CN114928611A - 一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 - Google Patents
一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 Download PDFInfo
- Publication number
- CN114928611A CN114928611A CN202210527281.0A CN202210527281A CN114928611A CN 114928611 A CN114928611 A CN 114928611A CN 202210527281 A CN202210527281 A CN 202210527281A CN 114928611 A CN114928611 A CN 114928611A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- task
- calculation
- vehicles
- computing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005457 optimization Methods 0.000 title claims abstract description 20
- 238000005265 energy consumption Methods 0.000 claims abstract description 41
- 230000006855 networking Effects 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims description 23
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 abstract description 10
- 230000007246 mechanism Effects 0.000 description 16
- 230000006870 function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 108700026140 MAC combination Proteins 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明属于车联网计算领域,具体涉及一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,包括当车辆的计算任务的输入数据大小满足第一不等式,则将车辆划分到第一集合中,第一集合中的数据在本地执行计算任务;当车辆的计算任务的输入数据大小满足第二不等式,则将车辆划分到第二集合中,第二集合中的数据卸载至远程云服务器执行;若不满足前两个不等式则计算车辆在不同卸载情况下执行任务的时延和能效,并计算系统效用;以最大化系统效用构建目标函数,求解目标函数在满足最大容忍时延和资源限制下的卸载策略;本发明在不损失性能的情况下大大降低算法复杂度,且在降低计算时间和系统能耗方面,相比于现有方案具有更好的性能。
Description
技术领域
本发明属于车联网计算领域,具体涉及一种基于IEEE802.11p协议的车联网节能计算卸载优化方法。
背景技术
无线车载自组网络(Wireless Vehicular Ad-hoc Network,VANET)由车辆节点组成,节点间以相互协作的方式建立网络,能够实时感知周围交通环境并进行实时交互,IEEE802.11p MAC协议的作用在于控制VANET中的节点如何使用有限的信道资源,MAC协议的有效性也直接决定了VANET中的信道利用率、时延和使用公平性等性能。车联网是物联网(IoT)技术在智能交通领域里的典型应用场景,基于车联网技术能够实现车辆与基础设施、通信设备、用户的实时互联通信,由此一系列计算密集型和时延敏感型应用兴起,如增强现实,自然语言处理,自动驾驶,在车辆密集场景中这些相关应用通常需要高速的数据传输技术,大量的计算资源,先进的计算、储存技术来完成复杂数据的计算和处理。然而,受限于车辆自身的计算能力有限,车辆通常难以在本地执行这些严格的实时性任务,计算卸载(Offloading)是新兴边缘计算和物联网的关键技术,且被视为移动车辆资源有限的有效解决方案。通过在移动车辆附近提供有限的计算能力,移动边缘计算可以部分缓解繁重的计算需求。
在车联网系统网络中,新型的智能车辆可以通过将计算任务卸载到其他节点,来解决车辆本地计算资源有限的问题。车辆与基础设施(vehicle-to-infrastructure,V2I)以及车辆与云(vehicle-to-cloud,V2C)之间的通信技术和智能交通系统(intelligenttraffic system ITS)为车辆用户提供了一个可以实现计算密集型与时延敏感型应用的任务处理平台。远程云服务器具有高性能计算能力,但长距离的数据传输和回程可能会导致计算任务无法接受的延迟和大量能源消耗等问题。MEC服务器将计算下沉到路边设备单元(RSU),相较于远程云服务器,传输距离更短,能耗更低。然而,MEC服务器的计算资源有限,如果当前RSU覆盖范围内有卸载计算任务需求的车辆过多,也会导致系统时延大大增加,造成MEC服务器过载的现象,导致MEC服务器的计算资源。
从目前国内外研究现状来看,国内外专家和学者在有效利用车辆计算资源方面均进行了一些研究,虽然尽可能充分利用了车辆本地资源,但仍然无法满足时延敏感型任务的计算要求。此外,对多车并发情况同时考虑时延和能量的研究较少,计算平台之间的协作也没有得到充分利用。MEC服务器通常被视为独立的计算资源,而忽略了服务器之间的资源共享。因此,优化计算卸载策略,合理利用各协作平台计算资源,最小化系统能耗是非常有必要的。
发明内容
有鉴于此,本发明提出一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,包括以下步骤:
构建卸载模型,在卸载模型中,道路一侧部署路边单元,每个路边单元配备一个MEC服务器,车辆与路边单元的无线传输采用IEEE 802.11p车辆网络场景标准,且路边单元通过光纤有线链路连接到MEC和远程云服务器;
当车辆的计算任务的输入数据大小满足第一不等式,则将车辆划分到第一集合中,第一集合中的数据在本地执行计算任务;
当车辆的计算任务的输入数据大小满足第二不等式,则将车辆划分到第二集合中,第二集合中的数据卸载至远程云服务器执行;
若两个不等式均无法满足,则将车辆划分到第三个集合中;
针对第三个集合中的车辆,计算车辆在不同卸载情况下执行任务的时延和能效,并以此计算系统效用;
以最大化系统效用构建目标函数,求解目标函数在满足最大容忍时延和资源限制下的卸载策略。
进一步的,以最大化系统效用构建目标函数,表示为:
其中,S={si,j}为车辆选择决策向量,当j=0时表示车辆选择在本地执行计算任务,当j=-1时表示车辆选择将计算任务卸载到远程云服务器上,当时表示车辆选择将计算任务卸载到配置在第j个路边单元的MEC服务器上;为MEC服务器的计算资源向量,为车辆本地计算资源向量;为车辆的集合,表示为N为车辆的数量;ui表示车辆i卸载任务时的系统效用;Ti表示车辆i卸载任务时的总时延;为车辆i的卸载任务的最大容忍时延;fi loc为车辆i本地的计算资源;为MEC服务器的集合,表示为M为MEC服务器的数量;为第j个MEC服务器的资源总量。
进一步的,在车辆数量为N的系统中,系统总效用表示为:
其中,表示车辆总数为N时系统总效用;为当前车辆所属集合内所有车辆计算任务最大时延的均值,为当前车辆所属集合内所有车辆计算任务能耗的均值;θ、μ为均衡因子,用于均衡时延和能耗两个不同的单位取值;为远端云服务器计算任务的时延;为本地计算任务的时延;为第j个路边单元上的MEC服务器计算任务的时延;为远端云服务器计算任务的能耗;为本地计算任务的能耗;为第j个路边单元上的MEC服务器计算任务的能耗;α为时延权重系数;β为能耗权重系数。
进一步的,本地计算任务的时延和本地计算任务的能耗表示为:
其中,ci表示完成输入数据大小为di的任务所需要的计算资源;κ=10-28为车载CPU计算参数。
进一步的,第j个路边单元上的MEC服务器计算任务的时延和第j个路边单元上的MEC服务器计算任务的能耗表示为:
进一步的,远端云服务器计算任务的时延和远端云服务器计算任务的能耗表示为:
进一步的,第一不等式表示为:
其中,为路边单元j覆盖范围内可将计算任务卸载到MEC服务器的最大车辆数;fi loc为车辆i本地的计算资源;表示MEC服务器j分配给车辆i的计算资源大小;di表示车辆i的计算任务的输入数据大小;表示计算任务从车辆i传输到MEC服务器j的传输时间。
进一步的,第二不等式表示为:
本发明针对无线车载自组网络中车辆本地计算资源受限,无法完成计算密集型以及时延敏感型任务的问题,提出了一种联合优化时延和能耗的协同MEC服务器和远程云服务器选择的卸载算法,在不损失性能的情况下大大降低算法复杂度,且在降低计算时间和系统能耗方面,相比于现有方案具有更好的性能,当MEC服务器的计算资源减少,计算密集型任务数量增加时,这种优势更加明显;另外,本发明基于IEEE802.11p协议构建时延计算模型、能耗计算模型、系统网络架构,根据系统当前的能耗以及部署资源,对计算任务进行分类,并使用所有计算资源来提高系统的总体利用率。
附图说明
图1为本发明的一种基于IEEE802.11p协议的车联网节能计算卸载优化方法流程图;
图2为本发明的系统模型;
图3为不同算法下,车辆总数对于系统总效用的影响;
图4为不同算法下,车辆总数对系统总时延的影响;
图5为不同算法下,MEC服务器资源大小对系统总效用的影响。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,包括以下步骤:
构建卸载模型,在卸载模型中,道路一侧部署路边单元,每个路边单元配备一个MEC服务器,车辆与路边单元的无线传输采用IEEE 802.11p车辆网络场景标准,且路边单元通过光纤有线链路连接到MEC和远程云服务器;
当车辆的计算任务的输入数据大小满足第一不等式,则将车辆划分到第一集合中,第一集合中的数据在本地执行计算任务;
当车辆的计算任务的输入数据大小满足第二不等式,则将车辆划分到第二集合中,第二集合中的数据卸载至远程云服务器执行;
计算车辆在不同卸载情况下执行任务的时延和能效,并以此计算系统效用;
以最大化系统效用构建目标函数,求解目标函数在满足最大容忍时延和资源限制下的卸载策略。
如图1所示,本发明提出一种基于IEEE802.11p协议的车联网节能计算卸载优化方法来解决车辆本地计算资源受限的问题,通过优化卸载决策,来降低计算任务执行时延以及系统总能耗,从而获得更高的系统效用,包括以下步骤:
S1:在多车辆并发计算场景下,根据车辆计算任务大小、最大容忍时延、基于车载单元的车辆本地计算能力、当前系统中MEC服务器可用资源以及远程云服务器回传时延对计算任务进行分类。
在本发明中,系统模型如图2所示,在该模型中,道路一侧部署路边单元RSU,每个RSU都配备一个MEC服务器,车辆与RSU的无线传输采用IEEE802.11p车辆网络场景标准,此外,这些RSU通过光纤有线链路连接到MEC和远程云服务器。
根据系统当前的能耗以及部署资源,对计算任务进行分类,并使用所有计算资源来提高系统的总体利用率,分类过程包括:
其中,是RSU j覆盖范围内可将计算任务卸载到MEC服务器的最大车辆数;fi loc为车辆i本地的计算资源;表示MEC服务器j分配给车辆i的计算资源大小;表示计算任务从车辆i传输到MEC服务器j的传输时间
S2:基于IEEE802.11p协议构建时延计算模型、能耗计算模型、系统网络架构。
基于IEEE802.11p协议构建系统网络架构:基于IEEE 802.11p标准的车载无线技术更适合于动态VANET,物理层采用OFDM技术,可提供高达27MB/s的数据速率,通信距离在300米到1000米之间。
其中,Nj为选择将计算任务卸载至MEC服务器j的车辆总数;Pe是车辆将计算任务;Pe为车辆将计算任务卸载至MEC服务器或者云服务器的概率;Φ=H+SIFS+δ+ACK+AIFS+δ+RTS+SIFS+δ+CTS+SIFS+δ,是MAC协议特定的,H=PHYhead+MAChead为数据包头开销;SIFS是短帧间隔;ACK是确认帧;AIFS是仲裁帧间间隔;δ是MAC协议特定的传播延迟;RTS为请求发送帧;CTS确认发送帧;
其中,σ为时间段的持续时间。
其中,ci=χ·di,表示完成输入数据大小为di的任务所需要的计算资源,χ为描述ci和di的关系系数;fi loc为车辆i本地的计算资源,由放置在车上的车载单元(OBU)决定;κ=10-28为车载CPU计算参数;α为时延权重系数,β为能耗权重系数;为当前车辆所属集合内所有车辆计算任务最大时延的均值,为当前车辆所属集合内所有车辆计算任务能耗的均值
若车辆i选择RSU j上的MEC服务器作为目标卸载服务器,并将计算任务卸载到该服务器,在该卸载策略下,即车辆i选择在RSU j上的MEC服务器执行卸载任务,则第j个路边单元上的MEC服务器计算任务的时延能耗车辆效用为分别表示为:
S3:所述建立满足最大时延容忍且系统能耗最小的最大化系统效用的约束优化问题。
本实施例定义sij∈{0,1}作为选择决策变量,当车辆选择在本地执行计算任务时,si,0=1,j=1;当车辆选择将计算任务卸载到配置在RSU j的MEC服务器上时,si,j=1,当车辆选择将计算任务卸载到远程与服务器上时,si,-1=1,j=-1;
其中S={si,j}为车辆选择决策向量,为MEC服务器的计算资源向量,为车辆本地计算资源向量;C1保证任务处理延迟不能超过车辆允许的最大延迟C2可用的车辆本地计算资源,这是非负的;约束条件C3和C4说明每辆车将其任务卸载到一个且仅一个MEC服务器。C5确保分配给在RSU j上选择MEC服务器的所有任务的计算资源总和不超过此MEC服务器的总计算容量。
下面结合仿真结果对本发明的应用效果作详细的描述。
根据实际的环境需求以及IEEE 802.11p协议标准,在Python中对其进行建模仿真。考虑系统建立在单向道路上,其中四个具有相同覆盖率的RSUS位于总长度为1000米的道路上。每个RSU均配备MEC服务器,且每个MEC的初始总计算资源为20GHz。为了评估所提方法性能,将本发明方法与其他几种方法进行比较,对比的方法包括:
所有计算任务本地执行机制(ELC,The entire local computation scheme);
所有计算任务卸载到MEC服务器执行机制(EMC,The entire MEC computationscheme);
所有计算任务卸载到远程云服务器执行机制(ERCC,The entire remote cloudcomputation scheme)。
表1仿真参数
图3表示在不同算法下,车辆总数对于系统总效用的影响,从仿真结果可以看到,在所有机制中,随着车辆数增加,系统的总效用都会增加,不过总效用增长的速率也会随之放缓,简而言之,车辆数目越多,系统总效用增长越慢。
本发明提出的一种基于IEEE802.11p协议的车联网节能计算卸载优化方法(简称CCOSEO),通过协同利用车辆本地,MEC服务器以及远程云服务器的计算资源,实现多方资源的充分利用,有效提高系统效用,特别是在车辆密集场景中,系统性能优势更为突出。
对于EMC机制,当车流量变大,道路上的车辆变得密集时,MEC服务器可分配给RSUj覆盖范围内每个车辆的计算资源变小,加之当车辆选择将计算任务卸载到MEC服务器时,因传输产生的额外的时延和能耗是无法避免的,而车辆分配到的少量计算资源难以在任务可容忍时延要求内完成计算工作,因而,当系统内的车辆过于密集时,在EMC机制下获得的系统效用甚至要低于所有机制。
对于ELC机制而言,车辆本地的计算资源非常有限,当计算任务所需的计算资源较小时,车辆可以获得较高的计算效用,而面对数据量大的计算任务时,是无法在时延要求内完成计算任务的,因而系统总效用增长放缓。
对于ERCC机制,将计算任务卸载到远程云服务器所产生的额外的时延和能耗远高于同等计算量下将计算任务卸载到MEC服务器的,即使远程云服务器有大量的计算资源可使计算任务的计算时延忽略不计,仅仅适用于MEC计算资源紧缺,且车辆计算任务量巨大的情况。
图4为不同算法下,车辆总数对系统总时延的影响,时延情况是衡量系统可靠性的重要指标,通过调节权重参数让α,β,可改变系统效用函数设定。从仿真结果可以看到,即使车辆数目不断增多,本发明提出的一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,都能够使得系统中车辆执行计算任务的总时延最低。对于ELC机制和ERCC机制,车辆自身以及远程云服务可提供的计算资源相对稳定,系统总时延增长的速率不会因为车辆数目增加而变化。当系统内车辆变得密集后,EMC机制同样会因为MEC服务器可分配给RSU覆盖范围内车辆的计算资源变少,使得整个系统的总时延随着车辆数上升而增加,且增长速率也会越来越快。
图5为不同算法下,MEC服务器资源大小对系统总效用的影响,从仿真结果可以看到,无论MEC服务器可以提供多少计算资源,本发明提出的一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,都能获得最高的系统效用,本发明提出的方法协同利用车辆本地,MEC服务器以及远程云服务器的计算资源,以避免MEC服务器过载的情况,实现最大效用的利用MEC服务器、远程云服务器以及车辆自身的计算资源。对于ELC机制和ERCC机制,在这两个机制中不考虑将计算任务卸载给MEC服务器,因而系统效用保持不变。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (8)
1.一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,其特征在于,包括以下步骤:
构建卸载模型,在卸载模型中,道路一侧部署路边单元,每个路边单元配备一个MEC服务器,车辆与路边单元的无线传输采用IEEE 802.11p车辆网络场景标准,且路边单元通过光纤有线链路连接到MEC和远程云服务器;
当车辆的计算任务的输入数据大小满足第一不等式,则将车辆划分到第一集合中,第一集合中的数据在本地执行计算任务;
当车辆的计算任务的输入数据大小满足第二不等式,则将车辆划分到第二集合中,第二集合中的数据卸载至远程云服务器执行;
若两个不等式均无法满足,则将车辆划分到第三个集合中;
针对第三个集合中的车辆,计算车辆在不同卸载情况下执行任务的时延和能效,并以此计算系统效用;
以最大化系统效用构建目标函数,求解目标函数在满足最大容忍时延和资源限制下的卸载策略。
2.根据权利要求1所述的一种基于IEEE802.11p协议的车联网节能计算卸载优化方法,其特征在于,以最大化系统效用构建目标函数,表示为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210527281.0A CN114928611B (zh) | 2022-05-16 | 2022-05-16 | 一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210527281.0A CN114928611B (zh) | 2022-05-16 | 2022-05-16 | 一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114928611A true CN114928611A (zh) | 2022-08-19 |
CN114928611B CN114928611B (zh) | 2023-07-25 |
Family
ID=82808234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210527281.0A Active CN114928611B (zh) | 2022-05-16 | 2022-05-16 | 一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114928611B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115412607A (zh) * | 2022-09-15 | 2022-11-29 | 桂林理工大学 | 一种基于路边停车协同边缘计算的任务卸载方法 |
CN115484261A (zh) * | 2022-08-25 | 2022-12-16 | 南京邮电大学 | 一种无人机辅助的车辆边缘计算协同任务卸载方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109656703A (zh) * | 2018-12-19 | 2019-04-19 | 重庆邮电大学 | 一种移动边缘计算辅助车辆任务卸载方法 |
CN109951821A (zh) * | 2019-02-26 | 2019-06-28 | 重庆邮电大学 | 基于移动边缘计算的最小化车辆能耗任务卸载方案 |
CN110493360A (zh) * | 2019-09-26 | 2019-11-22 | 重庆大学 | 多服务器下降低系统能耗的移动边缘计算卸载方法 |
CN111818168A (zh) * | 2020-06-19 | 2020-10-23 | 重庆邮电大学 | 一种车联网中自适应联合计算卸载与资源分配方法 |
CN111836283A (zh) * | 2020-07-03 | 2020-10-27 | 重庆邮电大学 | 一种基于mec多服务器的车联网资源分配方法 |
US20210266834A1 (en) * | 2020-02-25 | 2021-08-26 | South China University Of Technology | METHOD OF MULTI-ACCESS EDGE COMPUTING TASK OFFLOADING BASED ON D2D IN INTERNET OF VEHICLES (IoV) ENVIRONMENT |
CN113641417A (zh) * | 2021-06-29 | 2021-11-12 | 南京邮电大学 | 一种基于分支定界法的车辆安全任务卸载方法 |
CN113691956A (zh) * | 2021-04-13 | 2021-11-23 | 重庆邮电大学 | 基于sdn和mec的车联网移动性管理方法 |
CN114143346A (zh) * | 2021-11-29 | 2022-03-04 | 广东工业大学 | 一种车联网任务卸载和服务缓存的联合优化方法及系统 |
-
2022
- 2022-05-16 CN CN202210527281.0A patent/CN114928611B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109656703A (zh) * | 2018-12-19 | 2019-04-19 | 重庆邮电大学 | 一种移动边缘计算辅助车辆任务卸载方法 |
CN109951821A (zh) * | 2019-02-26 | 2019-06-28 | 重庆邮电大学 | 基于移动边缘计算的最小化车辆能耗任务卸载方案 |
CN110493360A (zh) * | 2019-09-26 | 2019-11-22 | 重庆大学 | 多服务器下降低系统能耗的移动边缘计算卸载方法 |
US20210266834A1 (en) * | 2020-02-25 | 2021-08-26 | South China University Of Technology | METHOD OF MULTI-ACCESS EDGE COMPUTING TASK OFFLOADING BASED ON D2D IN INTERNET OF VEHICLES (IoV) ENVIRONMENT |
CN111818168A (zh) * | 2020-06-19 | 2020-10-23 | 重庆邮电大学 | 一种车联网中自适应联合计算卸载与资源分配方法 |
CN111836283A (zh) * | 2020-07-03 | 2020-10-27 | 重庆邮电大学 | 一种基于mec多服务器的车联网资源分配方法 |
CN113691956A (zh) * | 2021-04-13 | 2021-11-23 | 重庆邮电大学 | 基于sdn和mec的车联网移动性管理方法 |
CN113641417A (zh) * | 2021-06-29 | 2021-11-12 | 南京邮电大学 | 一种基于分支定界法的车辆安全任务卸载方法 |
CN114143346A (zh) * | 2021-11-29 | 2022-03-04 | 广东工业大学 | 一种车联网任务卸载和服务缓存的联合优化方法及系统 |
Non-Patent Citations (2)
Title |
---|
吴柳青;朱晓荣;: "基于边-端协同的任务卸载资源分配联合优化算法", 电信科学, no. 03 * |
王汝言;梁颖杰;崔亚平;: "车辆网络多平台卸载智能资源分配算法", 电子与信息学报, no. 01 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115484261A (zh) * | 2022-08-25 | 2022-12-16 | 南京邮电大学 | 一种无人机辅助的车辆边缘计算协同任务卸载方法 |
CN115412607A (zh) * | 2022-09-15 | 2022-11-29 | 桂林理工大学 | 一种基于路边停车协同边缘计算的任务卸载方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114928611B (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110198278B (zh) | 一种车联网云端和边缘联合任务调度的Lyapunov优化方法 | |
CN112737842B (zh) | 空地一体化车联网中基于最小化时延的任务安全卸载方法 | |
CN110650457B (zh) | 一种车联网中任务卸载计算成本与时延的联合优化方法 | |
CN111586696A (zh) | 一种基于多智能体架构强化学习的资源分配及卸载决策方法 | |
CN114928611B (zh) | 一种基于IEEE802.11p协议的车联网节能计算卸载优化方法 | |
CN112737837A (zh) | 一种高动态网络拓扑下无人机群带宽资源分配方法 | |
CN110928658A (zh) | 一种车边云协同架构的协同任务迁移系统及算法 | |
CN112188627B (zh) | 一种基于状态预测的动态资源分配策略 | |
CN111132083B (zh) | 一种车辆编队模式下基于noma的分布式资源分配方法 | |
Wang et al. | Dynamic offloading scheduling scheme for MEC-enabled vehicular networks | |
CN113709249B (zh) | 辅助驾驶业务安全均衡卸载方法及系统 | |
CN112860429A (zh) | 一种移动边缘计算系统中任务卸载的成本效率优化系统及方法 | |
CN115297171A (zh) | 一种蜂窝车联网分级决策的边缘计算卸载方法及系统 | |
Bute et al. | A collaborative task offloading scheme in vehicular edge computing | |
Ouyang | Task offloading algorithm of vehicle edge computing environment based on Dueling-DQN | |
CN115065683A (zh) | 基于车辆聚类的车辆边缘网络任务分配卸载方法 | |
CN116405569A (zh) | 基于车辆和边缘计算服务器的任务卸载匹配方法及系统 | |
CN114143814B (zh) | 一种基于异构边缘云架构的多任务卸载方法及系统 | |
CN111611063A (zh) | 基于802.11p的云感知移动雾计算系统任务卸载方法 | |
CN113783959B (zh) | 一种车联网联合优化计算任务卸载比率和资源分配方法 | |
Hazarika et al. | Multi-agent DRL-based computation offloading in multiple RIS-aided IoV networks | |
CN115964178B (zh) | 一种车联网用户计算任务调度方法、装置及边缘服务网络 | |
CN115118783A (zh) | 基于异构通信技术超可靠低时延强化学习的任务卸载方法 | |
CN115134364A (zh) | 基于o-ran物联网系统的节能计算卸载系统及方法 | |
CN108810856B (zh) | 一种m2m终端业务优化控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |