROP=0.5、VAL_PROP=0.1、TEST_PROP=0.4。
步骤S3:预处理信号特征曲线;
步骤S31:统一信号特征曲线量纲。首先统一信号特征曲线量纲,在本实施例中,统一时间单位为毫秒(mm),电流单位为千安培(kA),电压单位为伏特(V),电阻单位为微欧姆(μΩ),电功率单位为千瓦特(kW),时间单位为毫秒(mm),压力单位为千牛顿(kN);
步骤S32:再定义信号特征曲线统一横轴截断长度为CUT_TIME;例如:CUT_TIME=1000mm。按CUT_TIME截断所有信号特征曲线为定长;
步骤S33:对每条焊接数据中的各类信号特征曲线进行曲线预处理。优选使用标准化处理,相同C_TYPE的信号特征曲线集合计算均值μ和标准差σ,进行标准化处理;处理公式为:
Figure BDA0003621354680000071
其中,C表示原始曲线,C*表示标准化后的曲线,μ表示数据集中同类型曲线的统计均值,σ表示统计标准差;
步骤S4:设置信号特征曲线编码器;
步骤S41:设置0至多种信号特征曲线人工特征子编码器。电阻点焊设置电阻曲线编码器、电流曲线编码器、电极压力曲线编码器三种人工特征子编码器。
骤S42:设置1至多种信号特征曲线深度神经网络子编码器和用于输出后处理的Bottleneck模块。子编码器参考选型包括但不限于:全连接网络FC;长短时记忆网络LSTM;卷积神经网络CNN;门循环模块网络GRU;带注意力机制的LSTM;Transformer编码器。BottleNeck参考选型包括但不限于:Identity_Bottleneck;VAE_Bottleneck;Sparse_Bottleneck;VectorQuantize_Bottleneck。本实施例,电阻点焊深度神经网络子编码器使用CNN、GRU结合FC,Bottleneck选用VAE_Bottleneck。
步骤S43:多种子编码器的输出通过特征拼接融合构建联合特征。电阻曲线编码器、电流曲线编码器、电极压力曲线编码器三种人工编码器的输出与深度神经网络子编码器后处理Bottleneck的输出进行特征融合形成子编码器联合特征向量。
步骤S44:设置电阻点焊深度神经网络主编码器为FC网络,用于输出后处理的Bottleneck模块选用VAE_Bottleneck。步骤S43的子编码器联合特征向量接入主编码器。
步骤S45:设置电阻点焊主特征编码长度,优选值为256。
步骤S5:设置信号特征曲线解码器和多任务分类器;
步骤S51:设置电阻点焊信号特征曲线深度神经网络解码器为4层FC网络;
步骤S52:根据步骤S45的主特征编码长度设置信号特征曲线深度神经网络解码器的输入维度;
步骤S53:根据步骤S3处理后的信号特征曲线矩阵形状设置解码器的输出维度;
步骤S54:根据输入维度和输出维度设置电阻点焊深度神经网络解码器网络的层数和每层网络神经元数;
步骤S55:根据数据标注可设置多任务分类器。电阻点焊深度神经网络根据质量缺陷和焊核直径设置两个任务分类器网络,这两个网络与解码器共用输入;
步骤S56:步骤S4的编码器网络与解码器网络、质量缺陷分类器网络和焊核直径分类器网络共同组成完整的端到端电阻点焊曲线深度神经网络编码器,通过多任务训练方式促进编码器学习到有效的焊接特征。
步骤S6:训练和评估深度神经网络;
步骤S61:设置模型训练的Loss函数,由深度神经网络子编码器编码-解码的差异损失LossE-D、深度神经子编码器和主编码器的Bottleneck模块的损失LossBTNK-S和LossBTNK-M、多任务分类器的识别损失LossC损四大部分组成:
Loss=LossE-D+αLossBTNK-S+βLossBTNK-M+λLossC
LossE-D优选用MSE Loss,LossBTNK-S和LossBTNK-M优选用VAE Loss,LossC优选用Cross Entropy Loss。
步骤S62:设置电阻点焊深度神经网络训练的优化器为Adam、学习率为0.001、学习率调整方案为cosine、训练轮数为1000epoch,进行模型训练。
步骤S7:提取特征编码;
将一条数据输入至已完成训练的模型,提取主编码器Bottleneck模块输出的向量即为该条数据的特征编码。
步骤S8:评估特征编码的性能。
在本实施例中,信号特征曲线特征编码的性能评估包括如下指标:
1)曲线压缩率r:为特征编码长度与原始曲线长度的比例;
Figure BDA0003621354680000091
2)特征编码精度:使用解码器对测试集进行精度评估,基于平均绝对误差为特征编码精度建立精度评估指标M。
Figure BDA0003621354680000092
其中,Cin表示解码器原始曲线矩阵,Cpred表示解码器利用特征编码进行预测的曲线矩阵,可知|Cin-Cpred|表示使用特征编码还原数据的还原度;n表示评估数据集规模;如果需要综合考虑压缩率与编码精度,则r设为曲线压缩率,否则r设为1;α为平衡曲线压缩率与平均绝对误差的平衡系数,如果不需要综合考虑压缩率与编码精度,则α设为1。
3)特征编码速度:使用编码器进行编码速度评估;基于每秒帧率概念定义特征编码速度指标FPSE
Figure BDA0003621354680000101
其中,n表示评估数据集规模;t表示评估整体时间。
训练结束后使用测试集评估编码器的三项指标。
利用上述基于深度学习的金属焊接信号特征曲线特征建模方法克服了传统人工特征建模方法的局限性,实现了对多种信号特征曲线进行统一建模,按需设置编码长度。定义特征编码的三大评估指标,从压缩率、编码精度和编码速度三个角度科学地评估特征编码的性能。利用三大评估指标,根据业务需求可对多种特征编码方法针对某一侧重点进行横向比较。在基于数据分析的焊接质量智能预测系统中,本发明的智能特征建模方法同时对多种曲线进行统一建模、高效提炼数据信息、降低数据维度、提升数据质量,保证统计分析、机器学习等方法进行高效学习。可广泛应用于焊接等金属连接工艺的质量评估与控制领域。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:包括以下步骤:
步骤S1:标识信号特征曲线;
其中,信号特征曲线标识方法为:曲线类型、焊点名称、控制器名称、程序号、零件层数、零件厚度、零件材料组合、涂胶和时间戳共9种属性标识一条信号特征曲线;
步骤S2:构建并划分数据集;
步骤S3:预处理信号特征曲线;
步骤S4:设置信号特征曲线编码器;
步骤S5:设置信号特征曲线解码器和多任务分类器;
步骤S6:训练和评估深度神经网络;
步骤S7:提取特征编码;
步骤S8:评估特征编码的性能;
其中,所述步骤S3具体包括以下步骤:
步骤S31:统一信号特征曲线量纲;
步骤S32:定义信号特征曲线统一横轴截断长度为CUT_TIME;
步骤S33:对每条焊接数据中的各类信号特征曲线进行曲线预处理;
其中,步骤S8中有关信号特征曲线特征编码的性能评估包括如下指标:曲线压缩率r、特征编码精度和特征编码速度。
2.根据权利要求1所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S2具体包括以下步骤:
步骤S21:每次焊接形成一个焊接曲线组,由信号类型不同且其他信息相同的信号特征曲线组成,一个焊接曲线组被称为一条焊接数据,它描述了一次焊接过程中不同类型信号的变化;
步骤S22:多条焊接数据构成数据集,通过按比例随机抽样将整个数据集分为训练集、验证集和测试集三部分。
3.根据权利要求1所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S4具体包括以下步骤:
步骤S41:设置0至多种信号特征曲线人工特征子编码器;
步骤S42:设置1至多种信号特征曲线深度神经网络子编码器和用于输出后处理的Bottleneck模块;
步骤S43:多种子编码器的输出通过特征拼接融合构建联合特征;
步骤S44:设置深度神经网络主编码器和用于输出后处理的Bottleneck模块,步骤S43的子编码器联合特征接入主编码器;
步骤S45:设置主特征编码长度。
4.根据权利要求3所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S5具体包括以下步骤:
步骤S51:设置信号特征曲线深度神经网络解码器;
步骤S52:根据步骤S45的主特征编码长度设置信号特征曲线深度神经网络解码器的输入维度;
步骤S53:根据步骤S3处理后的信号特征曲线矩阵形状设置解码器的输出维度;
步骤S54:根据输入维度和输出维度设置深度神经网络解码器网络的层数和每层网络神经元数;
步骤S55:根据数据标注可设置多任务分类器,与解码器共用输入;
步骤S56:将步骤S4的编码器网络与解码器网络、多任务分类器网络共同组成完整的端到端焊接电学曲线深度神经网络编码器,通过多任务训练方式促进编码器学习到有效的焊接特征。
5.根据权利要求1所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S6具体包括以下步骤:
步骤S61:设置模型训练的Loss函数,由深度神经网络子编码器编码-解码的差异损失LossE-D、深度神经子编码器和主编码器的Bottleneck模块的损失LossBTNK-S和LossBTNK-M、多任务分类器的识别损失LossC损四大部分组成:
Loss=LossE-D+αLossBTNK-S+βLossBTNK-M+λLossC
其中,α,β,λ是人工设置参数;
步骤S62:设置深度神经网络训练的优化器、学习率、学习率变化方案、训练轮数,进行模型训练。
6.根据权利要求5所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S7具体包括:将一条数据输入至已完成训练的模型,提取深度神经网络主编码器Bottleneck模块输出的向量即为该条数据的特征编码。
7.根据权利要求1所述的一种基于深度学习的金属焊接信号特征曲线特征建模方法,其特征在于:所述步骤S8中有关信号特征曲线特征编码的性能评估包括如下指标:
曲线压缩率r:为特征编码长度与原始曲线长度的比例;
Figure FDA0004051974300000031
特征编码精度:使用解码器对测试集进行精度评估,基于平均绝对误差为特征编码精度建立精度评估指标M;
Figure FDA0004051974300000032
其中,Cin表示解码器原始曲线矩阵,Cpred表示解码器利用特征编码进行预测的曲线矩阵,可知|Cin-Cpred|表示使用特征编码还原数据的还原度;n表示评估数据集规模;r设为曲线压缩率;α为平衡曲线压缩率与平均绝对误差的平衡系数;
特征编码速度:使用编码器进行编码速度评估;基于每秒帧率概念定义特征编码速度指标FPSE
Figure FDA0004051974300000041
其中,n表示评估数据集规模;t表示评估整体时间。
CN202210460042.8A 2022-04-28 2022-04-28 一种基于深度学习的金属焊接信号特征曲线特征建模方法 Active CN114936517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210460042.8A CN114936517B (zh) 2022-04-28 2022-04-28 一种基于深度学习的金属焊接信号特征曲线特征建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210460042.8A CN114936517B (zh) 2022-04-28 2022-04-28 一种基于深度学习的金属焊接信号特征曲线特征建模方法

Publications (2)

Publication Number Publication Date
CN114936517A CN114936517A (zh) 2022-08-23
CN114936517B true CN114936517B (zh) 2023-04-07

Family

ID=82862224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210460042.8A Active CN114936517B (zh) 2022-04-28 2022-04-28 一种基于深度学习的金属焊接信号特征曲线特征建模方法

Country Status (1)

Country Link
CN (1) CN114936517B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155372A (zh) * 2021-12-03 2022-03-08 长春工业大学 一种基于深度学习的结构光焊缝曲线识别与拟合方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271036B (zh) * 2016-08-12 2018-09-14 广州市精源电子设备有限公司 超声波金属焊接质量评估方法、装置和超声波金属焊接机
US20210318673A1 (en) * 2020-04-08 2021-10-14 BWXT Advanced Technologies LLC In-Situ Inspection Method Based on Digital Data Model of Weld
CN113434970B (zh) * 2021-06-01 2023-01-17 北京交通大学 一种机械设备的健康指标曲线提取和寿命预测方法
CN113533511B (zh) * 2021-06-29 2022-09-16 北京交通大学 基于深度学习网络模型的钢轨焊缝监测方法
CN114119504A (zh) * 2021-11-08 2022-03-01 南昌大学 一种基于级联卷积神经网络的钢件焊缝自动检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155372A (zh) * 2021-12-03 2022-03-08 长春工业大学 一种基于深度学习的结构光焊缝曲线识别与拟合方法

Also Published As

Publication number Publication date
CN114936517A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN113593631B (zh) 一种预测蛋白质-多肽结合位点的方法及系统
CN109347668B (zh) 一种服务质量评估模型的训练方法及装置
CN109359385B (zh) 一种服务质量评估模型的训练方法及装置
CN110309136B (zh) 一种数据库异常事件缺失数据填充方法及系统
CN109034368A (zh) 一种基于dnn的复杂设备多重故障诊断方法
CN116306320B (zh) 非血管腔道导丝生产质量管理方法及系统
CN110276385B (zh) 基于相似性的机械部件剩余使用寿命预测方法
CN112507003A (zh) 一种基于大数据架构的车联网数据分析平台
CN110309967A (zh) 客服会话评分等级的预测方法、系统、设备和存储介质
CN111178725A (zh) 一种基于层次分析法的保护设备状态预警方法
CN111126489A (zh) 一种基于集成学习的输电设备状态评价方法
CN115184193B (zh) 线缆的自动化测试方法、装置、设备及存储介质
CN110865924A (zh) 电力信息系统内部服务器健康度诊断方法与健康诊断框架
CN112232386B (zh) 一种基于支持向量机的电压暂降严重程度预测方法
CN110955928A (zh) 混凝土桥梁恒载应力测试系统及方法、信息数据处理终端
CN114936517B (zh) 一种基于深度学习的金属焊接信号特征曲线特征建模方法
CN115865483A (zh) 一种基于机器学习的异常行为分析方法和装置
CN114638425B (zh) 一种基于历史数据的大用户月度用电量预测方法及系统
CN116384837A (zh) 用于工程质量检测的信息处理方法、系统和检测员终端
CN117154263A (zh) 锂电池梯次利用充放电系统及控制方法
CN112327190B (zh) 一种储能电池健康状态辨识方法
CN117217020A (zh) 一种基于数字孪生的工业模型构建方法及系统
CN110320802B (zh) 基于数据可视化的复杂系统信号时序识别方法
CN111914473B (zh) 一种电阻点焊的焊接参数确定方法、装置、电子设备及存储介质
CN115422264A (zh) 一种时序数据处理方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant