CN114933651B - Alpaca source nano antibody and application thereof - Google Patents

Alpaca source nano antibody and application thereof Download PDF

Info

Publication number
CN114933651B
CN114933651B CN202210759496.5A CN202210759496A CN114933651B CN 114933651 B CN114933651 B CN 114933651B CN 202210759496 A CN202210759496 A CN 202210759496A CN 114933651 B CN114933651 B CN 114933651B
Authority
CN
China
Prior art keywords
cov
sars
pharmaceutical composition
polynucleotide
2rbd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210759496.5A
Other languages
Chinese (zh)
Other versions
CN114933651A (en
Inventor
王奇慧
高福
刘红辉
韩鹏程
仵丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microbiology of CAS
Original Assignee
Institute of Microbiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microbiology of CAS filed Critical Institute of Microbiology of CAS
Publication of CN114933651A publication Critical patent/CN114933651A/en
Application granted granted Critical
Publication of CN114933651B publication Critical patent/CN114933651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention relates to an alpaca source nano antibody and application thereof, in particular to an alpaca source nano antibody R14 combined with SARS-CoV-2RBD or an antigen combining fragment thereof and application thereof, comprising a heavy chain variable region, wherein the heavy chain variable region comprises the following CDRs: CDR1 with an amino acid sequence shown as SEQ ID NO. 1, CDR2 with an amino acid sequence shown as SEQ ID NO. 2 and CDR3 with an amino acid sequence shown as SEQ ID NO. 3. The binding constant of the R14 nano antibody and SARS-CoV-2 is less than 1E-10M, and the invention can effectively inhibit SARS-CoV-2 pseudovirus infection. The R14 nano antibody of the invention has clinical application value in preventing, treating and/or detecting SARS-CoV-2 infection.

Description

Alpaca source nano antibody and application thereof
Cross-referencing
The present application claims priority from an invention patent application entitled "a strain of alpaca-derived nanobody and its use" filed on 16/9/2021 under application number 202111086956.4, which is incorporated herein by reference in its entirety.
Technical Field
The invention relates to the field of biomedicine, in particular to an alpaca source nano antibody and application thereof, and more particularly relates to an alpaca source nano antibody combined with SARS-CoV-2RBD or an antigen binding fragment thereof, a polynucleotide encoding the alpaca source nano antibody, a nucleic acid construct containing the polynucleotide, an expression vector containing the nucleic acid construct, a preparation method of the alpaca source nano antibody, a transformed cell and a pharmaceutical composition containing the alpaca source nano antibody, and application of the alpaca source nano antibody and the polynucleotide and the nucleic acid construct in preparation of medicines for preventing, treating and/or detecting new coronavirus infection.
Background
Since 12 months 2019, the epidemic caused by a novel coronavirus (SARS-CoV-2) of the family Coronaviridae (family Coronaviridae) has continued to spread worldwide. In addition, severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and the like belonging to the family Coronaviridae are also main pathogens of human respiratory system, are mainly transmitted by means of droplets, aerosols, contact and the like, have strong infectivity, and are easy to cause panic of the masses, so that the viruses causing respiratory system diseases seriously jeopardize public health and safety, and especially frequently cause respiratory infectious diseases and continuous variation of the viruses in recent years pose great threats to the health, life safety, national economic development and social stability of the masses.
The medicine is mainly combined with antigens on the surface of pathogenic microorganisms to prevent specific molecules expressed by the pathogenic microorganisms from being combined with cell surface receptors, so that the effect of neutralizing is achieved. Both SARS-CoV and SARS-CoV-2 virus have glycosylated spike protein (S) on their surface, which is capable of interacting with host cell receptor protein ACE2 and triggering membrane fusion, and thus blocking the binding of the S protein to ACE2 is an effective way to treat new coronavirus infections.
However, antibody strategies aimed at blocking virus from host cell receptors still require further optimization and upgrading. On one hand, the RNA virus such as the new coronavirus has the characteristics of easy mutation, easy immune escape and the like, and a single specific antibody hardly meets the long-term treatment requirement. In addition, the conventional monoclonal antibody has a certain defect in practical application due to its excessively large molecular weight.
Disclosure of Invention
Object of the Invention
The invention aims to provide an alpaca source nano antibody or an antigen binding fragment thereof combined with SARS-CoV-2RBD, a polynucleotide for coding the antibody, a nucleic acid construct containing the polynucleotide, an expression vector containing the nucleic acid construct, a preparation method of the expression vector, a transformed cell, a pharmaceutical composition containing the nucleic acid construct, and application of the antibody and the polynucleotide in preparation of medicaments for preventing or treating new coronavirus. The alpaca source nano antibody or the antigen binding fragment thereof is a nano antibody with high neutralization activity, has strong binding capacity with SARS-CoV-2RBD protein, can effectively inhibit SARS-CoV-2 infection, has the advantages of small molecular weight (15 kDa), small immunogenicity, better solubility and stability and longer CDR3 region, can be atomized and administered, can directly reach the lung, has quicker effect, and provides a potential treatment strategy for new crown or other coronavirus infections.
Solution scheme
In order to achieve the purpose, the invention provides the following technical scheme:
in a first aspect, the present invention provides an alpaca-derived nanobody or an antigen-binding fragment thereof that binds to SARS-CoV-2RBD, comprising a heavy chain variable region comprising the CDRs of:
CDR1 with an amino acid sequence shown in SEQ ID NO:1 (namely GFTLDYYAIG),
CDR2 having an amino acid sequence shown in SEQ ID NO:2 (i.e., CISSSDGSTSYADSVKG), and
the amino acid sequence is shown as CDR3 of SEQ ID NO:3 (namely TPATYYSGRYYYQCPAGGMDY).
Preferably, the heavy chain variable region further comprises 4 framework regions FR1-4, wherein the FR1-4 is staggered with the CDR1, CDR2 and CDR3 in sequence.
In a preferred embodiment, the amino acid sequences of FR1-4 are shown in SEQ ID NO 4 (i.e., QVQLQESGGGLVQPGGSLRLSCAVS), SEQ ID NO 5 (i.e., WFRQAPGKEREGVS), SEQ ID NO 6 (i.e., RFTISRDNAKNTVYLQMNSLKPEDTALYYCAA) and SEQ ID NO 7 (i.e., WGQGTQVTVSS), respectively.
Further preferably, the amino acid sequence of the heavy chain variable region is as shown in SEQ ID NO: 8:
QVQLQESGGGLVQPGGSLRLSCAVSGFTLDYYAIGWFRQAPGKEREGVSCISSSDGSTSYADSVKGRF TISRDNAKNTVYLQMNSLKPEDTALYYCAATPATYYSGRYYYQCPAGGMDYWGQGTQVTVSSwherein the underlined parts are the framework regions FR1-4, respectively, and the shaded parts are CDR1, CDR2 and CDR3, respectively, of the heavy chain variable region.
In a second aspect, the present invention provides a polynucleotide encoding the alpaca nanobody or the antigen-binding fragment thereof that binds to SARS-CoV-2 RBD.
Further, the polynucleotide is DNA or mRNA.
Further, the polynucleotide has a nucleotide sequence shown as SEQ ID NO. 9:
CAGGTGCAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAGCCTGGGGGGTCTCTGAGACTCTCCTGTGCAGTCTCTGGATTTACTTTGGATTATTATGCCATAGGCTGGTTCCGCCAGGCCCCAGGGAAGGAGCGTGAGGGGGTCTCATGTATTAGTAGTAGTGATGGTAGCACATCGTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAAAACACGGTGTATCTGCAAATGAACAGCCTGAAACCTGAGGACACAGCCCTTTATTACTGTGCAGCAACCCCTGCTACATACTATAGTGGACGTTACTACTACCAATGTCCCGCGGGGGGCATGGACTACTGGGGCAAAGGGACCCAGGTGACCGTGAGCTCT。
in a third aspect, the invention provides a nucleic acid construct comprising said polynucleotide.
Further preferably, the polynucleotide further comprises at least one expression control element operably linked to the polynucleotide. Such as a histidine tag, stop codon, etc.
In a fourth aspect, the present invention provides an expression vector comprising said nucleic acid construct.
In a fifth aspect, the invention provides a transformed cell comprising a polynucleotide as described in the second aspect above, a nucleic acid construct as described in the third aspect above or an expression vector as described in the fourth aspect above.
In a sixth aspect, the present invention provides a pharmaceutical composition comprising a nanobody of alpaca origin or an antigen-binding fragment thereof that binds to SARS-CoV-2RBD as described in the first aspect above, a polynucleotide as described in the second aspect above, a nucleic acid construct as described in the third aspect above, an expression vector as described in the fourth aspect above or a transformed cell as described in the fifth aspect above, and a pharmaceutically acceptable carrier and/or excipient.
Further preferably, the pharmaceutical composition is in the form of a nasal spray, an oral formulation, a suppository or a parenteral formulation.
Further preferably, the nasal spray is selected from the group consisting of an aerosol, a spray and a powder spray.
Further preferably, the oral formulation is selected from the group consisting of tablets, powders, pills, powders, granules, fine granules, soft/hard capsules, film coatings, pellets, sublingual tablets and ointments.
Further preferably, the parenteral formulation is a transdermal agent, an ointment, a plaster, a topical liquid, an injectable or a bolus preparation.
In a seventh aspect, the present invention provides a use of the alpaca nanobody or the antigen-binding fragment thereof that binds to SARS-CoV-2RBD according to the first aspect, the polynucleotide according to the second aspect, the nucleic acid construct according to the third aspect, the expression vector according to the fourth aspect, or the transformed cell according to the fifth aspect, or the pharmaceutical composition according to the sixth aspect, in the preparation of a medicament for preventing, treating and/or detecting a neocoronaviral infection.
Further preferably, the new coronavirus is SARS-CoV-2 original strain and/or SARS-CoV-2 variant strain.
Further preferably, the SARS-CoV-2 variant strain is Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and/or Delta (B.1.617.2) strain.
In an eighth aspect, the present invention provides a method for preventing or treating a new coronavirus infection, comprising: administering to a subject in need thereof a prophylactically or therapeutically effective amount of an alpaca nanobody or antigen-binding fragment thereof that binds to SARS-CoV-2RBD as described in the above first aspect, a polynucleotide as described in the above second aspect, a nucleic acid construct as described in the above third aspect, an expression vector as described in the above fourth aspect or a transformed cell as described in the above fifth aspect or a pharmaceutical composition as described in the above sixth aspect.
Preferably, the new coronavirus is SARS-CoV-2 original strain and/or SARS-CoV-2 variant strain.
Further preferably, the SARS-CoV-2 variant strain is an Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and/or Delta (B.1.617.2) strain.
The dose of the active ingredient of the pharmaceutical composition of the present invention varies depending on the subject, the target organ, the symptom, the administration method, and the like, and can be determined by the judgment of the doctor in consideration of the type of the formulation, the administration method, the age and weight of the patient, the symptom of the patient, and the like.
In a ninth aspect, the present invention provides a method for detecting a novel coronavirus, which comprises using the alpaca-derived nanobody or the antigen-binding fragment thereof that binds to SARS-CoV-2RBD as described in the above first aspect.
Preferably, the new coronavirus is SARS-CoV-2 original strain and/or SARS-CoV-2 variant strain.
Further preferably, the SARS-CoV-2 variant strain is Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and/or Delta (B.1.617.2) strain.
Advantageous effects
The invention relates to a nano antibody drug development aiming at new coronavirus, which comprises using SARS-CoV-2RBD protein and SARS-CoV-2NTD protein to immunize alpaca simultaneously, constructing antibody library, screening specific nano antibody by using phage display technology, using SARS-CoV-2RBD protein as 'bait', screening nano antibody specifically combined with SARS-CoV-2RBD with high affinity, named as R14 nano antibody. The R14 nano antibody of the invention can be combined with SARS-CoV-2RBD with high affinity, the combination constant is less than 1E-10M, and in the pseudovirus neutralization experiment, the invention can neutralize SARS-CoV-2 pseudovirus with high neutralization activity, which shows that: the R14 nano antibody is a novel coronavirus (SARS-CoV-2) alpaca source nano antibody which can be combined with SARS-CoV-2RBD with high affinity and has high neutralization activity.
The invention provides a potential nano-antibody new drug for clinical prevention, treatment and detection of novel coronavirus (including original strains and a series of variant strains).
Drawings
One or more embodiments are illustrated by the corresponding figures in the drawings, which are not meant to be limiting. The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration. Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.
FIG. 1 is a schematic diagram showing the results of molecular sieve chromatography and SDS-PAGE identification of SARS-CoV-2RBD protein in example 1 of the present invention;
FIG. 2 is a diagram showing the results of molecular sieve chromatography and SDS-PAGE identification of SARS-CoV-2NTD protein in example 1 of the present invention;
FIG. 3 is a diagram showing the results of molecular sieve chromatography and SDS-PAGE identification of the R14 nanobody of example 4 of the present invention;
FIG. 4 is a graphical representation of the kinetics of binding of R14 nanobodies to SARS-CoV-2RBD as determined in example 5 of the present invention; wherein, the dotted line refers to the original data, and the solid line refers to the fitted kinetic curve;
FIG. 5 is a graph showing the effect of R14 nanobody on neutralization of VSV-SARS-CoV-2 pseudovirus infection as determined in example 6 of the present invention, wherein A is a graph showing the effect of R14 nanobody on neutralization of pseudovirus infection of original strain SARS-CoV-2 WT; b is an effect graph of R14 nano antibody neutralizing the pseudovirus infection of SARS-CoV-2 variant strain Alpha (B.1.1.7); c is an effect graph of R14 nano antibody neutralizing the pseudovirus infection of SARS-CoV-2 variant strain Beta (B.1.351); d is a graph of the effect of R14 nano antibody in neutralizing the pseudovirus infection of SARS-CoV-2 variant strain Gamma (P.1); e is an effect graph of R14 nano antibody neutralizing the pseudovirus infection of SARS-CoV-2 variant strain Kappa (B.1.617.1); f is an effect chart of R14 nanometer antibody neutralizing the pseudo virus infection of SARS-CoV-2 variant strain Delta (B.1.617.2).
Fig. 6 shows the neutralizing activity of the R14 nanobody detected in example 9 of the present invention on the pseudovirus of the original strain of new coronavirus before and after nebulization.
FIG. 7 shows the efficacy of R14 nanobodies detected in example 10 of the present invention in preventing new coronavirus infection in mice.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below, and it is obvious that the described embodiments are some, but not all embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention. Throughout the specification and claims, unless explicitly stated otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or component but not the exclusion of any other element or component.
Furthermore, in the following detailed description, numerous specific details are set forth in order to provide a better understanding of the invention. It will be understood by those skilled in the art that the present invention may be practiced without some of these specific details. In some instances, materials, components, methods, procedures, and the like that are well known to those of skill in the art have not been described in detail so as not to obscure the present invention.
The present invention will be described in detail below.
Definition of
"Nanobodies", i.e., "heavy chain single domain antibodies", comprise only one heavy chain variable region (VHH), from which a light chain is naturally deleted compared to other antibodies.
Due to its biophysical advantages, nanobodies can be easily aerosolized and delivered directly to the lungs via an inhaler to treat respiratory virus-induced infections, and are considered to be very potential antibody-based drugs.
"specific" binding, when referring to ligand/receptor, antibody/antigen or other binding pairs, refers to determining the presence or absence of a binding reaction of a protein, such as a nanobody of the invention, to a SARS-CoV-2RBD protein in a heterogeneous population of proteins and/or other biological agents. Thus, under the conditions specified, a particular ligand/antigen binds to a particular receptor/antibody and does not bind in significant amounts to other proteins present in the sample.
The reagents, enzymes, media, antibiotics, and milk used in the following examples of the present invention are commercially available, and for example, TRIzol is purchased from Invitrogen, and Superscript II First-Strand Synthesis System for RT-PCR kit is purchased from Invitrogen.
Some commonly used biomaterials, such as competent cells, vectors, helper phages, cells to be transformed, etc., are also commercially available products, e.g., pCAGGS vectors are available from MiaoLingPlasmid;293F cells, HEK293T cells, etc. were purchased from ATCC; coli TG1 cells purchased from Lucigen; VCSM13 helper phage was purchased from StrataGene; plasmid pMES4 was purchased from adddge; protein a chips were purchased from GE Healthcare; vero cells were purchased from ATCC CCL81.
Some synthetic biomaterials, such as primers, sequences, etc., requiring artificial synthesis are manufactured by synthetic companies, for example, the primers (SED ID NO: 13-18) of the present invention are manufactured by Beijing Ongchou Biotech, inc.
SARS-CoV-2RBD protein and SARS-CoV-2NTD protein of the present invention are obtained from the laboratory of the inventors (see example 1).
Example 1: expression and purification of SARS-CoV-2RBD and SARS-CoV-2NTD
The coding sequence of the SARS-CoV-2RBD protein (shown as SEQ ID NO: 10) is connected with the coding sequence of 6 histidine tags (hexa-His-tag) and a translation termination codon TGA at the 3' end, and the coding sequence is constructed into a pCAGGS vector through restriction enzyme sites EcoRI and XhoI and is transfected into 293F cells to express SARS-CoV-2RBD-His protein. Similarly, the coding sequence of SARS-CoV-2NTD protein (as shown in SEQ ID NO: 11) was ligated 3' to the coding sequence of the SARS-CoV-2NTD protein by the sequence of 6 histidine tags (hexa-His-tag) and the translation termination codon TGA, and these were constructed into pCAGGS vectors via EcoRI and XhoI restriction endonuclease sites, and transfected into 293F cells to express SARS-CoV-2NTD-His protein.
The cell culture fluid containing the target protein is subjected to nickel ion affinity chromatography (HisTrap) TM excel (GE Healthcare) and gel filtration chromatography (Superdex) TM After 200Increatase 10/300GL column (GE Healthcare)), purified target protein can be obtained. The size of the SARS-CoV-2RBD-his protein is identified by SDS-PAGE to be about 30KD, and the result is shown in figure 1; the size of SARS-CoV-2NTD-his protein was identified to be about 60KD by SDS-PAGE, and the results are shown in FIG. 2.
The 3' end of the SARS-CoV-2RBD protein coding sequence (shown as SEQ ID NO: 10) is connected with the coding sequence (shown as SEQ ID NO: 12) of the human Fc tag (hFc) and the translation stop codon TGA, and the coding sequence and the translation stop codon TGA are constructed into pCAGGS vectors by connecting EcoRI and XhoI, transfected into 293F cells for expression of SARS-CoV-2RBD-hFc protein and used for surface plasmon resonance analysis.
Example 2: alpaca immunization and antibody library construction
The SARS-CoV-2RBD protein and SARS-CoV-2NTD protein each having 6 histidine tags prepared in example 1 (200. Mu.g) were diluted with PBS to a final volume of 1mL, emulsified with 1mL of complete Freund's adjuvant for 5min, and simultaneously subjected to subcutaneous multi-point injection for immunization, followed by immunization every two weeks, and on day 12 after the fourth immunization, 50 to 60mL of blood was collected and PBMCs (peripheral blood mononuclear cells) were isolated. The isolated PBMCs were added to 1mL TRIzol (available from Invitrogen) and total RNA was extracted according to the procedure described in the specification. Using the extracted total RNA as a template, the Superscript II First-Strand Synthesis System for RT-PCR kit (purchased from Invitrogen) was used, and oligo-dT was used as a random primer 12-18 cDNA was synthesized using the primers. Using cDNA as a template, PCR was performed using specific primers CALL001 and CALL002 (primers shown in Table 1), and 700bp bands were cut and recovered. The purified DNA is used as a template, nested PCR is carried out by using nested primers VHH-BACK and PMCF to amplify a nano antibody (VHHs) sequence, and the VHHs sequence with the purified size of about 400bp is recovered.
The VHHs fragments were ligated into plasmid pMES4 by restriction of sites Pst I and BstEI using a two-enzyme cleavage method. The purified cloning vector and electrocompetent e.coli TG1 cells were mixed, the cloning vector was transformed into electrocompetent e.coli TG1 cells using an electrotransfer (BIO-RAD electrotransfer micropopulser), all of which were plated on selective medium containing ampicillin, after overnight culture at 37 ℃, all colonies were collected in LB medium, centrifuged and the supernatant was discarded, and the cells were resuspended with LB, which was an antibody library.
TABLE 1 reaction primers
Figure BDA0003723818210000071
Figure BDA0003723818210000081
Example 3: screening specific nano antibody by phage display technology
The E.coli TG1 transfected with the recombinant plasmid in example 2 was taken, VCSM13 helper phage was added at a ratio of multiplicity of infection (MOI) of about 20, after overnight culture, centrifugation was performed at 4000rpm, the supernatant was taken, membrane filtration was performed at 0.22 μm, PEG6000/NaCl was added at 1:4 in volume ratio, after mixing, the mixture was left at 4 ℃ for at least 1 hour, centrifugation was performed at 8000 Xg for 30min, the supernatant was discarded, the precipitate was resuspended in PBS, the collected phage particles were used, and phage titer was determined.
2 x10 to 11 Each of the above-collected phages was mixed with an equal volume of 5% (w/v) skim milk, added to a 96-well plate coated with SARS-CoV-2RBD-His antigen, incubated at room temperature for 1h, and then specific phages were eluted with 0.2M glycine, and the eluted phages were neutralized with Tris-HCl (pH 9.1). Coli TG1 cells were then infected with the phage, and the phage were amplified. And preparing a 96-pore plate coated with SARS-CoV-2RBD-His antigen, performing 2 nd round of panning to enrich the bacteriophage expressing the specific nano antibody, and performing 3 rounds of panning. After each round of panning, randomly selecting different single colonies from agar plates with colonies, culturing in a shaker at 37 ℃, adding VCSM13 helper phage for overnight propagation, centrifuging the culture solution the next day, taking phage supernatant for ELISA experiment, and performing ELISA experiment when OD is obtained 450nM >At 0.2 timeAnd judging the reaction to be positive, taking the corresponding clone, sequencing the plasmid by using specific primers MP57 and GIII (the primers are shown in the table 2), and obtaining the sequence of the plasmid for coding VHHs. The core coding sequence for R14 was obtained by sequencing.
TABLE 2 reaction primers
Figure BDA0003723818210000082
Example 4: expression of R14 Nanobodies
In order to make the heavy chain variable region of R14 more complete, the 5 'end of the core coding sequence of R14 obtained in example 3 is connected with the coding sequence of QVQLQ (CAGGTGCAGCTGCAG), and the 3' end is connected with the coding sequence of QVTVSS (CAGGTGACCGTGAGCTCT), so as to obtain the nucleotide sequence shown as SEQ ID NO. 9, namely the coding sequence of the R14 nano antibody of the application; then, the coding sequence of 6 histidine tags (hexa-His-tag) and the translation termination codon TGA were ligated to the DNA fragment, and the DNA fragment was constructed into pCAGGS vectors by restriction endonuclease sites EcoRI and XhoI, transfected into 293F cells, cultured for 5 days, collected as a supernatant, centrifuged at 5000rpm for 30min, filtered through a 0.22 μm filter, and subjected to nickel ion affinity chromatography (HisTrap) TM excel ((GE Healthcare)) and gel filtration chromatography (Superdex) TM 75Increate 10/300GL column (GE Healthcare)), and then the purer target protein is obtained after purification. The peak of interest was determined by SDS-PAGE and the result is shown in FIG. 3, resulting in purified R14 nanobody.
Example 5: surface plasma resonance technology for detecting binding capacity of antibody and SARS-CoV-2RBD
Surface plasmon resonance analysis was performed using Biacore 8K (Biacore inc.). The method comprises the following specific steps:
the SARS-CoV-2RBD-hFc protein obtained in example 1 was immobilized on a protein A chip (purchased from GE Healthcare) at an amount of about 100RU by affinity of the protein A chip to hFc using a PBST buffer (2.7 mM KCl,137mM NaCl,4.3mM Na 2 HPO 4 ,1.4mM KH 2 PO 4 0.05% tween) diluted the R14 protein from low concentration toThe samples are loaded one by one at high concentration. The kinetic profile of antibody binding to SARS-CoV-2RBD protein is shown in FIG. 4. Equilibrium dissociation constant (K) between R14 nanobody and SARS CoV-2RBD D ) Less than 0.1nM. The calculation of binding kinetic constants was performed using BIAevaluation software 8K (Biacore, inc.). The R14 nano antibody is shown to be capable of binding with SARS-CoV-2RBD with higher affinity.
Example 6: SARS-CoV-2 original strain and variant strain pseudovirus package
1) The 18 th amino acid gene of S protein encoding SARS-CoV-2 original strain (WT) and variant strain (Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and Delta (B.1.617.2)) is removed, and the rest sequence of S protein is synthesized (providing synthesis service by Jin Weizhi of Suzhou) to obtain the nucleotide sequences of SARS-CoV-2-WT-S-del18, B.1.1.7-S-del18, B.1.351-S-del18, P.1-S-del18, B.1.617.1-S-del18 and B.1.617.2-S-del18 genes, which are respectively shown in SEQ ID NO: 19-24.
2) The protein gene obtained in 1) was cloned into pCAGGS vector to obtain expression plasmids pCAGGS-SARS-CoV-2-WT-S-del18, pCAGGS-B.1.1.7-S-del18, pCAGGS-B.1.351-S-del18, pCAGGS-P.1-S-del18, pCAGGS-B.1.617.1-S-del18, and pCAGGS-B.1.617.2-S-del18.
The SARS-CoV-2 original strain and variant strain pseudovirus packaging steps are as follows:
a. cell preparation: HEK293T cells (ATCC CRL-3216 cells) were plated on 10cm cell culture dishes to reach a cell confluency of about 80% the next day. The culture solution was DMEM medium containing 10% FBS.
b. Transfection: taking the expression plasmid of each S protein in the step 2), transfecting 30 mu g of plasmid/10 cm of cell culture dish by using PEI, uniformly mixing the target plasmid and PEI according to the proportion of 1:3, transfecting, changing a culture solution (DMEM medium containing 10 percent FBS) for 4-6h, and culturing at 37 ℃ for 24h.
c. Adding poison: pseudovirus packaging frame virus G × VSV-delG (purchased from Wuhan Shunji Ministry of technology for brain science, inc.) was added to the above transfected HEK293T cells, incubated at 37 ℃ for 2h, the culture medium (DMEM medium containing 10% FBS) was replaced, VSV-G antibody (hybridoma cells expressing the antibody were purchased from ATCC cell bank) was added, and the culture was continued in the incubator for 30h.
d. And (3) toxin collection: collecting supernatant, centrifuging at 3000rpm for 10min, filtering with 0.45 μm sterile filter in ultra-clean bench, removing cell debris, packaging, and freezing at-80 deg.C.
Pseudoviruses of SARS-CoV-2 original strain (SARS-CoV-2 WT) and variant strain (Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and Delta (B.1.617.2)) were obtained, respectively.
Example 7: detection of R14 nano antibody neutralization SARS-CoV-2 pseudovirus infection
The purified R14 nanobody from example 4 was diluted 5-fold from 5. Mu.g/mL to the 9 th gradient (2.56 pg/mL) and 1.6x10 4 TCID 50 A series of pseudoviruses of the original strain and the variant strain of SARS-CoV-2 obtained in example 6 were mixed, incubated at 37 ℃ for 1 hour, and then added to a 96-well plate previously inoculated with Vero cells (purchased from ATCC CCL 81). After incubation for 18-20 hours, detection was performed by CQ1 structural Image Cytometer (Yokogawa). The neutralizing ability of the antibody against the pseudoviruses of the above-mentioned SARS-CoV-2 original strain and variant strain was calculated based on the number of cells having GFP fluorescence, and the results are shown in FIGS. 5A to 5F, respectively, and the statistics of the results are shown in Table 3.
TABLE 3 pseudovirus neutralization effect of R14 Nanobodies on New coronavirus
Figure BDA0003723818210000101
* Wherein, IC 50 (μg/mL) a Is the half inhibitory concentration of the R14 nm antibody.
As can be seen from Table 3, the R14 nanobody can neutralize the pseudoviruses of the above-mentioned SARS-CoV-2 original strain and variant strain with high neutralizing activity.
In conclusion, the R14 nano antibody can be used as a novel coronavirus (SARS-CoV-2) alpaca source nano antibody with high neutralization activity.
Example 8: detection of R14 nano antibody neutralization SARS-CoV-2 live virus infection
In this example, the neutralizing effect of nanobody R14 on live viruses of new coronaviruses was determined by a live virus neutralization test based on cytopathic effect (CPE); the specific procedure is as follows:
the nanobody R14 was diluted 2-fold to the 11 th gradient, each gradient 4 replicate wells, 50. Mu.L per well, each dilution was mixed with an equal volume of 100TCID 50 The original strain of SARS-CoV-2 or variant strains Alpha, beta and Delta thereof are incubated at 37 ℃; after 1 hour, the mixture was added to the suspended Vero cells and incubation continued for 3 days at 37 ℃; observing and recording cytopathic conditions; IC of the nanobody for inhibiting live virus infection of the new coronavirus was calculated using GraphPad Prism 7.0 50
The above experiments were performed in the biosafety third-level laboratory (BSL 3) of the chinese centers for disease prevention and control.
The neutralizing effect of the nano antibody R14 on live viruses of the original strain and the variant strain of the new coronavirus is shown in the following table 4.
TABLE 4 neutralizing effect of R14 Nanobody on live coronavirus
Figure BDA0003723818210000102
Figure BDA0003723818210000111
Table 4 the results show that: the nano antibody R14 has good inhibition effect on live viruses of the original strain and the variant strain of the new coronavirus.
Example 9: detection of stability before and after atomization of R14 nano antibody
Nanobodies R14 were nebulized using an Aerogen sol (Aerogen inc., chicago, USA) nebulizer, and the nebulized antibodies were collected using full glass SKC (origin Four, PA, USA) containing 20mL of PBS and subjected to a pseudovirus neutralization assay as described in example 7.
The results are shown in figure 6 which shows, the results in FIG. 6 show that: the nanometer antibody R14 of the invention keeps stable neutralizing activity to pseudovirus of the new coronavirus original strain before and after atomization, which indicates that the antibody is suitable for administration by atomization.
Example 10: detection of effect of R14 nano antibody on prevention of new coronavirus infection in vivo
In the embodiment, the effect of the nano antibody R14 in preventing the infection of the new coronavirus is detected in 7-8 week-old female BALB/c mice (purchased from Beijing Wintolite laboratory animal technologies, inc.); the specific procedure is as follows:
1) Female BALB/c mice at 7-8 weeks were anesthetized and nasally infected with recombinant adenovirus Ad5-hACE2 (according to Jing Sun et al, "Generation of a broad Useful Model for covI-19pathenesis, vaccination, and treatment" cell.2020Aug 6;182 (3): 734-743);
2) On day 5, mice were dosed and challenged;
specifically, the administration was performed in the following groups:
nasal drop administration group (IN): after 5 mice are anesthetized, 50 mu L of 2mg/ml nano antibody R14 is instilled into the nostrils of the mice by using a pipette gun, and the administration dose is 5mg/kg;
nebulized administration group (IH): 8 mice are placed in an atomization bin, 20mg/mL of nano antibody R14 is continuously atomized, after 10 minutes, the mice are immediately taken out, 5 of the mice are placed in mouse cages, and a lung filling test is carried out after the rest 3 mice are anesthetized to determine the amount of the inhaled antibody, wherein the inhaled dose is 0.25mg/kg;
control group (Control): 5 mice were given 200 μ L PBS by nasal drip;
6 hours after administration, the mice were again anesthetized and nasally infected with live virus (5X 10) of the original strain of the new coronavirus 5 TCID50);
3) On day 10, the mice were dissected, lung tissue was taken, RNA was extracted, and viral load was measured.
The above experiments were performed in the biosafety third-level laboratory (BSL 3) of the chinese centers for disease prevention and control.
The results are shown in fig. 7, and the results in fig. 7 show that the nanobody R14 of the present invention, whether administered by nasal drops or nebulization, can effectively reduce the pulmonary viral load and effectively prevent mice from being infected with new coronavirus.
Finally, it should be noted that: the above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.
SEQUENCE LISTING
<110> institute of microbiology of Chinese academy of sciences
<120> alpaca source nano antibody and application thereof
<130> 1087-210168F-1
<160> 24
<170> PatentIn version 3.3
<210> 1
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR1 amino acid sequence of heavy chain complementary region of camelid source nano antibody R14
<220>
<221> DOMAIN
<222> (1)..(10)
<400> 1
Gly Phe Thr Leu Asp Tyr Tyr Ala Ile Gly
1 5 10
<210> 2
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR2 amino acid sequence of heavy chain complementary region of camelid source nano antibody R14
<220>
<221> DOMAIN
<222> (1)..(17)
<400> 2
Cys Ile Ser Ser Ser Asp Gly Ser Thr Ser Tyr Ala Asp Ser Val Lys
1 5 10 15
Gly
<210> 3
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR3 amino acid sequence of heavy chain complementary region of camelid source nano antibody R14
<220>
<221> DOMAIN
<222> (1)..(21)
<400> 3
Thr Pro Ala Thr Tyr Tyr Ser Gly Arg Tyr Tyr Tyr Gln Cys Pro Ala
1 5 10 15
Gly Gly Met Asp Tyr
20
<210> 4
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> FR1 framework region of camelid nanobody R14
<220>
<221> DOMAIN
<222> (1)..(25)
<400> 4
Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser
20 25
<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> FR2 framework region of camelid nanobody R14
<220>
<221> DOMAIN
<222> (1)..(14)
<400> 5
Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val Ser
1 5 10
<210> 6
<211> 32
<212> PRT
<213> Artificial Sequence
<220>
<223> FR3 framework region of camelid nanobody R14
<220>
<221> DOMAIN
<222> (1)..(32)
<400> 6
Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu Gln
1 5 10 15
Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Leu Tyr Tyr Cys Ala Ala
20 25 30
<210> 7
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> FR4 framework region of camelid nanobody R14
<220>
<221> DOMAIN
<222> (1)..(11)
<400> 7
Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
1 5 10
<210> 8
<211> 130
<212> PRT
<213> Artificial Sequence
<220>
<223> amino acid sequence of heavy chain complementary region of camelid source nano antibody R14
<220>
<221> DOMAIN
<222> (1)..(130)
<400> 8
Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Phe Thr Leu Asp Tyr Tyr
20 25 30
Ala Ile Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val
35 40 45
Ser Cys Ile Ser Ser Ser Asp Gly Ser Thr Ser Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Leu Tyr Tyr Cys
85 90 95
Ala Ala Thr Pro Ala Thr Tyr Tyr Ser Gly Arg Tyr Tyr Tyr Gln Cys
100 105 110
Pro Ala Gly Gly Met Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val
115 120 125
Ser Ser
130
<210> 9
<211> 390
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence of camel source nano antibody R14
<220>
<221> misc_feature
<222> (1)..(390)
<400> 9
caggtgcagc tgcaggagtc tggaggaggc ttggtgcagc ctggggggtc tctgagactc 60
tcctgtgcag tctctggatt tactttggat tattatgcca taggctggtt ccgccaggcc 120
ccagggaagg agcgtgaggg ggtctcatgt attagtagta gtgatggtag cacatcgtat 180
gcagactccg tgaagggccg attcaccatc tccagagaca acgccaaaaa cacggtgtat 240
ctgcaaatga acagcctgaa acctgaggac acagcccttt attactgtgc agcaacccct 300
gctacatact atagtggacg ttactactac caatgtcccg cggggggcat ggactactgg 360
ggcaaaggga cccaggtgac cgtgagctct 390
<210> 10
<211> 669
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence of SARS-CoV-2RBD protein
<220>
<221> misc_feature
<222> (1)..(669)
<400> 10
agagtgcaac ctacagaatc aatcgtgaga tttcctaaca tcacaaacct ttgccctttc 60
ggcgaggtgt ttaacgcaac aagatttgca tcagtgtacg catggaacag aaagcgtata 120
tcaaactgcg tggcagatta ctcagtgctt tacaactcag catcattcag tacgtttaaa 180
tgctacggag tgtcacctac aaagctaaat gatctttgct ttacaaacgt gtacgcagat 240
tcatttgtga tcagaggaga tgaagtgaga caaatcgcac ctggacaaac aggaaagatt 300
gccgattaca actacaaact tcctgatgat ttcaccggct gcgtgatcgc atggaactca 360
aacaaccttg attcaaaggt aggtggtaat tataattatt tgtataggct ctttcgtaag 420
agcaacttaa agccatttga gcgagatatc tcaacagaaa tctaccaagc aggatcaaca 480
ccttgcaacg gagtggaagg atttaactgc tactttcctc ttcaatcata cggatttcaa 540
cctacaaacg gagtgggata ccaaccttac agagtggtgg tgctttcatt tgaacttctt 600
cacgcacctg caacagtgtg cggacctaag aagagcacga accttgtgaa gaataagtgc 660
gtgaacttt 669
<210> 11
<211> 858
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence of SARS-CoV-2NTD protein
<220>
<221> misc_feature
<222> (1)..(858)
<400> 11
acacggaccc agctccctcc cgcctacaca aactctttca cccggggcgt gtactacccc 60
gacaaggtgt tccggtctag cgtgctccac tctacacagg acctgttcct ccctttcttc 120
agcaacgtga catggttcca cgccatccac gtgtctggca caaacggcac aaagcggttc 180
gacaaccccg tgctcccttt caacgacggc gtgtacttcg ccagcaccga gaagtctaac 240
attatccggg gctggatttt cggcaccaca ctcgactcta agacacagtc cctcctgatt 300
gtgaacaacg ccacaaacgt ggtgattaag gtgtgcgagt tccagttctg caacgaccct 360
ttcctgggcg tgtactacca caagaacaac aagtcttgga tggagtctga gttcagagtg 420
tactctagcg ccaacaactg caccttcgag tacgtgtccc agcctttcct catggacctg 480
gagggcaagc agggcaactt caagaacctg agagagttcg tgttcaagaa cattgacggc 540
tacttcaaga tttactctaa gcacacccca attaacctcg tgagggacct ccctcagggc 600
ttctccgcct tagaaccact ggtggacctc cctattggca ttaacatcac acgcttccag 660
acactgctcg ccctccaccg gtcttacctg accccaggcg actctagctc tggctggaca 720
gccggcgccg ccgcctacta cgtgggctac ctgcagccta ggaccttcct cctgaagtac 780
aacgagaacg gcacaattac cgacgccgtg gactgcgccc tggacccact gtccgagaca 840
aagtgcacac tgaagtcc 858
<210> 12
<211> 681
<212> DNA
<213> Artificial Sequence
<220>
<223> encoding nucleotide sequence of human Fc tag
<220>
<221> misc_feature
<222> (1)..(681)
<400> 12
gacaaaactc acacatgccc accgtgccca gcacctgaac tcctgggggg accgtcagtc 60
ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca 120
tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac 180
ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac 240
cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag 300
tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaactatctc caaagccaaa 360
gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag 420
aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 480
tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc 540
gacggctcct tcttcctcta cagcaagctc accgtggaca agagcaggtg gcagcagggg 600
aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc 660
ctctccctgt ctccgggtaa a 681
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> CALL001 primer sequence
<220>
<221> misc_feature
<222> (1)..(23)
<400> 13
gtcctggctg ctcttctaca agg 23
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> CALL002 primer sequence
<220>
<221> misc_feature
<222> (1)..(23)
<400> 14
ggtacgtgct gttgaactgt tcc 23
<210> 15
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> VHH-BA primer sequences
<220>
<221> misc_feature
<222> (1)..(29)
<400> 15
gatgtgcagc tgcaggagtc tggrggagg 29
<210> 16
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> PMCF primer sequences
<220>
<221> misc_feature
<222> (1)..(34)
<400> 16
ctagtgcggc cgctgaggag acggtgacct gggt 34
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> MP57 primer sequence
<220>
<221> misc_feature
<222> (1)..(20)
<400> 17
ttatgcttcc ggctcgtatg 20
<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> GIII primer sequences
<220>
<221> misc_feature
<222> (1)..(19)
<400> 18
ccacagacag ccctcatag 19
<210> 19
<211> 3786
<212> DNA
<213> Artificial Sequence
<220>
<223> coding nucleotide sequence of novel coronavirus SARS-CoV-2-WT-S-del18
<220>
<221> misc_feature
<222> (1)..(3786)
<400> 19
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc aatgcgtgaa cctgaccaca 60
agaacacagc tgccccccgc ctacaccaac agcttcacaa gaggcgtgta ctaccccgac 120
aaggtgttca gaagcagcgt cctccacagc acccaagacc tgttcctgcc cttcttcagc 180
aacgtgacct ggttccacgc catcagcggc accaacggca ccaagagatt cgacaacccc 240
gtgctgccct tcaacgacgg cgtgtacttc gctagcaccg agaagagcaa catcatcaga 300
ggctggatct tcggcaccac cctggacagc aaaacacaga gcctgctgat cgtgaacaac 360
gccacaaacg tggtgatcaa ggtgtgcgag tttcagttct gcaacgaccc cttcctgggc 420
gtgtaccaca agaacaacaa gagctggatg gagagcgagt tccgggtgta cagcagcgcc 480
aacaactgca ccttcgagta cgtgagccaa cccttcctga tggacctgga gggcaagcaa 540
ggcaatttta agaacctgag agagttcgtg ttcaagaaca tcgacggcta cttcaagatc 600
tacagcaagc acacccccat caacctggtg agagacctgc cccaaggctt cagcgccctg 660
gagcccctgg tggacctgcc catcggcatc aacatcacaa gatttcagac cctgctggcc 720
ctgcacagaa gctatctgac ccccggcgac agcagcagcg gctggaccgc cggcgccgcc 780
gcttactacg tgggctacct gcagcctaga accttcctgc tgaagtacaa cgagaacggc 840
acaatcaccg acgccgtcga ctgcgccctg gaccccctga gcgagaccaa gtgcaccctg 900
aagagcttca ccgtggagaa gggcatctat cagacaagca acttcagagt gcagcccacc 960
gagagcatcg tgagattccc caacatcacc aacctgtgcc ccttcggcga ggtgttcaac 1020
gccacaagat tcgctagcgt gtacgcctgg aacagaaaga gaatcagcaa ctgcgtggcc 1080
gactacagcg tgctgtacaa cagcgctagc ttcagcacct tcaagtgcta cggcgtcagc 1140
cccaccaagc tgaacgacct gtgcttcacc aacgtgtacg ccgacagctt cgtgatcaga 1200
ggcgacgagg tgagacagat cgcccccggg cagaccggca agatcgccga ctacaactac 1260
aagctgcccg acgacttcac cggctgcgtg atcgcctgga acagcaacaa cctggactcc 1320
aaggtgggcg gcaactacaa ctacctgtac agactgttca gaaagagcaa cctgaagccc 1380
ttcgagagag acatcagcac cgagatctac caagccggca gcaccccctg caacggcgtg 1440
gagggcttca actgctactt ccccctgcag agctacggct ttcagcccac ctacggcgtg 1500
ggctatcagc cctacagagt ggtcgtgctg agcttcgagc tgctgcacgc ccccgccacc 1560
gtgtgcggcc ccaagaagag caccaacctg gtgaagaaca agtgcgtgaa cttcaacttc 1620
aacggcctca ccgggaccgg cgtgctgacc gagagcaaca agaagttcct gcctttccaa 1680
cagttcggca gagacatcga cgacaccacc gacgccgtca gagaccctca gaccctggag 1740
atcctggaca tcacaccctg cagcttcggc ggcgtgagcg tgatcacccc cggcaccaac 1800
acaagcaacc aagtggccgt gctgtaccaa ggcgtgaact gcaccgaggt gcccgtggcc 1860
atccacgccg atcagctgac ccccacctgg agagtgtaca gcaccggcag caacgtgttt 1920
cagacaagag ccggctgcct gatcggcgcc gagcacgtga acaacagcta cgagtgcgac 1980
atccccatcg gcgccggcat ctgcgctagc tatcagacac agaccaacag ccacagaaga 2040
gctagaagcg tggctagcca aagcatcatc gcctacacca tgagcctggg cgccgagaac 2100
agcgtggcct acagcaacaa cagcatcgcc atccccacca acttcaccat cagcgtgacc 2160
accgaaatcc tgcctgtgag catgaccaag acaagcgtgg actgcaccat gtacatctgc 2220
ggcgacagca ccgagtgcag caacctgctc ctgcagtacg gcagcttctg cattcagctg 2280
aacagagccc tgaccggcat cgccgtggag caagacaaga acacccaaga ggtgttcgcc 2340
caagtgaagc agatctacaa gacccccccc atcaaggact tcggcggctt caacttcagc 2400
caaatcctgc ctgaccctag caagcctagc aagagaagct tcatcgagga cctgctgttc 2460
aacaaggtga ccctggccga cgccggcttc atcaagcagt acggcgactg cctgggcgac 2520
atcgccgcta gagacctgat ctgcgctcag aagttcaacg gcctgaccgt gctgcccccc 2580
ctgctgaccg acgagatgat cgctcagtac acaagcgccc tgctcgctgg caccatcaca 2640
agcgggtgga ccttcggcgc cggggccgcc ctgcagatcc ccttcgccat gcagatggcc 2700
tacagattca acggcatcgg cgtgacacag aacgtgctgt acgagaatca gaagctgatc 2760
gccaatcagt tcaacagcgc catcggcaag atccaagaca gcctgagcag caccgctagc 2820
gccctgggca agctgcaaga cgtggtgaat cagaacgccc aagccctgaa caccctggtg 2880
aagcagctga gcagcaactt cggcgccatc agcagcgtgc tgaacgacat cctggctaga 2940
ctggacaagg tggaggccga ggtgcagatc gatagactga tcaccggcag actgcagagc 3000
ctgcagacct acgtgacaca gcagctgatc agagccgccg agatcagagc tagcgccaac 3060
ctggccgcca ccaagatgag cgagtgcgtg ctggggcaga gcaagagagt ggacttctgc 3120
ggcaagggct accacctgat gagcttccct cagagcgccc cccacggcgt ggtgttcctg 3180
cacgtgacct acgtgcccgc ccaagagaag aacttcacca ccgcccccgc catctgccac 3240
gacggcaagg cccacttccc tagagagggc gtgttcgtga gcaacggcac ccactggttc 3300
gtgacacaga gaaacttcta cgagcctcag atcatcacca cccacaacac cttcgtgagc 3360
ggcaactgcg acgtggtgat cggcatcgtg aacaacaccg tgtacgaccc tctgcagccc 3420
gagctggaca gcttcaagga ggagctggac aagtacttca agaaccacac aagccccgac 3480
gtggacctgg gcgacatcag cgggatcaac gctagcgtgg tgaacattca gaaggaaatc 3540
gacagactga atgaggtggc caagaacctg aacgagagcc tgatcgacct gcaagagctg 3600
ggcaagtacg agcagtacat caagtggccc tggtacatct ggctgggctt catcgccggc 3660
ctgatcgcca tcgtgatggt gaccatcatg ctgtgctgca tgacaagctg ctgctcctgt 3720
ctgaaggggt gctgcagctg cggcagctgc tgcaaggact acaaggacga tgacgacaag 3780
ggcccc 3786
<210> 20
<211> 3786
<212> DNA
<213> Artificial Sequence
<220>
<223> coding nucleotide sequence of novel coronavirus SARS-CoV-2-B.1.1.7-S-del18
<220>
<221> misc_feature
<222> (1)..(3786)
<400> 20
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc aatgcgtgaa cctgaccaca 60
agaacacagc tgccccccgc ctacaccaac agcttcacaa gaggcgtgta ctaccccgac 120
aaggtgttca gaagcagcgt cctccacagc acccaagacc tgttcctgcc cttcttcagc 180
aacgtgacct ggttccacgc catcagcggc accaacggca ccaagagatt cgacaacccc 240
gtgctgccct tcaacgacgg cgtgtacttc gctagcaccg agaagagcaa catcatcaga 300
ggctggatct tcggcaccac cctggacagc aaaacacaga gcctgctgat cgtgaacaac 360
gccacaaacg tggtgatcaa ggtgtgcgag tttcagttct gcaacgaccc cttcctgggc 420
gtgtaccaca agaacaacaa gagctggatg gagagcgagt tccgggtgta cagcagcgcc 480
aacaactgca ccttcgagta cgtgagccaa cccttcctga tggacctgga gggcaagcaa 540
ggcaatttta agaacctgag agagttcgtg ttcaagaaca tcgacggcta cttcaagatc 600
tacagcaagc acacccccat caacctggtg agagacctgc cccaaggctt cagcgccctg 660
gagcccctgg tggacctgcc catcggcatc aacatcacaa gatttcagac cctgctggcc 720
ctgcacagaa gctatctgac ccccggcgac agcagcagcg gctggaccgc cggcgccgcc 780
gcttactacg tgggctacct gcagcctaga accttcctgc tgaagtacaa cgagaacggc 840
acaatcaccg acgccgtcga ctgcgccctg gaccccctga gcgagaccaa gtgcaccctg 900
aagagcttca ccgtggagaa gggcatctat cagacaagca acttcagagt gcagcccacc 960
gagagcatcg tgagattccc caacatcacc aacctgtgcc ccttcggcga ggtgttcaac 1020
gccacaagat tcgctagcgt gtacgcctgg aacagaaaga gaatcagcaa ctgcgtggcc 1080
gactacagcg tgctgtacaa cagcgctagc ttcagcacct tcaagtgcta cggcgtcagc 1140
cccaccaagc tgaacgacct gtgcttcacc aacgtgtacg ccgacagctt cgtgatcaga 1200
ggcgacgagg tgagacagat cgcccccggg cagaccggca agatcgccga ctacaactac 1260
aagctgcccg acgacttcac cggctgcgtg atcgcctgga acagcaacaa cctggactcc 1320
aaggtgggcg gcaactacaa ctacctgtac agactgttca gaaagagcaa cctgaagccc 1380
ttcgagagag acatcagcac cgagatctac caagccggca gcaccccctg caacggcgtg 1440
gagggcttca actgctactt ccccctgcag agctacggct ttcagcccac ctacggcgtg 1500
ggctatcagc cctacagagt ggtcgtgctg agcttcgagc tgctgcacgc ccccgccacc 1560
gtgtgcggcc ccaagaagag caccaacctg gtgaagaaca agtgcgtgaa cttcaacttc 1620
aacggcctca ccgggaccgg cgtgctgacc gagagcaaca agaagttcct gcctttccaa 1680
cagttcggca gagacatcga cgacaccacc gacgccgtca gagaccctca gaccctggag 1740
atcctggaca tcacaccctg cagcttcggc ggcgtgagcg tgatcacccc cggcaccaac 1800
acaagcaacc aagtggccgt gctgtaccaa ggcgtgaact gcaccgaggt gcccgtggcc 1860
atccacgccg atcagctgac ccccacctgg agagtgtaca gcaccggcag caacgtgttt 1920
cagacaagag ccggctgcct gatcggcgcc gagcacgtga acaacagcta cgagtgcgac 1980
atccccatcg gcgccggcat ctgcgctagc tatcagacac agaccaacag ccacagaaga 2040
gctagaagcg tggctagcca aagcatcatc gcctacacca tgagcctggg cgccgagaac 2100
agcgtggcct acagcaacaa cagcatcgcc atccccacca acttcaccat cagcgtgacc 2160
accgaaatcc tgcctgtgag catgaccaag acaagcgtgg actgcaccat gtacatctgc 2220
ggcgacagca ccgagtgcag caacctgctc ctgcagtacg gcagcttctg cattcagctg 2280
aacagagccc tgaccggcat cgccgtggag caagacaaga acacccaaga ggtgttcgcc 2340
caagtgaagc agatctacaa gacccccccc atcaaggact tcggcggctt caacttcagc 2400
caaatcctgc ctgaccctag caagcctagc aagagaagct tcatcgagga cctgctgttc 2460
aacaaggtga ccctggccga cgccggcttc atcaagcagt acggcgactg cctgggcgac 2520
atcgccgcta gagacctgat ctgcgctcag aagttcaacg gcctgaccgt gctgcccccc 2580
ctgctgaccg acgagatgat cgctcagtac acaagcgccc tgctcgctgg caccatcaca 2640
agcgggtgga ccttcggcgc cggggccgcc ctgcagatcc ccttcgccat gcagatggcc 2700
tacagattca acggcatcgg cgtgacacag aacgtgctgt acgagaatca gaagctgatc 2760
gccaatcagt tcaacagcgc catcggcaag atccaagaca gcctgagcag caccgctagc 2820
gccctgggca agctgcaaga cgtggtgaat cagaacgccc aagccctgaa caccctggtg 2880
aagcagctga gcagcaactt cggcgccatc agcagcgtgc tgaacgacat cctggctaga 2940
ctggacaagg tggaggccga ggtgcagatc gatagactga tcaccggcag actgcagagc 3000
ctgcagacct acgtgacaca gcagctgatc agagccgccg agatcagagc tagcgccaac 3060
ctggccgcca ccaagatgag cgagtgcgtg ctggggcaga gcaagagagt ggacttctgc 3120
ggcaagggct accacctgat gagcttccct cagagcgccc cccacggcgt ggtgttcctg 3180
cacgtgacct acgtgcccgc ccaagagaag aacttcacca ccgcccccgc catctgccac 3240
gacggcaagg cccacttccc tagagagggc gtgttcgtga gcaacggcac ccactggttc 3300
gtgacacaga gaaacttcta cgagcctcag atcatcacca cccacaacac cttcgtgagc 3360
ggcaactgcg acgtggtgat cggcatcgtg aacaacaccg tgtacgaccc tctgcagccc 3420
gagctggaca gcttcaagga ggagctggac aagtacttca agaaccacac aagccccgac 3480
gtggacctgg gcgacatcag cgggatcaac gctagcgtgg tgaacattca gaaggaaatc 3540
gacagactga atgaggtggc caagaacctg aacgagagcc tgatcgacct gcaagagctg 3600
ggcaagtacg agcagtacat caagtggccc tggtacatct ggctgggctt catcgccggc 3660
ctgatcgcca tcgtgatggt gaccatcatg ctgtgctgca tgacaagctg ctgctcctgt 3720
ctgaaggggt gctgcagctg cggcagctgc tgcaaggact acaaggacga tgacgacaag 3780
ggcccc 3786
<210> 21
<211> 3786
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence encoding SARS-CoV-2-B.1.351-S-del18
<220>
<221> misc_feature
<222> (1)..(3786)
<400> 21
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc aatgcgtgaa cttcaccaca 60
cggacccagc tccctcccgc ctacacaaac tctttcaccc ggggcgtgta ctaccccgac 120
aaggtgttcc ggtctagcgt gctccactct acacaggacc tgttcctccc tttcttcagc 180
aacgtgacat ggttccacgc catccacgtg tctggcacaa acggcacaaa gcggttcgcc 240
aaccccgtgc tccctttcaa cgacggcgtg tacttcgcca gcaccgagaa gtctaacatt 300
atccggggct ggattttcgg caccacactc gactctaaga cacagtccct cctgattgtg 360
aacaacgcca caaacgtggt gattaaggtg tgcgagttcc agttctgcaa cgaccctttc 420
ctgggcgtgt actaccacaa gaacaacaag tcttggatgg agtctgagtt cagagtgtac 480
tctagcgcca acaactgcac cttcgagtac gtgtcccagc ctttcctcat ggacctggag 540
ggcaagcagg gcaacttcaa gaacctgaga gagttcgtgt tcaagaacat tgacggctac 600
ttcaagattt actctaagca caccccaatt aacctcgtga ggggcctccc tcagggcttc 660
tccgccttag aaccactggt ggacctccct attggcatta acatcacacg cttccagaca 720
ctgcacatct cttacctgac cccaggcgac tctagctctg gctggacagc cggcgccgcc 780
gcctactacg tgggctacct gcagcctagg accttcctcc tgaagtacaa cgagaacggc 840
acaattaccg acgccgtgga ctgcgccctg gacccactgt ccgagacaaa gtgcacactg 900
aagtccttca cagtggagaa gggcatttac cagacatcta acttccgggt gcagcctaca 960
gagtctattg tgcggttccc aaacatcaca aacctgtgcc ctttcggcga ggtgttcaac 1020
gccacccggt tcgcctctgt gtacgcctgg aaccggaagc ggatctctaa ctgcgtggcc 1080
gactactccg tgctgtacaa ctccgcctct ttctctacat tcaagtgcta cggcgtgtcc 1140
cctacaaagc tgaacgacct gtgcttcacc aacgtgtacg ccgactcttt cgtgattaga 1200
ggcgacgagg tgaggcagat tgcccccggc cagacaggca acatcgccga ctacaactac 1260
aagctgcccg acgacttcac aggctgcgtg atcgcctgga actctaacaa cctggactct 1320
aaggtgggcg gcaactacaa ctacctgtac agactgttcc ggaagtctaa cctgaagcca 1380
ttcgagaggg acattagcac cgagatttac caggccggct ctaccccatg caacggcgtg 1440
aagggcttca actgctactt cccactgcag tcctacggct tccagcctac atacggcgtg 1500
ggctaccagc cttaccgggt ggtggtgctg tctttcgagc tgctccacgc ccccgccaca 1560
gtgtgcggcc caaagaagag cacaaacctc gtgaagaaca agtgcgtgaa cttcaacttc 1620
aacggcctca caggcacagg cgtgctcacc gagtctaaca agaagttcct ccctttccag 1680
cagttcggcc gcgacattgc cgacaccacc gacgccgtgc gggaccctca gacactggaa 1740
attctcgaca tcaccccttg cagcttcggc ggcgtgtccg tgatcacccc aggcacaaac 1800
acatctaacc aggtggccgt gctgtaccag ggcgtgaact gcaccgaggt gccagtggcc 1860
atccacgccg accagctcac cccaacatgg agggtgtaca gcacaggctc taacgtgttc 1920
cagacccggg ccggctgcct cattggcgcc gagcacgtga acaactctta cgagtgcgac 1980
atccctattg gcgccggcat ttgcgcctct taccagaccc agacaaactc tccacggaga 2040
gcccggtctg tggcctctca gagcattatt gcctacacca tgtctctggg cgtggagaac 2100
tctgtggcct actctaacaa ctctattgcc atccctacaa acttcacaat ttctgtgacc 2160
accgagattc tcccagtgtc tatgaccaag acatctgtgg actgcaccat gtacatttgc 2220
ggcgactcca ccgagtgctc taacctcctg ctccagtacg gctctttctg cacccagctc 2280
aaccgcgccc tgacaggcat cgccgtggag caggacaaga acacccagga ggtgttcgcc 2340
caggtgaagc agatttacaa gaccccccca attaaggact tcggcggctt caacttctct 2400
cagattctcc ccgacccatc caagcctagc aagcggtcct tcattgagga cctcctgttc 2460
aacaaggtga cactggccga cgccggcttc attaagcagt acggcgactg cctgggcgac 2520
attgccgccc gggacctgat ttgcgcccag aagttcaacg gcctcacagt gctcccccca 2580
ctgctcaccg acgagatgat tgcccagtac acatctgccc tcctggccgg cacaattaca 2640
tctggctgga ccttcggcgc cggcgccgcc ctgcagatcc ctttcgccat gcagatggcc 2700
taccgcttca acggcatcgg cgtgacacag aacgtgctgt acgagaacca gaagctgatc 2760
gccaaccagt tcaacagcgc cattggcaag attcaggact ctctgagcag cacagccagc 2820
gccctgggca agctgcagga cgtggtgaac cagaacgccc aggccctgaa cacactggtg 2880
aagcagctgt cttctaactt cggcgccatt tctagcgtgc tgaacgacat tctgtcgcgg 2940
ctggacaagg tggaggccga ggtgcagatt gacaggctca tcacaggcag actgcagtct 3000
ctgcagacat acgtgaccca gcagctgatt agagccgccg agattagagc ctccgccaac 3060
ctggccgcca ccaagatgag cgagtgcgtg ctcggccagt ctaagcgggt ggacttctgc 3120
ggcaagggct accacctcat gtctttccct cagtccgccc ctcacggcgt ggtgttcctc 3180
cacgtgacat acgtgcccgc ccaggagaag aacttcacca cagcccccgc catttgccac 3240
gacggcaagg cccacttccc tagggagggc gtgttcgtgt ctaacggcac ccactggttc 3300
gtgacccagc ggaacttcta cgagcctcag attattacca cagacaacac attcgtgagc 3360
ggcaactgcg acgtggtgat tggcattgtg aacaacacag tgtacgaccc actgcagcct 3420
gagttggact ctttcaagga ggaactcgac aagtacttca agaaccacac atctcctgac 3480
gtggacctgg gcgacattag cggcattaac gcctctgtgg tgaacattca gaaggagatt 3540
gacagactga acgaggtggc caagaacctg aacgagtctc tcattgacct gcaggagctg 3600
ggcaagtacg agcagtacat taagtggcct tggtacattt ggctgggctt cattgccggc 3660
ctgatcgcca ttgtgatggt gaccatcatg ctgtgctgca tgacatcttg ctgcagctgc 3720
ctgaagggct gctgctcttg cggctcttgc tgcaaggact acaaggacga cgatgacaag 3780
ggacct 3786
<210> 22
<211> 3765
<212> DNA
<213> Artificial Sequence
<220>
<223> coding nucleotide sequence of novel coronavirus SARS-CoV-2-P.1-S-del18
<220>
<221> misc_feature
<222> (1)..(3765)
<400> 22
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc aatgcgtgaa cctgacaaac 60
agaactcaat taccctctgc atacactaat tctttcacac gtggtgttta ttaccctgac 120
aaagttttca gatcctcagt tttacattca actcaggact tgttcttacc tttcttttcc 180
aatgttactt ggttccatgc tatacatgtc tctgggacca atggtactaa gaggtttgat 240
aaccctgtcc taccatttaa tgatggtgtt tattttgctt ccactgagaa gtctaacata 300
ataagaggct ggatttttgg tactacttta gattcgaaga cccagtccct acttattgtt 360
aataacgcta ctaatgttgt tattaaagtc tgtgaatttc aattttgtaa ttatccattt 420
ttgggtgttt attaccacaa aaacaacaaa agttggatgg aaagtgagtt cagagtttat 480
tctagtgcga ataattgcac ttttgaatat gtctctcagc cttttcttat ggaccttgaa 540
ggaaaacagg gtaatttcaa aaatcttagt gaatttgtgt ttaagaatat tgatggttat 600
tttaaaatat attctaagca cacgcctatt aatttagtgc gtgatctccc tcagggtttt 660
tcggctttag aaccattggt agatttgcca ataggtatta acatcactag gtttcaaact 720
ttacttgctt tacatagaag ttatttgact cctggtgatt cttcttcagg ttggacagct 780
ggtgctgcag cttattatgt gggttatctt caacctagga cttttctatt aaaatataat 840
gaaaatggaa ccattacaga tgctgtagac tgtgcacttg accctctctc agaaacaaag 900
tgtacgttga aatccttcac tgtagaaaaa ggaatctatc aaacttctaa ctttagagtc 960
caaccaacag aatctattgt tagatttcct aatattacaa acttgtgccc ttttggtgaa 1020
gtttttaacg ccaccagatt tgcatctgtt tatgcttgga acaggaagag aatcagcaac 1080
tgtgttgctg attattctgt cctatataat tccgcatcat tttccacttt taagtgttat 1140
ggagtgtctc ctactaaatt aaatgatctc tgctttacta atgtctatgc agattcattt 1200
gtaattagag gtgatgaagt cagacaaatc gctccagggc aaactggaac gattgctgat 1260
tataattata aattaccaga tgattttaca ggctgcgtta tagcttggaa ttctaacaat 1320
cttgattcta aggttggtgg taattataat tacctgtata gattgtttag gaagtctaat 1380
ctcaaacctt ttgagagaga tatttcaact gaaatctatc aggccggtag cacaccttgt 1440
aatggtgtta aaggttttaa ttgttacttt cctttacaat catatggttt ccaacccact 1500
tatggtgttg gttaccaacc atacagagta gtagtacttt cttttgaact tctacatgca 1560
ccagcaactg tttgtggacc taaaaagtct actaatttgg ttaaaaacaa atgtgtcaat 1620
ttcaacttca atggtttaac aggcacaggt gttcttactg agtctaacaa aaagtttctg 1680
cctttccaac aatttggcag agacattgct gacactactg atgctgtccg tgatccacag 1740
acacttgaga ttcttgacat tacaccatgt tcttttggtg gtgtcagtgt tataacacca 1800
ggaacaaata cttctaacca ggttgctgtt ctttatcagg gtgttaactg cacagaagtc 1860
cctgttgcta ttcatgcaga tcaacttact cctacttggc gtgtttattc tacaggttct 1920
aatgtttttc aaacacgtgc aggctgttta ataggggctg aatatgtcaa caactcatat 1980
gagtgtgaca tacccattgg tgcaggtata tgcgctagtt atcagactca gactaattct 2040
cctcggcggg cacgtagtgt agctagtcaa tccatcattg cctacactat gtcacttggt 2100
gcagaaaatt cagttgctta ctctaataac tctattgcca tacccacaaa ttttactatt 2160
agtgttacca cagaaattct accagtgtct atgaccaaga catcagtaga ttgtacaatg 2220
tacatttgtg gtgattcaac tgaatgcagc aatcttttgt tgcaatatgg cagtttttgt 2280
acacaattaa accgtgcttt aactggaata gctgttgaac aagacaaaaa cacccaagaa 2340
gtttttgcac aagtcaaaca aatttacaaa acaccaccaa ttaaagattt tggtggtttt 2400
aatttttcac aaatattacc agatccatca aaaccaagca agaggtcatt tattgaagat 2460
ctacttttca acaaagtgac acttgcagat gctggcttca tcaaacaata tggtgattgc 2520
cttggtgata ttgctgctag agacctcatt tgtgcacaaa agtttaacgg ccttactgtt 2580
ttgccacctt tgctcacaga tgaaatgatt gctcaataca cttctgcact gttagcgggt 2640
acaatcactt ctggttggac ctttggtgca ggtgctgcat tacaaatacc atttgctatg 2700
caaatggctt ataggtttaa tggtattgga gttacacaga atgttctcta tgagaaccaa 2760
aaattgattg ccaaccaatt taatagtgct attggcaaaa ttcaagactc actttcttcc 2820
acagcaagtg cacttggaaa acttcaagat gtggtcaacc aaaatgcaca agctttaaac 2880
acgcttgtta aacaacttag ctccaatttt ggtgcaattt caagtgtttt aaatgatatc 2940
ctttcacgtc ttgacaaagt tgaggctgaa gtgcaaattg ataggttgat cacaggcaga 3000
cttcaaagtt tgcagacata tgtgactcaa caattaatta gagctgcaga aatcagagct 3060
tctgctaatc ttgctgctat taaaatgtca gagtgtgtac ttggacaatc aaaaagagtt 3120
gatttttgtg gaaagggcta tcatcttatg tccttccctc agtcagcacc tcatggtgta 3180
gtcttcttgc atgtgactta tgtccctgca caagaaaaga acttcacaac tgctcctgcc 3240
atttgtcatg atggaaaagc acactttcct cgtgaaggtg tctttgtttc aaatggcaca 3300
cactggtttg taacacaaag gaatttttat gaaccacaaa tcattactac agacaacaca 3360
tttgtgtctg gtaactgtga tgttgtaata ggaattgtca acaacacagt ttatgatcct 3420
ttgcaacctg aattagactc attcaaggag gagttagata aatattttaa gaatcataca 3480
tcaccagatg ttgatttagg tgacatctct ggcattaatg cttcatttgt aaacattcaa 3540
aaagaaattg accgcctcaa tgaggttgcc aagaatttaa atgaatctct catcgatctc 3600
caagaacttg gaaagtatga gcagtatata aaatggccat ggtacatttg gctaggtttt 3660
atagctggct tgattgccat agtaatggtg acaattatgc tttgctgtat gaccagttgc 3720
tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct gcaaa 3765
<210> 23
<211> 3795
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence coding for SARS-CoV-2-B.1.617.1-S-del18
<220>
<221> misc_feature
<222> (1)..(3795)
<400> 23
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc aatgcgtgaa cctgaccaca 60
agaacacagc tgccccccgc ctacaccaac agcttcacaa gaggcgtgta ctaccccgac 120
aaggtgttca gaagcagcgt gctgcactcc acccaagacc tgttcctgcc cttcttcagc 180
aacgtgacct ggttccacgc catccacgtg agcggcacca acggcaccaa gagattcgac 240
aaccccgtgc tgcccttcaa cgacggcgtg tacttcgcta gcaccgagaa gagcaacatc 300
atcagaggct ggatcttcgg caccaccctc gatagcaaga cacagagcct gctgatcgtg 360
aataatgcta ccaacgtggt gatcaaggtg tgcgagtttc agttctgcaa cgaccccttc 420
ctggacgtgt actaccacaa gaacaacaag agctggatga agagcgagtt cagagtgtac 480
agcagcgcta acaactgcac cttcgagtac gtgagccaac ccttcctgat ggacctggag 540
ggcaagcaag gcaacttcaa gaacctgaga gagttcgtgt tcaagaacat cgacggctac 600
ttcaagatct acagcaagca cacccccatc aacctggtga gagacctgcc ccaaggcttc 660
agcgccctgg agcccctggt ggacctgccc atcggcatca acatcacaag atttcagacc 720
ctgctggccc tgcacagatc ctacctcacc cccggcgata gcagcagcgg gtggacagcc 780
ggcgctgccg cctactacgt gggctacctg cagcctagaa ccttcctgct gaagtacaac 840
gagaacggca ccattaccga cgctgtggac tgtgccctgg accccctgag cgagaccaag 900
tgcaccctga agagcttcac cgtggagaag ggcatctatc agacaagcaa cttcagagtg 960
cagcccaccg agagcatcgt gagattcccc aacatcacca acctgtgccc cttcggcgag 1020
gtgttcaacg ccacaagatt cgctagcgtg tacgcctgga atagaaagag aatcagcaac 1080
tgcgtggccg actacagcgt gctgtacaac agcgctagct tcagcacctt caaatgctat 1140
ggcgtgagcc ccaccaagct gaacgacctg tgcttcacca acgtgtacgc cgacagcttc 1200
gtgatcagag gcgacgaggt gagacagatc gcccccgggc agaccggcaa gatcgccgat 1260
tacaactaca aactgcccga cgacttcacc ggctgcgtga tcgcctggaa cagcaacaac 1320
ctggacagca aggtcggcgg caactacaac tacagataca gactgttcag aaagagcaac 1380
ctgaagccct tcgagagaga catcagcacc gagatctacc aagccggcag caccccctgc 1440
aacggcgtgc aaggcttcaa ctgctacttc cccctgcaga gctacggctt tcagcccacc 1500
aacggcgtgg gctatcagcc ctacagagtg gtcgtgctga gcttcgagct gctgcacgct 1560
cccgccaccg tctgcggccc caagaagtcc accaacctcg tgaagaacaa gtgcgtgaac 1620
ttcaacttta acggcctgac cgggaccggc gtgctgaccg agagcaacaa gaagtttctg 1680
cccttccaac agttcggcag agacatcgcc gacaccaccg acgccgtgag agaccctcag 1740
accctggaga tcctggacat caccccttgt agcttcggcg gcgtgagcgt gatcaccccc 1800
ggcaccaaca caagcaacca agtggccgtg ctgtaccaag gcgtgaactg caccgaggtg 1860
cccgtggcca tccacgccga tcagctgacc cccacctgga gagtctacag caccggcagc 1920
aacgtgtttc agacaagagc cggctgcctg atcggcgccg agcacgtgaa caacagctac 1980
gagtgcgaca tccccatcgg cgccggcatc tgcgctagct atcagacaca gaccaacagc 2040
agacggagag ctagaagcgt ggctagccaa agcatcatcg cctacaccat gagcctgggc 2100
gccgagaaca gcgtggccta cagcaacaac agcatcgcca tccccaccaa cttcaccatc 2160
agcgtgacca ccgagatcct gcccgtcagc atgaccaaga caagcgtgga ctgcaccatg 2220
tacatctgcg gcgacagcac cgagtgcagc aacctgctcc tgcagtacgg cagcttctgc 2280
acacagctga acagagccct gaccggcatc gccgtggagc aagacaagaa cacccaagag 2340
gtgttcgccc aagtgaagca gatctacaag acccccccca tcaaggactt cggcggcttc 2400
aacttcagcc aaatcctccc cgatcctagc aagcctagca agagaagctt catcgaggac 2460
ctgctgttca acaaggtgac cctggccgac gccggcttca tcaagcagta cggcgactgc 2520
ctgggcgaca tcgccgctag agacctgatc tgcgctcaga agtttaacgg cctgaccgtg 2580
ctcccccccc tgctgaccga cgagatgatc gctcagtaca caagcgccct gctggccggc 2640
accatcacaa gcggctggac atttggcgcc ggcgccgctc tgcagatccc cttcgccatg 2700
cagatggcct acagattcaa cggcatcggc gtgacacaga acgtgctgta cgagaatcag 2760
aagctgatcg ccaatcagtt caacagcgcc atcggcaaga tccaagacag cctgagcagc 2820
accgctagcg ccctgggcaa gctgcaagac gtggtgaatc agaacgccca agccctgaac 2880
accctggtga agcagctgag cagcaacttc ggcgccatca gcagcgtgct gaacgatatc 2940
ctgagcagac tggacaaggt ggaggccgag gtgcagatcg atagactgat taccggcaga 3000
ctgcagagcc tgcagaccta cgtgacacag cagctgatca gagccgccga gatcagagct 3060
agcgccaacc tggccgccac caagatgagc gagtgcgtgc tggggcagag caagagagtg 3120
gacttctgcg gcaagggcta ccacctgatg agcttccctc agagcgcccc ccacggcgtg 3180
gtgttcctgc acgtgaccta cgtgcccgcc cacgaaaaga acttcacaac cgcccctgcc 3240
atctgccacg acggcaaggc ccacttccct agagagggcg tgttcgtgag caacggcacc 3300
gactggttcg tgacacagag aaacttctac gagcctcaga tcatcaccac cgacaacacc 3360
ttcgtgagcg gcaactgcga cgtggtgatc ggcatcgtga acaacaccgt gtacgaccct 3420
ctgcagcccg agctggacag cttcaaggag gagctggaca agtacttcaa gaatcacaca 3480
agccccgacg tggacctggg ggacatcagc ggcatcaacg ctagcgtggt gaacattcag 3540
aaggagatcg acagactgaa cgaagtggcc aagaacctga acgagagcct gatcgacctg 3600
caagagctgg gcaagtacga gcagtacatc aagtggccct ggtacatctg gctgggcttc 3660
atcgccggcc tgatcgccat cgtgatggtg accatcatgc tgtgctgcat gacaagctgc 3720
tgcagctgcc tgaagggctg ctgctcctgc ggcagctgct gcaaggacta caaggacgat 3780
gacgacaagg gcccc 3795
<210> 24
<211> 3789
<212> DNA
<213> Artificial Sequence
<220>
<223> nucleotide sequence encoding SARS-CoV-2-b.1.617.2-S-del18
<220>
<221> misc_feature
<222> (1)..(3789)
<400> 24
atgttcgtgt tcctcgtgct cctgcctctg gtgtctagcc agtgcgtgaa cctgagaaca 60
cggacccagc tccctcccgc ctacacaaac tctttcaccc ggggcgtgta ctaccccgac 120
aaggtgttcc ggtctagcgt gctccactct acacaggacc tgttcctccc tttcttcagc 180
aacgtgacat ggttccacgc catccacgtg tctggcacaa acggcacaaa gcggttcgac 240
aaccccgtgc tccctttcaa cgacggcgtg tacttcgcca gcaccgagaa gtctaacatt 300
atccggggct ggattttcgg caccacactc gactctaaga cacagtccct cctgattgtg 360
aacaacgcca caaacgtggt gattaaggtg tgcgagttcc agttctgcaa cgaccctttc 420
ctggacgtgt actaccacaa gaacaacaag tcttggatgg agtctggcgt gtactctagc 480
gccaacaact gcaccttcga gtacgtgtcc cagcctttcc tcatggacct ggagggcaag 540
cagggcaact tcaagaacct gagagagttc gtgttcaaga acattgacgg ctacttcaag 600
atttactcta agcacacccc aattaacctc gtgagggacc tccctcaggg cttctccgtg 660
ttagaaccac tggtggacct ccctattggc attaacatca cacgcttcca gacactgctc 720
gccctccacc ggtcttacct gaccccaggc gactctagct ctggctggac agccggcgcc 780
gccgcctact acgtgggcta cctgcagcct aggaccttcc tcctgaagta caacgagaac 840
ggcacaatta ccgacgccgt ggactgcgcc ctggacccac tgtccgagac aaagtgcaca 900
ctgaagtcct tcacagtgga gaagggcatt taccagacat ctaacttccg ggtgcagcct 960
acagagtcta ttgtgcggtt cccaaacatc acaaacctgt gccctttcgg cgaggtgttc 1020
aacgccaccc ggttcgcctc tgtgtacgcc tggaaccgga agcggatctc taactgcgtg 1080
gccgactact ccgtgctgta caactccgcc tctttctcta cattcaagtg ctacggcgtg 1140
tcccctacaa agctgaacga cctgtgcttc accaacgtgt acgccgactc tttcgtgatt 1200
agaggcgacg aggtgaggca gattgccccc ggccagacag gcaagatcgc cgactacaac 1260
tacaagctgc ccgacgactt cacaggctgc gtgatcgcct ggaactctaa caacctggac 1320
tctaaggtgg gcggcaacta caactacaga tacagactgt tccggaagtc taacctgaag 1380
ccattcgaga gggacattag caccgagatt taccaggccg gctctaagcc atgcaacggc 1440
gtggagggct tcaactgcta cttcccactg cagtcctacg gcttccagcc tacaaacggc 1500
gtgggctacc agccttaccg ggtggtggtg ctgtctttcg agctgctcca cgcccccgcc 1560
acagtgtgcg gcccaaagaa gagcacaaac ctcgtgaaga acaagtgcgt gaacttcaac 1620
ttcaacggcc tcacaggcac aggcgtgctc accgagtcta acaagaagtt cctccctttc 1680
cagcagttcg gccgcgacat tgccgacacc accgacgccg tgcgggaccc tcagacactg 1740
gaaattctcg acatcacccc ttgcagcttc ggcggcgtgt ccgtgatcac cccaggcaca 1800
aacacatcta accaggtggc cgtgctgtac cagggcgtga actgcaccga ggtgccagtg 1860
gccatccacg ccgaccagct caccccaaca tggagggtgt acagcacagg ctctaacgtg 1920
ttccagaccc gggccggctg cctcattggc gccgagcacg tgaacaactc ttacgagtgc 1980
gacatcccta ttggcgccgg catttgcgcc tcttaccaga cccagacaaa ctctagacgg 2040
agagcccggt ctgtggcctc tcagagcatt attgcctaca ccatgtctct gggcgccgag 2100
aactctgtgg cctactctaa caactctatt gccatcccta caaacttcac aatttctgtg 2160
accaccgaga ttctcccagt gtctatgacc aagacatctg tggactgcac catgtacatt 2220
tgcggcgact ccaccgagtg ctctaacctc ctgctccagt acggctcttt ctgcacccag 2280
ctcaaccgcg ccctgacagg catcgccgtg gagcaggaca agaacaccca ggaggtgttc 2340
gcccaggtga agcagattta caagaccccc ccaattaagg acttcggcgg cttcaacttc 2400
tctcagattc tccccgaccc atccaagcct agcaagcggt ccttcattga ggacctcctg 2460
ttcaacaagg tgacactggc cgacgccggc ttcattaagc agtacggcga ctgcctgggc 2520
gacattgccg cccgggacct gatttgcgcc cagaagttca acggcctcac agtgctcccc 2580
ccactgctca ccgacgagat gattgcccag tacacatctg ccctcctggc cggcacaatt 2640
acatctggct ggaccttcgg cgccggcgcc gccctgcaga tccctttcgc catgcagatg 2700
gcctaccgct tcaacggcat cggcgtgaca cagaacgtgc tgtacgagaa ccagaagctg 2760
atcgccaacc agttcaacag cgccattggc aagattcagg actctctgag cagcacagcc 2820
agcgccctgg gcaagctgca gaacgtggtg aaccagaacg cccaggccct gaacacactg 2880
gtgaagcagc tgtcttctaa cttcggcgcc atttctagcg tgctgaacga cattctgtcg 2940
cggctggaca aggtggaggc cgaggtgcag attgacaggc tcatcacagg cagactgcag 3000
tctctgcaga catacgtgac ccagcagctg attagagccg ccgagattag agcctccgcc 3060
aacctggccg ccaccaagat gagcgagtgc gtgctcggcc agtctaagcg ggtggacttc 3120
tgcggcaagg gctaccacct catgtctttc cctcagtccg cccctcacgg cgtggtgttc 3180
ctccacgtga catacgtgcc cgcccaggag aagaacttca ccacagcccc cgccatttgc 3240
cacgacggca aggcccactt ccctagggag ggcgtgttcg tgtctaacgg cacccactgg 3300
ttcgtgaccc agcggaactt ctacgagcct cagattatta ccacagacaa cacattcgtg 3360
agcggcaact gcgacgtggt gattggcatt gtgaacaaca cagtgtacga cccactgcag 3420
cctgagttgg actctttcaa ggaggaactc gacaagtact tcaagaacca cacatctcct 3480
gacgtggacc tgggcgacat tagcggcatt aacgcctctg tggtgaacat tcagaaggag 3540
attgacagac tgaacgaggt ggccaagaac ctgaacgagt ctctcattga cctgcaggag 3600
ctgggcaagt acgagcagta cattaagtgg ccttggtaca tttggctggg cttcattgcc 3660
ggcctgatcg ccattgtgat ggtgaccatc atgctgtgct gcatgacatc ttgctgcagc 3720
tgcctgaagg gctgctgctc ttgcggctct tgctgcaagg actacaagga cgacgatgac 3780
aagggacct 3789

Claims (24)

1. An alpaca source nano antibody or antigen binding fragment thereof combined with SARS-CoV-2RBD, which comprises a heavy chain variable region,
the heavy chain variable region comprises the following CDRs: CDR1 with an amino acid sequence shown as SEQ ID NO. 1, CDR2 with an amino acid sequence shown as SEQ ID NO. 2 and CDR3 with an amino acid sequence shown as SEQ ID NO. 3.
2. The nanobody of alpaca source or antigen-binding fragment thereof binding to SARS-CoV-2RBD of claim 1, wherein the variable region of the heavy chain further comprises 4 framework regions FR1-4, and the FR1-4 is staggered with the CDR1, CDR2 and CDR3 in this order.
3. The nano-antibody or the antigen-binding fragment thereof derived from alpaca that binds to SARS-CoV-2RBD according to claim 2, wherein the amino acid sequences of FR1-4 are shown in SEQ ID NOs 4, 5, 6 and 7, respectively.
4. The nano-antibody or the antigen-binding fragment thereof derived from alpaca combined with SARS-CoV-2RBD as claimed in claim 1, wherein the amino acid sequence of the heavy chain variable region is as shown in SEQ ID NO. 8.
5. A polynucleotide encoding the alpaca-derived nanobody or antigen-binding fragment thereof binding to SARS-CoV-2RBD of any one of claims 1 to 4.
6. The polynucleotide of claim 5, wherein the polynucleotide is DNA or mRNA.
7. The polynucleotide of claim 5, wherein the polynucleotide has the nucleotide sequence set forth in SEQ ID No. 9.
8. A nucleic acid construct comprising the polynucleotide of any one of claims 5-7.
9. The nucleic acid construct of claim 8, further comprising at least one expression control element operably linked to the polynucleotide.
10. An expression vector comprising the nucleic acid construct of claim 8 or 9.
11. A transformed cell comprising the polynucleotide of any one of claims 5-7, the nucleic acid construct of claim 8 or 9, or the expression vector of claim 10.
12. A pharmaceutical composition comprising the alpaca nanobody or antigen-binding fragment thereof of any one of claims 1 to 4 that binds to SARS-CoV-2RBD, the polynucleotide of any one of claims 5 to 7, the nucleic acid construct of claim 8 or 9, the expression vector of claim 10 or the transformed cell of claim 11, and a pharmaceutically acceptable carrier and/or excipient.
13. The pharmaceutical composition of claim 12, wherein the pharmaceutical composition is in the form of a nasal spray, an oral formulation, a suppository, or a parenteral formulation.
14. The pharmaceutical composition of claim 13, wherein the nasal spray is selected from the group consisting of an aerosol, a spray, and a powder spray.
15. The pharmaceutical composition of claim 13, wherein the oral formulation is selected from the group consisting of tablets, powders, pills, granules, soft/hard capsules, film coatings and ointments.
16. The pharmaceutical composition of claim 15, wherein the tablet is a sublingual tablet.
17. The pharmaceutical composition of claim 15, wherein the granule is a fine granule.
18. The pharmaceutical composition of claim 15, wherein the powder is a powder.
19. The pharmaceutical composition of claim 15, wherein the pill is a pellet.
20. The pharmaceutical composition according to claim 13, wherein the parenteral formulation is a transdermal formulation, an ointment, a plaster, a topical liquid formulation or an injectable formulation.
21. The pharmaceutical composition of claim 20, wherein the injectable formulation is a bolus formulation.
22. Use of the nano-antibody derived from alpaca or the antigen-binding fragment thereof binding to SARS-CoV-2RBD according to any one of claims 1 to 4, the polynucleotide according to any one of claims 5 to 7, the nucleic acid construct according to claim 8 or 9, the expression vector according to claim 10, the transformed cell according to claim 11, or the pharmaceutical composition according to any one of claims 12 to 21 for the preparation of a medicament for the prevention, treatment and/or detection of a neocoronaviral infection.
23. The use of claim 22, wherein the new coronavirus is a SARS-CoV-2 original strain and/or a SARS-CoV-2 variant strain.
24. The use of claim 23, wherein the SARS-CoV-2 variant strain is an Alpha (B.1.1.7), beta (B.1.351), gamma (P.1), kappa (B.1.617.1) and/or Delta (B.1.617.2) strain.
CN202210759496.5A 2021-09-16 2022-06-30 Alpaca source nano antibody and application thereof Active CN114933651B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111086956 2021-09-16
CN2021110869564 2021-09-16

Publications (2)

Publication Number Publication Date
CN114933651A CN114933651A (en) 2022-08-23
CN114933651B true CN114933651B (en) 2023-03-24

Family

ID=82868066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210759496.5A Active CN114933651B (en) 2021-09-16 2022-06-30 Alpaca source nano antibody and application thereof

Country Status (2)

Country Link
CN (1) CN114933651B (en)
WO (1) WO2023040835A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933651B (en) * 2021-09-16 2023-03-24 中国科学院微生物研究所 Alpaca source nano antibody and application thereof
CN116813757A (en) * 2022-03-21 2023-09-29 中国科学院微生物研究所 Construction body of nano antibody R14 and application thereof
CN116655786B (en) * 2023-07-26 2023-10-27 中国人民解放军军事科学院军事医学研究院 Broad-spectrum antibodies against SARS and SARS-CoV-2

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021156490A2 (en) * 2020-02-06 2021-08-12 Vib Vzw Corona virus binders
CN111825762A (en) * 2020-06-17 2020-10-27 武汉华美生物工程有限公司 Nano antibody of S protein RBD structure domain of anti SARS-COV-2 virus and its use
CN112010967B (en) * 2020-09-07 2021-03-23 康维众和(中山)生物药业有限公司 Novel nano antibody for neutralizing toxicity of coronavirus SARS-Cov-2 and preparation method and application thereof
CN112062839A (en) * 2020-09-22 2020-12-11 石河子大学 Nano antibody based on novel coronavirus S protein S1 subunit and application thereof
CN112094342B (en) * 2020-09-25 2022-05-13 中国科学技术大学 Alpaca source nano antibody combined with SARS-CoV-2RBD
CN112724248A (en) * 2021-01-28 2021-04-30 南京拓峰生物科技有限公司 Nano antibody capable of combining SARS-CoV-2 and application thereof
CN112898421A (en) * 2021-02-07 2021-06-04 安第斯抗体生物技术衡水有限公司 New coronavirus S1-RBD protein alpaca nano antibody and preparation method and application thereof
CN114933651B (en) * 2021-09-16 2023-03-24 中国科学院微生物研究所 Alpaca source nano antibody and application thereof

Also Published As

Publication number Publication date
CN114933651A (en) 2022-08-23
WO2023040835A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
CN114933651B (en) Alpaca source nano antibody and application thereof
CN111793129B (en) Antibody or antigen binding fragment thereof specifically binding to coronavirus
CN111592595B (en) Neutralizing antibody against novel coronavirus SARS-Cov-2 and application thereof
KR20070085439A (en) Human monoclonal antibodies to influenza m2 protein and methods of making and using same
JP2022002545A (en) Anti-family with sequence similarity 19, member a5 antibodies and method of use thereof
CN114805560B (en) Construction body of nano antibody R14 and application thereof
CN106928371A (en) Restructuring complement factor H domain-immunoglobulin fusion proteins with complement regulation activity and preparation method and application
CN114763380B (en) Construction body of nano antibody S43 and application thereof
CN111808187B (en) Protein binding molecules against respiratory syncytial virus
TW202208424A (en) Anti-novel coronavirus bispecific antibody and use thereof
KR101593271B1 (en) A novel antibody inhibiting osteoclastogenesis
CN114891097B (en) Alpaca source nano antibody and application thereof
CN114591988B (en) Preparation method of genetically modified stem cells for activating tumor immunity
CN115400207A (en) ACE2 modified protein and application thereof
CN112778417B (en) Isolated antigen BCMA-binding protein and use thereof
CN116710120A (en) Recombinant ACE2-FC fusion molecules and methods of making and using the same
CN115667506A (en) Recombinant ACE2-FC fusion molecules and methods of making and using the same
KR101596364B1 (en) Preparation method for transgenic plant producing immunogenic complex protein and immunogenic complex protein obtained therefrom
CN115232207B (en) Use of an antibody-lysin (SM-ScFv-Fc-Ly) for the treatment of Streptococcus mutans infection
CN115925911A (en) Alpaca source nano antibody R67 and application thereof
CN115947836A (en) Alpaca source nano antibody S102 and application thereof
WO2023138643A1 (en) Cd39 antigen binding protein and use thereof
CN117510621A (en) Broad-spectrum nano-antibodies N103 and N235 targeting novel coronavirus NTD, constructs and application thereof
CN115724961A (en) Alpaca source nano antibody R211 and application thereof
CN115724962A (en) Alpaca source nano antibody R218 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant