CN114901753A - 具有可编程降解和微塑料消除的生物活性塑料 - Google Patents

具有可编程降解和微塑料消除的生物活性塑料 Download PDF

Info

Publication number
CN114901753A
CN114901753A CN202180008013.1A CN202180008013A CN114901753A CN 114901753 A CN114901753 A CN 114901753A CN 202180008013 A CN202180008013 A CN 202180008013A CN 114901753 A CN114901753 A CN 114901753A
Authority
CN
China
Prior art keywords
degradation
pcl
lipase
composition
rhp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202180008013.1A
Other languages
English (en)
Other versions
CN114901753B (zh
Inventor
徐婷
C·德乐瑞
J·邝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN114901753A publication Critical patent/CN114901753A/zh
Application granted granted Critical
Publication of CN114901753B publication Critical patent/CN114901753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6454Dibasic site splicing serine proteases, e.g. kexin (3.4.21.61); furin (3.4.21.75) and other proprotein convertases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/08Oxygen as only ring hetero atoms containing a hetero ring of at least seven ring members, e.g. zearalenone, macrolide aglycons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

微量酶和无规杂聚物在塑料中的纳米级分散为全功能塑料提供生态友好的微塑料消除和可编程降解。

Description

具有可编程降解和微塑料消除的生物活性塑料
本发明是在美国国防部陆军研究办公室的补助号W911NF-13-1-0232和能源部基础能源科学部的补助号FWP KC3104的政府支持下完成的。政府对本发明享有某些权利。
引言
尽管聚合物很有用,塑料废物的负担已达到极限,需要来自所有社区的立即合作。尽管多年来在塑料回收方面的努力,有效的微塑料消除是一项新近认识到的挑战,,仍没有即时的解决方案1。堆积在垃圾填埋场2和海洋3中的塑料废物分解成微塑料,然后这些微塑料被各种物种摄入并转移到食物链,4,5对人类和野生动物造成严重的健康问题。必须在现有制造框架内创建具有可控降解和快速微塑料消除的新塑料材料,以提高化学回收效率并保持经济可行性。
酶催化垃圾填埋场和水生系统中的材料回收过程;6然而,由于可用酶的浓度低和通过随机断链进行的扩散限制的表面侵蚀,这种外部降解过程消耗数年时间。7,8嵌入能够裂解聚合物链的催化剂可促进塑料降解。9,10物理酶封装在可编程塑料降解方面已产生有限的成功,但在微塑料消除方面没有效果。在基于溶液的或基于熔体的聚合物加工过程中,酶聚集并失去显著的活性11并在主体解体时浸出。12纳米级酶分散体提高了酶的可用性和降解效率,减少了浸出并确保在微塑料形成时的持续降解。尽管一旦被封装在与单个聚合物链的尺寸相当的尺寸中,对固相酶学知之甚少,但调节酶-主体相互作用和聚合物降解以实现朝向闭环生命周期的对副产物的分子控制可能是可行的。
我们在先的WO2019143578公开了无规杂聚物可在外来环境中保持蛋白功能。US20180142097涉及使用随机切断的可生物降解聚酯。我们的可编程降解过程依赖于利用酶的活性位点几何形状和表面化学来操纵酶-聚酯相互作用,以使降解进行性/单链化。
发明内容
我们公开了微量酶(例如脂肪酶)在塑料(例如聚己内酯)(PCL)中的纳米级分散导致具有生态友好的微塑料消除和可编程降解的全功能塑料。纳米级酶封装导致(1)持续降解,以实现95%的微塑料消除;(2)通过选择性链末端断裂而非随机断链的具有可再聚合小分子副产物的聚合物降解机制;(3)无论体积百分比结晶度如何,由于聚合物降解对局部薄片厚度的依赖性导致的熔融加工的主体基质的空间可编程和时间可编程降解;(4)具有贵金属填料的完全回收的用于3-D打印的导电油墨的配制。本发明针对微塑料消除和材料回收提供了环境友好且技术上可行的解决方案。
在一个方面,本发明提供了生物活性塑料组合物,其包含有机聚合物以及无规杂聚物(RHP)和水解聚合物的酶的复合物的纳米级分散体,使得通过酶的聚合物的水解赋予可编程进行性解聚和微塑料消除。
在实施方式中:
所述复合物均匀分布在所述组合物中,所述复合物的尺寸范围为10、20或40nm至100、200或500nm,或者在结晶聚合物薄片之间的范围为10、20或40nm至100、200或500nm,和/或该组合物包含0.001、0.01或0.1%至0.1或1或5%的酶含量;
所述RHP包含不同比例的、选自甲基丙烯酸甲酯(MMA)、低聚(乙二醇)甲基丙烯酸酯(OEGMA)、甲基丙烯酸3-磺基丙酯钾盐(3-SPMA)和甲基丙烯酸2-乙基己酯(2-EHMA)的多种单体;
聚合物/酶组合选自聚己内酯(PCL)/脂肪酶、聚乳酸(PLA)/蛋白酶K和聚对苯二甲酸乙二酯(PET)/PET酶(PETase)。
将组合物配制在具有大量(50、60、70、80或90%至90、95或99%)回收的贵金属填料的用于3-D打印的导电油墨中;
将组合物配置为提供连续降解以实现65、90、95或99%的微塑料消除;
将组合物配置为通过选择性链末端断裂而非随机断链来提供具有可再聚合小分子副产物的基于聚合物的降解机制;和/或
将组合物配置为,无论体积百分比结晶度如何,由于单链降解对局部薄片厚度的依赖性提供加工的(熔融加工的或溶液加工的)主体基质的空间可编程和时间可编程降解。
在一个方面,本发明提供了一种可编程降解的方法,其包括在其中酶裂解聚合物骨架(水解聚合物)的条件下提供公开的组合物,赋予可编程降解和微塑料消除。
本发明涵盖本文所记载述的具体方面和实施方式的所有组合,如同每种组合已被费力地记载一样。
附图简述
图1a-1e。PCL-RHP-脂肪酶和微塑料消除的表征。a)脂肪酶晶体结构显示提出的优选的PCL链末端在活性位点处的结合(白色为疏水性氨基酸,紫色为极性不带电,蓝色为带正电,红色为带负电;对于PCL,深灰色为碳原子,红色为氧原子,未显示氢原子);b)PCL-RHP-脂肪酶膜的荧光显微图像;c)TEM图像显示分散在PCL半结晶基质中的RHP-脂肪酶复合物;d)PCL-RHP-脂肪酶在40℃缓冲液中随时间降解的照片和光学图像;2小时后膜被短暂涡旋以促进物理解体成微塑料;e)在降解过程中形成的PCL-RHP-脂肪酶微塑料的荧光显微图像,其中保留了绿色荧光标记的脂肪酶。
图2a-2d。PCL-RHP-脂肪酶降解机制和明确定义的副产物。a)PCL-RHP-脂肪酶的SAXS曲线;(插图)PCL-RHP-脂肪酶在约50%质量损失后的横截面SEM图像;b)纯PCL、在纯缓冲液中降解的PCL-RHP-脂肪酶和在浓缩脂肪酶溶液中降解的纯PCL的GPC曲线;降解样品均具有约50%的质量损失;c)PCL-RHP-脂肪酶和在浓缩脂肪酶溶液中的纯PCL的色谱图;d)在降解的最初5小时期间对于PCL-RHP-脂肪酶剩余质量作为时间的函数,(插图)解链温度(蓝色■
Figure BDA0003725547390000031
)和结晶度百分比(黑色×
Figure BDA0003725547390000032
)(误差条代表每个时间点的标准偏差;对于降解n≥3,对于插图中的DSC分析,n≥2);24小时时间点是通过对GPC峰积分估算的,而所有先前的时间点都是通过干燥和称重剩余的膜确定的。
图3a-3f。PCL-RHP-脂肪酶降解的时间和空间控制。a)对于由溶液浇铸的或解链5分钟并在给定温度下重结晶的PCL-RHP-脂肪酶膜,在37℃缓冲液中降解24小时后的剩余质量(注意,Tc=49℃膜在最长达8周表现出可忽略不计的降解);(插图)在49℃结晶的PCL-RHP-脂肪酶的叠加偏振和荧光图像;b)在49℃下重结晶规定时间,然后在37℃缓冲液中降解的PCL-RHP-脂肪酶的降解曲线;c)在49℃下重结晶12小时,然后在20℃下淬火的混合形态PCL-RHP-脂肪酶膜(虚线圆圈代表在49℃下生长的球粒,实心圆圈代表在20℃下生长的球粒);d)在37℃缓冲液中经历降解24小时后的混合形态膜显示仅在20℃下生长的球粒的降解;e)不同脂肪酶共混物浓度的降解曲线;f)不同PCL-RHP-脂肪酶膜厚度的降解曲线(误差条代表每个时间点的标准偏差,对于所有n≥3)。
图4a-4c。用于功能应用的基于RHP的酶嵌入塑料的扩展。a)为灯泡供电的PCL-RHP-脂肪酶-银3-D印刷电路,(插图)3-D印刷电路的SEM图像;b)PCL-RHP-脂肪酶降解后通过简单过滤的银片回收;c)含有银的PCL、含有RHP-脂肪酶-银的PCL以及含有回收银的PCL的3-D印刷电路的电导率。
图5:甲苯中的RHP-脂肪酶的DLS,平均流体动力学直径为285nm±35nm。
图6:纯PCL和PCL-RHP-脂肪酶铸态膜的DSC曲线。
图7:来自纯PCL和PCL-RHP-脂肪酶的单轴拉伸试验的工程应力-应变曲线。
图8:纯PCL和PCL-RHP-脂肪酶溶液浇铸膜的SAXS曲线。
图9:PCL-RHP-脂肪酶在20℃和37℃下对丁酸4-硝基苯酯的水解速率。
图10:PCL-RHP-脂肪酶(蓝色)和纯PCL在浓缩脂肪酶共混溶液(黑色)中的质谱。
图11:PS-PCL-PS在脂肪酶处理后的GPC;此外,使用天平未检测到脂肪酶处理后膜的质量变化,进一步支持没有降解。
图12:PyMOL中脂肪酶活性位点的不同角度(白色代表疏水性氨基酸,紫色代表极性不带电氨基酸,蓝色代表带正电氨基酸,以及红色代表带负电氨基酸);催化丝氨酸残基在左侧图像中用黑点标记以供参考。
图13:不同重结晶条件的PCL-RHP-脂肪酶的DSC曲线。
图14:PCL-RHP-lipasecb的荧光显微图像。
图15:PCL基质中PCL-RHP-lipasecb的TEM图像。
图16:甲苯中的RHP-lipasecb的DLS。
图17:3-D印刷的PCL-RHP-脂肪酶-银电路的电导率测量值作为银含量的函数。
图18:在37℃缓冲液中孵育4小时后的PCL-RHP-脂肪酶-银电路,表明由于降解导致的最小电导率;(插图)SEM图像显示由于PCL基质降解导致的银片网络的破坏。
图19:PyMOL中蛋白酶K活性位点的不同角度;白色代表疏水性氨基酸,紫色代表极性不带电氨基酸,蓝色代表带正电氨基酸,以及红色代表带负电氨基酸);催化丝氨酸残基在左侧图像中用黑点标记以供参考。
本发明的具体实施方式的描述
除非另有禁忌或另有说明,否则在这些描述和整个说明书中,术语“一(a)”和“一(an)”表示一个或多个,术语“或”表示和/或。本文描述的实施例和实施方式仅用于说明目的,并且将向本领域技术人员建议根据其的各种修改或改变,并且将被包括在本申请的精神和范围以及所附权利要求的范围内。本文引用的所有公开、专利和专利申请,包括其中的引证,均出于所有目的通过引用整体并入本文。
在这里,我们表明,使用无规杂聚物(RHP)方法,塑料中的纳米级酶分散体可以有效地消除微塑料,而不会损害聚合物加工和宏观特性。13,14在增强的酶可用性和稳定性的情况下,添加微量的酶(例如聚(己内酯)(PCL)中的0.02重量%脂肪酶)在24小时内消除水中约95%的微塑料。一旦被封装,脂肪酶优选通过链末端断裂水解PCL(图1a),并产生无毒、可再聚合的小分子。通过纳米级分散,RHP-脂肪酶表现出熔体加工所需的优异热稳定性。熔体的受控重结晶又导致时间可编程和空间可编程的降解。此外,这些生物活性塑料可用于配制导电油墨,以3D打印用于在连续运行后回收贵金属填料的全功能电子产品。通过RHP/酶分散体的受控塑料降解适用于其他塑料/酶体系。我们的公开内容验证了生物活性塑料作为用于有效塑料回收和消除微塑料的可行方法。
塑料中的纳米级酶分散体对于配制功能性生物活性塑料是必不可少的。然而,酶在与主体聚合物混合时形成聚集体,并且有效降解需要高达10重量%的酶浓度。9随着降解进行,这些酶聚集体浸出15并留下微塑料。RHP-脂肪酶很好地分散在一系列溶剂中,在甲苯中形成约285nm的复合物(图5),同时纯脂肪酶沉淀出来。如荧光显微图像所证实的,RHP-脂肪酶均匀地分布在溶液浇铸的PCL膜中(图1b)。透射电子显微(TEM)图像显示RHP-脂肪酶复合物的纳米级分体散在结晶PCL薄片之间的范围为约50nm至约500nm(图1c)。在最高达2重量%酶含量的情况下,PCL体积百分比结晶度和机械性质只有很小的变化(图6和图7)。在掺入脂肪酶和不掺入脂肪酶的情况下,小角X射线散射(SAXS)曲线显示类似的PCL结晶(图8)。
含有RHP-脂肪酶的半结晶PCL(称为“PCL-RHP-脂肪酶”)一旦浸入水中就迅速降解。图1d显示PCL-RHP-脂肪酶膜(0.02重量%脂肪酶)在40℃缓冲液中作为浸入时间函数的一系列图片。随着降解进行,PCL-RHP-脂肪酶膜解体成微塑料颗粒。然而,使用荧光标记的脂肪酶,明显的是,脂肪酶仍然嵌入并很好地分散在PCL微塑料颗粒中(图1e)。对照实验进一步证实微塑料和连续PCL降解中的脂肪酶活性。如通过凝胶渗透色谱法(GPC)估计的,大约95%的微塑料在24小时后降解为小分子副产物。我们滴定了酶浓度并在0.01和0.001重量%脂肪酶下获得95%的降解。
了解从大体积下至纳米级的PCL-RHP-脂肪酶内部降解的机制细节可以允许更好地控制降解,并有助于其他酶嵌入的生物活性塑料的未来设计。PCL-RHP-脂肪酶在内部降解而非通过表面侵蚀。无论缓冲液体积如何(1mL至1L),膜都以相似的速率降解,这与降解由嵌入的酶催化而非酶从表面浸出和降解的设计一致。图2a显示铸态PCL-RHP-脂肪酶的SAXS曲线和最高达约25%的质量损失。由于随着内部降解进行的纳米孔结构形成,强度在低q范围内随着降解进行而增加。这与横截面扫描电子显微(SEM)图像一致(图2A插图)。
PCL-RHP-脂肪酶降解显示出与表面侵蚀过程非常不同的温度依赖性。尽管在37℃下快速内部降解,但在20℃下最长达三个月的降解可忽略不计。然而,溶解在溶液中的脂肪酶能够在几天内通过表面侵蚀在20℃下降解约50%的PCL。此外,PCL-RHP-脂肪酶能够在20℃下水解溶液中的小分子酯(图9),确保脂肪酶的活性和水的可及性。PCL-RHP-脂肪酶在20℃下的有限降解可能归因于脂肪酶活性位点中的底物结合、固体基质内的酶迁移率/构象灵活性和局部PCL链堆积之间的相互作用。
PCL-RHP-脂肪酶降解通过优先链末端断裂而非随机断链进行。GPC分析表明,随着降解进行,主PCL峰的强度降低,但没有明显形成中等分子量的聚合物或低聚物(图2b),这与链末端断裂一致。16使用液相色谱-质谱(LCMS)证实PCL-RHP-脂肪酶降解过程中的主要副产物是单体和小的低聚物(主要是<5个重复己内酯单元)(图2c和图10)。在GPC和LCMS色谱图中对比显示的是浓缩脂肪酶溶液(0.1mg/mL)中的外部PCL降解的副产物,其中可以看到至少12个重复单元的中等分子量副产物(图10)。通过测试在两端用小聚苯乙烯(PS)嵌段封端的基于PCL的三嵌段(PS-PCL-PS,1500-8000-1500克/摩尔)的可降解性,进一步探究了降解机制。通过类似的处理,在37℃缓冲液中的PS-PCL-PS降解在2天后可忽略不计(图11)。PS-PCL-PS可降解性的缺失表明脂肪酶结合到固态的PCL链末端。小的水溶性降解副产物的产生是非常有益的。与较高分子量副产物的化学可回收性相比,单体和小的低聚物具有更好的化学可回收性。作为构思的验证,PCL-RHP-脂肪酶降解的副产物重新聚合成PCL。
分析脂肪酶的活性位点以了解实验观察到的选择性链末端断裂。脂肪酶活性位点的表面化学分析表明,PCL可以主要通过疏水相互作用选择性结合,这在脂肪酶的结合口袋中很普遍(图1a和图12)。脂肪酶催化三联体位于距离表面1.7nm处,并且在催化残基附近底部变窄至
Figure BDA0003725547390000071
17这个深而窄的活性位点可能排除大体积的底物,并且只允许PCL的最易移动的部分-链末端在漏斗底部(funnel base)接近催化丝氨酸残基。基于脂肪酶的尺寸和固态PCL链构象,应优选结合至PCL链末端的选择性脂肪酶。
降解过程中PCL晶体性质的变化提供对纳米级降解机制的进一步的见解,并表明局部薄片厚度影响降解。从0到1小时,由于优先无定形降解,体积百分比结晶度从39±1.8%增加到47±2.0%(图2d插图,黑色x)。然而,在1到5小时之间,尽管膜质量从其初始值的约80%减少到仅约20%,但在实验误差内,结晶度百分比没有变化,这证明脂肪酶降解结晶域。此外,降解曲线在0到3小时之间呈大致线性,但速度在接近3小时时减慢。由于热退火,与半结晶聚合物的平均薄片厚度成正比的熔融温度从0小时到3小时增加(图2d插图,蓝色方块)。降解速率在接近3小时时减慢-观察到的峰值熔融温度-显然是由于经历酶促降解的热退火较厚薄片的较高局部焓稳定性。此外,以前的报告表明,某些酶可以帮助降低用于使单聚合物链去结晶的活化屏障并进行性地降解它们(即,连续水解反应而不释放聚合物链)。18 , 19脂肪酶符合进行性酶的共同特征,其特征在于疏水结合相互作用和隧道状活性位点,这些活性位点促进单链滑动同时阻碍解离。18考虑到单链穿过半结晶聚合物中的结晶域和无定形域,链末端降解机制与PCL-RHP-脂肪酶降解对薄片厚度的依赖性相结合,可以用单链进行性来解释。
嵌入的脂肪酶具有增强的热稳定性—在熔体中在80℃下5小时后保持其初始生物活性的40%—并且与熔体加工相容。叠加偏振光学显微图像和荧光显微图像(图3a插图)显示脂肪酶掺入结晶球粒内,而非分离在球粒间,这是由于与晶体前缘生长速率相比,PCL熔体中的酶扩散率慢了几个数量级。尽管对于所有重结晶温度酶分布相似,但不同的加工条件显著影响降解。熔融5分钟(导致最小的酶活性损失)并在20℃下重结晶的膜与溶液浇铸膜类似地降解,但在49℃下重结晶的膜在37℃缓冲液中数周后表现出最小的降解(图3a)。这种可降解性的差异可能归因于结晶域的局部热力学稳定性的差异。在Tc=49℃下的缓慢晶体生长速率导致更厚的薄片和无定形域,如熔融温度约6℃的增加所表明的,尽管体积百分比结晶度与铸态膜的体积百分比结晶度相当(图13)。如果降解通过单个PCL链进行性地进行,则由于Tc=49℃膜的较厚薄片导致的局部焓稳定性的大幅增加可能使酶促降解在能量上不利。相反,Tc=20℃膜具有与铸态样品相似的薄片厚度和相似的降解率。在20℃和49℃重结晶的膜降解行为的差异证实了薄片厚度与可降解性强相关,并且与对于PCL-RHP-脂肪酶的单链进行性降解机制一致。
熔体加工允许对PCL-RHP-脂肪酶降解进行时间控制和空间控制两者。通过在49℃下控制PCL-RHP-脂肪酶结晶时间,可以调整37℃缓冲液中的降解速率(图3b)。在49℃下结晶12小时然后在20℃下淬火的膜表现出两种不同的结晶形态(图3c)。将混合形态膜置于37℃缓冲液中24小时后,只有在20℃结晶的那些区域表现出降解;在49℃下生长的大球粒保留了它们的初始结构并且不降解(图3d)。
我们进一步证明了使用商业脂肪酶共混物(lipasecb)的PCL-RHP-脂肪酶降解的可扩展性,商业脂肪酶共混物(lipasecb)也可以在不纯化酶的情况下以纳米级嵌入PCL中。如荧光显微(图14)图像和TEM(图15)图像所示并通过动态光散射(DLS)(图16)证实,RHP-lipasecb在甲苯中形成约300nm以下的颗粒,而不含RHP的共混物不溶于甲苯。用于控制降解速率的最简单方法是铸态膜中的lipasecb浓度(图3e)。膜厚也影响降解;随着膜厚度增加到最大约1mm,降解速率减慢,此时其达到平稳(图3f)。由于脂肪酶需要水来进行连续的水解反应且因此水扩散到疏水性PCL基质中是较厚材料的速率限制因素,因此降解对膜厚度的依赖性是预期的。鉴于控制生物医学塑料降解的重要性和难度20,21以及PCL的FDA批准用于人类,22调节厚的(>1毫米)PCL-RHP-脂肪酶材料的时间降解和空间降解的能力提供令人兴奋的在生物医学应用中使用该体系的机会。
PCL-RHP-lipasecb可用于配制用于可回收柔性电子产品的3-D打印的导电油墨。银片和RHP-lipasecb共混在用于印刷的浓缩的(20重量%)PCL/甲苯溶液中。使用纳米级脂肪酶分散体,PCL-RHP-lipasecb-银3-D印刷电路具有高电导率(图4a),其预期用渗滤网络理论逐渐变高23,24(图17)。在37℃缓冲液中孵育电路在4小时后将电流降至零,因为PCL基质的酶降解破坏了银片的渗透网络(图18)。即使在室温储存7个月、然后在5V电压下运行1个月之后,该材料在37℃的缓冲液中仍降解,证实了嵌入的酶的长期稳定性以及对电感应致变性和失活的抵抗力。在降解PCL-RHP-lipasecb-银电路后,银片可以很容易地以高纯度收集(图4b)并在不牺牲电导率的情况下重复使用(图4c)。RHP酶油墨对于打印具有昂贵填料的良好可回收性的高性能塑料或对于其他酶催化应用具有吸引力,特别是考虑到3D打印对功能材料的增加的重要性。25-27
用于塑料降解的纳米级酶分散体的构思适用于其他塑料-酶组合。蛋白酶K降解聚乳酸(PLA)28,而脂肪酶则不降解聚乳酸,可能是因为蛋白酶K具有可与重复的PLA酯基团形成氢键合网络的更开放的亲水性结合袋(图19)。当RHP蛋白酶K分散在PLA中时,在37℃缓冲液中10天后观察到超过50%的降解。PLA-RHP-蛋白酶K降解证明了将嵌入酶方法扩展到相关塑料的能力,这些塑料开始取代不可降解的聚烯烃,用于商品应用如包装。29
在塑料中嵌入催化活性填料提供了对于具有期望回收属性的可编程、按需降解的可行途径。一旦纳米级嵌入,固体基质中的酶行为可能会发生显著改变,改变范围从底物结合、副产物和作用机制。塑料内催化活性颗粒的空间排列和塑料的结晶特性是调节降解动力学和路径的有效途径。虽然开发新的可降解塑料和绿色材料具有大的优势,但考虑到合成生物学和基因组信息的最新发展,酶嵌入塑料的合理设计为消除微塑料和对控制聚合物的整个生命周期提供了即时的、技术上可行的方法。
方法
材料:来自洋葱伯克霍尔德菌(Burkholderia cepacia)的AmanoPS脂肪酶和来自白色念球菌(Tritirachium album)的蛋白酶K购自Sigms Aldrich。对于纯化的酶研究,使用公开的方法进行纯化。30对于商业共混物研究,共混物如购买时使用。PCL(80,000克/摩尔,PDI<2)和PLA(85,000-160,000克/摩尔)购自Sigma Aldrich,而PS-PCL-PS购自PolymerSource;所有材料均未经进一步纯化使用。无归杂聚物(约70,000克/摩尔)如先前报道的合成。13蛋白质数据库中的3liP和1ic6条目分别用于脂肪酶和蛋白酶K晶体结构表示。对于底物结合分析,1ys1和3prk条目分别用于脂肪酶和蛋白酶K。PCL-RHP-脂肪酶-银油墨在室温下由含有RHP-脂肪酶和银片的PCL/甲苯(20重量%)溶液印刷。使用自制的直流装置测量电导率。
降解:将RHP-脂肪酶复合物混合在水溶液中,冻干过夜,并直接重悬于4重量%的PCL/甲苯溶液中(或蛋白酶K在4重量%的PLA/二氯甲烷溶液中)。膜在干燥时从玻璃显微镜载玻片上剥离并置于磷酸钠缓冲液(25mM)中。在给定的时间点,膜被移除、冲洗并真空干燥。对于PCL-RHP-脂肪酶,最多达5小时,使用天平测量剩余的膜质量。因为由于小的粒度和剩余质量的缘故,在天平上称重是不可能的,所以为了估计铸态膜在24小时时的剩余微塑料浓度(约95%消除),将从11到15分钟的凝胶渗透色谱(GPC)峰手动积分,并将面积除以如购买的PCL样品的面积。在通过相萃取和过滤从酶和缓冲盐中回收降解的PCL副产物之后,使用先前报道的方法31进行概念验证再聚合。对于PLA-RHP-蛋白酶K,降解是通过在规定时间称重剩余质量来确定的。
表征:动态光散射在Brookhaven BI-200SM光散射系统上使用90°角运行。对于差示量热法(DSC),温度以2℃/分钟的扫描速率从25℃逐渐上升到70℃。为了量化结晶度百分比,样品的熔化焓除以151.7J g-1,即100%结晶PCL的熔化焓。32对于单轴拉伸测试,PCL溶液被浇铸在具有标准狗-骨形状的定制的特氟隆模具中。TEM图像是在JEOL1200显微镜上以120kV加速电压拍摄的。5重量%四氧化钌溶液用于染色RHP-脂肪酶和无定形PCL域。
对于小角度X射线散射(SAXS)研究,约300μm厚的膜被浇铸在特氟隆烧杯中。在运行SAXS之前,样品在降解至少16小时后被真空干燥,SAXS是在劳伦斯伯克利国家实验室的高级光源(ALS)的光束线7.3.3上进行的。使用了
Figure BDA0003725547390000101
波长的X射线和2秒曝光时间。
对于小分子测定(用于估计热稳定性),将膜浸没在缓冲液中的0.5mM丁酸4-硝基苯酯溶液中。使用紫外-可见光谱监测活性以在20分钟期间量化水解。
具有460-490nm激发波长的U-MWBS3镜单元用于荧光显微法。按照商业程序使用市售的NHS-荧光素(5/6-羧基荧光素琥珀酰亚胺酯)标记脂肪酶。将溶液在10,000克/摩尔过滤器中离心以从标记的脂肪酶中除去过量的染料。
使用在THF中的总浓度为2mg/mL的剩余膜和副产物获得GPC测量值。将2μL溶液注入Agilent PolyPore7.5x300mm柱。通过将降解上清液重悬于乙腈/水(67/33体积%)中并运行通过Agilent InfinityLab EC-C18,2.7μm柱来获得液相色谱-质谱(LCMS)测量结果。所示质谱是见于色谱图中的主要峰的组合。降解产物通过冻干过夜干燥,然后重悬于适合GPC或LCMS的溶剂中。
参考文献
Law,K.L.&Thompson,R.C.Microplastics in the seas.Science 345,144-145,doi:10.1126/science.1254065(2014).
2 Geyer,R.,Jambeck,J.R.&Law,K.L.Production,use,and fate of allplastics ever made.Sci Adv 3,e1700782,doi:10.1126/sciadv.1700782(2017).
3 Jambeck,J.R.et al.Plastic waste inputs from land into theocean.Science 347,768-771,doi:10.1126/science.1260352(2015).
4 Catarino,A.I.,Macchia,V.,Sanderson,W.G.,Thompson,R.C.&Henry,T.B.Lowlevels of microplastics(MP)in wild mussels indicate that MP ingestion byhumans is minimal compared to exposure via household fibres fallout during ameal.Environ Pollut 237,675-684,doi:10.1016/j.envpol.2018.02.069(2018).
5 Setala,O.,Fleming-Lehtinen,V.&Lehtiniemi,M.Ingestion and transferof microplastics in the planktonic food web.Environ Pollut 185,77-83,doi:10.1016/j.envpol.2013.10.013(2014).
6 Wei,R.&Zimmermann,W.Microbial enzymes for the recycling ofrecalcitrant petroleum-based plastics:how far are we?Microb Biotechnol 10,1308-1322,doi:10.1111/1751-7915.12710(2017).
7 Wei,R.et al.Turbidimetric analysis of the enzymatic hydrolysis ofpolyethylene terephthalate nanoparticles.Journal of Molecular Catalysis B:Enzymatic 103,72-78,doi:10.1016/j.molcatb.2013.08.010(2014).
8 Mueller,R.J.Biological degradation of synthetic polyesters-Enzymesas potential catalysts for polyester recycling.Process Biochem 41,2124-2128,doi:10.1016/j.procbio.2006.05.018(2006).
9 Ganesh,M.,Dave,R.N.,L'Amoreaux,W.&Gross,R.A.Embedded EnzymaticBiomaterial Degradation.Macromolecules 42,6836-6839,doi:10.1021/ma901481h(2009).
10 Zan,L.et al.Solid-phase photocatalytic degradation of polystyrenewith modified nano-TiO2 catalyst.Polymer 47,8155-8162,doi:10.1016/j.polymer.2006.09.023(2006).
11 Klibanov,A.M.Why are enzymes less active in organic solvents thanin water?Trends Biotechnol 15,97-101,doi:10.1016/S0167-7799(97)01013-5(1997).
12 Klibanov,A.M.Improving enzymes by using them in organicsolvents.Nature 409,241-246,doi:10.1038/35051719(2001).
13 Panganiban,B.et al.Random heteropolymers preserve protein functionin foreign environments.Science 359,1239-1243,doi:10.1126/science.aao0335(2018).
14 DelRe,C.et al.Reusable Enzymatic Fiber Mats for NeurotoxinRemediation in Water.Acs Appl Mater Inter 10,44216-44220,doi:10.1021/acsami.8b18484(2018).
15 Khan,I.,Nagarjuna,R.,Dutta,J.R.&Ganesan,R.Enzyme-EmbeddedDegradation of Poly(epsilon-caprolactone)using Lipase-Derived from ProbioticLactobacillus plantarum.Acs Omega 4,2844-2852,doi:10.1021/acsomega.8b02642(2019).
16 Kobayashi,S.,Uyama,H.&Takamoto,T.Lipase-catalyzed degradation ofpolyesters in organic solvents,a new methodology of polymer recycling usingenzyme as catalyst.Biomacromolecules 1,3-5,doi:10.1021/bm990007c(2000).
17 Pleiss,J.,Fischer,M.&Schmid,R.D.Anatomy of lipase binding sites:the scissile fatty acid binding site.Chem Phys Lipids 93,67-80,doi:10.1016/S0009-3084(98)00030-9(1998).
18 Horn,S.J.et al.Costs and benefits of processivity in enzymaticdegradation of recalcitrant polysaccharides.P Natl Acad Sci USA 103,18089-18094,doi:10.1073/pnas.0608909103(2006).
19 Beckham,G.T.et al.Molecular-Level Origins of BiomassRecalcitrance:Decrystallization Free Energies for Four Common CellulosePolymorphs.J Phys Chem B 115,4118-4127,doi:10.1021/jp1106394(2011).
20 Washington,M.A.et al.The impact of monomer sequence andstereochemistry on the swelling and erosion of biodegradable poly(lactic-co-glycolic acid)matrices.Biomaterials 117,66-76,doi:10.1016/j.biomaterials.2016.11.037(2017).
21 Li,J.,Stayshich,R.M.&Meyer,T.Y.Exploiting Sequence To Control theHydrolysis Behavior of Biodegradable PLGA Copolymers.Journal of the AmericanChemical Society 133,6910-6913,doi:10.1021/ja200895s(2011).
22 Woodruff,M.A.&Hutmacher,D.W.The return of a forgotten polymer-Polycaprolactone in the 21st century.Prog Polym Sci 35,1217-1256,doi:10.1016/j.progpolymsci.2010.04.002(2010).
23 Valentine,A.D.et al.Hybrid 3D Printing of Soft Electronics.AdvMater 29,doi:10.1002/adma.201703817(2017).
24 Stauffer,D.&Aharony,A.Introduction to Percolation Theory:SecondEdition.(CRC Press,1994).
25 Muth,J.T.et al.Embedded 3D Printing of Strain Sensors withinHighly Stretchable Elastomers.Adv Mater 26,6307-6312,doi:10.1002/adma.201400334(2014).
26 Zarek,M.et al.3D Printing of Shape Memory Polymers for FlexibleElectronic Devices.Adv Mater 28,4449-4454,doi:10.1002/adma.201503132(2016).
27 Lind,J.U.et al.Instrumented cardiac microphysiological devices viamultimaterial three-dimensional printing.Nat Mater 16,303-308,doi:10.1038/Nmat4782(2017).
28 Li,S.M.&McCarthy,S.Influence of crystallinity and stereochemistryon the enzymatic degradation of poly(lactide)s.Macromolecules 32,4454-4456,doi:10.1021/ma990117b(1999).
29 Farah,S.,Anderson,D.G.&Langer,R.Physical and mechanical propertiesof PLA,and their functions in widespread applications-A comprehensivereview.Adv Drug Deliver Rev 107,367-392,doi:10.1016/j.addr.2016.06.012(2016).
30 Bornscheuer,U.et al.Lipase of Pseudomonas-Cepacia forBiotechnological Purposes-Purification,Crystallization andCharacterization.Bba-Gen Subjects 1201,55-60,doi:10.1016/0304-4165(94)90151-1(1994).
31 Schindler,A.,Hibionada,Y.M.&Pitt,C.G.AliphaticPolyesters.3.Molecular-Weight and Molecular-Weight Distribution in Alcohol-Initiated Polymerizations of Epsilon-Caprolactone.J Polym Sci Pol Chem 20,319-326,doi:10.1002/pol.1982.170200206(1982).
32 Wurm,A.et al.Crystallization and Homogeneous Nucleation Kineticsof Poly(epsilon-caprolactone)(PCL)with Different Molar Masses.Macromolecules45,3816-3828,doi:10.1021/ma300363b(2012).

Claims (12)

1.一种生物活性塑料组合物,其包含有机聚合物以及无规杂聚物(RHP)和水解所述聚合物的酶的复合物的纳米级分散体,使得通过所述酶的所述聚合物的水解赋予可编程进行性解聚和微塑料消除。
2.权利要求1所述的组合物,其中所述复合物均匀分布在所述组合物中。
3.权利要求1或2所述的组合物,其中所述复合物的尺寸范围为10、20或40nm至100、200或500nm。
4.权利要求1、2或3所述的组合物,其中所述复合物在结晶聚合物薄片之间的范围为10、20或40nm至100、200或500nm。
5.权利要求1、2、3或4所述的组合物,其中所述组合物包含0.001、0.01或0.1%至0.1或1或5%的酶含量。
6.权利要求1、2、3、4或5所述的组合物,其中所述RHP包含不同比例的、选自甲基丙烯酸甲酯(MMA)、低聚(乙二醇)甲基丙烯酸酯(OEGMA)、甲基丙烯酸3-磺基丙酯钾盐(3-SPMA)和甲基丙烯酸2-乙基己酯(2-EHMA)的多种单体。
7.权利要求1、2、3、4、5或6所述的组合物,其中聚合物/酶组合选自聚己内酯(PCL)/脂肪酶、聚乳酸(PLA)/蛋白酶K和聚对苯二甲酸乙二酯(PET)/PET酶(PETase)。
8.权利要求1、2、3、4、5、6或7所述的组合物,其配制在具有大量(50、60、70、80或90%至90、95或99%)回收的贵金属填料的用于3-D打印的导电油墨中。
9.权利要求1、2、3、4、5、6、7或8所述的组合物,其被配置为提供连续降解以实现65、90、95或99%的微塑料消除。
10.权利要求1、2、3、4、5、6、7、8或9所述的组合物,其被配置为通过选择性链末端断裂而非随机断链来提供具有可再聚合小分子副产物的基于聚合物的降解机制。
11.权利要求1、2、3、4、5、6、7、8、9或10所述的组合物,其被配置为无论体积百分比结晶度如何,由于聚合物降解对局部薄片厚度的依赖性提供熔融加工或溶液加工的主体基质的空间可编程和时间可编程降解。
12.一种可编程降解的方法,其包括在酶裂解聚合物骨架的条件下提供权利要求1、2、3、4、5、6、7、8、9、10或11的组合物,赋予可编程降解和微塑料消除。
CN202180008013.1A 2020-01-05 2021-01-04 具有可编程降解和微塑料消除的生物活性塑料 Active CN114901753B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062957307P 2020-01-05 2020-01-05
US62/957307 2020-01-05
PCT/US2021/012108 WO2021138681A1 (en) 2020-01-05 2021-01-04 Bioactive plastics with programmable degradation and microplastic elimination

Publications (2)

Publication Number Publication Date
CN114901753A true CN114901753A (zh) 2022-08-12
CN114901753B CN114901753B (zh) 2024-10-11

Family

ID=76687135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180008013.1A Active CN114901753B (zh) 2020-01-05 2021-01-04 具有可编程降解和微塑料消除的生物活性塑料

Country Status (7)

Country Link
US (1) US20220340731A1 (zh)
EP (1) EP4084830A4 (zh)
JP (1) JP2023509474A (zh)
CN (1) CN114901753B (zh)
BR (1) BR112022013085A2 (zh)
CA (1) CA3165579A1 (zh)
WO (1) WO2021138681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196488A (zh) * 2023-01-18 2023-06-02 南京工业大学 负载酶复合物的可快速降解的抗菌材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024118629A1 (en) * 2022-11-29 2024-06-06 The Regents Of The University Of California Population-based heteropolymer design to mimic protein mixtures in biological fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911472A1 (en) * 2006-10-06 2008-04-16 Cordis Corporation Bioabsorbable device having encapsulated additives for accelerating degradation
US20090162337A1 (en) * 2007-08-07 2009-06-25 Gross Richard A Embedded enzymes in polymers to regulate their degradation rate
WO2019143578A1 (en) * 2018-01-17 2019-07-25 The Regents Of The University Of California Random heteropolymers preserve protein function in foreign environments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911472A1 (en) * 2006-10-06 2008-04-16 Cordis Corporation Bioabsorbable device having encapsulated additives for accelerating degradation
US20090162337A1 (en) * 2007-08-07 2009-06-25 Gross Richard A Embedded enzymes in polymers to regulate their degradation rate
WO2019143578A1 (en) * 2018-01-17 2019-07-25 The Regents Of The University Of California Random heteropolymers preserve protein function in foreign environments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOHANA ISLAM ET AL.: "Targeting microplastic particles in the void of diluted suspensions", ENVIRONMENT INTERNATIONAL, vol. 123, pages 428 - 435, XP055838239, DOI: 10.1016/j.envint.2018.12.029 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196488A (zh) * 2023-01-18 2023-06-02 南京工业大学 负载酶复合物的可快速降解的抗菌材料及其制备方法
CN116196488B (zh) * 2023-01-18 2024-04-26 南京工业大学 负载酶复合物的可快速降解的抗菌材料及其制备方法

Also Published As

Publication number Publication date
BR112022013085A2 (pt) 2022-09-06
WO2021138681A1 (en) 2021-07-08
CN114901753B (zh) 2024-10-11
US20220340731A1 (en) 2022-10-27
CA3165579A1 (en) 2021-07-08
JP2023509474A (ja) 2023-03-08
EP4084830A1 (en) 2022-11-09
EP4084830A4 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
US20220340731A1 (en) Bioactive Plastics with Programmable Degradation and Microplastic Elimination
Su et al. Polylactide (PLA) and its blends with poly (butylene succinate)(PBS): A brief review
Abraham et al. X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose
Hoang et al. A novel enzymatic biodegradable route for PLA/EVA blends under agricultural soil of Vietnam
JP6365811B2 (ja) 多孔質構造を有する生分解性樹脂組成物、及び、その表面処理方法
Nerantzaki et al. Effect of nanofiller's type on the thermal properties and enzymatic degradation of poly (ε-caprolactone)
Huang et al. Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion
Kumar et al. Understanding the controlled biodegradation of polymers using nanoclays
Tian et al. Enhanced seawater degradation through copolymerization with diglycolic acid: Synthesis, microstructure, degradation mechanism and modification for antibacterial packaging
Nair et al. Preparation of poly (L-lactide) blends and biodegradation by Lentzea waywayandensis
Woolnough et al. A tuneable switch for controlling environmental degradation of bioplastics: addition of isothiazolinone to polyhydroxyalkanoates
Lee et al. Rapid Biodegradable Ionic Aggregates of Polyesters Constructed with Fertilizer Ingredients
Zeng et al. A review of alginate-like extracellular polymers from excess sludge: Extraction, characterization, and potential application
Han et al. Biodegradation behavior of amorphous polyhydroxyalkanoate-incorporated poly (l-lactic acid) under modulated home-composting conditions
Xie et al. Enhancement of the mechanical properties of poly (lactic acid)/epoxidized soybean oil blends by the addition of 3-aminophenylboronic acid
Ke et al. Thermal and in vitro degradation properties of the NH2-containing PHBV films
Peñas et al. Enzymatic Degradation Behavior of Self-Degradable Lipase-Embedded Aliphatic and Aromatic Polyesters and Their Blends
Wojciechowska et al. Degradability of organic-inorganic cellulose acetate butyrate hybrids in sea water
US11578201B2 (en) Biodegradable material for additive manufacturing
Murray et al. Thermal degradation of bio-nanocomposites
Cedillo-Portillo et al. Use of renewable source in biodegradable polymer
Osman et al. Study on water absorption and biodegradation of polylactic acid/poly (butylene adipate-co-terephthalate) nanocomposite
JP2009144021A (ja) 脂肪族ポリエステル樹脂組成物及びその成形体並びに樹脂容器
JP5955471B2 (ja) 改良された機械的特性を有するポリヒドロキシアルカノエート複合プラスチックの生産方法
Xing Methodology for developing biodegradable polymer blends and composites for agriculture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant