CN114910244A - 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法 - Google Patents

一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法 Download PDF

Info

Publication number
CN114910244A
CN114910244A CN202210472625.2A CN202210472625A CN114910244A CN 114910244 A CN114910244 A CN 114910244A CN 202210472625 A CN202210472625 A CN 202210472625A CN 114910244 A CN114910244 A CN 114910244A
Authority
CN
China
Prior art keywords
gust
control
deflection
model
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210472625.2A
Other languages
English (en)
Inventor
于金革
吴思禹
曾宪昂
赵冬强
杨希明
芦士光
张鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Aerodynamics Research Institute
Original Assignee
AVIC Aerodynamics Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Aerodynamics Research Institute filed Critical AVIC Aerodynamics Research Institute
Priority to CN202210472625.2A priority Critical patent/CN114910244A/zh
Publication of CN114910244A publication Critical patent/CN114910244A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,采用阵风前视测量探头在阵风扰动到达模型之前便获得阵风扰动信息,通过建立的阵风扰动量与舵面偏转关系式和前视反馈的控制策略,可提前启动模型舵面偏转适量角度进行阵风载荷减缓控制,解决了阵风载荷减缓风洞试验中由于控制舵机信号时间滞后和控制面偏角速率受限导致控制效果变差的问题,快速高效的减小了阵风载荷量。本发明采用多舵面进行阵风载荷减缓的控制方式,实现了模型运动姿态控制,以及刚体模态、弹性体模态与刚弹混合模态阵风减缓控制,翼根弯矩载荷的最大减缓幅度达50%,减缓效果更佳。

Description

一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法
技术领域
本发明属于低速风洞试验技术领域,具体涉及一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法。
背景技术
阵风,又称突风(gust)或大气湍流,是大气中一种强度较大的确定性风扰动。当飞行器遭遇阵风时,机体会产生附加的非定常气动力与力矩,从而对飞行器飞行性能产生不利影响。现代民用飞机,如大型客机,强调经济性、舒适性、安全性、可靠性,要求具有较高的气动效率和较低的结构重量,通常采用大展弦比机翼,在结构材料上大量使用复合材料,飞机机翼具有较大的柔性,因此飞机对阵风响应更加敏感,阵风载荷,特别是垂直离散阵风载荷,经常成为飞行载荷最严重的情况,对大型客机的舒适性、安全性、经济性、可靠性带来严重影响。当飞机遭遇中低强度的阵风带来的非定常气动载荷会造成飞机的颠簸,给乘客带来紧张感,降低民用飞机的舒适性,甚至导致乘客的人身伤害;当飞机遭遇高强度的非定常气动载荷时,飞机局部过载可达2.5g以上,这会给飞机结构带来破坏或者产生疲劳裂纹,影响飞机的使用寿命,对飞机的安全性和可靠性带来较大影响,民用飞机对阵风载荷造成的疲劳损伤极为敏感,阵风载荷谱是飞机结构寿命可靠性设计的重要科学依据。由于阵风载荷问题,为了保证飞机的强度,需要对飞机结构进行加强,导致飞机重量增加,进而影响飞机的经济性。
国内外民用飞机适航条列对于阵风载荷做出了明确的规定。中国运输类飞机适航标准(CCAR-25-R4)和美国航空管理条例(FAR-25)都对阵风载荷设计准则给出了相应规定。准确预测阵风载荷是飞机设计阶段必须进行的一项重要工作。我国大型民用飞机研制对发展先进的大型高低速风洞阵风试验技术提出了迫切需求。除了飞机强度设计所需的阵风载荷预测需求,还需要对阵风载荷减缓技术进行验证。
目前,阵风载荷及阵风载荷减缓研究多采取计算仿真的方法开展,相关试验研究主要在风洞中开展一些探索性的初步研究工作,现有的风洞阵风载荷减缓试验,多是采用阵风扰流到达模型传感器后再输出给控制系统进行舵面偏转,导致由于控制舵机信号时间滞后和控制面偏角速率受限导致减缓效果变差的,无法快速实现阵风载荷减缓;此外,以往风洞阵风载荷减缓试验模型主要采用机翼部件或半翼展模型,难以真实的反应飞机遭遇阵风时机翼、升降舵、发动机短舱及机身等全机多部件过载情况;另一方面,机翼部件或半翼展模型阵风载荷减缓试验一般只采用襟翼或副翼进行控制,无法进行襟翼与方向舵组合偏转,进而实现模型的姿态控制、刚体模态、弹性体模态及刚弹混合模态的阵风减缓控制。
发明内容
为了解决上述问题,本发明的目的是提供一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,可在阵风扰动到达模型之前获得阵风扰动信息,提前启动模型舵面偏转进行阵风载荷减缓控制,解决了阵风载荷减缓风洞试验中由于控制舵机信号时间滞后和控制面偏角速率受限导致控制效果变差的问题,可快速实现阵风减缓。
本发明主要通过下述技术方案得以实现:一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,如下,将全机模型安装在模型支撑装置上,将阵风前视测量探头安装在距全机模型前方一定距离的阵风前视测量探头支撑架上,再将传感器组与采集系统连接,所述的传感器组包括应变片、陀螺仪、光栅尺及加速度计;
正式试验前,首先启动风洞风速,待风速达到预设值后,开启阵风发生器装置,发生器叶片按照指定的摆动角度、摆动频率及波形运动,当阵风扰流到达阵风前视测量探头时,阵风前视测量探头将获得的阵风信息传递到信号接收与转换盒中,由信号接收与转换盒解算出阵风的扰动量,此时观察到全机模型在阵风的作用下沉浮和俯仰运动幅度较大,布置在全机模型上的各传感器的测量值变化较大,采用数据采集与舵面偏转控制计算驱动舵面偏转,通过对测量阵风扰动的幅值和频率进行分析,测试阵风减缓襟翼及升降舵的舵面所需的偏转角度,记录全机模型沉浮与俯仰运动稳定、且传感器数值变化较小时的舵面偏转角度,采用建立的阵风载荷减缓方程及多次测量结果获得了阵风扰动量与舵面偏转角度的关系式;
正式试验时,重新开启风洞风速和阵风发生器,首先采集全机模型舵面无偏转的数据,之后将阵风前视测量探头获得的阵风扰动信息由信号接收与转换盒解算出阵风的扰动量,依据之前建立的舵面偏转角度与阵风扰动量关系,解算出此时全机模型所需的舵面偏角,并由数据采集与舵面偏转控制计算机发出指令驱动舵面偏转相应的角度,这时全机模型沉浮和俯仰运动稳定在某个固定的范围内,阵风扰动得到有效抑制,采集应变片、陀螺仪、光栅尺和加速度传感器的数据,与之前舵面无偏转获得的值进行差量计算,即得到阵风载荷减缓量。
进一步的,根据襟翼和升降舵操纵面的组合偏转,产生直接升力来抵消阵风产生的气动力及力矩增量,建立的所述的阵风载荷减缓方程如下:
Figure BDA0003623495460000031
式(1)中,Lα是升力对攻角的导数,Lq是升力对俯仰角速率的导数,Lf是襟翼升力增量,δf是襟翼偏角,Le是升降舵升力增量,δe升降舵偏角,V是来流风速,wg是参考点垂直阵风速度,
Figure BDA0003623495460000032
是参考点阵风速度变化率,Mα是俯仰力矩对攻角的导数,Mq是俯仰力矩对俯仰角速率的导数,Mf是襟翼俯仰力矩增量,Me是升降舵俯仰力矩。
由于襟翼布置在参考点附近,其舵偏产生的俯仰力矩可忽略,即:
Mfδf≈0 (2)
对于本方法采用的常规布局全机模型:
Figure BDA0003623495460000033
通过多次风洞内数据测量结果,并联合式(2)与式(3)得到舵面偏转角度与阵风扰动量关系式:
Figure BDA0003623495460000034
式(4)中,
K1为开环阵风减缓控制器、阵风幅值到襟翼偏度的增益,
K2为开环阵风减缓控制器、阵风幅值到升降舵偏度的增益,
K3为开环阵风减缓控制器、阵风幅值变化率到升降舵偏度的增益,
具体表达形式如下:
Figure BDA0003623495460000035
本发明的有益效果及优点如下:本发明通过前视反馈阵风扰动测量及模型多操纵面的控制方式,采用全机模型试验能更加真实的反应飞机遭遇阵风的情况,实现了模型刚体模态、弹性体模态、刚弹混合模态的阵风减缓控制方式,较好的控制了模型姿态,翼根弯矩载荷的最大减缓幅度达50%,本发明快速有效的降低了飞机模型的阵风载荷,减缓控制效果显著。
附图说明:
图1为本发明试验原理示意图。
图2为本发明试验原理前视图。
图3为本发明阵风载荷减缓控制示意图。
图4为本发明控制律框图。
图5为翼根弯矩减缓试验效果图。
其中,1、阵风发生器,2、机头加速度传感器,3、陀螺仪,4、迎角传感器,5、翼尖加速度传感器,6、升降舵加速度传感器,7、方向舵加速度传感器,8、风洞,9、模型支撑装置,10、光栅尺,11、翼根应变片,12、发动机短舱加速度传感器,13、阵风前视测量探头支撑架,14、阵风前视测量探头,15、信号接收与转换盒,16、数据采集与舵面偏转控制计算机,17、发生器叶片支撑a,18、发生器叶片支撑b。
具体实施方式:
下面根据说明书附图举例对本发明做进一步的说明:
实施例1
如图1-3所示,一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,包括:
步骤1、安装阵风发生器、全模型阵风载荷减缓试验模型支撑装置和阵风前视测量探头支撑架;
步骤2、将全模型安装在模型支撑装置上,并安装阵风前视测量探头;
步骤3、将在机身梁靠近模型重心位置处安装倾角传感器和角速率陀螺,分别测量俯仰角和俯仰角速率;分别在左/右机翼翼尖、左/右发动机短舱(短舱梁前缘)、机头、模型重心和机身后体安装加速度传感器;在左/右机翼根部,粘贴用于测量翼根弯矩应变片;将上述传感器安装、调试完毕,并与信号接收与转换盒相连;
步骤4、正式试验前,首先启动风洞风速,待风速达到预设值后,开启阵风发生器装置,发生器叶片按照指定的摆动角度、摆动频率及波形运动;
步骤5、当阵风扰流到达阵风前视测量探头时,阵风前视测量探头将获得的阵风信息传递到信号接收与转换盒中,由信号接收与转换盒解算出阵风的扰动量,此时可观察到模型在阵风的作用下沉浮和俯仰运动幅度较大,布置在模型上的应变片、陀螺仪、光栅尺及加速度传感器的测量值变化也较大,采用数据采集与舵面偏转控制计算机驱动舵面偏转,通过对测量阵风扰动的幅值和频率进行分析,测试阵风减缓襟翼及升降舵的舵面所需的偏转角度,记录模型沉浮与俯仰运动稳定、且传感器数值变化较小时的舵面偏转角度,采用建立的阵风载荷减缓方程及多次测量结果获得了阵风扰动量与舵面偏转角度的关系式;
步骤6、根据襟翼和升降舵操纵面的组合偏转,产生直接升力来抵消阵风产生的气动力及力矩增量,建立的阵风载荷减缓方程如下:
Figure BDA0003623495460000051
式(1)中,Lα是升力对攻角的导数,Lq是升力对俯仰角速率的导数,Lf是襟翼升力增量,δf是襟翼偏角,Le是升降舵升力增量,δe升降舵偏角,V是来流风速,wg是参考点(机翼气动中心)垂直阵风速度,
Figure BDA0003623495460000052
是参考点阵风速度变化率,Mα是俯仰力矩对攻角的导数,Mq是俯仰力矩对俯仰角速率的导数,Mf是襟翼俯仰力矩增量,Me是升降舵俯仰力矩。
步骤7、由于襟翼布置在参考点附近,其舵偏产生的俯仰力矩可忽略,即:
Mfδf≈0 (2)
步骤8、对于本发明采用的常规布局模型有:
Figure BDA0003623495460000053
步骤9、通过多次风洞内数据测量结果,并联合式(2)与式(3)可得舵面偏转角度与阵风扰动量关系式:
Figure BDA0003623495460000054
式(4)中,K1为开环阵风减缓控制器、阵风幅值到襟翼偏度的增益,K2为开环阵风减缓控制器、阵风幅值到升降舵偏度的增益,K3为开环阵风减缓控制器、阵风幅值变化率到升降舵偏度的增益,具体表达形式如下:
Figure BDA0003623495460000061
步骤10、正式试验时,重新开启风洞风速和阵风发生器,首先采集无舵面无偏转的数据。之后将前视测量探头获得的阵风扰动信息由信号接收与转换盒解算出阵风的扰动量,依据之步骤5~步骤9建立的舵面偏转角度与阵风扰动量关系式,解算出此时模型所需的舵面偏角,并通过数据采集与舵面偏转控制计算机发出指令驱动舵面偏转相应的角度,这时模型沉浮和俯仰运动稳定在某个固定的范围内,阵风扰动得到有效抑制,采集陀螺仪、光栅尺、应变片和加速度传感器的信息,与之前获得的无舵面偏转值进行差量计算,即获得阵风载荷减缓量。
如图3所示,为阵风载荷减缓控制示意图,其中L表示阵风测点到设计阵风参考点的距离,V表示来流速度,Gδg为副翼过载对阵风速度的传递函数。如图4所示,为控制律框图,其中wgn机头处垂直阵风速度,x0为前视阵风测量点到参考点的距离,τ为滞后时间常数、τ=x0/V。本发明采用全机模型试验能更加真实的反应飞机遭遇阵风的情况,多操纵面的控制方式可实现刚体模态、弹性体模态、刚弹混合模态的阵风减缓控制,减缓效果更佳。
如图5所示,为翼根弯矩减缓试验效果图。当控制律开启既模型舵面偏转时,模型遭受的阵风载荷得到了有效降低,在重点频率3.5Hz时阵风载荷减缓量达到了50%以上,快速高效的减小了阵风载荷,减缓控制效果显著。

Claims (2)

1.一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,其特征在于,方法如下,将全机模型安装在模型支撑装置上,将阵风前视测量探头安装在距全机模型前方一定距离的阵风前视测量探头支撑架上,再将传感器组与采集系统连接,所述的传感器组包括应变片、陀螺仪、光栅尺及加速度计;
正式试验前,首先启动风洞风速,待风速达到预设值后,开启阵风发生器装置,发生器叶片按照指定的摆动角度、摆动频率及波形运动,当阵风扰流到达阵风前视测量探头时,阵风前视测量探头将获得的阵风信息传递到信号接收与转换盒中,由信号接收与转换盒解算出阵风的扰动量,此时观察到全机模型在阵风的作用下沉浮和俯仰运动幅度较大,布置在全机模型上的各传感器的测量值变化较大,采用数据采集与舵面偏转控制计算驱动舵面偏转,通过对测量阵风扰动的幅值和频率进行分析,测试阵风减缓襟翼及升降舵的舵面所需的偏转角度,记录全机模型沉浮与俯仰运动稳定、且传感器数值变化较小时的舵面偏转角度,采用建立的阵风载荷减缓方程及多次测量结果获得了阵风扰动量与舵面偏转角度的关系式;
正式试验时,重新开启风洞风速和阵风发生器,首先采集全机模型舵面无偏转的数据,之后将阵风前视测量探头获得的阵风扰动信息由信号接收与转换盒解算出阵风的扰动量,依据之前建立的舵面偏转角度与阵风扰动量关系,解算出此时全机模型所需的舵面偏角,并由数据采集与舵面偏转控制计算机发出指令驱动舵面偏转相应的角度,这时全机模型沉浮和俯仰运动稳定在某个固定的范围内,阵风扰动得到有效抑制,采集应变片、陀螺仪、光栅尺和加速度传感器的数据,与之前舵面无偏转获得的值进行差量计算,即得到阵风载荷减缓量。
2.根据权利要求1所述的一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法,其特征在于,根据襟翼和升降舵操纵面的组合偏转,产生直接升力来抵消阵风产生的气动力及力矩增量,建立的所述的阵风载荷减缓方程如下:
Figure FDA0003623495450000011
式(1)中,Lα是升力对攻角的导数,Lq是升力对俯仰角速率的导数,Lf是襟翼升力增量,δf是襟翼偏角,Le是升降舵升力增量,δe升降舵偏角,V是来流风速,wg是参考点垂直阵风速度,
Figure FDA0003623495450000021
是参考点阵风速度变化率,Mα是俯仰力矩对攻角的导数,Mq是俯仰力矩对俯仰角速率的导数,Mf是襟翼俯仰力矩增量,Me是升降舵俯仰力矩。
由于襟翼布置在参考点附近,忽略其舵偏产生的俯仰力矩,即:
Mfδf≈0 (2)
对于本方法采用的常规布局全机模型:
Figure FDA0003623495450000022
通过多次风洞内数据测量结果,并联合式(2)与式(3)得到舵面偏转角度与阵风扰动量关系式:
Figure FDA0003623495450000023
式(4)中,
K1为开环阵风减缓控制器、阵风幅值到襟翼偏度的增益,
K2为开环阵风减缓控制器、阵风幅值到升降舵偏度的增益,
K3为开环阵风减缓控制器、阵风幅值变化率到升降舵偏度的增益,
具体表达形式如下:
Figure FDA0003623495450000024
CN202210472625.2A 2022-04-29 2022-04-29 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法 Pending CN114910244A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210472625.2A CN114910244A (zh) 2022-04-29 2022-04-29 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210472625.2A CN114910244A (zh) 2022-04-29 2022-04-29 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法

Publications (1)

Publication Number Publication Date
CN114910244A true CN114910244A (zh) 2022-08-16

Family

ID=82764442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210472625.2A Pending CN114910244A (zh) 2022-04-29 2022-04-29 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法

Country Status (1)

Country Link
CN (1) CN114910244A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296237A (zh) * 2023-05-18 2023-06-23 中国航空工业集团公司哈尔滨空气动力研究所 一种低速风洞大型运载火箭竖立风载试验方法
CN118424641A (zh) * 2024-07-02 2024-08-02 中国航空工业集团公司哈尔滨空气动力研究所 大型低速风洞弹性全模型阵风载荷减缓试验系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB564408A (en) * 1941-12-30 1944-09-27 Phillips & Powis Aircraft Ltd Improvements in means for actuating aircraft control surfaces
GB201809534D0 (en) * 2018-06-11 2018-07-25 Airbus Operations Ltd Vertical stabilizer for an aircraft
CN113212733A (zh) * 2021-04-30 2021-08-06 成都飞机工业(集团)有限责任公司 一种大展弦比常规布局无人机突风载荷减缓方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB564408A (en) * 1941-12-30 1944-09-27 Phillips & Powis Aircraft Ltd Improvements in means for actuating aircraft control surfaces
GB201809534D0 (en) * 2018-06-11 2018-07-25 Airbus Operations Ltd Vertical stabilizer for an aircraft
CN113212733A (zh) * 2021-04-30 2021-08-06 成都飞机工业(集团)有限责任公司 一种大展弦比常规布局无人机突风载荷减缓方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘晓燕等: "阵风发生器流场特性分析与试验验证", 《北京航空航天大学学报》 *
秦先学: "基于前馈控制的民用飞机阵风载荷减缓技术研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296237A (zh) * 2023-05-18 2023-06-23 中国航空工业集团公司哈尔滨空气动力研究所 一种低速风洞大型运载火箭竖立风载试验方法
CN116296237B (zh) * 2023-05-18 2023-07-21 中国航空工业集团公司哈尔滨空气动力研究所 一种低速风洞大型运载火箭竖立风载试验方法
CN118424641A (zh) * 2024-07-02 2024-08-02 中国航空工业集团公司哈尔滨空气动力研究所 大型低速风洞弹性全模型阵风载荷减缓试验系统及方法

Similar Documents

Publication Publication Date Title
Maughmer Design of winglets for high-performance sailplanes
CN114910244A (zh) 一种基于前视反馈的全机模型阵风载荷减缓风洞试验方法
CN102117362B (zh) 滑流影响下的轻型飞机水平尾翼设计载荷确定方法
CN112208747A (zh) 通过主动阵风感测增强起飞/着陆稳定性
Kreshock et al. Overview of the tiltrotor aeroelastic stability testbed
Weismüller A new approach to aerodynamic performance of aircraft under turbulent atmospheric conditions
CN113815513B (zh) 一种车载可变入射角飞行器桨翼气动耦合测试系统
Maisel et al. Hover Tests of the XV-15 Tilt Rotor Research Aircraft
Ranaudo et al. Effects of horizontal tail ice on longitudinal aerodynamic derivatives
Fujino et al. Flutter characteristics of an over-the-wing engine mount business-jet configuration
Phillips et al. Estimating the low-speed downwash angle on an aft tail
Muthusamy et al. Force measurement on aircraft model with and without winglet using low speed wind tunnel
Traub et al. Experimental investigation of a morphable biplane
CN118424641B (zh) 大型低速风洞弹性全模型阵风载荷减缓试验系统及方法
Stauffer et al. Application of advanced methods to design loads determination for the L-1011 transport
Heaney Overview of the Integrated Adaptive Wing Technology Maturation Wind-Tunnel Test
Fan et al. Advances in test techniques based on multifunctional sting support system for 8m× 6m wind tunnel
Nixon et al. Higher harmonic control for tiltrotor vibration reduction
Eckert et al. DNW’s method to correct for support and wall interference effects on low speed measurements with a large propeller powered transport aircraft model
BOBBITT Modern fluid dynamics of subsonic and transonic flight
Lebrun ONERA–The French Aerospace Lab Wind Tunnel Test Engineer ONERA CS70100, 73500 Modane, France frederic. lebrun@ onera. fr
Penning et al. Aeroservoelastic analysis of a sensorcraft vehicle and comparison with wind tunnel data
Gorton et al. Assessment of rotor blade angle of attack from experimental inflow data
Gates et al. Reduction of 1-P aerodynamic loads on tractor aircraft engine installations
Mangalam et al. Higher Level Aerodynamic Input for Aeroservoelastic Control of Flexible Aircraft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220816

RJ01 Rejection of invention patent application after publication