CN114930666A - Apparatus and method for power transmission - Google Patents
Apparatus and method for power transmission Download PDFInfo
- Publication number
- CN114930666A CN114930666A CN202080092877.1A CN202080092877A CN114930666A CN 114930666 A CN114930666 A CN 114930666A CN 202080092877 A CN202080092877 A CN 202080092877A CN 114930666 A CN114930666 A CN 114930666A
- Authority
- CN
- China
- Prior art keywords
- phase
- component
- frequency
- converter
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims 2
- 238000009825 accumulation Methods 0.000 abstract description 10
- 230000006872 improvement Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/36—Arrangements for transfer of electric power between AC networks via a high-tension DC link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Ac-Ac Conversion (AREA)
Abstract
一种电力传输的装置和方法,在发送站中实现的电力传输的装置包括:第一换流器(210),被配置为将第一频率的第一三相AC分量转换为第二频率的第二三相AC分量,第二频率小于第一频率且大于预定频率;以及第一控制器(220),耦合到第一换流器(210)并且被配置为使第二三相AC分量在AC传输线路(150)中传输。在接收站中实现的电力传输的装置包括:第二控制器(510),被配置为使第二三相AC分量从AC传输线路(150)接收;以及第二控制器(520),耦合到第二控制器(510)并且被配置为将第二三相AC分量转换为第一三相AC分量。这样,可以消除电缆系统的空间电荷累积的限制,并且可以促进电力传输容量的提高。
An apparatus and method for power transmission, the apparatus for power transmission implemented in a sending station comprising: a first inverter (210) configured to convert a first three-phase AC component of a first frequency to a second frequency of a second three-phase AC component, the second frequency being less than the first frequency and greater than the predetermined frequency; and a first controller (220) coupled to the first inverter (210) and configured to cause the second three-phase AC component at transmission in the AC transmission line (150). The apparatus for power transmission implemented in the receiving station includes: a second controller (510) configured to cause the second three-phase AC component to be received from the AC transmission line (150); and a second controller (520) coupled to A second controller (510) is also configured to convert the second three-phase AC component to the first three-phase AC component. In this way, the limitation of space charge accumulation of the cable system can be eliminated, and the improvement of the power transmission capacity can be promoted.
Description
技术领域technical field
本公开的实施例总地涉及电力传输,并且更具体地,涉及一种AC传输线路上的电力传输的装置和方法。Embodiments of the present disclosure relate generally to power transmission, and more particularly, to an apparatus and method of power transmission over an AC transmission line.
背景技术Background technique
当今,电力需求不断增加,但是修建新的AC传输线路的成本高昂,并且有时甚至很难找到通道。作为替代方法,将现有的AC配电网络升级为DC系统与修建新的AC传输线路相比,可以以较低的投入增加传输的电力。Today, electricity demand is constantly increasing, but building new AC transmission lines is expensive and sometimes even difficult to find. As an alternative, upgrading an existing AC distribution network to a DC system can increase the power transmitted at a lower cost than building new AC transmission lines.
目前,有两种基本的换流器解决方案来实现AC到DC线路转换。一种解决方案是双极换流器解决方案,其中第一DC线路包括并联的三根导线(该第一DC线路是从双回路传输线路中的一条线路升级而来的),并且第二DC线路也包括并联的三根导线(该第二DC线路是从双回路传输线路中的另一条线路升级而来的)。在这个解决方案中,它充分利用了所有导线的传输能力。但是,这个解决方案仅适用于双回路传输线路的升级。作为另一种解决方案,对于单回路传输线路,三根导线中的两根导线将作为DC线路操作,并且第三根导线将作为中性线路保留。在这种情况下,由于中性线路在正常操作期间处于空闲状态,因此其传输容量较低。Currently, there are two basic inverter solutions for AC to DC line conversion. One solution is a bipolar inverter solution, where the first DC line consists of three conductors in parallel (the first DC line is upgraded from one of the dual loop transmission lines), and the second DC line Three conductors in parallel are also included (this second DC line is upgraded from the other line in the dual loop transmission line). In this solution, it takes full advantage of the transmission capacity of all wires. However, this solution is only applicable to the upgrade of dual loop transmission lines. As another solution, for a single loop transmission line, two of the three conductors would operate as a DC line, and the third would remain as a neutral line. In this case, since the neutral line is idle during normal operation, its transmission capacity is low.
此外,还提出了一种三极换流器解决方案,其中,一条传输线路中的所有三根导线将得到充分利用,以最大限度地提高电力传输容量。然而,第三极可以被视为具有电压和电流二者的极性反转能力的单极DC系统。在这种解决方案中,所有三根导线的热平衡是通过适当控制或调节每根导线上的DC电流来实现的,并且因此三极换流器的传统拓扑结构仍然很复杂。In addition, a three-pole inverter solution is proposed, in which all three conductors in a transmission line will be fully utilized to maximize the power transmission capacity. However, the third pole can be viewed as a unipolar DC system with polarity reversal capability for both voltage and current. In this solution, the thermal balance of all three wires is achieved by appropriately controlling or regulating the DC current on each wire, and thus the traditional topology of a three-pole inverter remains complex.
上述所有解决方案在它们用于电缆系统升级时都有一个共同的缺点。AC电缆(例如,XLPE电缆)通常被设计用于50Hz或60Hz频率的操作,并且对于空间电荷累积问题没有特别的设计考虑。AC电缆的DC操作可能导致空间电荷积累,并带来电缆绝缘击穿的风险。All of the above solutions have a common disadvantage when they are used for cable system upgrades. AC cables (eg, XLPE cables) are typically designed for 50Hz or 60Hz frequency operation and have no special design considerations for space charge accumulation issues. DC operation of AC cables can lead to space charge accumulation and the risk of breakdown of cable insulation.
发明内容SUMMARY OF THE INVENTION
本公开的实施例提出了AC传输线路中的电力传输的改进解决方案。Embodiments of the present disclosure propose improved solutions for power transmission in AC transmission lines.
第一方面,提供了一种电力传输的装置。该装置包括:第一换流器,被配置为将第一频率的第一三相AC分量转换为第二频率的第二三相AC分量,第二频率小于第一频率且大于预定频率;以及第一控制器,耦合到第一换流器并且被配置为使第二三相AC分量在AC传输线路中传输。In a first aspect, an apparatus for power transmission is provided. The apparatus includes: a first inverter configured to convert a first three-phase AC component of a first frequency to a second three-phase AC component of a second frequency, the second frequency being less than the first frequency and greater than a predetermined frequency; and A first controller coupled to the first inverter and configured to transmit the second three-phase AC component in the AC transmission line.
第二方面,提供了一种电力传输的方法。该方法包括:将第一频率的第一三相AC分量转换为第二频率的第二三相AC分量,第二频率小于第一频率且大于预定频率;以及使第二三相AC分量在AC传输线路中传输。In a second aspect, a method of power transmission is provided. The method includes: converting a first three-phase AC component of a first frequency to a second three-phase AC component of a second frequency, the second frequency being less than the first frequency and greater than a predetermined frequency; transmission in the transmission line.
第三方面,提供了一种电力传输的装置。该装置包括:第二控制器,被配置为使第二频率的第二三相AC分量从AC传输线路接收;以及第二换流器,耦合到第二控制器并且被配置为将第二三相AC分量转换为第一频率的第一三相AC分量,第二频率小于第一频率且大于预定频率。In a third aspect, an apparatus for power transmission is provided. The apparatus includes: a second controller configured to receive a second three-phase AC component of a second frequency from the AC transmission line; and a second inverter coupled to the second controller and configured to convert the second three-phase AC component The phase AC component is converted into a first three-phase AC component of a first frequency, and the second frequency is less than the first frequency and greater than a predetermined frequency.
第四方面,提供了一种电力传输的方法。该方法包括:使第二频率的第二三相AC分量从AC传输线路接收;以及将第二三相AC分量转换为第一频率的第一三相AC分量,第二频率小于第一频率且大于预定频率。In a fourth aspect, a method of power transmission is provided. The method includes: receiving a second three-phase AC component of a second frequency from the AC transmission line; and converting the second three-phase AC component to a first three-phase AC component of a first frequency, the second frequency being less than the first frequency and greater than the predetermined frequency.
根据本公开的实施例,可以在AC配电网络从中压AC(MVAC)系统升级或改装为低频中压AC(LF-MVAC)系统的情况下提供用于该AC配电网络的电力传输解决方案。利用本解决方案,可以消除空间电荷累积的限制,并且可以促进电力传输容量的提高。According to embodiments of the present disclosure, a power transmission solution for an AC power distribution network may be provided in the event that the AC power distribution network is upgraded or retrofitted from a medium voltage AC (MVAC) system to a low frequency medium voltage AC (LF-MVAC) system . With this solution, the limitation of space charge accumulation can be eliminated, and the improvement of power transmission capacity can be promoted.
当结合附图阅读时,本公开实施例的其他特征和优点也将从以下特定实施例的描述中显而易见,附图举例说明了本公开实施例的原理。Other features and advantages of embodiments of the disclosure will also be apparent from the following description of specific embodiments, when read in conjunction with the accompanying drawings, which illustrate the principles of embodiments of the disclosure.
附图说明Description of drawings
本文所述的附图被提供以进一步说明本公开并构成本公开的一部分。本公开的示例实施例及其描述用于说明本公开,而不是不适当地限制本公开。The accompanying drawings described herein are provided to further illustrate and constitute a part of this disclosure. The example embodiments of the present disclosure and their descriptions are provided to illustrate the present disclosure and not to unduly limit the present disclosure.
图1示出了可以在其中实现本公开实施例的示例AC配电网络;FIG. 1 illustrates an example AC power distribution network in which embodiments of the present disclosure may be implemented;
图2示出了根据本公开实施例的在发送站实现的电力传输的装置的简化框图;2 shows a simplified block diagram of an apparatus for power transmission implemented at a sending station according to an embodiment of the present disclosure;
图3示出了根据本公开实施例的AC配电网络的示例实现的示意图;3 shows a schematic diagram of an example implementation of an AC power distribution network according to an embodiment of the present disclosure;
图4示出了具有梯形调制的极线的示例电压波形;FIG. 4 shows example voltage waveforms of polar lines with trapezoidal modulation;
图5示出了根据本公开实施例的在接收站实现的电力传输的装置的简化框图;5 shows a simplified block diagram of an apparatus for power transmission implemented at a receiving station according to an embodiment of the present disclosure;
图6示出了根据本公开实施例的在发送站实现的电力传输的方法的流程图;和FIG. 6 shows a flowchart of a method of power transmission implemented at a sending station according to an embodiment of the present disclosure; and
图7示出了根据本公开实施例的在接收站实现的功率传输的方法的流程图。7 shows a flowchart of a method of power transfer implemented at a receiving station according to an embodiment of the present disclosure.
在整个附图中,相同或类似的附图标记表示相同或类似的元件。Throughout the drawings, the same or similar reference numbers refer to the same or similar elements.
具体实施方式Detailed ways
现在将参考附图中所示的几个示例实施例来描述本公开的原理。尽管在附图中示出了本公开的示例实施例,但应当理解的是,描述这些实施例只是为了帮助本领域技术人员更好地理解并由此实现本公开,而不是以任何方式限制本公开的范围。The principles of the present disclosure will now be described with reference to several example embodiments illustrated in the accompanying drawings. Although example embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that these embodiments are described only to assist those skilled in the art to better understand and thereby implement the present disclosure, and not to limit the present disclosure in any way. public scope.
术语“包括”或“包含”及其变体应理解为开放术语,表示“包括但不限于”。除非上下文另有明确指示,否则术语“或”应理解为“和/或”。术语“基于”应理解为“至少部分基于”。术语“可操作以”是指可通过用户或外部机构引导的操作实现功能、动作、运动、或状态。术语“一个实施例”和“实施例”应理解为“至少一个实施例”。术语“另一实施例”应理解为“至少一个其他实施例”。术语“第一”、“第二”等可指代不同或相同的对象。下文可能包括其他明确和隐含的定义。除非上下文另有明确说明,否则术语的定义在整个描述中是一致的。The terms "including" or "comprising" and variations thereof should be understood as open-ended terms meaning "including but not limited to". The term "or" should be read as "and/or" unless the context clearly dictates otherwise. The term "based on" should be understood as "based at least in part on". The term "operable to" means that a function, action, movement, or state can be effected by manipulation directed by a user or external mechanism. The terms "one embodiment" and "an embodiment" should be understood to mean "at least one embodiment." The term "another embodiment" should be understood to mean "at least one other embodiment." The terms "first", "second", etc. may refer to different or the same objects. The following may include other explicit and implicit definitions. Definitions of terms are consistent throughout the description unless the context clearly dictates otherwise.
除非另有规定或限制,否则术语“安装”、“连接”、“支撑”、和“耦合”及其变体被广泛使用,并且涵盖直接和间接安装、连接、支撑、和耦合。此外,“连接”和“耦合”不限于物理或机械连接或耦合。在下面的描述中,类似的附图标记和标签用于描述附图中相同、相似、或对应的部分。下文可能包括其他明确和隐含的定义。Unless otherwise specified or limited, the terms "mounted," "connected," "supported," and "coupled," and variations thereof, are used broadly and encompass both direct and indirect mounting, connecting, supporting, and coupling. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings. In the following description, like reference numerals and labels are used to describe the same, similar, or corresponding parts of the drawings. The following may include other explicit and implicit definitions.
图1示出了可以在其中实现本公开实施例的示例AC配电网络100。网络100包括第一换流站(为方便起见,也称为发送站)120、第二换流站(为方便起见,也称为接收站)130、和位于第一换流站120和第二换流站130之间的AC传输线路150。AC传输线路150包括相位A(极1)的线路151、相位B(极2)的线路152、和相位C(极3)的线路153。应当注意,网络100中的换流站的数目和AC传输线路的数目不限于上述示例,并且网络100可以具有更多的换流站和更多的AC传输线路。在图1中,AC传输线路包括三相AC传输系统,但也可能是三相以外的多相AC传输系统。FIG. 1 illustrates an example AC
在第一换流站120处以增加网络100的电力传输容量的方式处理来自外部源的AC分量110。处理后的AC分量110随后在AC传输线路150中传输到第二换流站130。在到达第二换流站130后,处理后的AC分量110在第二换流站130处被处理回原始状态。在一些实施例中,AC分量可以是电压分量或电流分量中的至少一者。The
如上所述,在双极换流器解决方案中,第一DC线路(极1,例如,线路150)包括并联的三根导线(例如,线路151-153),该第一DC线路是从双回路传输线路中的一条传输线路升级而来的,并且第二DC线路(极2,未示出,但与线路150类似)也包括并联的三根导线,该第二DC线路是从双回路传输线路中的另一条线路升级而来的。对于单回路传输线路,三根导线中的两根将作为DC线路(极1和极2)操作,并且第三根导线将作为中性线路保留。As mentioned above, in the bipolar inverter solution, the first DC line (
在这种AC到DC线路转换解决方案中,如果AC线路是电缆系统,则用于极1和极2的AC传输线路的DC操作可能会导致空间电荷累积,并带来线路绝缘击穿的风险。In this AC to DC line conversion solution, if the AC line is a cable system, the DC operation of the AC transmission line for
在三极换流器解决方案中,一条传输线路(例如,线路150)中的所有三根导线(例如,线路151-153)都将得到充分利用,以最大限度地提高电力传输容量。然而,对于三极换流器解决方案,现有的高压DC(HVDC)换流器技术无法直接应用。已经提出了一种典型的三极解决方案,其中,第三极(例如,线路153)可被视为具有电压和电流二者的极性反转能力的单极DC系统。用于第三极的换流器可以是带有反并联阀或同一阀内的反并联晶闸管的传统线路换相换流器(LCC),或者也可以是基于全桥子模块的模块化多电平换流器(MMC)(FB-MMC)、基于钳位二极管子模块(CDSM)的MMC、或任何其他具有DC电压换向能力的MMC技术。在这种解决方案中,所有三根导线的热平衡是通过适当控制或调节每根导线上的DC电流来实现的。In a three-pole inverter solution, all three conductors (eg, lines 151-153) in a transmission line (eg, line 150) will be fully utilized to maximize power transmission capacity. However, for three-pole inverter solutions, existing high-voltage DC (HVDC) inverter technology cannot be directly applied. A typical three-pole solution has been proposed, where the third pole (eg, line 153 ) can be viewed as a unipolar DC system with polarity reversal capability for both voltage and current. The converter for the third pole can be a conventional line-commutated converter (LCC) with anti-parallel valves or anti-parallel thyristors within the same valve, or it can be a modular multi-power converter based on full-bridge sub-modules. Flat-Line Converter (MMC) (FB-MMC), Clamping Diode Sub-Module (CDSM) based MMC, or any other MMC technology with DC voltage commutation capability. In this solution, thermal balance of all three wires is achieved by appropriately controlling or regulating the DC current on each wire.
可以看出,三极换流器系统可以最大限度地提高电力传输容量。然而,三极换流器的传统拓扑结构仍然很复杂。例如,通常要求第三极带有额外的换流器。It can be seen that the three-pole inverter system can maximize the power transmission capacity. However, the traditional topology of the three-pole converter is still complicated. For example, an additional inverter is often required for the third pole.
为了至少部分地解决这一问题和潜在的其他问题,本公开的实施例提供了一种改进的三极解决方案,其中,通过使用AC/AC线路转换而不是AC到DC线路转换从MVAC系统升级到LF-MVAC系统。通过低频三相AC/AC转换,可以消除电缆系统的空间电荷累积的限制,并可以促进提高电力传输容量。这将参考图2至图6详细描述。To at least partially address this and potentially other problems, embodiments of the present disclosure provide an improved three-pole solution in which an MVAC system is upgraded by using AC/AC line conversion instead of AC to DC line conversion to the LF-MVAC system. Through low frequency three-phase AC/AC conversion, the limitation of space charge accumulation in the cable system can be eliminated, and the increase of power transmission capacity can be facilitated. This will be described in detail with reference to FIGS. 2 to 6 .
图2示出了根据本公开实施例的在发送站(例如,图1中的第一换流站120)实现的电力传输的装置200的简化框图。在一些实施例中,装置200可以是第一换流站120本身。在一些替代实施例中,装置200可以是第一换流站120的组件。FIG. 2 shows a simplified block diagram of an
如图2所示,装置200可以包括第一换流器210和第一控制器220。第一换流器210可以被配置为将第一频率的第一三相AC分量(例如,图1中的AC分量110)转换为第二频率的第二三相AC分量,其中,第二频率小于第一频率。在一些实施例中,第一换流器210可以将三个相位中的每个相位的AC分量从第一频率转换为第二频率。在一些实施例中,三个相位中的两个相位之间的差值可以约为120度。As shown in FIG. 2 , the
在本公开的一些实施例中,第二频率可以小于第一频率并且大于预定频率。在一些实施例中,可以将预定频率设置为使得空间电荷累积作用变得无关紧要。在一些实施例中,第一频率可以是50Hz或60Hz,并且预定频率可以高于0.01Hz。例如,第二频率可以设置为10Hz。应注意,上述值仅用于说明,并且任何其他合适的值也可以是可行的。In some embodiments of the present disclosure, the second frequency may be less than the first frequency and greater than the predetermined frequency. In some embodiments, the predetermined frequency may be set such that the effect of space charge accumulation becomes insignificant. In some embodiments, the first frequency may be 50 Hz or 60 Hz, and the predetermined frequency may be higher than 0.01 Hz. For example, the second frequency may be set to 10Hz. It should be noted that the above values are for illustration only and any other suitable values may also be possible.
这样,所有三极线路上的电压都是低频AC电压,并且因此可以消除空间电荷累积的限制。与50Hz或60Hz AC系统相比,本解决方案的低频AC系统的传输容量可以增加(由于功率损耗较小)。In this way, the voltage on all three-pole lines is a low frequency AC voltage, and thus the limitation of space charge accumulation can be removed. Compared to a 50Hz or 60Hz AC system, the transmission capacity of the low frequency AC system of this solution can be increased (due to less power loss).
此外,在本公开的一些实施例中,第一换流器210可以包括至少一个模块化多电平换流器(MMC)。在一些实施例中,例如,第一换流器210可以包括模块化多电平矩阵换流器(M3C)或六边形模块化多电平换流器(Hexverter)中的至少一者。Furthermore, in some embodiments of the present disclosure, the
M3C拓扑本质上是一种直接AC/AC转换拓扑。与由两个背靠背(B2B)AC/DC换流器组成的传统的间接AC/AC解决方案相比,M3C具有更少的电力电子设备,并且因此具有更低的成本。使用M3C拓扑,可以以较低的成本简化换流器拓扑。除非另有规定,上下文中讨论的MMC指的是M3C。The M3C topology is essentially a direct AC/AC conversion topology. Compared to the traditional indirect AC/AC solution consisting of two back-to-back (B2B) AC/DC converters, the M3C has less power electronics and therefore lower cost. Using the M3C topology, the converter topology can be simplified at a lower cost. Unless otherwise specified, MMC discussed in this context refers to M3C.
在传统的三极转换中,每个换流站都包括标准的AC/DC换流器和附加极,这需要复杂的协调控制。相反,在所提出的基于MMC的转换中,换流器可以作为一个换流器系统进行控制。因此,可以实现简单的站级控制。In conventional three-pole conversion, each converter station includes standard AC/DC converters and additional poles, which requires complex coordinated control. In contrast, in the proposed MMC-based conversion, the inverters can be controlled as one inverter system. Therefore, simple station-level control can be realized.
在发生分支故障的情况下,可以减少MMC的分支,例如,九分支M3C可以操作为为六分支Hexverter。这样,可以获得更高的可靠性,并且还可以进一步提高MMC的高可用性。In the event of a branch failure, the branches of the MMC can be reduced, eg, a nine-branch M3C can operate as a six-branch Hexverter. In this way, higher reliability can be obtained, and the high availability of the MMC can be further improved.
将参考图3描述装置200的示例实现,图3示出了根据本公开实施例的AC配电网络的示例实现的示意图300。An example implementation of the
如图3所示,第一换流器210可以通过M3C 310与第一控制器220一起实现。M3C 310具有3个输入端子和3个输出端子,这使M3C更适合电网应用。As shown in FIG. 3 , the
在一些实施例中,用于M3C的电力电子设备可以是IGBT、IGCT、IEGT、或其他全控电力电子设备。在一些实施例中,M3C中的子模块可以是全桥子模块、CDSM、或DC侧的电压极性可以反转的其他子模块。在一些实施例中,可以采用M3C的标准控制。In some embodiments, the power electronics for the M3C may be IGBTs, IGCTs, IEGTs, or other fully controlled power electronics. In some embodiments, the sub-modules in the M3C may be full-bridge sub-modules, CDSMs, or other sub-modules where the voltage polarity on the DC side may be reversed. In some embodiments, M3C's standard controls may be employed.
由于工业IGBT模块的模块化结构和应用,M3C比传统B2B换流器成本更低。应该注意的是,M3C仅仅是一个示例,任何其他合适形式的MMC也是可行的。Due to the modular structure and application of industrial IGBT modules, M3C is less expensive than traditional B2B converters. It should be noted that M3C is just an example and any other suitable form of MMC is possible.
在本公开的一些实施例中,第一换流器210还可以被配置为将第二三相AC分量整形为梯形波。在一些实施例中,第一换流器210可以被配置为将第二三相AC分量整形为准方波。应注意,第二三相AC分量的形状可以是任何其他合适的波形。In some embodiments of the present disclosure, the
图4示出了具有梯形调制的极线的示例电压波形400。如图4所示,410表示极1(例如,相位A的线路151)的调制波形,420表示极2(例如,相位B的线路152)的调制波形,并且430表示极3(例如,相位C的线路153)的调制波形。三个相位中的两个相位的分量在相位上差约120度。FIG. 4 shows an
通过梯形调制,可以实现AC传输线路系统的热容量的高利用率,并且还可以限制电压爬升率。With trapezoidal modulation, a high utilization of the thermal capacity of the AC transmission line system can be achieved, and the voltage ramp rate can also be limited.
回到图2,第一控制器220可以耦合到第一换流器210。第一控制器220可以被配置为使第二三相AC分量在AC传输线路(例如,图1中的线路150)中传输。在一些实施例中,第一控制器220可以包括一个或多个开关电路。在一些实施例中,第一控制器220可以与第一换流器210分开实现。在一些实施例中,第一控制器220可以与第一换流器210集成例如在同一MMC中。应当注意,这仅仅是一个示例,并且第一控制器220可以以任何其他合适的形式实现。Returning to FIG. 2 , the
图5示出了根据本公开实施例的在接收站(例如,图1中的第二换流站130)实现的电力传输的装置500的简化框图。在一些实施例中,装置500可以是第二换流站120本身。在一些替代实施例中,装置500可以是第二换流站120的组件。FIG. 5 shows a simplified block diagram of an
如图5所示,装置500可以包括第二控制器510和第二换流器520。第二控制器510可以被配置为使得第二频率的第二三相AC分量从AC传输线路(例如,图1中的线路150)接收。在一些实施例中,第二控制器510可以包括一个或多个开关电路。在一些实施例中,第二控制器510可以与第二换流器520分开实现。在一些实施例中,第二控制器510可以与第二换流器520集成。应当注意,这仅仅是一个示例,并且第二控制器510可以以任何其他合适的形式实现。As shown in FIG. 5 , the
第二换流器520可以耦合到第二控制器,并且可以被配置为将第二三相AC分量转换为第一频率的第一三相AC分量。在一些实施例中,第二换流器520可以将三相中的每个相位的AC分量从第二频率转换为第一频率。在一些实施例中,三个相位中的两个相位之间的差值可以约为120度。The
在本公开的一些实施例中,第二频率可以小于第一频率并且大于预定频率。在一些实施例中,预定频率可以设置为使得空间电荷累积作用变得无关紧要。在一些实施例中,第一频率可以是50Hz或60Hz,并且预定频率可以高于0.01Hz。例如,第二频率可以设置为10Hz。应注意,上述值仅用于说明,任何其他合适的值也可以是可行的。In some embodiments of the present disclosure, the second frequency may be less than the first frequency and greater than the predetermined frequency. In some embodiments, the predetermined frequency may be set such that the effect of space charge accumulation becomes insignificant. In some embodiments, the first frequency may be 50 Hz or 60 Hz, and the predetermined frequency may be higher than 0.01 Hz. For example, the second frequency may be set to 10Hz. It should be noted that the above values are for illustration only and any other suitable values may also be possible.
在本公开的一些实施例中,第二换流器520可以包括至少一个MMC。在一些实施例中,例如,第二换流器520可以包括M3C或Hexverter中的至少一者。In some embodiments of the present disclosure, the
如关于第一换流器210所讨论的,通过MMC拓扑,可以以更低的成本简化换流器拓扑,并且可以以更高的可靠性和更高的MMC高可用性实现简单的站级控制。As discussed with respect to the
再次参考图3,第二换流器520可以通过M3C 320与第二控制器510一起实现。M3C320具有3个输入端子和3个输出端子,这使M3C更适合电网应用。为了简洁起见,这里不再重复有关MMC的其他细节。应当注意,第二控制器510和第二换流器520可以通过MMC以任何合适的方式实现,并且这里省略其细节,以避免混淆本公开。Referring again to FIG. 3 , the
在一些实施例中,在接收到的第二三相AC分量在第一换流站120处被整形为梯形波的情况下,接收到的第二三相AC分量可以在第二换流站130处从梯形波重新整形为原始状态,即正弦波。在这些实施例中,第二换流器520还可以配置为将第二三相AC分量整形为正弦波。这样,在第二换流站130处恢复AC分量110。In some embodiments, where the received second three-phase AC component is shaped into a trapezoidal wave at the
因此,本公开的实施例还提供了电力传输的方法。下面将参考图6和图7对此进行描述。图6示出了根据本公开实施例的在发送站实现的电力传输的方法600的流程图。例如,可以在图1中的第一换流站120处执行方法600。为了讨论的目的,将参考图1描述方法600。应当理解,方法600还可以包括未示出的附加框和/或省略一些示出的框,并且本公开的范围在这方面不受限制。Accordingly, embodiments of the present disclosure also provide methods of power transmission. This will be described below with reference to FIGS. 6 and 7 . FIG. 6 shows a flowchart of a
如图所示,在框610,第一换流站120将第一频率的第一三相AC分量转换为第二频率的第二三相AC分量。在一些实施例中,第二频率小于第一频率且大于预定频率。在一些实施例中,第一频率可以是50Hz或60Hz,并且预定频率可以高于0.01Hz。As shown, at
在一些实施例中,第一换流站120可以通过至少一个MMC将第一三相AC分量转换为第二三相AC分量。在一些实施例中,第一换流站120可以通过M3C或Hexverter中的至少一者将第一三相AC分量转换为第二三相AC分量。In some embodiments, the
在一些实施例中,第一换流站120还可以将第二三相AC分量整形为梯形波。在一些实施例中,第一换流站120可以将第二三相AC分量整形为准方波。In some embodiments, the
在框620,第一换流站120使第二三相AC分量在AC传输线路(例如,图1中的线路150)中传输。这样,所有三极仍在AC电压下操作,但具有相对较低的频率(例如,低于50Hz或60Hz)。因此,消除了空间电荷累积的限制。方法600对应于关于装置200描述的上述操作,并且因此这里不重复其他细节。At
图7示出了根据本公开实施例的在接收站实现的电力传输的方法700的流程图。例如,可以在图1中的第二换流站130处执行方法700。为了讨论的目的,将参考图1描述方法700。应当理解,方法700还可以包括未示出的附加框和/或省略一些示出的框,并且本公开的范围在这方面不受限制。FIG. 7 shows a flowchart of a
如图7所示,在框710,第二换流站130使第二频率的第二三相AC分量从AC传输线路(例如,图1中的线路150)接收。As shown in FIG. 7, at
在框720,第二换流站130将第二三相AC分量转换为第一频率的第一三相AC分量。在一些实施例中,第二频率可以小于第一频率并且大于预定频率。在一些实施例中,第一频率可以是50Hz或60Hz,并且预定频率可以高于0.01Hz。At
在一些实施例中,第二换流站130可以通过至少一个MMC将第二三相AC分量转换为第一三相AC分量。在一些实施例中,第二换流站130可以通过M3C或Hexverter中的至少一者将第二三相AC分量转换为第一三相AC分量。In some embodiments, the
在一些实施例中,第二换流站130还可以将第一三相AC分量从梯形波整形为正弦波。这样,AC分量110在第二换流站130处恢复。方法700对应于关于装置500描述的上述操作,并且因此这里不重复其他细节。In some embodiments, the
此外,虽然按照特定顺序描述操作,但这不应理解为要求以所示的特定顺序或次序执行这些操作,或要求执行所有所示的操作来实现期望的结果。在某些情况下,多任务和并行处理可能是有利的。同样,尽管在上述讨论中包含了若干具体的实现细节,但这些细节不应被解释为对本公开范围的限制,而应被解释为对可能特定于特定实施例的特征的描述。在不同实施例的上下文中描述的某些特征也可以在单个实施例中组合实现。另一方面,在单个实施例的上下文中描述的各种特征也可以分别在多个实施例中或在任何合适的子组合中实现。Additionally, although operations are described in a particular order, this should not be construed as requiring that the operations be performed in the particular order or sequence shown, or that all operations shown be performed to achieve desirable results. In some cases, multitasking and parallel processing may be advantageous. Likewise, although the above discussion contains several specific implementation details, these should not be construed as limitations on the scope of the disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of different embodiments can also be implemented in combination in a single embodiment. On the other hand, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination.
尽管已经用特定于结构特征和/或方法行为的语言描述了主题,但应当理解,所附权利要求中定义的主题不一定限于上述特定特征或行为。相反,上述特定特征和动作被公开作为实现权利要求的示例形式。Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/073767 WO2021146995A1 (en) | 2020-01-22 | 2020-01-22 | Apparatus and method of power transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114930666A true CN114930666A (en) | 2022-08-19 |
Family
ID=76991973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080092877.1A Pending CN114930666A (en) | 2020-01-22 | 2020-01-22 | Apparatus and method for power transmission |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114930666A (en) |
WO (1) | WO2021146995A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106583A (en) * | 1994-02-03 | 1995-08-09 | 西安交通大学 | Low frequency power transmission method |
CN103606917B (en) * | 2013-11-25 | 2016-08-17 | 国家电网公司 | Non-sine ac transmission is used to promote the transmission system of urban distribution network conveying capacity |
JP6817563B2 (en) * | 2015-12-14 | 2021-01-20 | パナソニックIpマネジメント株式会社 | Power transmission system and controller |
CN108649577A (en) * | 2018-06-19 | 2018-10-12 | 全球能源互联网研究院有限公司 | A kind of transmission system |
CN108649576A (en) * | 2018-06-19 | 2018-10-12 | 全球能源互联网研究院有限公司 | A kind of transmission system |
CN209313433U (en) * | 2018-06-19 | 2019-08-27 | 全球能源互联网研究院有限公司 | a transmission system |
CN110112730A (en) * | 2019-05-15 | 2019-08-09 | 全球能源互联网研究院有限公司 | A kind of transmission system |
CN110137950A (en) * | 2019-05-15 | 2019-08-16 | 全球能源互联网研究院有限公司 | A kind of transmission system |
CN110148945B (en) * | 2019-05-15 | 2020-09-29 | 全球能源互联网研究院有限公司 | A grounding isolation device based on low frequency power transmission system |
CN110112731B (en) * | 2019-05-15 | 2024-02-13 | 全球能源互联网研究院有限公司 | Power transmission system |
CN110148963A (en) * | 2019-05-15 | 2019-08-20 | 全球能源互联网研究院有限公司 | A kind of more converting link AC-AC frequency converters based on energy storage |
-
2020
- 2020-01-22 WO PCT/CN2020/073767 patent/WO2021146995A1/en active Application Filing
- 2020-01-22 CN CN202080092877.1A patent/CN114930666A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2021146995A1 (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3082212B1 (en) | Tripolar flexible direct-current power transmission system and method | |
US20220348096A1 (en) | Systems, apparatus and methods for electric vehicle charging via a power conversion system | |
US9520801B1 (en) | Method and system for a gas tube switch-based voltage source high voltage direct current transmission system | |
US9209679B2 (en) | Method and apparatus for transferring power between AC and DC power systems | |
CN102801177A (en) | Methods and systems for direct current power transmission | |
CN103311947A (en) | Tri-pole direct current transmission system topology structure based on modular multi-level converter (MMC) | |
CN105247776A (en) | Five-level pv inverter based on a multi-state switching cell | |
US11648844B2 (en) | Systems, apparatus and methods for electric vehicle charging via a power conversion system | |
CN112202353B (en) | Double-fed frequency converter and modulation method thereof | |
US9748857B2 (en) | Method and system for a gas tube-based current source high voltage direct current transmission system | |
CN107947222A (en) | Direct current fan power transmission system | |
CN115864621A (en) | A kind of uninterruptible power supply UPS and power supply system | |
EP2993777B1 (en) | Multilevel converter | |
CN111669061B (en) | Anti-system of dragging and wind generating set | |
Hou et al. | Family of hybrid dc-dc converters for connecting dc current bus and dc voltage bus | |
EP2536018B1 (en) | DC-AC converter with a plurality of inverters connected in parallel, and method | |
US5602725A (en) | Special purpose power control devices using 3-phase PWM converters for three phase AC power | |
CN105140961A (en) | Hybrid direct-current power transmission device used for new energy grid connection and power transmission method thereof | |
CN114930666A (en) | Apparatus and method for power transmission | |
WO2023077741A1 (en) | Photovoltaic system and control method | |
CN108649606B (en) | On-grid and off-grid switching device | |
CN116131241A (en) | A DC ice-melting power supply system based on switch matrix control multi-phase winding wide range voltage regulation | |
CN113120006B (en) | Electric transmission system, variable current control method and electric locomotive | |
CN114726228A (en) | A solid state transformer and power supply equipment | |
CN105356495B (en) | A kind of DC transmission system transmitted electricity using three-phase alternating current cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240115 Address after: Zurich, SUI Applicant after: Hitachi Energy Co.,Ltd. Address before: Swiss Baden Applicant before: Hitachi energy Switzerland AG |
|
TA01 | Transfer of patent application right |