CN114925938A - 一种基于自适应svm模型的电能表运行状态预测方法、装置 - Google Patents
一种基于自适应svm模型的电能表运行状态预测方法、装置 Download PDFInfo
- Publication number
- CN114925938A CN114925938A CN202210842783.2A CN202210842783A CN114925938A CN 114925938 A CN114925938 A CN 114925938A CN 202210842783 A CN202210842783 A CN 202210842783A CN 114925938 A CN114925938 A CN 114925938A
- Authority
- CN
- China
- Prior art keywords
- electric energy
- energy meter
- adaptive
- svm model
- class
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000002159 abnormal effect Effects 0.000 claims abstract description 64
- 230000003044 adaptive effect Effects 0.000 claims abstract description 34
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 29
- 238000005457 optimization Methods 0.000 claims abstract description 27
- 238000013528 artificial neural network Methods 0.000 claims abstract description 13
- 238000010801 machine learning Methods 0.000 claims abstract description 13
- 238000012423 maintenance Methods 0.000 claims abstract description 11
- 230000006870 function Effects 0.000 claims description 33
- 238000004590 computer program Methods 0.000 claims description 12
- 239000013598 vector Substances 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 239000002775 capsule Substances 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- 238000013145 classification model Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 241000251555 Tunicata Species 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000003066 decision tree Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002015 leaf growth Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Economics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Probability & Statistics with Applications (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210842783.2A CN114925938B (zh) | 2022-07-18 | 2022-07-18 | 一种基于自适应svm模型的电能表运行状态预测方法、装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210842783.2A CN114925938B (zh) | 2022-07-18 | 2022-07-18 | 一种基于自适应svm模型的电能表运行状态预测方法、装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114925938A true CN114925938A (zh) | 2022-08-19 |
CN114925938B CN114925938B (zh) | 2022-10-04 |
Family
ID=82816004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210842783.2A Active CN114925938B (zh) | 2022-07-18 | 2022-07-18 | 一种基于自适应svm模型的电能表运行状态预测方法、装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114925938B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115632443A (zh) * | 2022-11-09 | 2023-01-20 | 淮阴工学院 | 一种基于黑寡妇算法的能源监测与优化调控系统与方法 |
CN115936166A (zh) * | 2022-09-28 | 2023-04-07 | 海南电网有限责任公司 | 一种电能表检定误差分析预测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030033194A1 (en) * | 2001-09-05 | 2003-02-13 | Pavilion Technologies, Inc. | System and method for on-line training of a non-linear model for use in electronic commerce |
CN110348615A (zh) * | 2019-06-27 | 2019-10-18 | 西安工程大学 | 基于蚁群优化支持向量机的电缆线路故障概率预测方法 |
CN110929918A (zh) * | 2019-10-29 | 2020-03-27 | 国网重庆市电力公司南岸供电分公司 | 一种基于CNN和LightGBM的10kV馈线故障预测方法 |
CN111751650A (zh) * | 2020-07-06 | 2020-10-09 | 重庆大学 | 非侵入式家庭用电设备在线监测系统与故障辨识方法 |
US20200342346A1 (en) * | 2019-04-24 | 2020-10-29 | Cisco Technology, Inc. | Adaptive threshold selection for sd-wan tunnel failure prediction |
CN113011530A (zh) * | 2021-04-29 | 2021-06-22 | 国网新疆电力有限公司营销服务中心(资金集约中心、计量中心) | 一种基于多分类器融合的智能电表故障预测方法 |
-
2022
- 2022-07-18 CN CN202210842783.2A patent/CN114925938B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030033194A1 (en) * | 2001-09-05 | 2003-02-13 | Pavilion Technologies, Inc. | System and method for on-line training of a non-linear model for use in electronic commerce |
US20200342346A1 (en) * | 2019-04-24 | 2020-10-29 | Cisco Technology, Inc. | Adaptive threshold selection for sd-wan tunnel failure prediction |
CN110348615A (zh) * | 2019-06-27 | 2019-10-18 | 西安工程大学 | 基于蚁群优化支持向量机的电缆线路故障概率预测方法 |
CN110929918A (zh) * | 2019-10-29 | 2020-03-27 | 国网重庆市电力公司南岸供电分公司 | 一种基于CNN和LightGBM的10kV馈线故障预测方法 |
CN111751650A (zh) * | 2020-07-06 | 2020-10-09 | 重庆大学 | 非侵入式家庭用电设备在线监测系统与故障辨识方法 |
CN113011530A (zh) * | 2021-04-29 | 2021-06-22 | 国网新疆电力有限公司营销服务中心(资金集约中心、计量中心) | 一种基于多分类器融合的智能电表故障预测方法 |
Non-Patent Citations (5)
Title |
---|
HONGLING XU等: "Two-stage prediction of machinery fault trend based on deep learning for time series analysis", 《DIGITAL SIGNAL PROCESSING》 * |
JINWOONG PARK等: ""A two-stage multistep-Ahead Electricity Load Forecasting Scheme Based on LightGBM and Attention-BiLSTM"", 《SENSORS》 * |
XIANGHAO ZHAN等: "An electric power forecasting method based on dual time series attention mechanism neural network structure", 《2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALIRY,RELIABILITY AND SECURITY COMPANION》 * |
崔宇: "基于深度学习的变压器故障诊断与预测", 《中国优秀硕士论文库 工程科技Ⅱ辑》 * |
杜京义: "基于核算法的故障智能诊断理论及方法研究", 《中国优秀博士论文 工程科技II辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115936166A (zh) * | 2022-09-28 | 2023-04-07 | 海南电网有限责任公司 | 一种电能表检定误差分析预测方法 |
CN115936166B (zh) * | 2022-09-28 | 2024-06-04 | 海南电网有限责任公司 | 一种电能表检定误差分析预测方法 |
CN115632443A (zh) * | 2022-11-09 | 2023-01-20 | 淮阴工学院 | 一种基于黑寡妇算法的能源监测与优化调控系统与方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114925938B (zh) | 2022-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111950596B (zh) | 一种用于神经网络的训练方法以及相关设备 | |
US20200265301A1 (en) | Incremental training of machine learning tools | |
CN114925938B (zh) | 一种基于自适应svm模型的电能表运行状态预测方法、装置 | |
US20090043715A1 (en) | Method to Continuously Diagnose and Model Changes of Real-Valued Streaming Variables | |
CN112052948B (zh) | 一种网络模型压缩方法、装置、存储介质和电子设备 | |
CN110138595A (zh) | 动态加权网络的时间链路预测方法、装置、设备及介质 | |
CN106709588B (zh) | 预测模型构建方法和设备以及实时预测方法和设备 | |
US20220067588A1 (en) | Transforming a trained artificial intelligence model into a trustworthy artificial intelligence model | |
CN112699998B (zh) | 一种时间序列预测方法、装置、电子设备及可读存储介质 | |
CN111382930B (zh) | 一种面向时序数据的风险预测方法及系统 | |
Khodaverdian et al. | An energy aware resource allocation based on combination of CNN and GRU for virtual machine selection | |
CN111126576A (zh) | 一种深度学习的新型训练策略 | |
CN114298050A (zh) | 模型的训练方法、实体关系抽取方法、装置、介质、设备 | |
CN111582315B (zh) | 样本数据处理方法、装置及电子设备 | |
CN113986674A (zh) | 时序数据的异常检测方法、装置和电子设备 | |
CN110795736B (zh) | 一种基于svm决策树的恶意安卓软件检测方法 | |
Lu et al. | Image classification and identification for rice leaf diseases based on improved WOACW_SimpleNet | |
CN114897085A (zh) | 一种基于封闭子图链路预测的聚类方法及计算机设备 | |
Liu et al. | An RBF neural network based on improved black widow optimization algorithm for classification and regression problems | |
CN111582313B (zh) | 样本数据生成方法、装置及电子设备 | |
CN116245259B (zh) | 基于深度特征选择的光伏发电预测方法、装置和电子设备 | |
Alam | Recurrent neural networks in electricity load forecasting | |
Yik et al. | NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems | |
Khodaverdian et al. | Combination of convolutional neural network and gated recurrent unit for energy aware resource allocation | |
JP6233432B2 (ja) | 混合モデルの選択方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: Room 1803-1805, building 2-07, guanggu.core center, 303 Guanggu Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000 Patentee after: Wuhan Gelanruo Intelligent Technology Co.,Ltd. Address before: Room 1803-1805, building 2-07, guanggu.core center, 303 Guanggu Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000 Patentee before: WUHAN GLORY ROAD INTELLIGENT TECHNOLOGY Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A method and device for predicting the operation state of electric energy meter based on adaptive SVM model Effective date of registration: 20221230 Granted publication date: 20221004 Pledgee: Bank of China Limited Wuhan Donghu New Technology Development Zone Branch Pledgor: Wuhan Gelanruo Intelligent Technology Co.,Ltd. Registration number: Y2022420000404 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20221004 Pledgee: Bank of China Limited Wuhan Donghu New Technology Development Zone Branch Pledgor: Wuhan Gelanruo Intelligent Technology Co.,Ltd. Registration number: Y2022420000404 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right |