CN114914423B - Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof - Google Patents
Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof Download PDFInfo
- Publication number
- CN114914423B CN114914423B CN202210580247.XA CN202210580247A CN114914423B CN 114914423 B CN114914423 B CN 114914423B CN 202210580247 A CN202210580247 A CN 202210580247A CN 114914423 B CN114914423 B CN 114914423B
- Authority
- CN
- China
- Prior art keywords
- zinc
- composite material
- zinc vanadate
- carbon microsphere
- vanadate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 130
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 129
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 239000011701 zinc Substances 0.000 title claims abstract description 110
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 106
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 239000002131 composite material Substances 0.000 title claims abstract description 81
- 238000002360 preparation method Methods 0.000 title claims description 30
- 239000002135 nanosheet Substances 0.000 claims abstract description 61
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 43
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000007774 positive electrode material Substances 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 60
- 239000002244 precipitate Substances 0.000 claims description 32
- 239000007795 chemical reaction product Substances 0.000 claims description 28
- 238000004729 solvothermal method Methods 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000725 suspension Substances 0.000 claims description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 15
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 14
- 239000008103 glucose Substances 0.000 claims description 14
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 13
- 239000011259 mixed solution Substances 0.000 claims description 13
- -1 polytetrafluoroethylene Polymers 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 12
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 12
- CITILBVTAYEWKR-UHFFFAOYSA-L zinc trifluoromethanesulfonate Substances [Zn+2].[O-]S(=O)(=O)C(F)(F)F.[O-]S(=O)(=O)C(F)(F)F CITILBVTAYEWKR-UHFFFAOYSA-L 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- ZMLPZCGHASSGEA-UHFFFAOYSA-M zinc trifluoromethanesulfonate Chemical compound [Zn+2].[O-]S(=O)(=O)C(F)(F)F ZMLPZCGHASSGEA-UHFFFAOYSA-M 0.000 claims description 11
- 239000000047 product Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 9
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 9
- 238000009777 vacuum freeze-drying Methods 0.000 claims description 9
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 8
- 239000011888 foil Substances 0.000 claims description 7
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 3
- 239000007864 aqueous solution Substances 0.000 claims 2
- 239000010405 anode material Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000008098 formaldehyde solution Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 229910001935 vanadium oxide Inorganic materials 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000007581 slurry coating method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical class [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种钒酸锌包覆碳微球的复合材料及其制备方法和应用,属于新能源材料技术领域。The invention relates to a composite material of zinc vanadate-coated carbon microspheres, a preparation method and application thereof, and belongs to the technical field of new energy materials.
背景技术Background technique
随着社会的不断发展和技术的进步,电子产品越来越普遍,储能变得至关重要;传统的锂离子电池由于其固有的不安全性和昂贵的加工成本,无法大规模生产和应用以满足储能市场的需求;近年来,水系锌离子电池因其绿色环保、安全性高、规模化发展等特点,成为锂离子电池的热门候选。With the continuous development of society and the advancement of technology, electronic products are becoming more and more common, and energy storage has become crucial; traditional lithium-ion batteries cannot be mass-produced and applied due to their inherent insecurity and expensive processing costs To meet the needs of the energy storage market; in recent years, water-based zinc-ion batteries have become popular candidates for lithium-ion batteries due to their environmental protection, high safety, and large-scale development.
迄今为止,钒氧化物及其复合物、锰氧化物及其复合物、普鲁士蓝类似物和双金属化合物是最常用的水系锌离子电池正极材料;其中,氧化钒由于其固有的层状或隧道状的特殊结构,使离子扩散高效可行,成为水系锌离子电池中的常用材料;然而,纯的钒氧化物的倍率性能差和循环稳定性差也不容忽视,这是因为纯的钒氧化物的导电性差,不利于电子传输,阻碍电化学反应,从而影响其倍率容量;此外,循环过程中容易发生体积膨胀,内部结构会迅速崩塌,导致容量快速衰减,循环稳定性差。So far, vanadium oxides and their composites, manganese oxides and their composites, Prussian blue analogues, and bimetallic compounds are the most commonly used cathode materials for aqueous zinc-ion batteries; among them, vanadium oxide is due to its inherent layered or tunnel The special structure of vanadium makes ion diffusion efficient and feasible, and has become a commonly used material in aqueous zinc-ion batteries; however, the poor rate performance and poor cycle stability of pure vanadium oxides cannot be ignored, because pure vanadium oxides are conductive. Poor performance, which is not conducive to electron transport, hinders electrochemical reactions, and thus affects its rate capacity; in addition, volume expansion is prone to occur during cycling, and the internal structure will collapse rapidly, resulting in rapid capacity decay and poor cycle stability.
钒基双金属氧化物(如Fe2VO4、CaV2O7等)由于其独特的结构和优越的理化性质,近年来逐渐进入大家的视野,被广泛关注并应用于储能、催化等多个领域,其中钒酸锌由于钒的富锌特性和多电子传输性能,以及首次充电过程中Zn2+会脱出从而带来额外的金属空位来提高容量,使得它很适合成为水系锌离子电池正极材料;但是目前为止,钒酸锌材料作为水系锌离子电池正极材料所能提供的容量普遍较低、制备过程安全性较低,由此可见,在保证放电容量的前提下,研究一种形貌可控、操作简便、安全性高的钒酸锌制备方法是非常有意义的。Due to its unique structure and superior physical and chemical properties, vanadium-based double metal oxides (such as Fe 2 VO 4 , CaV 2 O 7 , etc.) In one field, zinc vanadate is very suitable as the positive electrode of aqueous zinc-ion batteries due to the zinc-rich characteristics and multi-electron transport properties of vanadium, and the release of Zn 2+ during the first charging process will bring additional metal vacancies to improve the capacity. materials; but so far, zinc vanadate materials as cathode materials for aqueous zinc-ion batteries generally have low capacity and low safety in the preparation process. It can be seen that under the premise of ensuring the discharge capacity, it is necessary to study a morphology A controllable, easy-to-operate, and highly safe preparation method for zinc vanadate is very meaningful.
发明内容Contents of the invention
本发明提出的是一种钒酸锌包覆碳微球的复合材料及其制备方法和应用,其目的旨在制备一种能应用于水系锌离子电池的正极材料。The present invention proposes a composite material of zinc vanadate-coated carbon microspheres and its preparation method and application. The purpose of the invention is to prepare a positive electrode material that can be applied to an aqueous zinc-ion battery.
本发明的技术解决方案:一种钒酸锌包覆碳微球的复合材料,其结构包括碳微球和钒酸锌(Zn3V3O8)纳米片,钒酸锌(Zn3V3O8)纳米片包覆碳微球。Technical solution of the present invention: a composite material of zinc vanadate coated carbon microspheres, the structure of which includes carbon microspheres and zinc vanadate (Zn3V3O8) nanosheets, zinc vanadate (Zn3V3O8) nanosheets coated carbon microspheres .
进一步地,所述碳微球的粒径范围优选为1μm-10μm。Further, the particle size range of the carbon microspheres is preferably 1 μm-10 μm.
进一步地,所述钒酸锌(Zn3V3O8)纳米片的厚度优选为10nm-200nm。Further, the thickness of the zinc vanadate (Zn3V3O8) nanosheets is preferably 10nm-200nm.
一种钒酸锌包覆碳微球的复合材料的制备方法,该方法包括:A preparation method of a composite material of zinc vanadate coated carbon microspheres, the method comprising:
1、利用水热法制备碳微球;1. Preparation of carbon microspheres by hydrothermal method;
2、利用水热法和热处理法实现钒酸锌纳米片对碳微球的包覆。2. Using hydrothermal method and heat treatment method to realize the coating of zinc vanadate nanosheets on carbon microspheres.
进一步地,所述利用水热法制备碳微球,具体包括:Further, the preparation of carbon microspheres by hydrothermal method specifically includes:
1-1、配制葡萄糖溶液;1-1. Prepare glucose solution;
1-2、在葡萄糖溶液中加入pH值调节剂、甲醛水溶液,充分搅拌形成混合溶液;1-2. Add a pH adjuster and formaldehyde solution to the glucose solution, and stir fully to form a mixed solution;
1-3、将混合溶液进行水热反应得到水热反应产物;1-3. Performing a hydrothermal reaction on the mixed solution to obtain a hydrothermal reaction product;
1-4、将水热反应产物离心,收集得到第一沉淀物;1-4. Centrifuge the hydrothermal reaction product to collect the first precipitate;
1-5、将收集的第一沉淀物真空冷冻干燥得到碳微球。1-5. Vacuum freeze-drying the collected first precipitate to obtain carbon microspheres.
进一步地,所述利用水热法和热处理法实现钒酸锌纳米片对碳微球的包覆,具体包括:Further, the use of hydrothermal method and heat treatment method to realize the coating of zinc vanadate nanosheets on carbon microspheres specifically includes:
2-1、将乙二醇倒入容器中;2-1. Pour ethylene glycol into the container;
2-2、将偏钒酸钠、三氟甲基磺酸锌、聚乙烯吡咯烷酮均匀分散至乙二醇中得到悬浊液;2-2. Uniformly disperse sodium metavanadate, zinc trifluoromethanesulfonate, and polyvinylpyrrolidone into ethylene glycol to obtain a suspension;
2-3、将步骤1中制备的碳微球加入到悬浊液中,持续至分散均匀;2-3. Add the carbon microspheres prepared in
2-4、将分散有碳微球的悬浊液进行溶剂热反应得到溶剂热反应产物;2-4. Performing a solvothermal reaction on the suspension dispersed with carbon microspheres to obtain a solvothermal reaction product;
2-5、将溶剂热反应产物离心,收集得到第二沉淀物;2-5. Centrifuging the solvothermal reaction product to collect the second precipitate;
2-6、将收集的第二沉淀物真空冷冻干燥;2-6. Vacuum freeze-drying the collected second precipitate;
2-7、将干燥后的产物在氮气气氛下保温温度保温一定时间得到钒酸锌纳米片包覆碳微球的复合材料。2-7. Keeping the dried product under a nitrogen atmosphere at a temperature for a certain period of time to obtain a composite material of carbon microspheres coated with zinc vanadate nanosheets.
进一步地,所述pH值调节剂优选为氢氧化钠和柠檬酸,pH值调节剂用于将pH值优选调整为8;所述葡萄糖溶液的溶度优选为0.23mol/L-0.38mol/L;所述甲醛水溶液浓度优选为0.37 mol/L -0.40 mol/L;所述葡萄糖溶液的溶度进一步优选为0.38mol/L;所述甲醛水溶液浓度进一步优选为0.40 mol/L。Further, the pH regulator is preferably sodium hydroxide and citric acid, and the pH regulator is used to adjust the pH to preferably 8; the solubility of the glucose solution is preferably 0.23mol/L-0.38mol/L The concentration of the aqueous formaldehyde solution is preferably 0.37 mol/L-0.40 mol/L; the solubility of the glucose solution is more preferably 0.38 mol/L; the concentration of the aqueous formaldehyde solution is further preferably 0.40 mol/L.
进一步地,所述将混合溶液进行水热反应得到水热反应产物,具体为:将混合溶液倒入聚四氟乙烯模具中,进行水热反应得到水热反应产物;所述水热反应的条件优选为160ºC反应4h-6h;所述水热反应的条件进一步优选为160ºC反应6h。Further, the hydrothermal reaction of the mixed solution to obtain a hydrothermal reaction product is specifically: pouring the mixed solution into a polytetrafluoroethylene mold, and performing a hydrothermal reaction to obtain a hydrothermal reaction product; the conditions of the hydrothermal reaction Preferably, the reaction is at 160°C for 4h-6h; the condition of the hydrothermal reaction is further preferably at 160°C for 6h.
进一步地,所述将水热反应产物离心的具体方法为:用去离子水和乙醇以8000r/min的转速交替离心。Further, the specific method of centrifuging the hydrothermal reaction product is: alternately centrifuging with deionized water and ethanol at a speed of 8000 r/min.
进一步地,所述将收集的第一沉淀物真空冷冻干燥,具体为:将收集的第一沉淀物真空冷冻干燥48h,温度为-80℃。Further, the vacuum freeze-drying of the collected first precipitate specifically includes: vacuum freeze-drying of the collected first precipitate for 48 hours at a temperature of -80°C.
进一步地,所述偏钒酸铵在乙二醇中的浓度优选为0.10mol/L -0.15mol/L;所述三氟甲基磺酸锌在乙二醇中的浓度优选为0.030mol/L -0.035 mol/L;所述聚乙烯吡咯烷酮在乙二醇中的浓度优选为1.55 g/L -1.70g/L;所述碳微球在乙二醇中的浓度优选为10g/L。Further, the concentration of the ammonium metavanadate in ethylene glycol is preferably 0.10mol/L-0.15mol/L; the concentration of the zinc trifluoromethanesulfonate in ethylene glycol is preferably 0.030mol/L -0.035 mol/L; the concentration of the polyvinylpyrrolidone in ethylene glycol is preferably 1.55 g/L-1.70g/L; the concentration of the carbon microspheres in ethylene glycol is preferably 10g/L.
进一步地,所述将分散有碳微球的悬浊液进行溶剂热反应得到溶剂热反应产物,具体为:将分散有碳微球的悬浊液倒入聚四氟乙烯模具进行溶剂热反应;所述溶剂热反应的反应条件为180ºC反应8h-12h;所述溶剂热反应的反应条件进一步优选为180ºC反应12h。Further, performing solvothermal reaction on the suspension dispersed with carbon microspheres to obtain a solvothermal reaction product, specifically: pouring the suspension dispersed with carbon microspheres into a polytetrafluoroethylene mold for solvothermal reaction; The reaction condition of the solvothermal reaction is 180°C for 8h-12h; the reaction condition of the solvothermal reaction is further preferably 180°C for 12h.
进一步地,所述将溶剂热反应产物离心的具体方法为:用去离子水和乙醇以8000r/min交替离心。Further, the specific method of centrifuging the solvothermal reaction product is: alternately centrifuging with deionized water and ethanol at 8000 r/min.
进一步地,所述将收集的第二沉淀物真空冷冻干燥,具体为:将收集的第二沉淀物真空冷冻干燥48h,温度为-80℃。Further, the vacuum freeze-drying of the collected second precipitate is specifically: vacuum freeze-drying of the collected second precipitate for 48 hours at a temperature of -80°C.
进一步地,所述保温温度优选为400℃-600℃;所述保温温度具体为从室温以升温速率为5℃/min升温至保温温度;所述保温一定时间为保温6h;所述保温温度进一步优选为600℃。Further, the holding temperature is preferably 400°C-600°C; the holding temperature is specifically raised from room temperature to the holding temperature at a heating rate of 5°C/min; the holding time is 6 hours; the holding temperature is further Preferably it is 600°C.
所述钒酸锌包覆碳微球的复合材料作为水系锌离子电池正极材料进行使用。The composite material of the zinc vanadate-coated carbon microspheres is used as the positive electrode material of the aqueous zinc-ion battery.
一种钒酸锌包覆碳微球的复合材料的应用,具体包括如下:将钒酸锌纳米片包覆碳微球的复合材料、导电炭黑、聚偏二氟乙烯按照质量比为7∶2∶1分散于N-甲基吡咯烷酮中制成浆料涂布在Ti箔上,随后置于烘箱在真空条件下干燥得到水系锌离子电池正极材料。A kind of application of the composite material of zinc vanadate coating carbon microsphere, specifically comprises as follows: the composite material of zinc vanadate nano sheet coating carbon microsphere, conductive carbon black, polyvinylidene fluoride is 7 according to mass ratio: 2:1 dispersed in N-methylpyrrolidone to form a slurry coated on Ti foil, and then placed in an oven and dried under vacuum to obtain a water-based zinc-ion battery positive electrode material.
本发明的有益效果:Beneficial effects of the present invention:
本发明提供的制备方法制备得到的钒酸锌包覆碳微球的复合材料用于水系锌离子电池正极,超薄纳米片结构的钒酸锌可以提高离子传输速率,缩短离子扩散和转移的时间,有利于电化学扩散控制过程的性能提升;此外,钒酸锌纳米片包覆碳微球形成的整体复合材料的独特球形结构具有较高的比表面积,不仅可以增加活性材料与电解质的接触面积,缩短离子扩散路径,还可以为充放电过程中的体积膨胀提供更多的空间;综合来说,本发明所制备的钒酸锌包覆碳微球的复合材料能有效改善水系锌离子电池的电化学性能。The composite material of zinc vanadate-coated carbon microspheres prepared by the preparation method provided by the invention is used for the positive electrode of the aqueous zinc-ion battery, and the zinc vanadate with the ultra-thin nanosheet structure can improve the ion transmission rate and shorten the time for ion diffusion and transfer , which is conducive to the performance improvement of the electrochemical diffusion control process; in addition, the unique spherical structure of the overall composite material formed by zinc vanadate nanosheets coated with carbon microspheres has a high specific surface area, which can not only increase the contact area between the active material and the electrolyte , shorten the ion diffusion path, and can also provide more space for the volume expansion in the charging and discharging process; in general, the composite material of zinc vanadate-coated carbon microspheres prepared by the present invention can effectively improve the performance of aqueous zinc-ion batteries. electrochemical performance.
附图说明Description of drawings
附图1为本发明实施例1制备的超薄钒酸锌纳米片包覆碳微球的复合材料的扫描电镜照片。
附图2为本发明实施例2制备的超薄钒酸锌纳米片包覆碳微球的复合材料的扫描电镜照片。Accompanying drawing 2 is the scanning electron micrograph of the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres prepared in Example 2 of the present invention.
附图3为本发明实施例3制备的超薄钒酸锌纳米片包覆碳微球的复合材料的扫描电镜照片一。Accompanying drawing 3 is the
附图4为为本发明实施例3制备的超薄钒酸锌纳米片包覆碳微球的复合材料的扫描电镜照片二。Accompanying drawing 4 is the scanning electron micrograph 2 of the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres prepared in Example 3 of the present invention.
附图5为本发明实施例1制备的产物的XRD图谱。Accompanying drawing 5 is the XRD pattern of the product prepared in Example 1 of the present invention.
附图6为本发明实施例2制备的产物的XRD图谱。Accompanying drawing 6 is the XRD spectrum of the product prepared in Example 2 of the present invention.
附图7为本发明实施例3制备的产物的XRD图谱。Accompanying drawing 7 is the XRD spectrum of the product prepared in Example 3 of the present invention.
附图8为本发明实施例1中超薄钒酸锌纳米片包覆碳微球的复合材料作为正极在水系锌离子电池中的同一电流密度下五次充放电测试曲线图。Accompanying drawing 8 is the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres in Example 1 of the present invention as a positive electrode in an aqueous zinc-ion battery at the same current density for five charge-discharge test curves.
附图9为本发明实施例2中超薄钒酸锌纳米片包覆碳微球的复合材料作为正极在水系锌离子电池中的同一电流密度下五次充放电测试曲线图。Accompanying drawing 9 is the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres in Example 2 of the present invention as a positive electrode in an aqueous zinc-ion battery at the same current density for five charge-discharge test curves.
附图10为本发明实施例3中超薄钒酸锌纳米片包覆碳微球的复合材料作为正极在水系锌离子电池中的同一电流密度下五次充放电测试曲线图。Accompanying drawing 10 is the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres in Example 3 of the present invention as a positive electrode in an aqueous zinc-ion battery at the same current density for five charge-discharge test curves.
附图11为本发明实施例1-3中超薄钒酸锌纳米片包覆碳微球的复合材料作为正极在水系锌离子电池中的倍率性能图。Figure 11 is a graph of the rate performance of the composite material of ultra-thin zinc vanadate nanosheets coated with carbon microspheres as the positive electrode in the aqueous zinc-ion battery in Examples 1-3 of the present invention.
具体实施方式Detailed ways
一种钒酸锌包覆碳微球的复合材料,其结构包括碳微球和钒酸锌(Zn3V3O8)纳米片,钒酸锌(Zn3V3O8)纳米片包覆碳微球。A composite material of zinc vanadate coated carbon microspheres, the structure of which comprises carbon microspheres and zinc vanadate (Zn3V3O8) nanosheets, wherein the zinc vanadate (Zn3V3O8) nanosheets coat carbon microspheres.
所述碳微球的粒径范围优选为1μm-10μm,进一步优选为4μm -8μm;用大小均一的碳微球作为模板负载超薄钒酸型纳米片,为复合材料的形貌提供了可控的条件,同样地,球形复合材料在作为电极进行充放电循环时有利于稳定结构,为反应过程中的体积变化提供缓存空间。The particle size range of the carbon microspheres is preferably 1 μm-10 μm, more preferably 4 μm-8 μm; using carbon microspheres with uniform size as a template to load ultra-thin vanadic acid nanosheets provides a controllable shape for the composite material. Similarly, the spherical composite material is conducive to stabilizing the structure when it is used as an electrode for charge-discharge cycles, providing a buffer space for the volume change during the reaction.
所述钒酸锌(Zn3V3O8)纳米片的厚度优选为10 nm-200nm,进一步优选为10 nm-100nm;纳米级的厚度提供了可以忽略不计的离子扩散和转移时间,有利于电化学扩散控制过程的性能提升。The thickness of the zinc vanadate (Zn3V3O8) nanosheets is preferably 10 nm-200nm, more preferably 10 nm-100nm; the nanoscale thickness provides negligible ion diffusion and transfer time, which is beneficial to the electrochemical diffusion control process performance improvement.
一种钒酸锌包覆碳微球的复合材料的制备方法,该方法包括以下步骤:A preparation method of a composite material of zinc vanadate coated carbon microspheres, the method may further comprise the steps:
1、碳微球的制备:1. Preparation of carbon microspheres:
1-1、在烧杯中配制浓度为0.23mol/L -0.38mol/L的葡萄糖溶液;1-1. Prepare a glucose solution with a concentration of 0.23mol/L -0.38mol/L in a beaker;
1-2、加入氢氧化钠、柠檬酸、浓度为0.37mol/L-0.40 mol/L的甲醛水溶液,充分搅拌形成混合溶液;其中,氢氧化钠和柠檬酸的作用是调节反应体系pH值,反应体系pH=8为宜;1-2. Add sodium hydroxide, citric acid, and formaldehyde solution with a concentration of 0.37 mol/L-0.40 mol/L, and stir well to form a mixed solution; wherein, the role of sodium hydroxide and citric acid is to adjust the pH value of the reaction system, The pH of the reaction system is preferably 8;
1-3、将混合溶液倒入聚四氟乙烯模具中,进行水热反应得到水热反应产物,水热反应的条件为160ºC反应6h;1-3. Pour the mixed solution into a polytetrafluoroethylene mold, and perform a hydrothermal reaction to obtain a hydrothermal reaction product. The condition of the hydrothermal reaction is 160ºC for 6 hours;
1-4、将水热反应产物用去离子水和乙醇以8000r/min交替离心,收集得到第一沉淀物;1-4. Alternately centrifuge the hydrothermal reaction product with deionized water and ethanol at 8000r/min, and collect the first precipitate;
1-5、将收集的第一沉淀物真空冷冻干燥48h,冷冻温度为-80℃,得到碳微球;1-5. Vacuum freeze-dry the collected first precipitate for 48 hours at a freezing temperature of -80°C to obtain carbon microspheres;
2、钒酸锌包覆碳微球复合材料的制备:2. Preparation of zinc vanadate-coated carbon microsphere composites:
2-1、将乙二醇倒入烧杯中;2-1. Pour ethylene glycol into the beaker;
2-2、将偏钒酸钠、三氟甲基磺酸锌、聚乙烯吡咯烷酮均匀分散至乙二醇中得到悬浊液;2-2. Uniformly disperse sodium metavanadate, zinc trifluoromethanesulfonate, and polyvinylpyrrolidone into ethylene glycol to obtain a suspension;
2-3、将步骤(1)中制备的碳微球材料加入到悬浊液中,持续搅拌至分散均匀;2-3. Add the carbon microsphere material prepared in step (1) into the suspension, and keep stirring until uniformly dispersed;
2-4、将悬浊液倒入聚四氟乙烯模具进行溶剂热反应得到溶剂热反应产物,溶剂热反应的反应条件为180ºC反应12h;2-4. Pour the suspension into a polytetrafluoroethylene mold for solvothermal reaction to obtain a solvothermal reaction product. The reaction condition of the solvothermal reaction is 180ºC for 12 hours;
2-5、将溶剂热反应产物用去离子水和乙醇以8000r/min交替离心,收集得到第二沉淀物;2-5. The solvothermal reaction product was alternately centrifuged with deionized water and ethanol at 8000 r/min, and the second precipitate was collected;
2-6、将收集的第二沉淀物真空冷冻干燥48h,冷冻温度为-80℃;2-6. Vacuum freeze-dry the collected second precipitate for 48 hours, and the freezing temperature is -80°C;
2-7、将冷冻干燥后的产物置于管式炉中,以400℃-600℃在氮气气氛下进行保温,升温速率为5℃/min,保温时间6h,得到钒酸锌纳米片包覆碳微球的复合材料;所述保温温度进一步优选为600℃。2-7. Put the freeze-dried product in a tube furnace, and keep it warm at 400°C-600°C under a nitrogen atmosphere. The heating rate is 5°C/min, and the holding time is 6h, and zinc vanadate nanosheet coating is obtained. A composite material of carbon microspheres; the holding temperature is further preferably 600°C.
本发明制备的所述钒酸锌包覆碳微球的复合材料作为水系锌离子电池正极材料进行使用。The composite material of the zinc vanadate-coated carbon microspheres prepared in the present invention is used as the positive electrode material of the aqueous zinc-ion battery.
所述钒酸锌包覆碳微球的复合材料作为水系锌离子电池正极材料的具体应用方法包括如下:The specific application method of the composite material of the zinc vanadate coated carbon microspheres as the positive electrode material of the aqueous zinc ion battery includes as follows:
1、将钒酸锌纳米片包覆碳微球的复合材料与导电炭黑和聚偏二氟乙烯按照质量比为7∶2∶1分散于N-甲基吡咯烷酮中制成浆料涂布在Ti箔上,随后置于烘箱在真空条件下110℃干燥12h,即得到水系锌离子电池正极电极材料;1. Disperse the composite material of zinc vanadate nanosheets coated carbon microspheres with conductive carbon black and polyvinylidene fluoride in N-methylpyrrolidone at a mass ratio of 7:2:1 to make a slurry and coat it on Ti foil, then placed in an oven and dried at 110°C for 12 hours under vacuum conditions, to obtain the positive electrode material of the aqueous zinc ion battery;
2、将得到水系锌离子电池正极材料裁成直径为14 mm的圆形电极,以铂网和饱和甘汞电极分别作为对电极和参比电极、用Whatman GF/D玻璃纤维滤纸作为隔膜,组装成扣式电池。2. Cut the obtained aqueous zinc-ion battery cathode material into a circular electrode with a diameter of 14 mm, use platinum mesh and saturated calomel electrode as the counter electrode and reference electrode respectively, and use Whatman GF/D glass fiber filter paper as the diaphragm, and assemble into a button battery.
所述组装成的扣式电池,通过电化学工作站Autolab进行测试。The assembled button cell was tested by electrochemical workstation Autolab.
本发明利用两步水热法(碳微球制备过程中的水热反应和钒酸锌包覆碳微球复合材料的制备过程中的溶剂热反应)和热处理的方法(钒酸锌包覆碳微球复合材料制备过程中氮气气氛下保温一定温度、一定时间的退火反应)合成具有优异电化学性能的钒酸锌纳米片包覆碳微球的复合材料;将本发明制备的钒酸锌纳米片包覆碳微球的复合材料作为水系锌离子电池正极电极材料,在电流密度为1 A g-1时,放电比容量能够达到300mAh g-1以上;利用本发明方法制备出的钒酸锌包覆碳微球的复合材料具有球形形貌,且整个制备过程操作安全简便,为钒酸锌的制备提供了一种新的方法。The present invention utilizes a two-step hydrothermal method (hydrothermal reaction in the preparation process of carbon microspheres and solvothermal reaction in the preparation process of zinc vanadate-coated carbon microsphere composite materials) and a heat treatment method (zinc vanadate-coated carbon In the preparation process of the microsphere composite material, the annealing reaction of maintaining a certain temperature and a certain period of time under a nitrogen atmosphere) synthesizes a composite material of zinc vanadate nanosheets coated with carbon microspheres with excellent electrochemical properties; the zinc vanadate nanosheets prepared by the present invention The composite material of sheet-coated carbon microspheres is used as the positive electrode material of the water-based zinc-ion battery, and when the current density is 1 A g -1 , the discharge specific capacity can reach more than 300mAh g -1 ; the zinc vanadate prepared by the method of the present invention The composite material coated with carbon microspheres has a spherical shape, and the whole preparation process is safe and easy to operate, which provides a new method for the preparation of zinc vanadate.
所述葡萄糖优选为生物质的葡萄糖。The glucose is preferably biomass glucose.
本发明提供的制备方法中,首先在水热反应的条件下葡萄糖在弱碱性环境中反应生成球形模板——碳微球;以乙二醇为溶剂,以偏钒酸铵为钒源,以三氟甲基磺酸锌为锌源,以聚乙烯吡咯烷酮为表面活性剂,以碳微球为模板,在溶剂热反应条件下和表面活性剂作用下,形成的钒酸锌附着在碳微球上,得到钒酸锌/碳微球前驱体;在管式炉中氮气气氛下进行高温热处理,附着在碳微球上的钒酸锌退火成为纳米片,碳微球的结构也在高温下变得松散,最终得到的钒酸锌纳米片包覆碳微球的复合材料;通过本发明制备方法所制备的钒酸锌纳米片包覆碳微球的复合材料中碳微球的粒径能够分布在1μm-10μm之间,钒酸锌(Zn3V3O8)纳米片的厚度能够分布在10 nm-200nm之间,且大部分钒酸锌(Zn3V3O8)纳米片的厚度都能够分布在10nm-100nm之间。In the preparation method provided by the present invention, firstly, under the condition of hydrothermal reaction, glucose is reacted in a weakly alkaline environment to generate spherical templates—carbon microspheres; ethylene glycol is used as a solvent, ammonium metavanadate is used as a vanadium source, and Zinc trifluoromethanesulfonate is used as the zinc source, polyvinylpyrrolidone is used as the surfactant, and carbon microspheres are used as the template. The zinc vanadate/carbon microsphere precursor was obtained; high-temperature heat treatment was carried out under nitrogen atmosphere in a tube furnace, and the zinc vanadate attached to the carbon microspheres was annealed into nanosheets, and the structure of the carbon microspheres also changed at high temperature. Get loose, the composite material of the zinc vanadate nano-sheet coated carbon microsphere finally obtained; The particle size of the carbon microsphere in the zinc vanadate nano-sheet coated carbon microsphere composite material prepared by the preparation method of the present invention can be distributed Between 1 μm and 10 μm, the thickness of zinc vanadate (Zn3V3O8) nanosheets can be distributed between 10 nm and 200 nm, and the thickness of most zinc vanadate (Zn3V3O8) nanosheets can be distributed between 10 nm and 100 nm.
本发明提供了一种水系锌离子电池的正极材料,将钒酸锌纳米片附着在碳微球表面,可以在保证钒酸锌纳米片包覆碳微球电导率的同时增加容量;具体而言,碳微球的参与使得电子导电更加容易,基于此提高了复合材料整体的导电性;钒酸锌纳米片的片状结构与电解液的接触面积大,离子更容易嵌入,在相同充放电时间内能够提供更高的比容量;钒酸锌纳米片附着在球形模板上,复合材料呈现球形,使得充放电过程中的体积膨胀在方向上相比于平面结构有更多的选择性,从而在电池循环过程中延长结构坍塌、破裂的时间,具有较强的结构稳定性,对电池寿命有很大的帮助;将此钒酸锌纳米片包覆碳微球的复合材料作为水系锌离子电池(AZIBs)的正极材料,并将其组装成水系锌离子电池,表现出出色的电化学行为。The invention provides a positive electrode material for a water-based zinc ion battery. Zinc vanadate nanosheets are attached to the surface of carbon microspheres, which can increase the capacity while ensuring the conductivity of the zinc vanadate nanosheets coated carbon microspheres; specifically , the participation of carbon microspheres makes electronic conduction easier, based on which the overall conductivity of the composite material is improved; the sheet structure of zinc vanadate nanosheets has a large contact area with the electrolyte, and ions are easier to embed. It can provide a higher specific capacity; the zinc vanadate nanosheets are attached to the spherical template, and the composite material is spherical, so that the volume expansion during charge and discharge is more selective in direction than the planar structure, so in Prolonging the time of structural collapse and rupture during the battery cycle has strong structural stability and is of great help to the battery life; the composite material of zinc vanadate nanosheets coated with carbon microspheres is used as a water-based zinc-ion battery ( AZIBs) as cathode materials and assembled into aqueous Zn-ion batteries, exhibiting excellent electrochemical behavior.
下面结合具体实施例对本发明做进一步说明。The present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
1.碳微球的制备:1. Preparation of carbon microspheres:
(a) 在烧杯中配制浓度为0.23mol/L葡萄糖溶液;(a) Prepare a glucose solution with a concentration of 0.23mol/L in a beaker;
(b)加入氢氧化钠、柠檬酸以及浓度为0.37mol/L甲醛水溶液,充分搅拌;(b) Add sodium hydroxide, citric acid and aqueous formaldehyde solution with a concentration of 0.37mol/L, and stir thoroughly;
(c) 将混合溶液倒入聚四氟乙烯模具中,进行水热反应,反应条件为160ºC反应4h;(c) Pour the mixed solution into a polytetrafluoroethylene mold for hydrothermal reaction at 160ºC for 4 hours;
(d)将水热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(d) Alternately centrifuge the hydrothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(e) 将收集的沉淀物真空冷冻干燥48h,温度为-80℃,得到碳微球;(e) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C to obtain carbon microspheres;
2.钒酸锌包覆碳微球复合材料的制备:2. Preparation of zinc vanadate-coated carbon microsphere composites:
(a) 将乙二醇倒入烧杯中;(a) Pour ethylene glycol into the beaker;
(b)将偏钒酸钠、三氟甲基磺酸锌、聚乙烯吡咯烷酮均匀分散至乙二醇中得到悬浊液;(b) Uniformly disperse sodium metavanadate, zinc trifluoromethanesulfonate, and polyvinylpyrrolidone in ethylene glycol to obtain a suspension;
(c) 将步骤(1)中的碳微球材料加入到悬浊液中,持续大力搅拌至分散均匀;(c) Add the carbon microsphere material in step (1) into the suspension, and continue to stir vigorously until it is uniformly dispersed;
(d)将悬浊液倒入聚四氟乙烯模具进行溶剂热反应,反应条件为180ºC反应8h;(d) Pour the suspension into a polytetrafluoroethylene mold for solvothermal reaction, and the reaction condition is 180ºC for 8 hours;
(e) 将溶剂热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(e) Alternately centrifuge the solvothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(f)将收集的沉淀物真空冷冻干燥48h,温度为-80℃;(f) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C;
(g) 将干燥后的产物置于管式炉中,在氮气气氛下分别以保温温度为400℃,升温速率为5℃/min,保温时间6h得到钒酸锌纳米片包覆碳微球的复合材料。(g) Put the dried product in a tube furnace, and in a nitrogen atmosphere, the holding temperature is 400°C, the heating rate is 5°C/min, and the holding time is 6h to obtain zinc vanadate nanosheet-coated carbon microspheres. composite material.
3.钒酸锌纳米片包覆碳微球复合材料作为水系锌离子电池电极材料的制备:3. Preparation of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for aqueous zinc-ion batteries:
将步骤2制得的钒酸锌纳米片包覆碳微球的复合材料与Super P(导电炭黑)和聚偏二氟乙烯按照质量比为7∶2∶1分散于N-甲基吡咯烷酮中制成浆料涂布在Ti箔上,随后置于烘箱在真空条件下110℃干燥12h,即得到电池正极材料。Disperse the zinc vanadate nanosheet-coated carbon microsphere composite material prepared in step 2 with Super P (conductive carbon black) and polyvinylidene fluoride in N-methylpyrrolidone at a mass ratio of 7:2:1 The prepared slurry is coated on the Ti foil, and then placed in an oven and dried at 110° C. for 12 hours under vacuum condition to obtain the positive electrode material of the battery.
4. 钒酸锌纳米片包覆碳微球复合材料作为锌离子电池电极材料的测试:4. Test of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for zinc-ion batteries:
将步骤3的电池正极材料裁成直径为14 mm的圆形电极,以铂网和饱和甘汞电极分别作为对电极和参比电极、用Whatman GF/D玻璃纤维滤纸作为隔膜,组装成扣式电池,其中,扣式电池中的电解液为浓度为2.8~3.0mol/L的三氟甲烷磺酸锌溶液,负极为锌片;扣式电池通过电化学工作站Autolab进行测试,电流密度为0.1A/g,测试其充放电性能如图8;扣式电池通过蓝电电池测试仪CT2001A进行循环测试(电压窗口为0.3-1.7V),倍率性能如图11实施例1所示。Cut the positive electrode material of the battery in step 3 into a circular electrode with a diameter of 14 mm, use platinum mesh and saturated calomel electrode as the counter electrode and reference electrode respectively, and use Whatman GF/D glass fiber filter paper as the separator, and assemble it into a button type The battery, wherein the electrolyte in the button cell is a zinc trifluoromethanesulfonate solution with a concentration of 2.8~3.0mol/L, and the negative electrode is a zinc sheet; the button cell is tested by the electrochemical workstation Autolab, and the current density is 0.1A /g, the charge and discharge performance of the test is shown in Figure 8; the button battery is cycle tested by the blue battery tester CT2001A (voltage window is 0.3-1.7V), and the rate performance is shown in Example 1 of Figure 11.
以本实施例1所制备的超薄钒酸锌纳米片包覆碳微球复合材料为例,从附图1的扫描电镜照片中可以观察出复合材料基本呈现出了由钒酸锌和碳微球结合紧密的形貌;其结构从附图5的XRD中可以看出,结晶性相对较差,没有出现Zn3V3O8的全部特征峰;从附图8的充放电测试结果中可以看出,作为独立电极片,用三电极的测试方法对其进行测试,在电流密度为1 A g-1时,放电比容量为187mAh g-1;从附图11倍率性能图中可以看出,作为水系锌离子电池正极活性材料时,用两电极的方法对扣式电池进行测试,在电流密度分别为0.1、0.2、0.5、1、2、3、4、5 A g-1时,全电池的放电比容量分别为247.8、164.8、126.5、108.3、90.0、72.5、60.0、48.6mAh g-1,且当电流密度回到小电流密度(0.1A g-1),其放电比容量为133.7 mAh g-1,可以看出其较好的电化学性能。Taking the ultra-thin zinc vanadate nanosheet-coated carbon microsphere composite material prepared in Example 1 as an example, it can be observed from the scanning electron microscope photo of accompanying drawing 1 that the composite material basically presents a composite material composed of zinc vanadate and carbon microspheres. The shape of the ball is closely combined; its structure can be seen from the XRD of accompanying drawing 5, the crystallinity is relatively poor, and all the characteristic peaks of Zn 3 V 3 O 8 do not appear; from the charge and discharge test results of accompanying drawing 8, it can be seen that It can be seen that, as an independent electrode sheet, it is tested with the three-electrode test method, and when the current density is 1 A g -1 , the discharge specific capacity is 187mAh g -1 ; it can be seen from the rate performance diagram of Figure 11 , when used as the positive electrode active material of the aqueous zinc-ion battery, the button battery was tested with the method of two electrodes, and when the current density was 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 A g -1 The discharge specific capacity of the battery is 247.8, 164.8, 126.5, 108.3, 90.0, 72.5, 60.0, 48.6mAh g -1 , and when the current density returns to the low current density (0.1A g -1 ), the discharge specific capacity is 133.7 mAh g -1 , we can see its good electrochemical performance.
实施例2Example 2
1.碳微球的制备:1. Preparation of carbon microspheres:
(a) 在烧杯中配制浓度为0.30mol/L葡萄糖溶液;(a) Prepare a glucose solution with a concentration of 0.30mol/L in a beaker;
(b)加入氢氧化钠、柠檬酸以及浓度为0.38 mol/L甲醛水溶液,充分搅拌;(b) Add sodium hydroxide, citric acid and aqueous formaldehyde solution with a concentration of 0.38 mol/L, and stir thoroughly;
(c) 将混合溶液倒入聚四氟乙烯模具中,进行水热反应,反应条件为160ºC反应5h;(c) Pour the mixed solution into a polytetrafluoroethylene mold for hydrothermal reaction at 160ºC for 5 hours;
(d)将水热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(d) Alternately centrifuge the hydrothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(e) 将收集的沉淀物真空冷冻干燥48h,温度为-80℃,得到碳微球;(e) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C to obtain carbon microspheres;
2.钒酸锌包覆碳微球复合材料的制备:2. Preparation of zinc vanadate-coated carbon microsphere composites:
(a) 将乙二醇倒入烧杯中;(a) Pour ethylene glycol into the beaker;
(b)将偏钒酸钠、三氟甲基磺酸锌、聚乙烯吡咯烷酮均匀分散至乙二醇中得到悬浊液;(b) Uniformly disperse sodium metavanadate, zinc trifluoromethanesulfonate, and polyvinylpyrrolidone in ethylene glycol to obtain a suspension;
(c) 将步骤(1)中的碳微球材料加入到悬浊液中,持续大力搅拌至分散均匀;(c) Add the carbon microsphere material in step (1) into the suspension, and continue to stir vigorously until it is uniformly dispersed;
(d)将悬浊液倒入聚四氟乙烯模具进行溶剂热反应,反应条件为180ºC反应10h;(d) Pour the suspension into a polytetrafluoroethylene mold for solvothermal reaction, and the reaction condition is 180ºC for 10 hours;
(e) 将溶剂热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(e) Alternately centrifuge the solvothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(f)将收集的沉淀物真空冷冻干燥48h,温度为-80℃;(f) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C;
(g) 将干燥后的产物置于管式炉中,在氮气气氛下分别以保温温度为500℃,升温速率为5℃/min,保温时间6h得到钒酸锌纳米片包覆碳微球的复合材料。(g) Put the dried product in a tube furnace, and in a nitrogen atmosphere, the holding temperature is 500°C, the heating rate is 5°C/min, and the holding time is 6h to obtain zinc vanadate nanosheet-coated carbon microspheres. composite material.
3.钒酸锌纳米片包覆碳微球复合材料作为水系锌离子电池电极材料的制备:3. Preparation of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for aqueous zinc-ion batteries:
将步骤2制得的钒酸锌纳米片包覆碳微球的复合材料与Super P和聚偏二氟乙烯按照质量比为7∶2∶1分散于N-甲基吡咯烷酮中制成浆料涂布在Ti箔上,随后置于烘箱在真空条件下110℃干燥12h,即得到电池正极材料。Disperse the composite material of zinc vanadate nanosheets coated carbon microspheres prepared in step 2 with Super P and polyvinylidene fluoride in N-methylpyrrolidone at a mass ratio of 7:2:1 to make a slurry coating Clothed on Ti foil, then placed in an oven and dried at 110° C. for 12 hours under vacuum to obtain the positive electrode material of the battery.
4. 钒酸锌纳米片包覆碳微球复合材料作为锌离子电池电极材料的测试4. Test of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for zinc-ion batteries
将步骤3的电池正极材料裁成直径为14 mm的圆形电极,以铂网和饱和甘汞电极分别作为对电极和参比电极、用Whatman GF/D作为隔膜,组装成扣式电池,其中,扣式电池中的电解液为浓度为2.8~3.0mol/L的三氟甲烷磺酸锌溶液,负极为锌片;扣式电池通过电化学工作站Autolab进行测试,电流密度为0.1A g-1,测试其充放电性能如附图9;扣式电池通过蓝电电池测试仪CT2001A进行循环测试(电压窗口为0.3-1.7V),倍率性能如图附11实施例2所示。Cut the positive electrode material of the battery in step 3 into a circular electrode with a diameter of 14 mm, use platinum mesh and saturated calomel electrode as the counter electrode and reference electrode respectively, and use Whatman GF/D as the separator to assemble a button cell, wherein , the electrolyte in the button cell is a zinc trifluoromethanesulfonate solution with a concentration of 2.8~3.0mol/L, and the negative electrode is a zinc sheet; the button cell is tested by the electrochemical workstation Autolab, and the current density is 0.1A g -1 The charging and discharging performance is tested as shown in Figure 9; the button battery is cycle tested by the blue battery tester CT2001A (voltage window is 0.3-1.7V), and the rate performance is shown in Example 2 of Figure 11.
以本实施例2所制备的超薄钒酸锌纳米片包覆碳微球复合材料为例,从附图2的扫描电镜图中可以观察出复合材料基本达到了预想的钒酸锌包覆碳微球的形貌;其结构从附图6的XRD中可以看出,结晶性相对较好,虽然出峰位置存在个别不稳定性,但是基本符合PDF标准卡片中Zn3V3O8的全部特征峰;从附图9的充放电测试结果中可以看出,作为独立电极片,用三电极的测试方法对其进行测试,在电流密度为1 A g-1时,放电比容量为213mAhg-1;从附图11倍率性能图中可以看出,作为水系锌离子电池正极活性材料时,用两电极的方法对扣式电池其进行测试,在电流密度分别为0.1、0.2、0.5、1、2、3、4、5 A g-1时,全电池的放电比容量分别为286.3、222.6、191.7、173.0、133.3、98.3、76.7、59.7 mAh g-1,且当电流密度回到小电流密度(0.1A g-1),其放电比容量达到了196.3 mAh g-1,可以看出电池的循环性能相对稳定,电化学性能较实施例1有了很大提升。Taking the ultra-thin zinc vanadate nanosheet-coated carbon microsphere composite material prepared in Example 2 as an example, it can be observed from the scanning electron microscope figure of accompanying drawing 2 that the composite material has basically reached the expected zinc vanadate-coated carbon microsphere composite material. The morphology of the microspheres; its structure can be seen from the XRD of the accompanying drawing 6, the crystallinity is relatively good, although there are individual instabilities in the peak position, but it basically conforms to all the Zn 3 V 3 O 8 in the PDF standard card Characteristic peak; As can be seen from the charge and discharge test results of accompanying drawing 9, as an independent electrode sheet, it is tested with the test method of three electrodes, and when the current density is 1 A g -1 , the discharge specific capacity is 213mAhg - 1 ; As can be seen from the 11 rate performance figure of accompanying drawing, when as the positive electrode active material of water system zinc ion battery, with the method for two electrodes, it is tested to coin battery, and at current density respectively 0.1,0.2,0.5,1, At 2, 3, 4, and 5 A g -1 , the discharge specific capacities of the full battery are 286.3, 222.6, 191.7, 173.0, 133.3, 98.3, 76.7, 59.7 mAh g -1 , and when the current density returns to the low current density (0.1A g -1 ), the discharge specific capacity reached 196.3 mAh g -1 , it can be seen that the cycle performance of the battery is relatively stable, and the electrochemical performance has been greatly improved compared with Example 1.
实施例3Example 3
1.碳微球的制备:1. Preparation of carbon microspheres:
(a) 在烧杯中配制浓度为0.38mol/L葡萄糖溶液;(a) Prepare a glucose solution with a concentration of 0.38mol/L in a beaker;
(b)加入氢氧化钠、柠檬酸以及浓度为0.40 mol/L甲醛水溶液,充分搅拌;(b) Add sodium hydroxide, citric acid and aqueous formaldehyde solution with a concentration of 0.40 mol/L, and stir thoroughly;
(c) 将混合溶液倒入聚四氟乙烯模具中,进行水热反应,反应条件为160ºC反应6h;(c) Pour the mixed solution into a polytetrafluoroethylene mold for hydrothermal reaction at 160ºC for 6 hours;
(d)将水热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(d) Alternately centrifuge the hydrothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(e) 将收集的沉淀物真空冷冻干燥48h,温度为-80℃,得到碳微球;(e) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C to obtain carbon microspheres;
2.钒酸锌包覆碳微球复合材料的制备:2. Preparation of zinc vanadate-coated carbon microsphere composites:
(a) 将乙二醇倒入烧杯中;(a) Pour ethylene glycol into the beaker;
(b)将偏钒酸钠、三氟甲基磺酸锌、聚乙烯吡咯烷酮均匀分散至乙二醇中得到悬浊液;(b) Uniformly disperse sodium metavanadate, zinc trifluoromethanesulfonate, and polyvinylpyrrolidone in ethylene glycol to obtain a suspension;
(c) 将步骤(1)中的碳微球材料加入到悬浊液中,持续大力搅拌至分散均匀;(c) Add the carbon microsphere material in step (1) into the suspension, and continue to stir vigorously until it is uniformly dispersed;
(d)将悬浊液倒入聚四氟乙烯模具进行溶剂热反应,反应条件为180ºC反应12h;(d) Pour the suspension into a polytetrafluoroethylene mold for solvothermal reaction at 180ºC for 12 hours;
(e) 将溶剂热反应产物用去离子水和乙醇以8000r/min交替离心,收集沉淀物;(e) Alternately centrifuge the solvothermal reaction product with deionized water and ethanol at 8000r/min to collect the precipitate;
(f)将收集的沉淀物真空冷冻干燥48h,温度为-80℃;(f) Vacuum freeze-dry the collected precipitate for 48 hours at -80°C;
(g) 将干燥后的产物置于管式炉中,在氮气气氛下分别以保温温度为600℃,升温速率为5℃/min,保温时间6h得到钒酸锌纳米片包覆碳微球的复合材料。(g) Put the dried product in a tube furnace, and in a nitrogen atmosphere, the holding temperature is 600°C, the heating rate is 5°C/min, and the holding time is 6h to obtain zinc vanadate nanosheet-coated carbon microspheres. composite material.
3.钒酸锌纳米片包覆碳微球复合材料作为水系锌离子电池电极材料的制备3. Preparation of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for aqueous zinc-ion batteries
将步骤2制得的钒酸锌纳米片包覆碳微球的复合材料与Super P和聚偏二氟乙烯按照质量比为7∶2∶1分散于N-甲基吡咯烷酮中制成浆料涂布在Ti箔上,随后置于烘箱在真空条件下110℃干燥12h,即得到电池正极材料。Disperse the composite material of zinc vanadate nanosheets coated carbon microspheres prepared in step 2 with Super P and polyvinylidene fluoride in N-methylpyrrolidone at a mass ratio of 7:2:1 to make a slurry coating Clothed on Ti foil, then placed in an oven and dried at 110° C. for 12 hours under vacuum to obtain the positive electrode material of the battery.
4. 钒酸锌纳米片包覆碳微球复合材料作为锌离子电池电极材料的测试4. Test of zinc vanadate nanosheet-coated carbon microsphere composites as electrode materials for zinc-ion batteries
将步骤3的电池正极材料裁成直径为14 mm的圆形电极,以铂网和饱和甘汞电极分别作为对电极和参比电极、用Whatman GF/D作为隔膜,组装成扣式电池,其中,扣式电池的电解液为浓度为2.8~3.0mol/L的三氟甲烷磺酸锌溶液,负极为锌片;扣式电池通过电化学工作站Autolab进行测试,电流密度为0.1A g-1,测试其充放电性能如附图10;扣式电池通过蓝电电池测试仪CT2001A进行循环测试(电压窗口为0.3-1.7V),倍率性能如附图11实施例3所示。Cut the positive electrode material of the battery in step 3 into a circular electrode with a diameter of 14 mm, use platinum mesh and saturated calomel electrode as the counter electrode and reference electrode respectively, and use Whatman GF/D as the separator to assemble a button cell, wherein , the electrolyte of the button cell is a zinc trifluoromethanesulfonate solution with a concentration of 2.8~3.0mol/L, and the negative electrode is a zinc sheet; the button cell is tested by the electrochemical workstation Autolab, and the current density is 0.1A g -1 , The charging and discharging performance is tested as shown in Figure 10; the button battery is subjected to a cycle test (voltage window is 0.3-1.7V) through the blue battery tester CT2001A, and the rate performance is shown in Example 3 of Figure 11.
以本实施例3所制备的超薄钒酸锌纳米片包覆碳微球复合材料为例,从附图3的扫描电镜图中可以观察出复合材料呈规则且大小均一的球形,从附图4的单个颗粒细节图可以看出复合材料表面的超薄钒酸锌纳米片以及以碳微球为模板所提供的球形形貌,说明材料合成成功;其结构从附图7的XRD中可以看出,结晶性很好,衍射峰符合Zn3V3O8的全部特征峰;从附图10的充放电测试结果中可以看出,作为独立电极片,用三电极的测试方法对其进行测试,在电流密度为1 A g-1时,放电比容量为275mAh g-1;从附图11倍率性能图中可以看出,作为水系锌离子电池正极活性材料时,用两电极的方法对扣式电池进行测试,在电流密度分别为0.1、0.2、0.5、1、2、3、4、5 A g-1时,全电池的放电比容量分别为312.3、278.1、242.3、218.0、183.9、147.5、118.9、93.0mAh g-1,且当电流密度回到小电流密度(0.1A g-1),其放电比容量仍保持容量在257.6 mAh g-1,可以看出其优异的电化学性能。Taking the ultra-thin zinc vanadate nanosheet-coated carbon microsphere composite material prepared in Example 3 as an example, it can be observed from the scanning electron microscope figure of accompanying drawing 3 that the composite material is a regular and uniform spherical shape. 4, we can see the ultra-thin zinc vanadate nanosheets on the surface of the composite material and the spherical shape provided by the carbon microspheres as a template, indicating that the material was successfully synthesized; its structure can be seen from the XRD of Figure 7 It can be seen that the crystallinity is very good, and the diffraction peaks conform to all the characteristic peaks of Zn 3 V 3 O 8 ; as can be seen from the charge and discharge test results in Figure 10, as an independent electrode sheet, it is tested with the three-electrode test method , when the current density is 1 A g -1 , the discharge specific capacity is 275mAh g -1 ; it can be seen from the rate performance diagram in Figure 11 that when used as the positive electrode active material of the aqueous zinc ion battery, the two-electrode method is used to buckle When the current density is 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 A g -1 , the discharge specific capacity of the full battery is 312.3, 278.1, 242.3, 218.0, 183.9, 147.5 , 118.9, 93.0mAh g -1 , and when the current density returns to the low current density (0.1A g -1 ), its discharge specific capacity still maintains a capacity of 257.6 mAh g -1 , which shows its excellent electrochemical performance.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210580247.XA CN114914423B (en) | 2022-05-26 | 2022-05-26 | Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210580247.XA CN114914423B (en) | 2022-05-26 | 2022-05-26 | Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114914423A CN114914423A (en) | 2022-08-16 |
CN114914423B true CN114914423B (en) | 2023-07-14 |
Family
ID=82769412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210580247.XA Active CN114914423B (en) | 2022-05-26 | 2022-05-26 | Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114914423B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102386380B (en) * | 2011-10-21 | 2013-02-27 | 福州大学 | Preparation method and application of high performance ZnV2O4/mesoporous carbon composite |
CN105322161A (en) * | 2014-07-28 | 2016-02-10 | 中国科学院大连化学物理研究所 | Carbon-supported lithium vanadate and preparation method and application thereof |
CN108039486A (en) * | 2017-12-20 | 2018-05-15 | 湖南工业大学 | The hollow core shell structure vanadic anhydride anode electrode piece of tremelliform and its fastening lithium ionic cell preparation method |
WO2020030014A1 (en) * | 2018-08-07 | 2020-02-13 | 上海紫剑化工科技有限公司 | Vanadium sodium phosphate positive electrode material, sodium ion battery, preparation method therefor, and use thereof |
CN110707301A (en) * | 2019-09-05 | 2020-01-17 | 珠海恒力源机电有限公司 | Vanadium trioxide/carbon composite material with nanosphere structure and preparation method and application thereof |
CN111646508B (en) * | 2020-06-08 | 2023-09-26 | 齐鲁工业大学 | Vanadium tetrasulfide-nitrogen doped carbon tube composite material and preparation method and application thereof |
CN112670477B (en) * | 2020-12-24 | 2023-04-18 | 江西师范大学 | Vanadium nitride quantum dot in-situ implanted carbon sphere composite material, preparation method thereof and sodium storage application |
CN114156451B (en) * | 2021-11-30 | 2023-11-03 | 安徽师范大学 | A carbon cloth composite material with a three-dimensional structure of zinc pyrovanadate nanosheets grown on the surface and its preparation method, rechargeable battery |
-
2022
- 2022-05-26 CN CN202210580247.XA patent/CN114914423B/en active Active
Non-Patent Citations (1)
Title |
---|
Zhang, YF ; Wang, XF ; Zheng, JQ .Facile synthesis of high-surface vanadium nitride/vanadium sesquioxide/amorphous carbon composite with porous structures as electrode materials for high performance symmetric supercapacitors.《APPLIED SURFACE SCIENCE》.2019,第471卷第842-851页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114914423A (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020030014A1 (en) | Vanadium sodium phosphate positive electrode material, sodium ion battery, preparation method therefor, and use thereof | |
CN107069020B (en) | A kind of preparation method of nickel-doped vanadium pentoxide nanosheet cathode material for lithium ion battery | |
CN101834291B (en) | A preparation method of submicron LiNi0.5Mn0.5O2 cathode material | |
CN102810664A (en) | Preparation method of monodisperse nano-olivine manganese-based phosphate cathode material and lithium-ion secondary battery thereof | |
CN109004212B (en) | A high-rate lithium manganate cathode material and preparation method thereof | |
CN107093739B (en) | Potassium manganese oxide for potassium ion battery anode material and preparation method thereof | |
CN106904653A (en) | The preparation method of vanadium dioxide nano material and applied in magnesium chargeable battery | |
CN111285410B (en) | A kind of carbon composite metal oxide nanosheet material and its preparation method and application | |
CN114094060B (en) | Preparation method of high-voltage positive electrode material with core-shell structure | |
CN112331830A (en) | A kind of preparation method of graphene-coated nickel-cobalt-manganese ternary positive electrode material | |
CN107311119B (en) | Hollow nanometer prism material of nickel cobalt diselenide, preparation method and application thereof | |
CN111952566A (en) | Rubidium-doped high-rate lithium battery positive electrode material and preparation method thereof | |
CN116093300A (en) | Simple pre-lithium metal doped silicon oxygen carbon negative electrode material and preparation method thereof | |
CN103094572B (en) | Lithium vanadate anode material and preparation method thereof | |
CN116332145A (en) | Preparation method and application of a sodium-ion battery cathode material coated with a high-entropy oxide material | |
CN108899541B (en) | A kind of magnesium lithium silicate coating modified zinc lithium titanate negative electrode material and preparation method thereof | |
CN118352495A (en) | Nitrogen-doped carbon-coated composite Na4Fe3(PO4)2P2O7Sodium ion battery positive electrode material and preparation method thereof | |
CN115425209A (en) | Preparation method and application of a bayberry-shaped iron-doped cobalt-based chalcogenide nitrogen-doped carbon porous composite material | |
CN113526552B (en) | Composite positive electrode active material of lithium ion battery and preparation method thereof | |
CN111952585A (en) | High-compaction-density rubidium-doped lithium battery positive electrode material and preparation method thereof | |
CN104362291B (en) | A kind of lithium-enriched cathodic material of lithium ion battery and preparation method thereof and lithium ion battery | |
CN114914423B (en) | Composite material of zinc vanadate coated carbon microsphere, and preparation method and application thereof | |
CN114455563B (en) | Modified lithium iron phosphate material and preparation method and application thereof | |
CN107611420B (en) | A kind of lithium battery nanometer electrode material LiNaV2O6 and preparation method thereof | |
CN115911319A (en) | Hydrophobic sodium ion battery cathode material, preparation method thereof and sodium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |