CN114925328A - 一种燃煤机组配煤掺烧计算方法及系统 - Google Patents

一种燃煤机组配煤掺烧计算方法及系统 Download PDF

Info

Publication number
CN114925328A
CN114925328A CN202210421889.5A CN202210421889A CN114925328A CN 114925328 A CN114925328 A CN 114925328A CN 202210421889 A CN202210421889 A CN 202210421889A CN 114925328 A CN114925328 A CN 114925328A
Authority
CN
China
Prior art keywords
coal
blending
unit
price
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210421889.5A
Other languages
English (en)
Inventor
王博
吴智群
李崇晟
杜保华
王大鹏
范奇
柴胜凯
徐红伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Xian TPRI Power Station Information Technology Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Xian TPRI Power Station Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd, Xian TPRI Power Station Information Technology Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202210421889.5A priority Critical patent/CN114925328A/zh
Publication of CN114925328A publication Critical patent/CN114925328A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Finance (AREA)
  • Tourism & Hospitality (AREA)
  • Accounting & Taxation (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Computational Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Algebra (AREA)
  • Public Health (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明公开了一种燃煤机组配煤掺烧计算方法及系统,包括获取可采购煤种基础数据,建立煤种数据库;采集电网调度曲线和机组运行特征参数;采集碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;确立配煤掺烧优化算法的约束条件;建立配煤掺烧成本最优化模型,计算最优化配煤掺烧方案并进行展示。本发明通过煤种数据录入模块、数据采集通讯模块、约束条件配置模块、最优化计算模块、掺烧方案显示模块,可以实时根据电网调度情况计算得到燃煤机组配煤掺烧成本最优化方案,为电厂运行人员提升机组运行经济性提供准确、可靠地数据支撑。

Description

一种燃煤机组配煤掺烧计算方法及系统
技术领域
本发明属于动力工程行业,具体涉及一种燃煤机组配煤掺烧计算方法及系统。
背景技术
近两年随着燃煤价格不断攀升,燃煤电厂面临的经营成本压力越来越大,同时由于国内碳交易市场的运行,燃煤电厂也迎来了巨大的碳成本压力。目前燃煤电厂配煤掺烧方案均没有考虑不同掺烧形式导致的碳排放成本变化,致使掺烧方案经济性大大降低。因此,亟需一种更加科学、准确、可靠的燃煤机组配煤掺烧计算方法及系统指导电厂进行燃料采购,降低电厂运营成本,实现全厂经济效益最大化。
发明内容
本发明的目的在于提供一种燃煤机组配煤掺烧计算方法及系统,为电厂燃料采购提供数据支撑。
为实现上述目的,本发明采用如下技术方案:
一种燃煤机组配煤掺烧计算方法,包括以下步骤:
1)获取可采购煤种基础数据,建立煤种数据库;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价;
2)采集电网调度曲线和机组运行特征参数;所述采集电网调度曲线包括获取电网调度曲线,计算逐小时平均功率;
3)采集碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述对碳交易价格信息进行统计分析包括按照电网下发的调度曲线,以调度曲线时间周期为基准统计之前3个周期内碳交易市场的价格变化情况;
4)确立配煤掺烧优化算法的约束条件;
5)建立配煤掺烧成本最优化模型,计算最优化配煤掺烧方案。
本发明进一步的改进在于,步骤2)中,所述机组运行特征参数是指机组的发电煤耗-负荷特性曲线。
本发明进一步的改进在于,步骤3)中,所述计算未来碳交易价格具体是指对统计分析的碳交易价格数据进行曲线拟合,根据拟合曲线公式计算得到调度曲线对应未来时间的预测碳交易价格。
本发明进一步的改进在于,步骤4)中,所述确立配煤掺烧优化算法约束条件的具体过程如下:
确定各煤种掺烧比例的约束条件,配煤掺烧实际过程中考虑到掺烧煤种越多,燃料综合管理成本和机组运行风险越高。
本发明进一步的改进在于,当混合煤的煤种数量限定为两种时:
Figure BDA0003608184410000021
式中,x1—原煤的掺烧比例;
x2—掺烧煤的掺烧比例;
确定混合煤参数的约束条件,根据锅炉厂家提供或锅炉性能试验确定该锅炉型号可长期保持稳定燃烧的各煤质参数上限、下限范围,从而建立混合煤参数的约束条件;
Car,min≤x1Car,1+x2Car,2≤Car,max (2)
式中,Car,1—原煤的收到基含碳量,%;
Car,2—掺烧煤的收到基含碳量,%;
Car,min—入炉煤收到基含碳量最小值,%;
Car,max—入炉煤收到基含碳量最大值,%;
Sar,min≤x1Sar,1+x2Sar,2≤Sar,max (3)
式中,Sar,1—原煤的收到基含硫量,%;
Sar,2—掺烧煤的收到基含硫量,%;
Sar,min—入炉煤收到基含硫量最小值,%;
Sar,max—入炉煤收到基含硫量最大值,%;
Aar,min≤x1Aar,1+x2Aar,2≤Aar,max (4)
式中,Aar,1—原煤的收到基灰分含量,%;
Aar,2—掺烧煤的收到基灰分含量,%;
Aar,min—入炉煤收到基灰分含量最小值,%;
Aar,max—入炉煤收到基灰分含量最大值,%;
Mar,min≤x1Mar,1+x2Mar,2≤Mar,max (5)
式中,Mar,1—原煤的收到基水分含量,%;
Mar,2—掺烧煤的收到基水分含量,%;
Mar,min—入炉煤收到基水分含量最小值,%;
Mar,max—入炉煤收到基水分含量最大值,%;
Var,min≤x1Var,1+x2Var,2≤Var,max (6)
式中,Var,1—原煤的收到基挥发分含量,%;
Var,2—掺烧煤的收到基挥发分含量,%;
Var,min—入炉煤收到基挥发分含量最小值,%;
Var,max—入炉煤收到基挥发分含量最大值,%;
Qnet,ar,min≤x1Qnet,ar,1+x2Qnet,ar,2≤Qnet,ar,max (7)
式中,Qnet,ar,1—原煤的收到基低位发热量,kJ/kg;
Qnet,ar,2—掺烧煤的收到基低位发热量,kJ/kg;
Qnet,ar,min—入炉煤收到基低位发热量最小值,kJ/kg;
Qnet,ar,max—入炉煤收到基低位发热量最大值,kJ/kg。
本发明进一步的改进在于,步骤5)中,对所述的配煤掺烧综合成本的计算过程如下:
利用电网提前下发的负荷曲线以及机组发电煤耗-负荷特性曲线计算得到未来逐小时预测发电煤耗;
利用预测发电煤耗、混合煤热值计算单位发电量消耗的混合煤量;
利用单位发电量消耗的混合煤量和混合煤价格计算单位发电量消耗的燃料价格;
利用发电煤耗、混合煤热值、混合煤含碳量、混合煤碳氧化率以及碳价格计算单位发电量产生的碳排放价格;
利用计算的单位发电量消耗的燃料价格和产生的碳排放价格计算单位发电量综合成本,结合约束条件建立成本最优化模型,计算得到最优化配煤掺烧方案;
将逐小时预测发电煤耗对应计算得的最优配煤掺烧方案分别列出,为机组运行人员提供数据支持。
本发明进一步的改进在于,所述预测发电煤耗为:
Figure BDA0003608184410000041
式中:
Figure BDA0003608184410000051
—逐小时平均负荷,MW;
b—预测发电煤耗,g/kwh;
所述单位发电量消耗的混合煤量为:
Figure BDA0003608184410000052
式中:bmix—单位发电量消耗的混合煤量,g/kwh;
所述单位发电量消耗的燃料价格为:
Figure BDA0003608184410000053
式中:Pe—单位发电量消耗的燃料价格,元/kwh;
pmix—混合煤单价,元/t;
p1—原煤单价,元/t;
p2—掺烧煤单价,元/t;
所述单位发电量产生的碳排放价格为:
Figure BDA0003608184410000054
式中:Pc—单位发电量产生的碳排放价格,元/kwh;
OFmix—混合煤氧化率,%;
Figure BDA0003608184410000055
—碳排放预测价格,元/tCO2
所述单位发电量总成本为:
Figure BDA0003608184410000056
由式(8)至(12)可以得到目标函数为:
f(x)=minP (13)
由式(1)至式(7)可得到约束条件为:
Figure BDA0003608184410000061
针对目标函数式和约束条件,采用最速下降法进行最优化计算,求解出最优解(x1,x2)以及目标函数的最优值Pmin,从而给出成本最优化的配煤掺烧方案。
一种燃煤机组配煤掺烧计算系统,包括:
煤种数据录入模块,用于录入煤种基础数据;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价;
数据采集通讯模块,用于获取电网调度曲线、机组运行特征参数和碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述机组运行特征参数是指机组发电煤耗-负荷特性曲线;
约束条件配置模块,用于设置配煤掺烧优化算法的约束条件参数;其中,所述约束条件参数包括入炉煤收到基含碳量、含硫量、水分、灰分、挥发分、低位发热量的最小值和最大值以及掺烧方式;
最优化计算模块,用于计算配煤掺烧综合成本,输出最优化配煤掺烧方案;
掺烧方案显示模块,用于将电网提前下发的负荷曲线对应的逐小时最优化方案进行展示。
与现有技术相比,本发明至少具有如下有益的技术效果:
本发明提供了一种燃煤机组配煤掺烧优化计算方法及系统,通过采集煤种基础数据建立煤种数据库,采集机组实时经济指标参数和碳交易价格信息,确立配煤掺烧优化算法的约束条件和配煤掺烧综合成本计算方式,从而计算得到最优化配煤掺烧方案。该发明方案综合考虑了燃煤机组运行的燃料成本与碳排放成本,实现了配煤掺烧成本最优化计算,为燃煤电厂经济性运行提供了技术支撑。
附图说明
图1为本发明所述的燃煤机组配煤掺烧计算方法的流程图。
图2为本发明所述的燃煤机组配煤掺烧计算系统的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图1所示,本发明提供的一种燃煤机组配煤掺烧计算方法,包括以下步骤:
1)获取可采购煤种基础数据,建立煤种数据库;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价。
2)采集电网调度曲线和机组运行特征参数;所述采集电网调度曲线包括获取电网调度曲线,计算逐小时平均功率;
进一步的,所述机组运行特征参数是指机组发电煤耗-负荷特性曲线。
3)采集碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述对碳交易价格信息进行统计分析包括按照电网下发的调度曲线,以调度曲线时间周期为基准统计之前3个周期内碳交易市场的价格变化情况;
进一步的,所述计算未来碳交易价格具体是指对统计分析的碳交易价格数据进行曲线拟合,根据拟合曲线公式计算得到调度曲线对应未来时间的预测碳交易价格。
4)确立配煤掺烧优化算法的约束条件;所述确立配煤掺烧优化算法约束条件的具体过程如下:
确定各煤种掺烧比例的约束条件,配煤掺烧实际过程中考虑到掺烧煤种越多,燃料综合管理成本和机组运行安全风险越高,因此一般混合煤的煤种数量限定为两种或三种,下面以两种为例进行说明:
Figure BDA0003608184410000081
式中,x1—原煤的掺烧比例;
x2—掺烧煤的掺烧比例。
确定混合煤参数的约束条件,根据锅炉厂家提供或锅炉性能试验确定该锅炉型号可长期保持稳定燃烧的各煤质参数上限、下限范围,从而建立混合煤参数的约束条件。
Car,min≤x1Car,1+x2Car,2≤Car,max (2)
式中,Car,1—原煤的收到基含碳量,%;
Car,2—掺烧煤的收到基含碳量,%;
Car,min—入炉煤收到基含碳量最小值,%;
Car,max—入炉煤收到基含碳量最大值,%。
Sar,min≤x1Sar,1+x2Sar,2≤Sar,max (3)
式中,Sar,1—原煤的收到基含硫量,%;
Sar,2—掺烧煤的收到基含硫量,%;
Sar,min—入炉煤收到基含硫量最小值,%;
Sar,max—入炉煤收到基含硫量最大值,%。
Aar,min≤x1Aar,1+x2Aar,2≤Aar,max (4)
式中,Aar,1—原煤的收到基灰分含量,%;
Aar,2—掺烧煤的收到基灰分含量,%;
Aar,min—入炉煤收到基灰分含量最小值,%;
Aar,max—入炉煤收到基灰分含量最大值,%。
Mar,min≤x1Mar,1+x2Mar,2≤Mar,max (5)
式中,Mar,1—原煤的收到基水分含量,%;
Mar,2—掺烧煤的收到基水分含量,%;
Mar,min—入炉煤收到基水分含量最小值,%;
Mar,max—入炉煤收到基水分含量最大值,%。
Var,min≤x1Var,1+x2Var,2≤Var,max (6)
式中,Var,1—原煤的收到基挥发分含量,%;
Var,2—掺烧煤的收到基挥发分含量,%;
Var,min—入炉煤收到基挥发分含量最小值,%;
Var,max—入炉煤收到基挥发分含量最大值,%。
Qnet,ar,min≤x1Qnet,ar,1+x2Qnet,ar,2≤Qnet,ar,max (7)
式中,Qnet,ar,1—原煤的收到基低位发热量,kJ/kg;
Qnet,ar,2—掺烧煤的收到基低位发热量,kJ/kg;
Qnet,ar,min—入炉煤收到基低位发热量最小值,kJ/kg;
Qnet,ar,max—入炉煤收到基低位发热量最大值,kJ/kg。
5)建立配煤掺烧成本最优化模型,计算最优化配煤掺烧方案;对所述的配煤掺烧综合成本的计算过程如下:
利用电网提前下发的负荷曲线以及机组发电煤耗-负荷特性曲线插值计算得到未来逐小时预测发电煤耗;
利用预测发电煤耗、混合煤热值计算单位发电量消耗的混合煤量;
利用单位发电量消耗的混合煤量和混合煤价格计算单位发电量消耗的燃料价格;
利用发电煤耗、混合煤热值、混合煤含碳量、混合煤碳氧化率以及碳价格计算单位发电量产生的碳排放价格;
利用计算的单位发电量消耗的燃料价格和产生的碳排放价格计算单位发电量综合成本,结合约束条件建立成本最优化模型,计算得到最优化配煤掺烧方案;
将逐小时预测发电煤耗对应计算得的最优配煤掺烧方案分别列出,为机组运行人员提供数据支持。
进一步的,所述预测发电煤耗为:
Figure BDA0003608184410000101
式中:
Figure BDA0003608184410000102
—逐小时调度平均负荷,MW;
b—预测发电煤耗,g/kwh。
进一步的,所述单位发电量消耗的混合煤量为:
Figure BDA0003608184410000111
式中:bmix—单位发电量的混合煤消耗量,g/kwh。
所述单位发电量消耗的燃料价格为:
Figure BDA0003608184410000112
式中:Pe—单位发电量消耗的燃料价格,元/kwh;
pmix—混合煤单价,元/t;
p1—煤种1单价,元/t;
p2—煤种2单价,元/t。
所述单位发电量产生的碳排放价格为:
Figure BDA0003608184410000113
式中:Pc—单位发电量碳排放成本,元/kwh;
Figure BDA0003608184410000114
—碳排放预测价格,元/tCO2
OFmix—混合煤氧化率,%。
所述单位发电量总成本为:
Figure BDA0003608184410000115
由式(8)至(12)可以得到目标函数为:
f(x)=minP (13)
由式(1)至式(7)可得到约束条件为:
Figure BDA0003608184410000121
针对目标函数式和约束条件,采用最速下降法进行最优化计算,可求解出最优解(x1,x2)以及目标函数的最优值Pmin,从而给出成本最优化的配煤掺烧方案。
如图2所示,本发明提供的一种燃煤机组配煤掺烧计算系统,包括:
煤种数据录入模块,用于录入煤种基础数据;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价;
数据采集通讯模块,用于获取电网调度曲线、机组运行特征参数和碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述机组运行特征参数指机组发电煤耗-负荷特性曲线。
约束条件配置模块,用于设置配煤掺烧优化算法的约束条件参数;其中,所述约束条件参数包括入炉煤收到基含碳量、含硫量、水分、灰分、挥发分、低位发热量的最小值和最大值以及掺烧煤种数量。
最优化计算模块,用于计算配煤掺烧综合成本,输出最优化配煤掺烧方案。
掺烧方案显示模块,用于将电网提前下发的负荷曲线对应的逐小时最优化方案进行展示。
实施例
以内蒙古某电厂330MW机组2021年11月5日12时配煤掺烧优化计算为例进行方案说明,其具体的计算过程如下表所示。
Figure BDA0003608184410000131
Figure BDA0003608184410000141
以该机组为例可估算发明预期收益,15日机组平均负荷率80%,当日发电量约为6336000kwh,由配煤掺烧方案计算结果建议掺烧方案节约成本约为0.0025元/kwh,则15日可节约成本15840元,预期单台机组年可降低成本约500万,从而有效提高了机组运行的经济性,降低电厂经营成本。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种燃煤机组配煤掺烧计算方法,其特征在于,包括以下步骤:
1)获取可采购煤种基础数据,建立煤种数据库;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价;
2)采集电网调度曲线和机组运行特征参数;所述采集电网调度曲线包括获取电网调度曲线,计算逐小时平均功率;
3)采集碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述对碳交易价格信息进行统计分析包括按照电网下发的调度曲线,以调度曲线时间周期为基准统计之前3个周期内碳交易市场的价格变化情况;
4)确立配煤掺烧优化算法的约束条件;
5)建立配煤掺烧成本最优化模型,计算最优化配煤掺烧方案。
2.根据权利要求1所述的一种燃煤机组配煤掺烧计算方法,其特征在于,步骤2)中,所述机组运行特征参数是指机组的发电煤耗-负荷特性曲线。
3.根据权利要求1所述的一种燃煤机组配煤掺烧计算方法,其特征在于,步骤3)中,所述计算未来碳交易价格具体是指对统计分析的碳交易价格数据进行曲线拟合,根据拟合曲线公式计算得到调度曲线对应未来时间的预测碳交易价格。
4.根据权利要求1所述的一种燃煤机组配煤掺烧计算方法,其特征在于,步骤4)中,所述确立配煤掺烧优化算法约束条件的具体过程如下:
确定各煤种掺烧比例的约束条件,配煤掺烧实际过程中考虑到掺烧煤种越多,燃料综合管理成本和机组运行风险越高。
5.根据权利要求4所述的一种燃煤机组配煤掺烧计算方法,其特征在于,当混合煤的煤种数量限定为两种时:
Figure FDA0003608184400000021
式中,x1—原煤的掺烧比例;
x2—掺烧煤的掺烧比例;
确定混合煤参数的约束条件,根据锅炉厂家提供或锅炉性能试验确定该锅炉型号可长期保持稳定燃烧的各煤质参数上限、下限范围,从而建立混合煤参数的约束条件;
Car,min≤x1Car,1+x2Car,2≤Car,max (2)
式中,Car,1—原煤的收到基含碳量,%;
Car,2—掺烧煤的收到基含碳量,%;
Car,min—入炉煤收到基含碳量最小值,%;
Car,max—入炉煤收到基含碳量最大值,%;
Sar,min≤x1Sar,1+x2Sar,2≤Sar,max (3)
式中,Sar,1—原煤的收到基含硫量,%;
Sar,2—掺烧煤的收到基含硫量,%;
Sar,min—入炉煤收到基含硫量最小值,%;
Sar,max—入炉煤收到基含硫量最大值,%;
Aar,min≤x1Aar,1+x2Aar,2≤Aar,max (4)
式中,Aar,1—原煤的收到基灰分含量,%;
Aar,2—掺烧煤的收到基灰分含量,%;
Aar,min—入炉煤收到基灰分含量最小值,%;
Aar,max—入炉煤收到基灰分含量最大值,%;
Mar,min≤x1Mar,1+x2Mar,2≤Mar,max (5)
式中,Mar,1—原煤的收到基水分含量,%;
Mar,2—掺烧煤的收到基水分含量,%;
Mar,min—入炉煤收到基水分含量最小值,%;
Mar,max—入炉煤收到基水分含量最大值,%;
Var,min≤x1Var,1+x2Var,2≤Var,max (6)
式中,Var,1—原煤的收到基挥发分含量,%;
Var,2—掺烧煤的收到基挥发分含量,%;
Var,min—入炉煤收到基挥发分含量最小值,%;
Var,max—入炉煤收到基挥发分含量最大值,%;
Qnet,ar,min≤x1Qnet,ar,1≤x2Qnet,ar,2≤Qnet,ar,max (7)
式中,Qnet,ar,1—原煤的收到基低位发热量,kJ/kg;
Qnet,ar,2—掺烧煤的收到基低位发热量,kJ/kg;
Qnet,ar,min—入炉煤收到基低位发热量最小值,kJ/kg;
Qnet,ar,max—入炉煤收到基低位发热量最大值,kJ/kg。
6.根据权利要求1所述的一种燃煤机组配煤掺烧计算方法,其特征在于,步骤5)中,对所述的配煤掺烧综合成本的计算过程如下:
利用电网提前下发的负荷曲线以及机组发电煤耗-负荷特性曲线计算得到未来逐小时预测发电煤耗;
利用预测发电煤耗、混合煤热值计算单位发电量消耗的混合煤量;
利用单位发电量消耗的混合煤量和混合煤价格计算单位发电量消耗的燃料价格;
利用发电煤耗、混合煤热值、混合煤含碳量、混合煤碳氧化率以及碳价格计算单位发电量产生的碳排放价格;
利用计算的单位发电量消耗的燃料价格和产生的碳排放价格计算单位发电量综合成本,结合约束条件建立成本最优化模型,计算得到最优化配煤掺烧方案;
将逐小时预测发电煤耗对应计算得的最优配煤掺烧方案分别列出,为机组运行人员提供数据支持。
7.根据权利要求6所述的一种燃煤机组配煤掺烧计算方法,其特征在于,所述预测发电煤耗为:
Figure FDA0003608184400000041
式中:
Figure FDA0003608184400000042
—逐小时平均负荷,MW;
b—预测发电煤耗,g/kwh;
所述单位发电量消耗的混合煤量为:
Figure FDA0003608184400000043
式中:bmix—单位发电量消耗的混合煤量,g/kwh;
所述单位发电量消耗的燃料价格为:
Figure FDA0003608184400000044
式中:Pe—单位发电量消耗的燃料价格,元/kwh;
pmix—混合煤单价,元/t;
p1—原煤单价,元/t;
p2—掺烧煤单价,元/t;
所述单位发电量产生的碳排放价格为:
Figure FDA0003608184400000045
式中:Pc—单位发电量产生的碳排放价格,元/kwh;
OFmix—混合煤氧化率,%;
Figure FDA0003608184400000051
—碳排放预测价格,元/tCO2
所述单位发电量总成本为:
Figure FDA0003608184400000052
由式(8)至(12)可以得到目标函数为:
f(x)=min P (13)
由式(1)至式(7)可得到约束条件为:
Figure FDA0003608184400000053
针对目标函数式和约束条件,采用最速下降法进行最优化计算,求解出最优解(x1,x2)以及目标函数的最优值Pmin,从而给出成本最优化的配煤掺烧方案。
8.一种燃煤机组配煤掺烧计算系统,其特征在于,包括:
煤种数据录入模块,用于录入煤种基础数据;所述煤种基础数据包括煤种价格以及煤种的元素分析和工业分析数据,其中煤种的元素分析和工业分析数据包含收到基含碳量Car、收到基含硫量Sar、收到基灰分Aar、收到基水分Mar、收到基挥发分Var、收到基低位发热量Qnet,ar、采购煤价;
数据采集通讯模块,用于获取电网调度曲线、机组运行特征参数和碳交易价格信息,对碳交易价格信息进行统计分析,计算未来碳交易价格;所述机组运行特征参数是指机组发电煤耗-负荷特性曲线;
约束条件配置模块,用于设置配煤掺烧优化算法的约束条件参数;其中,所述约束条件参数包括入炉煤收到基含碳量、含硫量、水分、灰分、挥发分、低位发热量的最小值和最大值以及掺烧方式;
最优化计算模块,用于计算配煤掺烧综合成本,输出最优化配煤掺烧方案;
掺烧方案显示模块,用于将电网提前下发的负荷曲线对应的逐小时最优化方案进行展示。
CN202210421889.5A 2022-04-21 2022-04-21 一种燃煤机组配煤掺烧计算方法及系统 Pending CN114925328A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210421889.5A CN114925328A (zh) 2022-04-21 2022-04-21 一种燃煤机组配煤掺烧计算方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210421889.5A CN114925328A (zh) 2022-04-21 2022-04-21 一种燃煤机组配煤掺烧计算方法及系统

Publications (1)

Publication Number Publication Date
CN114925328A true CN114925328A (zh) 2022-08-19

Family

ID=82807627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210421889.5A Pending CN114925328A (zh) 2022-04-21 2022-04-21 一种燃煤机组配煤掺烧计算方法及系统

Country Status (1)

Country Link
CN (1) CN114925328A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115222153A (zh) * 2022-08-30 2022-10-21 华能靖远热电有限公司 一种火电企业低碳调度寻优方法及系统
CN115595390A (zh) * 2022-10-27 2023-01-13 中冶赛迪信息技术(重庆)有限公司(Cn) 一种高炉喷吹煤配煤方案计算方法、装置及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115222153A (zh) * 2022-08-30 2022-10-21 华能靖远热电有限公司 一种火电企业低碳调度寻优方法及系统
CN115222153B (zh) * 2022-08-30 2023-11-07 华能靖远热电有限公司 一种火电企业低碳调度寻优方法及系统
CN115595390A (zh) * 2022-10-27 2023-01-13 中冶赛迪信息技术(重庆)有限公司(Cn) 一种高炉喷吹煤配煤方案计算方法、装置及电子设备

Similar Documents

Publication Publication Date Title
CN108062617B (zh) 一种火力机组碳排放配额调节方法
CN114925328A (zh) 一种燃煤机组配煤掺烧计算方法及系统
Wei et al. Economic dispatch savings in the coal-fired power sector: An empirical study of China
Meng et al. The real cost of deep peak shaving for renewable energy accommodation in coal-fired power plants: Calculation framework and case study in China
CN107274027A (zh) 一种燃煤机组的多煤种配煤掺烧寻优方法
CN104598761B (zh) 混烧锅炉运行参数变化对机组发电煤耗影响的分析方法
Huang et al. Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge
Crilly et al. Further emissions and energy targeting: an application of CO 2 emissions pinch analysis to the Irish electricity generation sector
CN108537406A (zh) 火电厂锅炉燃用多煤种经济效益评价方法
Li et al. An inexact fuzzy programming approach for power coal blending
CN111091230A (zh) 燃煤电厂基于煤炭全价值链管理的科学配煤掺烧系统
CN112381268B (zh) 一种面向电力现货市场的短期燃煤成本预测方法及系统
Zhao et al. A review on the optimal scheduling of byproduct gases in steel making industry
CN114548584A (zh) 一种含有电转气和碳捕集设备的综合能源系统的优化方法
CN114266165B (zh) 考虑碳排放的蒸汽动力系统中蒸汽透平布局优化方法
CN116503225A (zh) 一种区域配电网重点排放行业碳排放轨迹分析方法
CN104953592B (zh) 多燃料混合燃烧发电机组的负荷优化分配方法
CN117455164A (zh) 考虑碳交易和需求响应的电热气综合能源系统的优化运行方法
CN112348574B (zh) 燃煤耦合生物质发电容量规划方法、系统及装置
Niu et al. Explore the current situation and development trend of China's straw power generation industry
CN117010728B (zh) 一种火电企业发电综合成本优化方法
CN118535827A (zh) 一种以电算碳的企业碳排放量计算方法、系统和设备
CN117391240B (zh) 一种基于相似度计算的火电发电燃煤掺烧方案调优方法
CN117273410B (zh) 钢铁企业发电调度方法及装置
Kovacs et al. The bioenergy sector efficiency in the global demand context

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination