CN114901167A - Electrosurgical instrument with monopolar and bipolar energy capabilities - Google Patents

Electrosurgical instrument with monopolar and bipolar energy capabilities Download PDF

Info

Publication number
CN114901167A
CN114901167A CN202080091268.4A CN202080091268A CN114901167A CN 114901167 A CN114901167 A CN 114901167A CN 202080091268 A CN202080091268 A CN 202080091268A CN 114901167 A CN114901167 A CN 114901167A
Authority
CN
China
Prior art keywords
energy
jaw
tissue
end effector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080091268.4A
Other languages
Chinese (zh)
Inventor
F·E·谢尔顿四世
K·M·费比格
T·W·阿伦霍尔特
J·D·梅瑟利
M·S·齐纳
S·A·沃辛顿
J·P·摩根
N·M·摩根
D·J·穆莫
C·E·埃克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Cilag GmbH International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/885,881 external-priority patent/US20210196361A1/en
Application filed by Cilag GmbH International filed Critical Cilag GmbH International
Publication of CN114901167A publication Critical patent/CN114901167A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surgical Instruments (AREA)

Abstract

本发明公开了一种电外科器械,该电外科器械包括端部执行器,该端部执行器包括第一钳口、第二钳口和电路。该第一钳口包括第一传导骨架、选择性地覆盖该第一传导骨架的部分的第一绝缘涂层和包括该第一传导骨架的暴露部分的第一钳口电极。该第二钳口包括第二传导骨架、选择性地覆盖该第二传导骨架的部分的第二绝缘涂层和包括该第二传导骨架的暴露部分的第二钳口电极。该电路被配置成能够通过该第一钳口电极和该第二钳口电极向该组织传输双极RF能量和单极RF能量。该单极RF能量共享由该电路限定的用于传输该双极RF能量的第一电通路和第二电通路。

Figure 202080091268

The present invention discloses an electrosurgical instrument comprising an end effector including a first jaw, a second jaw and an electrical circuit. The first jaw includes a first conductive skeleton, a first insulating coating selectively covering portions of the first conductive skeleton, and a first jaw electrode including exposed portions of the first conductive skeleton. The second jaw includes a second conductive skeleton, a second insulating coating selectively covering portions of the second conductive skeleton, and a second jaw electrode including exposed portions of the second conductive skeleton. The circuit is configured to deliver bipolar RF energy and monopolar RF energy to the tissue through the first jaw electrode and the second jaw electrode. The monopolar RF energy shares a first electrical path and a second electrical path defined by the circuit for transmitting the bipolar RF energy.

Figure 202080091268

Description

具有单极和双极能量能力的电外科器械Electrosurgical instruments with monopolar and bipolar energy capabilities

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本非临时申请根据35 U.S.C.§119(e)要求2019年12月30日提交的名称为“DEVICES AND SYSTEMS FOR ELECTROSURGERY”的美国临时专利申请序列号62/955,299的权益,该申请的公开内容全文以引用方式并入本文。This non-provisional application claims the benefit of U.S. Provisional Patent Application Serial No. 62/955,299, filed on December 30, 2019, entitled "DEVICES AND SYSTEMS FOR ELECTROSURGERY," under 35 U.S.C. § 119(e), the disclosure of which is set forth in its entirety at Incorporated herein by reference.

背景技术Background technique

本发明涉及被设计用于治疗组织的外科器械,包括但不限于被配置成能够切割和紧固组织的外科器械。外科器械可包括电外科器械,该电外科器械由发生器供电以在外科规程期间实现组织解剖、切割和/或凝固。外科器械可包括被配置成能够使用外科钉和/或紧固件来切割和缝合组织的器械。外科器械可被配置用于开放外科规程,但是具有在其他类型的外科手术(诸如腹腔镜式、内窥镜式和机器人辅助规程)中的应用,并且可包括可相对于器械的轴部分进行关节运动以促进在患者体内的精确定位的端部执行器。The present invention relates to surgical instruments designed to treat tissue, including but not limited to surgical instruments configured to cut and secure tissue. The surgical instrument may include an electrosurgical instrument powered by a generator to effect tissue dissection, cutting and/or coagulation during a surgical procedure. Surgical instruments may include instruments configured to enable the use of surgical staples and/or fasteners to cut and staple tissue. The surgical instrument can be configured for open surgical procedures, but has applications in other types of surgical procedures, such as laparoscopic, endoscopic, and robotic-assisted procedures, and can include articulation relative to a shaft portion of the instrument. An end effector that moves to facilitate precise positioning within the patient.

发明内容SUMMARY OF THE INVENTION

在各种实施方案中,公开了一种包括端部执行器的电外科器械。端部执行器包括第一钳口、第二钳口和电路。第一钳口包括第一电传导骨架、选择性地覆盖第一电传导骨架的部分的第一绝缘涂层和包括第一电传导骨架的暴露部分的第一钳口电极。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括第二电传导骨架、选择性地覆盖第二电传导骨架的部分的第二绝缘涂层和包括第二电传导骨架的暴露部分的第二钳口电极。电路被配置成能够通过第一钳口电极和第二钳口电极向组织传输双极RF能量和单极RF能量。单极RF能量共享由电路限定的用于传输双极RF能量的第一电通路和第二电通路。In various embodiments, an electrosurgical instrument including an end effector is disclosed. The end effector includes a first jaw, a second jaw, and an electrical circuit. The first jaw includes a first electrically conductive skeleton, a first insulating coating selectively covering portions of the first electrically conductive skeleton, and a first jaw electrode including exposed portions of the first electrically conductive skeleton. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a second electrically conductive backbone, a second insulating coating selectively covering portions of the second electrically conductive backbone, and a second jaw electrode including exposed portions of the second electrically conductive backbone. The circuit is configured to deliver bipolar RF energy and monopolar RF energy to tissue through the first jaw electrode and the second jaw electrode. The monopolar RF energy shares a first electrical path and a second electrical path defined by the circuit for transmitting the bipolar RF energy.

在各种实施方案中,公开了一种电外科器械,该电外科器械包括端部执行器和电路。端部执行器包括至少两个电极组、第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。端部执行器被配置成能够将双极RF能量和单极RF能量的组合从至少两个电极组递送到所抓持的组织。电路被配置成能够传输双极RF能量和单极RF能量。单极RF能量共享由电路限定的用于传输双极RF能量的活动通路和返回通路。In various embodiments, an electrosurgical instrument is disclosed that includes an end effector and an electrical circuit. The end effector includes at least two electrode sets, a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The end effector is configured to deliver a combination of bipolar RF energy and monopolar RF energy from at least two electrode sets to grasped tissue. The circuit is configured to transmit bipolar RF energy and monopolar RF energy. The monopolar RF energy shares the active and return paths defined by the circuit for transmitting the bipolar RF energy.

在各种实施方案中,公开了一种包括端部执行器的电外科器械。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括至少两种不同材料的复合骨架,该至少两种不同材料被配置成能够选择性地产生电传导部分和热隔离部分。In various embodiments, an electrosurgical instrument including an end effector is disclosed. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a composite backbone of at least two different materials configured to selectively create electrically conductive portions and thermally insulating portions.

在各种实施方案中,公开了一种用于制造电外科器械的端部执行器的钳口的方法。方法包括通过在金属注射模制过程中将钛粉末与陶瓷粉末融合来制备钳口的复合骨架并且用电绝缘材料选择性地涂覆复合骨架以产生多个电极。In various embodiments, a method for manufacturing a jaw of an end effector of an electrosurgical instrument is disclosed. The method includes preparing a composite skeleton of the jaws by fusing titanium powder with ceramic powder in a metal injection molding process and selectively coating the composite skeleton with an electrically insulating material to create a plurality of electrodes.

附图说明Description of drawings

各种方面的新型特征在随附权利要求书中具体阐述。然而,关于组织和操作方法两者的所述方面可通过结合附图参照以下描述最好地理解,其中:The novel features of the various aspects are set forth with particularity in the appended claims. However, the described aspects regarding both organization and methods of operation can be best understood by reference to the following description in conjunction with the accompanying drawings, wherein:

图1示出了根据本公开的至少一个方面的用于与外科系统一起使用的发生器的示例;1 illustrates an example of a generator for use with a surgical system in accordance with at least one aspect of the present disclosure;

图2示出了根据本公开的至少一个方面的一种形式的外科系统,该外科系统包括发生器和能够与其一起使用的电外科器械;2 illustrates one form of a surgical system including a generator and an electrosurgical instrument that can be used therewith in accordance with at least one aspect of the present disclosure;

图3示出了根据本公开的至少一个方面的外科器械或工具的示意图;3 shows a schematic diagram of a surgical instrument or tool in accordance with at least one aspect of the present disclosure;

图4是根据本公开的至少一个方面的电外科器械的端部执行器的分解图;4 is an exploded view of an end effector of an electrosurgical instrument in accordance with at least one aspect of the present disclosure;

图5是图4的端部执行器的剖视图;Figure 5 is a cross-sectional view of the end effector of Figure 4;

图6至图8描绘了在能量施加到组织之前的图4的端部执行器的三种不同操作模式;Figures 6-8 depict three different modes of operation of the end effector of Figure 4 before energy is applied to tissue;

图9至图11描绘了在能量施加到组织期间的图4的端部执行器的三种不同操作模式;Figures 9-11 depict three different modes of operation of the end effector of Figure 4 during energy application to tissue;

图12示出了根据本公开的至少一个方面的制造端部执行器的钳口的方法;12 illustrates a method of manufacturing a jaw of an end effector in accordance with at least one aspect of the present disclosure;

图13示出了根据本公开的至少一个方面的制造端部执行器的钳口的方法;13 illustrates a method of manufacturing a jaw of an end effector in accordance with at least one aspect of the present disclosure;

图14示出了根据本公开的至少一个方面的电外科器械的端部执行器的钳口的局部透视图;14 shows a partial perspective view of a jaw of an end effector of an electrosurgical instrument in accordance with at least one aspect of the present disclosure;

图15示出了制造图14的钳口的过程的步骤;Figure 15 shows steps in the process of manufacturing the jaws of Figure 14;

图16示出了制造图14的钳口的过程的步骤;Figure 16 shows steps in the process of manufacturing the jaws of Figure 14;

图17至图19示出了制造图14的钳口的过程的步骤;Figures 17-19 illustrate steps in the process of manufacturing the jaws of Figure 14;

图20示出了根据本公开的至少一个方面的通过图22中的线20-20截取的电外科器械的端部执行器的钳口的剖视图;20 illustrates a cross-sectional view of a jaw of an end effector of an electrosurgical instrument taken through line 20-20 in FIG. 22 in accordance with at least one aspect of the present disclosure;

图21示出了通过图22中的线21-21截取的电外科器械的端部执行器的钳口的剖视图;Figure 21 shows a cross-sectional view of the jaws of the end effector of the electrosurgical instrument taken through line 21-21 in Figure 22;

图22示出了图20的电外科器械的端部执行器的钳口的透视图;Figure 22 shows a perspective view of the jaws of the end effector of the electrosurgical instrument of Figure 20;

图23示出了根据本公开的至少一个方面的电外科器械的端部执行器的钳口的剖视图;23 shows a cross-sectional view of a jaw of an end effector of an electrosurgical instrument in accordance with at least one aspect of the present disclosure;

图24示出了根据本公开的至少一个方面的电外科器械的端部执行器的钳口的局部透视图;24 shows a partial perspective view of a jaw of an end effector of an electrosurgical instrument in accordance with at least one aspect of the present disclosure;

图25示出了根据本公开的至少一个方面的电外科器械的端部执行器的剖视图;25 illustrates a cross-sectional view of an end effector of an electrosurgical instrument according to at least one aspect of the present disclosure;

图26示出了根据本公开的至少一个方面的电外科器械的端部执行器的局部分解图;26 shows a partially exploded view of an end effector of an electrosurgical instrument according to at least one aspect of the present disclosure;

图27示出了根据本公开的至少一个方面的包括电连接组件的电外科器械的一部分的分解透视组装图;27 shows an exploded perspective assembly view of a portion of an electrosurgical instrument including an electrical connection assembly in accordance with at least one aspect of the present disclosure;

图28示出了根据本公开的至少一个方面的图27的外科器械部分中限定的电通路的顶视图;28 illustrates a top view of the electrical pathway defined in the surgical instrument portion of FIG. 27 in accordance with at least one aspect of the present disclosure;

图29示出了根据本公开的至少一个方面的柔性电路的剖视图;29 shows a cross-sectional view of a flexible circuit according to at least one aspect of the present disclosure;

图30示出了根据本公开的至少一个方面的延伸通过线圈管的柔性电路的剖视图;30 illustrates a cross-sectional view of a flex circuit extending through a coil bobbin in accordance with at least one aspect of the present disclosure;

图31示出了根据本公开的至少一个方面的延伸通过线圈管的柔性电路的剖视图;31 illustrates a cross-sectional view of a flexible circuit extending through a coil bobbin in accordance with at least one aspect of the present disclosure;

图32示出了根据本公开的至少一个方面的延伸通过线圈管的柔性电路的剖视图;32 illustrates a cross-sectional view of a flexible circuit extending through a coil bobbin in accordance with at least one aspect of the present disclosure;

图33示出了根据本公开的至少一个方面的延伸通过线圈管的柔性电路的剖视图;33 shows a cross-sectional view of a flex circuit extending through a coil bobbin in accordance with at least one aspect of the present disclosure;

图34是示出根据本公开的至少一个方面的用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的功率方案的曲线图;34 is a graph illustrating a power scheme for coagulating and cutting a tissue treatment area in a treatment cycle applied by an end effector in accordance with at least one aspect of the present disclosure;

图35是示出根据本公开的至少一个方面的用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的功率方案以及端部执行器和组织的多个测量参数的曲线图;35 is a graph illustrating a power scheme for coagulating and cutting a tissue treatment area in a treatment cycle applied by an end effector and various measured parameters of the end effector and tissue in accordance with at least one aspect of the present disclosure ;

图36是根据本公开的至少一个方面的电外科系统的示意图;36 is a schematic diagram of an electrosurgical system in accordance with at least one aspect of the present disclosure;

图37是示出根据本公开的至少一个方面的用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的功率方案的表;37 is a table illustrating a power regimen for coagulating and cutting a tissue treatment area in a treatment cycle applied by an end effector in accordance with at least one aspect of the present disclosure;

图38至图40示出了根据本公开的至少一个方面的由端部执行器施加到组织治疗区域的组织治疗循环;38-40 illustrate a tissue treatment cycle applied by an end effector to a tissue treatment area in accordance with at least one aspect of the present disclosure;

图41示出了根据本公开的至少一个方面的将治疗能量施加到由端部执行器抓持的组织的端部执行器,治疗能量由单极功率源和双极功率源生成;41 illustrates an end effector applying therapeutic energy to tissue grasped by the end effector, the therapeutic energy being generated by a monopolar power source and a bipolar power source, in accordance with at least one aspect of the present disclosure;

图42示出了根据本公开的至少一个方面的电外科系统的简化示意图;42 shows a simplified schematic diagram of an electrosurgical system in accordance with at least one aspect of the present disclosure;

图43是示出根据本公开的至少一个方面的用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的功率方案以及组织治疗区域的对应温度读数的曲线图;43 is a graph showing a power scheme for coagulating and cutting a tissue treatment area and corresponding temperature readings for the tissue treatment area in a treatment cycle applied by an end effector in accordance with at least one aspect of the present disclosure;

图44示出了根据本公开的至少一个方面的治疗动脉的端部执行器;44 illustrates an end effector for treating an artery in accordance with at least one aspect of the present disclosure;

图45示出了根据本公开的至少一个方面的治疗动脉的端部执行器;45 illustrates an end effector for treating an artery in accordance with at least one aspect of the present disclosure;

图46示出了根据本公开的至少一个方面的将治疗能量施加到由端部执行器抓持的组织的端部执行器,治疗能量由单极功率源和双极功率源生成;46 illustrates an end effector applying therapeutic energy to tissue grasped by the end effector, the therapeutic energy being generated by a monopolar power source and a bipolar power source, in accordance with at least one aspect of the present disclosure;

图47示出了根据本公开的至少一个方面的电外科系统的简化示意图;47 shows a simplified schematic diagram of an electrosurgical system in accordance with at least one aspect of the present disclosure;

图48是示出根据本公开的至少一个方面的包括用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的治疗部分和非治疗范围的功率方案的曲线图;并且48 is a graph illustrating a power scheme including a treatment portion and a non-treatment range for coagulating and cutting a tissue treatment area in a treatment cycle applied by an end effector in accordance with at least one aspect of the present disclosure; and

图49是示出根据本公开的至少一个方面的用于在由端部执行器施加的治疗循环中凝固和切割组织治疗区域的功率方案,以及对应的单极阻抗和双极阻抗及其比率的曲线图。49 is a graph illustrating a power scheme for coagulating and cutting a tissue treatment area in a treatment cycle applied by an end effector, and the corresponding monopolar and bipolar impedances and their ratios, in accordance with at least one aspect of the present disclosure. Graph.

具体实施方式Detailed ways

本申请的申请人拥有与本申请于同一日期提交且各自全文以引用方式并入本文的以下美国专利申请:The applicant of the present application has the following US patent applications filed on the same date as the present application and each of which is incorporated herein by reference in its entirety:

·名称为“METHOD FOR AN ELECTROSURGICAL PROCEDURE”的代理人案卷号END9234USNP1/190717-1M;· Attorney docket number END9234USNP1/190717-1M named "METHOD FOR AN ELECTROSURGICAL PROCEDURE";

·名称为“ARTICULATABLE SURGICAL INSTRUMENT”的代理人案卷号END9234USNP2/190717-2;·Agent's file number END9234USNP2/190717-2 named "ARTICULATABLE SURGICAL INSTRUMENT";

·名称为“SURGICAL INSTRUMENT WITH JAW ALIGNMENT FEATURES”的代理人案卷号END9234USNP3/190717-3;·Agent's docket number END9234USNP3/190717-3 named "SURGICAL INSTRUMENT WITH JAW ALIGNMENT FEATURES";

·名称为“SURGICAL INSTRUMENT WITH ROTATABLE AND ARTICULATABLESURGICAL END EFFECTOR”的代理人案卷号END9234USNP4/190717-4;·Attorney's docket number END9234USNP4/190717-4 named "SURGICAL INSTRUMENT WITH ROTATABLE AND ARTICULATABLESURGICAL END EFFECTOR";

·名称为“ELECTROSURGICAL INSTRUMENT WITH ASYNCHRONOUS ENERGIZINGELECTRODES”的代理人案卷号END9234USNP5/190717-5;·Attorney's docket number END9234USNP5/190717-5 named "ELECTROSURGICAL INSTRUMENT WITH ASYNCHRONOUS ENERGIZINGELECTRODES";

·名称为“ELECTROSURGICAL INSTRUMENT WITH ELECTRODES BIASING SUPPORT”的代理人案卷号END9234USNP6/190717-6;·Agent's file number END9234USNP6/190717-6 named "ELECTROSURGICAL INSTRUMENT WITH ELECTRODES BIASING SUPPORT";

·名称为“ELECTROSURGICAL INSTRUMENT WITH FLEXIBLE WIRING ASSEMBLIES”的代理人案卷号END9234USNP7/190717-7;·Attorney docket number END9234USNP7/190717-7 named "ELECTROSURGICAL INSTRUMENT WITH FLEXIBLE WIRING ASSEMBLIES";

·名称为“ELECTROSURGICAL INSTRUMENT WITH VARIABLE CONTROL MECHANISMS”的代理人案卷号END9234USNP8/190717-8;·Agent's docket number END9234USNP8/190717-8 named "ELECTROSURGICAL INSTRUMENT WITH VARIABLE CONTROL MECHANISMS";

·名称为“ELECTROSURGICAL SYSTEMS WITH INTEGRATED AND EXTERNAL POWERSOURCES”的代理人案卷号END9234USNP9/190717-9;·Attorney's docket number END9234USNP9/190717-9 named "ELECTROSURGICAL SYSTEMS WITH INTEGRATED AND EXTERNAL POWERSOURCES";

·名称为“ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING ENERGYFOCUSING FEATURES”的代理人案卷号END9234USNP10/190717-10;·The attorney's case number END9234USNP10/190717-10 named "ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING ENERGYFOCUSING FEATURES";

·名称为“ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING VARIABLEENERGY DENSITIES”的代理人案卷号END9234USNP11/190717-11;·The attorney's case number END9234USNP11/190717-11 named "ELECTROSURGICAL INSTRUMENTS WITH ELECTRODES HAVING VARIABLEENERGY DENSITIES";

·名称为“ELECTROSURGICAL END EFFECTORS WITH THERMALLY INSULATIVE ANDTHERMALLY CONDUCTIVE PORTIONS”的代理人案卷号END9234USNP13/190717-13;·Attorney docket number END9234USNP13/190717-13 named "ELECTROSURGICAL END EFFECTORS WITH THERMALLY INSULATIVE AND THERMALLY CONDUCTIVE PORTIONS";

·名称为“ELECTROSURGICAL INSTRUMENT WITH ELECTRODES OPERABLE INBIPOLAR AND MONOPOLAR MODES”的代理人案卷号END9234USNP14/190717-14;·The attorney's case number END9234USNP14/190717-14 named "ELECTROSURGICAL INSTRUMENT WITH ELECTRODES OPERABLE INBIPOLAR AND MONOPOLAR MODES";

·名称为“ELECTROSURGICAL INSTRUMENT FOR DELIVERING BLENDED ENERGYMODALITIES TO TISSUE”的代理人案卷号END9234USNP15/190717-15;·The attorney's case number END9234USNP15/190717-15 named "ELECTROSURGICAL INSTRUMENT FOR DELIVERING BLENDED ENERGYMODALITIES TO TISSUE";

·名称为“CONTROL PROGRAM ADAPTATION BASED ON DEVICE STATUS AND USERINPUT”的代理人案卷号END9234USNP16/190717-16;·Agent's file number END9234USNP16/190717-16 named "CONTROL PROGRAM ADAPTATION BASED ON DEVICE STATUS AND USERINPUT";

·名称为“CONTROL PROGRAM FOR MODULAR COMBINATION ENERGY DEVICE”的代理人案卷号END9234USNP17/190717-17;以及· Attorney Docket No. END9234USNP17/190717-17 entitled "CONTROL PROGRAM FOR MODULAR COMBINATION ENERGY DEVICE"; and

·名称为“SURGICAL SYSTEM COMMUNICATION PATHWAYS”的代理人案卷号END9234USNP18/190717-18。· Attorney's docket number END9234USNP18/190717-18 named "SURGICAL SYSTEM COMMUNICATION PATHWAYS".

本专利申请的申请人拥有于2019年12月30日提交的以下美国临时专利申请,这些专利申请中的每一者的公开内容全文以引用方式并入本文:The applicant of this patent application has the following U.S. Provisional Patent Applications filed on December 30, 2019, the disclosures of each of which are incorporated herein by reference in their entirety:

·名称为“USER INTERFACE FOR SURGICAL INSTRUMENT WITH COMBINATIONENERGY MODALITY END-EFFECTOR”的美国临时专利申请序列号62/955,294;U.S. Provisional Patent Application Serial No. 62/955,294 entitled "USER INTERFACE FOR SURGICAL INSTRUMENT WITH COMBINATIONENERGY MODALITY END-EFFECTOR";

·名称为“COMBINATION ENERGY MODALITY END-EFFECTOR”的美国临时专利申请序列号62/955,292;以及U.S. Provisional Patent Application Serial No. 62/955,292 entitled "COMBINATION ENERGY MODALITY END-EFFECTOR"; and

·名称为“SURGICAL INSTRUMENT SYSTEMS”的美国临时专利申请序列号62/955,306。- US Provisional Patent Application Serial No. 62/955,306 entitled "SURGICAL INSTRUMENT SYSTEMS".

本专利申请的申请人拥有以下美国专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:The applicant of this patent application owns the following US patent applications, the disclosures of each of these provisional patent applications are hereby incorporated by reference in their entirety:

·美国专利申请序列号16/209,395,其名称为“METHOD OF HUB COMMUNICATION”,现为美国专利申请公开号2019/0201136;U.S. Patent Application Serial No. 16/209,395, entitled "METHOD OF HUB COMMUNICATION", now U.S. Patent Application Publication No. 2019/0201136;

·美国专利申请序列号16/209,403,其名称为“METHOD OF CLOUD BASED DATAANALYTICS FOR USE WITH THE HUB”,现为美国专利申请公开号2019/0206569;U.S. Patent Application Serial No. 16/209,403, titled "METHOD OF CLOUD BASED DATAANALYTICS FOR USE WITH THE HUB", now U.S. Patent Application Publication No. 2019/0206569;

·美国专利申请序列号16/209,407,其名称为“METHOD OF ROBOTIC HUBCOMMUNICATION,DETECTION,AND CONTROL”,现为美国专利申请公开号2019/0201137;U.S. Patent Application Serial No. 16/209,407, titled "METHOD OF ROBOTIC HUBCOMMUNICATION, DETECTION, AND CONTROL", now U.S. Patent Application Publication No. 2019/0201137;

·美国专利申请序列号16/209,416,其名称为“METHOD OF HUB COMMUNICATION,PROCESSING,DISPLAY,AND CLOUD ANALYTICS”,现为美国专利申请公开号2019/0206562;U.S. Patent Application Serial No. 16/209,416, entitled "METHOD OF HUB COMMUNICATION, PROCESSING, DISPLAY, AND CLOUD ANALYTICS", now U.S. Patent Application Publication No. 2019/0206562;

·美国专利申请序列号16/209,423,其名称为“METHOD OF COMPRESSING TISSUEWITHIN A STAPLING DEVICE AND SIMULTANEOUSLY DISPLAYING THE LOCATION OF THETISSUE WITHIN THE JAWS”,现为美国专利申请公开号2019/0200981;U.S. Patent Application Serial No. 16/209,423, titled "METHOD OF COMPRESSING TISSUEWITHIN A STAPLING DEVICE AND SIMULTANEOUSLY DISPLAYING THE LOCATION OF THETISSUE WITHIN THE JAWS", now U.S. Patent Application Publication No. 2019/0200981;

·美国专利申请序列号16/209,427,其名称为“METHOD OF USING REINFORCEDFLEXIBLE CIRCUITS WITH MULTIPLE SENSORS TO OPTIMIZE PERFORMANCE OF RADIOFREQUENCY DEVICES”,现为美国专利申请公开号2019/0208641;U.S. Patent Application Serial No. 16/209,427, entitled "METHOD OF USING REINFORCEDFLEXIBLE CIRCUITS WITH MULTIPLE SENSORS TO OPTIMIZE PERFORMANCE OF RADIOFREQUENCY DEVICES", now U.S. Patent Application Publication No. 2019/0208641;

·美国专利申请序列号16/209,433,其名称为“METHOD OF SENSING PARTICULATEFROM SMOKE EVACUATED FROM A PATIENT,ADJUSTING THE PUMP SPEED BASED ON THESENSED INFORMATION,AND COMMUNICATING THE FUNCTIONAL PARAMETERS OF THE SYSTEMTO THE HUB”,现为美国专利申请公开号2019/0201594;U.S. Patent Application Serial No. 16/209,433, entitled "METHOD OF SENSING PARTICULATEFROM SMOKE EVACUATED FROM A PATIENT, ADJUSTING THE PUMP SPEED BASED ON THESENSED INFORMATION, AND COMMUNICATING THE FUNCTIONAL PARAMETERS OF THE SYSTEMTO THE HUB", now a U.S. patent application Publication No. 2019/0201594;

·美国专利申请序列号16/209,447,其名称为“METHOD FOR SMOKE EVACUATIONFOR SURGICAL HUB”,现为美国专利申请公开号2019/0201045;U.S. Patent Application Serial No. 16/209,447, titled "METHOD FOR SMOKE EVACUATIONFOR SURGICAL HUB", now U.S. Patent Application Publication No. 2019/0201045;

·美国专利申请序列号16/209,453,其名称为“METHOD FOR CONTROLLING SMARTENERGY DEVICES”,现为美国专利申请公开号2019/0201046;U.S. Patent Application Serial No. 16/209,453, entitled "METHOD FOR CONTROLLING SMARTENERGY DEVICES", now U.S. Patent Application Publication No. 2019/0201046;

·美国专利申请序列号16/209,458,其名称为“METHOD FOR SMART ENERGYDEVICE INFRASTRUCTURE”,现为美国专利申请公开号2019/0201047;U.S. Patent Application Serial No. 16/209,458, entitled "METHOD FOR SMART ENERGYDEVICE INFRASTRUCTURE", now U.S. Patent Application Publication No. 2019/0201047;

·美国专利申请序列号16/209,465,其名称为“METHOD FOR ADAPTIVE CONTROLSCHEMES FOR SURGICAL NETWORK CONTROL AND INTERACTION”,现为美国专利申请公开号2019/0206563;U.S. Patent Application Serial No. 16/209,465, entitled "METHOD FOR ADAPTIVE CONTROLSCHEMES FOR SURGICAL NETWORK CONTROL AND INTERACTION", now U.S. Patent Application Publication No. 2019/0206563;

·美国专利申请序列号16/209,478,其名称为“METHOD FOR SITUATIONALAWARENESS FOR SURGICAL NETWORK OR SURGICAL NETWORK CONNECTED DEVICE CAPABLEOF ADJUSTING FUNCTION BASED ON A SENSED SITUATION OR USAGE”,现为美国专利申请公开号2019/0104919;U.S. Patent Application Serial No. 16/209,478, entitled "METHOD FOR SITUATIONALAWARENESS FOR SURGICAL NETWORK OR SURGICAL NETWORK CONNECTED DEVICE CAPABLEOF ADJUSTING FUNCTION BASED ON A SENSED SITUATION OR USAGE", now U.S. Patent Application Publication No. 2019/0104919;

·美国专利申请序列号16/209,490,其名称为“METHOD FOR FACILITY DATACOLLECTION AND INTERPRETATION”,现为美国专利申请公开号2019/0206564;U.S. Patent Application Serial No. 16/209,490, entitled "METHOD FOR FACILITY DATACOLLECTION AND INTERPRETATION", now U.S. Patent Application Publication No. 2019/0206564;

·美国专利申请序列号16/209,491,其名称为“METHOD FOR CIRCULAR STAPLERCONTROL ALGORITHM ADJUSTMENT BASED ON SITUATIONAL AWARENESS”,现为美国专利申请公开号2019/0200998;U.S. Patent Application Serial No. 16/209,491, entitled "METHOD FOR CIRCULAR STAPLERCONTROL ALGORITHM ADJUSTMENT BASED ON SITUATIONAL AWARENESS", now U.S. Patent Application Publication No. 2019/0200998;

·美国专利申请序列号16/562,123,其名称为“METHOD FOR CONSTRUCTING ANDUSING A MODULAR SURGICAL ENERGY SYSTEM WITH MULTIPLE DEVICES”;U.S. Patent Application Serial No. 16/562,123, entitled "METHOD FOR CONSTRUCTING ANDUSING A MODULAR SURGICAL ENERGY SYSTEM WITH MULTIPLE DEVICES";

·美国专利申请序列号16/562,135,其名称为“METHOD FOR CONTROLLING ANENERGY MODULE OUTPUT”;U.S. Patent Application Serial No. 16/562,135, entitled "METHOD FOR CONTROLLING ANENERGY MODULE OUTPUT";

·美国专利申请序列号16/562,144,其名称为“METHOD FOR CONTROLLING AMODULAR ENERGY SYSTEM USER INTERFACE”;以及U.S. Patent Application Serial No. 16/562,144, entitled "METHOD FOR CONTROLLING AMODULAR ENERGY SYSTEM USER INTERFACE"; and

·美国专利申请序列号16/562,125,其名称为“METHOD FOR COMMUNICATINGBETWEEN MODULES AND DEVICES IN A MODULAR SURGICAL SYSTEM”。- US Patent Application Serial No. 16/562,125 entitled "METHOD FOR COMMUNICATING BETWEEN MODULES AND DEVICES IN A MODULAR SURGICAL SYSTEM".

在详细说明电外科系统的各个方面之前,应当指出,例示性示例在应用或使用上不限于附图和说明书中所示出的部件的构造和布置的细节。例示性示例可在其他方面、变型和修改中实现或并入,并且可以各种方式实践或执行。此外,除非另外指明,否则本文所用的术语和表达是为了方便读者而对例示性示例进行描述而所选的,并非为了限制性的目的。而且,应当理解,以下描述的方面、方面的表达和/或示例中的一者或多者可与其他以下描述的方面、方面的表达和/或示例中的任何一者或多者组合。Before describing various aspects of the electrosurgical system in detail, it should be noted that the illustrative examples are not limited in application or use to the details of construction and the arrangement of components shown in the drawings and description. The illustrative examples may be implemented or incorporated in other aspects, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terminology and expressions used herein have been chosen for the convenience of the reader to describe illustrative examples and are not for the purpose of limitation. Furthermore, it should be understood that one or more of the aspects, expressions and/or examples of aspects described below may be combined with any one or more of the other aspects, expressions and/or examples of aspects described below.

各个方面涉及电外科系统,该电外科系统包括电外科器械,该电外科器械由发生器供电以在外科规程期间实现组织解剖、切割和/或凝固。电外科器械可被配置用于开放式外科规程中,但也可应用于其他类型的手术中,诸如腹腔镜式、内窥镜式和机器人辅助规程。Various aspects relate to an electrosurgical system that includes an electrosurgical instrument powered by a generator to effect tissue dissection, cutting, and/or coagulation during a surgical procedure. Electrosurgical instruments may be configured for use in open surgical procedures, but may also be used in other types of procedures, such as laparoscopic, endoscopic, and robotic-assisted procedures.

如下文更详细地描述的,电外科器械通常包括具有远侧安装的端部执行器(例如,一个或多个电极)的轴。该端部执行器可抵靠组织定位,使得电流被引入组织中。电外科器械能够被构造用于双极或单极操作。在双极操作期间,电流分别通过端部执行器的有源电极和返回电极被引入到组织中并从组织返回。在单极操作期间,电流通过端部执行器的有源电极被引入组织中并且通过单独定位在患者身体上的返回电极(例如,接地垫)返回。流过组织的电流所产生的热可在组织内和/或在组织之间形成止血密封,并因此可尤其适用于例如密封血管。As described in more detail below, electrosurgical instruments typically include a shaft with a distally mounted end effector (eg, one or more electrodes). The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical instruments can be configured for bipolar or monopolar operation. During bipolar operation, electrical current is introduced into and returned from the tissue through the active and return electrodes of the end effector, respectively. During monopolar operation, electrical current is introduced into the tissue through the active electrode of the end effector and returned through a return electrode (eg, a ground pad) positioned separately on the patient's body. The heat generated by the electrical current flowing through the tissue can form a hemostatic seal within and/or between the tissue, and thus can be particularly useful for sealing blood vessels, for example.

图1示出了被配置成能够将多个能量模态递送到外科器械的发生器900的示例。发生器900提供用于将能量递送到外科器械的RF信号和/或超声信号。发生器900包括至少一个发生器输出,其可通过单个端口递送多种能量模态(例如,超声、双极或单极RF、不可逆和/或可逆电穿孔和/或微波能量等等),并且这些信号可分开或同时被递送到端部执行器以处理组织。发生器900包括耦接到波形发生器904的处理器902。处理器902和波形发生器904被配置成能够基于存储在耦接到处理器902的存储器中的信息来生成多种信号波形,为了本公开清楚起见而未示出该存储器。与波形相关联的数字信息被提供给波形发生器904,该波形发生器包括一个或多个DAC电路以将数字输入转换成模拟输出。模拟输出被馈送到放大器906以用于信号调节和放大。放大器906的经调节和放大的输出耦接到功率变压器908。信号通过功率变压器908耦接到患者隔离侧中的次级侧。第一能量模态的第一信号被提供给被标记为ENERGY1和RETURN的端子之间的外科器械。第二能量模态的第二信号耦接到电容器910两端并被提供给被标记为ENERGY2和RETURN的端子之间的外科器械。应当理解,可输出超过两种能量模态,并且因此下标“n”可被用来指定可提供多至n个ENERGYn端子,其中n是大于1的正整数。还应当理解,在不脱离本公开的范围的情况下,可提供多至“n”个返回路径RETURNnFIG. 1 shows an example of a generator 900 configured to deliver multiple energy modalities to a surgical instrument. Generator 900 provides RF and/or ultrasound signals for delivering energy to surgical instruments. Generator 900 includes at least one generator output that can deliver multiple energy modalities (eg, ultrasound, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, etc.) through a single port, and These signals can be delivered to the end effector separately or simultaneously to treat tissue. Generator 900 includes processor 902 coupled to waveform generator 904 . Processor 902 and waveform generator 904 are configured to generate a variety of signal waveforms based on information stored in memory coupled to processor 902, which is not shown for clarity of the present disclosure. The digital information associated with the waveform is provided to a waveform generator 904, which includes one or more DAC circuits to convert the digital input to an analog output. The analog output is fed to amplifier 906 for signal conditioning and amplification. The conditioned and amplified output of amplifier 906 is coupled to power transformer 908 . The signal is coupled to the secondary side in the patient isolation side through a power transformer 908 . A first signal of a first energy modality is provided to the surgical instrument between terminals labeled ENERGY 1 and RETURN. A second signal of the second energy modality is coupled across capacitor 910 and provided to the surgical instrument between terminals labeled ENERGY 2 and RETURN. It should be understood that more than two energy modes may be output, and thus the subscript "n" may be used to designate that up to n ENERGY n terminals may be provided, where n is a positive integer greater than one. It should also be understood that up to "n" return paths RETURN n may be provided without departing from the scope of the present disclosure.

第一电压感测电路912耦接到被标记为ENERGY1和RETURN路径的端子的两端,以测量两者间的输出电压。第二电压感测电路924耦接到被标记为ENERGY2和RETURN路径的端子的两端,以测量两者间的输出电压。如图所示,电流感测电路914与功率变压器908的次级侧的RETURN支路串联设置,以测量任一能量模态的输出电流。如果为每种能量模态提供不同的返回路径,则应在每个返回支路中提供单独的电流感测电路。第一电压感测电路912和第二电压感测电路924的输出被提供给相应的隔离变压器928、922,并且电流感测电路914的输出被提供给另一隔离变压器916。功率变压器908(非患者隔离侧)的初级侧上的隔离变压器916、928、922的输出被提供给一个或多个ADC电路926。ADC电路926的数字化输出被提供给处理器902用于进一步处理和计算。可采用输出电压和输出电流反馈信息来调节提供给外科器械的输出电压和电流,并且计算输出阻抗等参数。处理器902和患者隔离电路之间的输入/输出通信通过接口电路920提供。传感器也可通过接口电路920与处理器902电通信。A first voltage sensing circuit 912 is coupled across terminals labeled ENERGY 1 and RETURN paths to measure the output voltage therebetween. A second voltage sensing circuit 924 is coupled across the terminals labeled ENERGY 2 and the RETURN path to measure the output voltage therebetween. As shown, the current sensing circuit 914 is placed in series with the RETURN branch on the secondary side of the power transformer 908 to measure the output current of either energy mode. If a different return path is provided for each energy mode, a separate current sensing circuit should be provided in each return leg. The outputs of the first voltage sensing circuit 912 and the second voltage sensing circuit 924 are provided to respective isolation transformers 928 , 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 916 . The outputs of isolation transformers 916 , 928 , 922 on the primary side of power transformer 908 (non-patient isolation side) are provided to one or more ADC circuits 926 . The digitized output of ADC circuit 926 is provided to processor 902 for further processing and calculations. The output voltage and output current feedback information can be used to adjust the output voltage and current provided to the surgical instrument, and to calculate parameters such as output impedance. Input/output communication between processor 902 and patient isolation circuitry is provided through interface circuitry 920 . The sensors may also be in electrical communication with the processor 902 through the interface circuit 920 .

在一个方面,阻抗可由处理器902通过将耦接在被标记为ENERGY1/RETURN的端子两端的第一电压感测电路912或耦接在被标记为ENERGY2/RETURN的端子两端的第二电压感测电路924的输出除以与功率变压器908的次级侧的RETURN支路串联设置的电流感测电路914的输出来确定。第一电压感测电路912和第二电压感测电路924的输出被提供给单独的隔离变压器928、922,并且电流感测电路914的输出被提供给另一隔离变压器916。来自ADC电路926的数字化电压和电流感测测量值被提供给处理器902以用于计算阻抗。例如,第一能量模态ENERGY1可以是RF单极能量,并且第二能量模态ENERGY2可以是RF双极能量。然而,除了双极和单极RF能量模态之外,其他能量模态还包括超声能量、不可逆和/或可逆电穿孔和/或微波能量等。而且,虽然图1所示的示例示出了可为两种或更多种能量模态提供单个返回路径RETURN,但在其他方面,可为每种能量模态ENERGYn提供多个返回路径RETURNnIn one aspect, the impedance can be determined by the processor 902 by sensing a first voltage 912 coupled across the terminal labeled ENERGY 1 /RETURN or a second voltage coupled across the terminal labeled ENERGY 2 /RETURN The output of the sense circuit 924 is determined by dividing the output of the current sense circuit 914 placed in series with the RETURN branch on the secondary side of the power transformer 908 . The outputs of the first voltage sensing circuit 912 and the second voltage sensing circuit 924 are provided to separate isolation transformers 928 , 922 , and the output of the current sensing circuit 914 is provided to another isolation transformer 916 . Digitized voltage and current sense measurements from ADC circuit 926 are provided to processor 902 for use in calculating impedance. For example, the first energy modality ENERGY 1 may be RF monopolar energy, and the second energy modality ENERGY 2 may be RF bipolar energy. However, in addition to bipolar and monopolar RF energy modalities, other energy modalities include ultrasonic energy, irreversible and/or reversible electroporation and/or microwave energy, and the like. Furthermore, while the example shown in FIG. 1 shows that a single return path RETURN may be provided for two or more energy modalities, in other aspects, multiple return paths RETURN n may be provided for each energy modality ENERGY n .

如图1中所示,包括至少一个输出端口的发生器900可包括具有单个输出端和多个分接头的功率变压器908,以例如根据正在被执行的组织治疗类型以一种或多种能量模态(诸如超声、双极或单极RF、不可逆和/或可逆电穿孔和/或微波能量等等)的形式向端部执行器提供功率。例如,发生器900可用更高电压和更低电流递送能量以驱动超声换能器,用更低电压和更高电流递送能量以驱动RF电极以用于密封组织,或者用凝固波形递送能量以用于使用单极或双极RF电外科电极进行点凝固。来自发生器900的输出波形可被操纵、切换或滤波,以向外科器械的端部执行器提供频率。在一个示例中,RF双极电极与发生器900输出端的连接将优选地位于被标记为ENERGY2和RETURN的输出端之间。在单极输出的情况下,优选的连接将是ENERGY2输出端的有源电极(例如,铅笔或其他探头)以及连接至RETURN输出端的合适的返回垫。As shown in FIG. 1 , a generator 900 including at least one output port may include a power transformer 908 having a single output and multiple taps to operate at one or more energy modes, eg, depending on the type of tissue treatment being performed. Power is provided to the end effector in the form of states (such as ultrasound, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, etc.). For example, the generator 900 may deliver energy at higher voltages and lower currents to drive ultrasonic transducers, lower voltages and higher currents to drive RF electrodes for sealing tissue, or coagulation waveforms to use For spot coagulation using monopolar or bipolar RF electrosurgical electrodes. The output waveform from generator 900 can be manipulated, switched or filtered to provide frequencies to the end effector of the surgical instrument. In one example, the connection of the RF bipolar electrode to the output of generator 900 would preferably be between the outputs labeled ENERGY 2 and RETURN. In the case of a monopolar output, the preferred connections would be an active electrode (eg, a pencil or other probe) at the ENERGY 2 output and a suitable return pad connected to the RETURN output.

附加细节公开于2017年3月30日公布的标题为“TECHNIQUES FOR OPERATINGGENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICALINSTRUMENTS”的美国专利申请公布2017/0086914中,该专利申请全文以引用方式并入本文。Additional details are disclosed in US Patent Application Publication 2017/0086914, entitled "TECHNIQUES FOR OPERATINGGENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS," published March 30, 2017, which is incorporated herein by reference in its entirety.

图2示出了包括发生器1100和可与其一起使用的各种外科器械1104、1106、1108的外科系统1000的一种形式,其中外科器械1104为超声外科器械,外科器械1106为RF电外科器械,并且多功能外科器械1108为超声/RF电外科器械的组合。发生器1100可配置用于与多种外科装置一起使用。根据各种形式,发生器1100可为可配置用于与不同类型的不同外科器械一起使用,该外科器械包括例如超声外科器械1104、RF电外科器械1106以及集成了从发生器1100同时递送的RF能量和超声能量的多功能外科器械1108。尽管在图2的形式中,发生器1100被示出为独立于外科器械1104、1106、1108,但在一种形式中,发生器1100可与外科器械1104、1106、1108中的任一者整体地形成,以形成一体式外科系统。发生器1100包括位于发生器1100控制台的前面板上的输入装置1110。输入装置1110可包括产生适用于对发生器1100的操作进行编程的信号的任何合适的装置。发生器1100可被配置用于有线或无线通信。2 illustrates one form of surgical system 1000 including generator 1100 and various surgical instruments 1104, 1106, 1108 that may be used therewith, where surgical instrument 1104 is an ultrasonic surgical instrument and surgical instrument 1106 is an RF electrosurgical instrument , and the multifunctional surgical instrument 1108 is a combination ultrasonic/RF electrosurgical instrument. Generator 1100 may be configured for use with a variety of surgical devices. According to various forms, the generator 1100 may be configurable for use with different types of surgical instruments including, for example, an ultrasonic surgical instrument 1104 , an RF electrosurgical instrument 1106 , and an integrated RF concurrent delivery from the generator 1100 . Multifunctional surgical instrument 1108 of energy and ultrasonic energy. Although in the form of FIG. 2 the generator 1100 is shown separate from the surgical instruments 1104 , 1106 , 1108 , in one form the generator 1100 may be integral with any of the surgical instruments 1104 , 1106 , 1108 formed to form an integrated surgical system. The generator 1100 includes an input device 1110 located on the front panel of the generator 1100 console. Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100 . Generator 1100 may be configured for wired or wireless communication.

发生器1100被配置成能够驱动多个外科器械1104、1106、1108。第一外科器械为超声外科器械1104并且包括手持件1105(HP)、超声换能器1120、轴1126和端部执行器1122。端部执行器1122包括声学地耦接到超声换能器1120的超声刀1128和夹持臂1140。手持件1105包括用于操作夹持臂1140的触发器1143和用于给超声刀1128供能和驱动超声刀或其他功能的切换按钮1137、1134b、1134c的组合。切换按钮1137、1134b、1134c可以被配置成能够用发生器1100给超声换能器1120供能。The generator 1100 is configured to drive a plurality of surgical instruments 1104 , 1106 , 1108 . The first surgical instrument is ultrasonic surgical instrument 1104 and includes handpiece 1105 (HP), ultrasonic transducer 1120 , shaft 1126 and end effector 1122 . The end effector 1122 includes an ultrasonic blade 1128 and a clamp arm 1140 that are acoustically coupled to the ultrasonic transducer 1120 . Handpiece 1105 includes a combination of trigger 1143 for operating clamp arm 1140 and toggle buttons 1137, 1134b, 1134c for energizing the ultrasonic blade 1128 and actuating the ultrasonic blade or other functions. The toggle buttons 1137 , 1134b , 1134c may be configured to enable the generator 1100 to energize the ultrasound transducer 1120 .

发生器1100还被配置成能够驱动第二外科器械1106。第二外科器械1106为RF电外科器械,并且包括手持件1107(HP)、轴1127和端部执行器1124。端部执行器1124包括夹持臂1145、1142b中的电极并穿过轴1127的电导体部分返回。这些电极耦接到发生器1100内的双极能量源并由其供能。手持件1107包括用于操作夹持臂1145、1142b的触发器1145和用于致动能量开关以给端部执行器1124中的电极供能的能量按钮1135。第二外科器械1106还可与返回垫一起使用以将单极能量递送到组织。Generator 1100 is also configured to drive a second surgical instrument 1106 . The second surgical instrument 1106 is an RF electrosurgical instrument and includes a handpiece 1107 (HP), a shaft 1127 and an end effector 1124 . The end effector 1124 includes electrodes in the gripping arms 1145, 1142b and returns through the electrical conductor portion of the shaft 1127. These electrodes are coupled to and powered by a bipolar energy source within generator 1100 . Handpiece 1107 includes a trigger 1145 for operating clamp arms 1145, 1142b and an energy button 1135 for actuating an energy switch to energize electrodes in end effector 1124. The second surgical instrument 1106 may also be used with a return pad to deliver monopolar energy to tissue.

发生器1100还被配置成能够驱动多功能外科器械1108。多功能外科器械1108包括手持件1109(HP)、轴1129和端部执行器1125。端部执行器1125包括超声刀1149和夹持臂1146。超声刀1149声学地耦接到超声换能器1120。手持件1109包括用于操作夹持臂1146的触发器1147和用于给超声刀1149供能和驱动超声刀或其他功能的切换按钮11310、1137b、1137c的组合。切换按钮11310、1137b、1137c可以被配置成能够用发生器1100给超声换能器1120供能,并且用同样包含在发生器1100内的双极能量源给超声刀1149供能。单极能量可与双极能量组合或与双极能量分开递送到组织。Generator 1100 is also configured to drive multifunctional surgical instrument 1108 . The multifunction surgical instrument 1108 includes a handpiece 1109 (HP), a shaft 1129 and an end effector 1125. The end effector 1125 includes an ultrasonic blade 1149 and a clamp arm 1146. The ultrasonic blade 1149 is acoustically coupled to the ultrasonic transducer 1120 . Handpiece 1109 includes a combination of trigger 1147 for operating clamp arm 1146 and toggle buttons 11310, 1137b, 1137c for energizing and driving ultrasonic blade 1149 or other functions. Toggle buttons 11310 , 1137b , 1137c may be configured to power ultrasonic transducer 1120 with generator 1100 and ultrasonic blade 1149 with a bipolar energy source also contained within generator 1100 . Monopolar energy can be delivered to tissue in combination with bipolar energy or separately from bipolar energy.

发生器1100可配置用于与多种外科装置一起使用。根据各种形式,发生器1100可为可配置用于与不同类型的不同外科器械一起使用,该外科器械包括例如超声外科器械1104、RF电外科器械1106和集成了从发生器1100同时递送的RF能量和超声能量的多功能外科器械1108。尽管在图2的形式中,发生器1100被示出为独立于外科器械1104、1106、1108,但在另一种形式中,发生器1100可与外科器械1104、1106、1108中的任一者整体地形成,以形成一体式外科系统。如上文所讨论的,发生器1100包括位于发生器1100控制台的前面板上的输入装置1110。输入装置1110可包括产生适用于对发生器1100的操作进行编程的信号的任何合适的装置。发生器1100还可包括一个或多个输出装置1112。用于数字生成电信号波形的发生器和外科器械的另外方面描述于美国专利申请公布US-2017-0086914-A1中,该专利全文以引用方式并入本文。Generator 1100 may be configured for use with a variety of surgical devices. According to various forms, generator 1100 may be configurable for use with different types of surgical instruments including, for example, ultrasonic surgical instrument 1104 , RF electrosurgical instrument 1106 , and RF integrated with simultaneous delivery from generator 1100 Multifunctional surgical instrument 1108 of energy and ultrasonic energy. Although in the form of FIG. 2 the generator 1100 is shown separate from the surgical instruments 1104 , 1106 , 1108 , in another form the generator 1100 may be associated with any of the surgical instruments 1104 , 1106 , 1108 Integrally formed to form a one-piece surgical system. As discussed above, the generator 1100 includes an input device 1110 located on the front panel of the generator 1100 console. Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100 . Generator 1100 may also include one or more output devices 1112 . Additional aspects of generators and surgical instruments for digitally generating electrical signal waveforms are described in US Patent Application Publication US-2017-0086914-A1, which is incorporated herein by reference in its entirety.

图3示出了包括可被激活以执行各种功能的多个马达组件的外科器械或工具600的示意图。在所示的示例中,闭合马达组件610可操作以使端部执行器在打开配置和闭合配置之间转变,并且关节运动马达组件620可操作以使端部执行器相对于轴组件关节运动。在某些情况下,多个马达组件可被单独地激活以导致端部执行器中的击发运动、闭合运动、和/或关节运动。击发运动、闭合运动、和/或关节运动可例如通过轴组件被传输到端部执行器。3 shows a schematic diagram of a surgical instrument or tool 600 that includes multiple motor assemblies that can be activated to perform various functions. In the example shown, closure motor assembly 610 is operable to transition the end effector between an open configuration and a closed configuration, and articulation motor assembly 620 is operable to articulate the end effector relative to the shaft assembly. In some cases, multiple motor assemblies may be activated individually to cause firing motion, closing motion, and/or articulation in the end effector. The firing motion, closing motion, and/or articulation motion may be transmitted to the end effector, for example, through a shaft assembly.

在某些情况下,闭合马达组件610包括闭合马达。闭合件603可以可操作地耦接到闭合马达驱动组件612,该闭合马达驱动组件可被配置成能够将由马达生成的闭合运动传输到端部执行器,具体地用于移位闭合构件以进行闭合从而将端部执行器转变到闭合配置。闭合运动可使例如端部执行器从打开配置转变到闭合配置以捕获组织。端部执行器可通过反转马达的方向而转变到打开位置。In some cases, the closure motor assembly 610 includes a closure motor. The closure 603 may be operably coupled to a closure motor drive assembly 612, which may be configured to transmit the closure motion generated by the motor to the end effector, in particular for displacing the closure member for closure Thereby transitioning the end effector to the closed configuration. The closing motion may, for example, transition the end effector from an open configuration to a closed configuration to capture tissue. The end effector can be transitioned to the open position by reversing the direction of the motor.

在某些情况下,关节运动马达组件620包括关节运动马达,该关节运动马达可操作地耦接到关节运动驱动组件622,该关节运动驱动组件可被配置成能够将由马达生成的关节运动传输到端部执行器。在某些情况下,关节运动可使端部执行器相对于轴进行关节运动,例如。In some cases, articulation motor assembly 620 includes an articulation motor operably coupled to articulation drive assembly 622 that can be configured to transmit articulation generated by the motor to end effector. In some cases, articulation allows the end effector to articulate relative to the axis, eg.

外科器械600的马达中的一者或多者可包括扭矩传感器以测量马达的轴上的输出扭矩。可以任何常规方式感测端部执行器上的力,诸如通过钳口的外侧上的力传感器或通过用于致动钳口的马达的扭矩传感器来感测端部执行器上的力。One or more of the motors of surgical instrument 600 may include a torque sensor to measure the output torque on the shaft of the motor. The force on the end effector may be sensed in any conventional manner, such as by a force sensor on the outside of the jaws or by a torque sensor of a motor used to actuate the jaws.

在各种情况下,马达组件610、620包括一个或多个马达驱动器,该马达驱动器可包括一个或多个H桥FET。马达驱动器可基于来自例如控制电路601的微控制器640(“控制器”)的输入来调节从功率源630传输到马达的功率。在某些情况下,微控制器640可用于确定例如由马达汲取的电流。In various cases, the motor assemblies 610, 620 include one or more motor drivers, which may include one or more H-bridge FETs. The motor driver may regulate the power delivered from the power source 630 to the motor based on input from, for example, a microcontroller 640 ("controller") of the control circuit 601 . In some cases, microcontroller 640 may be used to determine, for example, the current drawn by the motor.

在某些情况下,微控制器640可包括微处理器642(“处理器”)和一个或多个非暂态计算机可读介质或存储单元644(“存储器”)。在某些情况下,存储器644可存储各种程序指令,这些程序指令在被执行时可使处理器642执行本文所述的多个功能和/或计算。在某些情况下,存储器单元644中的一个或多个可例如耦接到处理器642。在各个方面,微控制器640可通过有线或无线信道或它们的组合进行通信。In some cases, microcontroller 640 may include a microprocessor 642 ("processor") and one or more non-transitory computer-readable media or storage units 644 ("memory"). In some cases, memory 644 may store various program instructions that, when executed, may cause processor 642 to perform various functions and/or calculations described herein. In some cases, one or more of memory units 644 may be coupled to processor 642, for example. In various aspects, microcontroller 640 may communicate over wired or wireless channels or a combination thereof.

在某些情况下,功率源630可例如用于为微控制器640供应功率。在某些情况下,功率源630可包括电池(或者“电池组”或“功率组”),诸如锂离子电池。在某些情况下,电池组可被配置成能够可释放地安装到柄部以用于给外科器械600供应功率。多个串联连接的电池单元可用作功率源630。在某些情况下,功率源630可为例如可替换的和/或可再充电的。In some cases, power source 630 may be used, for example, to supply power to microcontroller 640 . In some cases, power source 630 may include a battery (or "battery pack" or "power pack"), such as a lithium-ion battery. In some cases, the battery pack may be configured to be releasably mountable to the handle for powering the surgical instrument 600 . Multiple battery cells connected in series can be used as power source 630 . In some cases, power source 630 may be replaceable and/or rechargeable, for example.

在各种情况下,处理器642可控制马达驱动器以控制组件610、620的马达的位置、旋转方向、和/或速度。在某些情况下,处理器642可向马达驱动器发送信号以停止和/或停用马达。应当理解,如本文所用的术语“处理器”包括任何合适的微处理器、微控制器、或将计算机的中央处理单元(CPU)的功能结合在一个集成电路或至多几个集成电路上的其他基础计算装置。处理器642是多用途的可编程装置,该装置接收数字数据作为输入,根据其存储器中存储的指令来处理输入,并且然后提供结果作为输出。因为处理器具有内部存储器,所以是时序数字逻辑的示例。处理器的操作对象是以二进制数字系统表示的数字和符号。In various cases, the processor 642 may control the motor drives to control the position, rotational direction, and/or speed of the motors of the assemblies 610, 620. In some cases, the processor 642 may send a signal to the motor driver to stop and/or deactivate the motor. It should be understood that the term "processor" as used herein includes any suitable microprocessor, microcontroller, or other that combines the functions of a computer's central processing unit (CPU) on one integrated circuit or at most several integrated circuits Basic computing device. Processor 642 is a multipurpose programmable device that receives digital data as input, processes the input according to instructions stored in its memory, and then provides results as output. Because the processor has internal memory, it is an example of sequential digital logic. The processor operates on numbers and symbols represented by the binary number system.

在一种情况下,处理器642可为任何单核或多核处理器,诸如已知的由德克萨斯器械公司(Texas Instruments)生产的商品名为ARM Cortex的那些。在某些情况下,微控制器620可为例如可从德州器械公司(Texas Instruments)购得的LM 4F230H5QR。在至少一个示例中,Texas Instruments LM4F230H5QR为ARM Cortex-M4F处理器芯,其包括:256KB的单循环闪存或其他非易失性存储器(高达40MHz)的片上存储器、用于改善高于40MHz的性能的预取缓冲器、32KB的单循环SRAM、装载有

Figure BDA0003720857540000151
软件的内部ROM、2KB的EEPROM、一个或多个PWM模块、一个或多个QEI模拟、具有12个模拟输入信道的一个或多个12位ADC、以及易得的其他特征部。可容易地换用其他微控制器以用于与外科器械600一起使用。因此,本公开不应限于这一上下文。In one instance, the processor 642 may be any single-core or multi-core processor, such as those known under the tradename ARM Cortex from Texas Instruments. In some cases, microcontroller 620 may be, for example, an LM 4F230H5QR available from Texas Instruments. In at least one example, a Texas Instruments LM4F230H5QR is an ARM Cortex-M4F processor core that includes: 256KB of single-cycle flash or other non-volatile memory (up to 40MHz) on-chip memory, Prefetch buffer, 32KB of single-cycle SRAM, loaded with
Figure BDA0003720857540000151
Internal ROM for software, 2KB of EEPROM, one or more PWM modules, one or more QEI analogs, one or more 12-bit ADCs with 12 analog input channels, and other features readily available. Other microcontrollers can be easily swapped out for use with surgical instrument 600 . Therefore, the present disclosure should not be limited in this context.

在某些情况下,存储器644可包括用于控制外科器械600的马达中的每一者的程序指令。例如,存储器644可包括用于控制闭合马达和关节运动马达的程序指令。此类程序指令可使处理器642根据来自外科器械600的算法或控制程序的输入来控制闭合和关节运动功能。In some cases, memory 644 may include program instructions for controlling each of the motors of surgical instrument 600 . For example, the memory 644 may include program instructions for controlling the closure motor and the articulation motor. Such program instructions may cause processor 642 to control closure and articulation functions according to input from an algorithm or control program of surgical instrument 600 .

在某些情况下,一个或多个机构和/或传感器诸如传感器645可以用于警示处理器642应当在特定设定中使用的程序指令。例如,传感器645可警示处理器642使用与闭合和关节运动端部执行器相关联的程序指令。在某些情况下,传感器645可包括例如可以用于感测闭合致动器的位置的位置传感器。因此,如果处理器642从传感器630接收指示闭合致动器的致动的信号,则处理器642可使用与闭合端部执行器相关联的程序指令来激活闭合驱动组件620的马达。In some cases, one or more mechanisms and/or sensors such as sensor 645 may be used to alert processor 642 of program instructions that should be used in a particular setting. For example, sensor 645 may alert processor 642 to use program instructions associated with closing and articulating the end effector. In some cases, sensor 645 may include, for example, a position sensor that may be used to sense the position of the closure actuator. Thus, if processor 642 receives a signal from sensor 630 indicative of actuation of the closure actuator, processor 642 may activate the motor of closure drive assembly 620 using program instructions associated with the closure end effector.

在一些示例中,马达可为无刷DC电动马达,并且相应的马达驱动信号可包括提供给马达的一个或多个定子绕组的PWM信号。而且,在一些示例中,可省略马达驱动器,并且控制电路601可直接生成马达驱动信号。In some examples, the motor may be a brushless DC electric motor, and the corresponding motor drive signal may include a PWM signal provided to one or more stator windings of the motor. Also, in some examples, the motor driver may be omitted, and the control circuit 601 may directly generate the motor drive signal.

在各种腹腔镜式外科规程期间的常见实践是,通过已经安装在患者的腹壁中的套管针插入外科器械的外科端部执行器部分以进入位于患者腹部内的外科手术部位。以其最简单的形式,套管针是在一个端部处具有尖锐三角点的笔状器械,其通常在中空管(称为套管或套筒)内使用以形成进入身体的开口,可通过该开口引入外科端部执行器。此类布置形成到体腔中的进入端口,可通过该进入端口插入外科端部执行器。套管针的套管的内径必然限制可通过套管针插入的外科器械的端部执行器和驱动支持轴的尺寸。It is common practice during various laparoscopic surgical procedures to insert the surgical end effector portion of a surgical instrument through a trocar already installed in the patient's abdominal wall to access a surgical site located within the patient's abdomen. In its simplest form, a trocar is a pen-like instrument with a sharp, triangular point at one end that is typically used within a hollow tube (called a cannula or sleeve) to create an opening into the body that can be The surgical end effector is introduced through the opening. Such arrangements form an access port into a body cavity through which a surgical end effector can be inserted. The inner diameter of the cannula of the trocar necessarily limits the size of the end effector and drive support shaft of a surgical instrument that can be inserted through the trocar.

无论正在执行的外科规程的特定类型如何,一旦外科端部执行器已经通过套管针套管插入患者体内,通常必须相对于定位在套管针套管内的轴组件运动外科端部执行器,以便相对于待治疗的组织或器官正确地定位外科端部执行器。外科端部执行器相对于保持在套管针套管内的轴的部分的这种运动或定位通常被称为外科端部执行器的“关节运动”。已经开发了各种关节运动接头以将外科端部执行器附接到相关联轴,以便促进外科端部执行器的此类关节运动。如可能期望的,在许多外科规程中,期望采用具有尽可能大的关节运动范围的外科端部执行器。Regardless of the particular type of surgical procedure being performed, once the surgical end effector has been inserted into the patient through the trocar cannula, the surgical end effector must generally be moved relative to the shaft assembly positioned within the trocar cannula in order to The surgical end effector is correctly positioned relative to the tissue or organ to be treated. This movement or positioning of the surgical end effector relative to the portion of the shaft held within the trocar cannula is commonly referred to as "articulation" of the surgical end effector. Various articulation joints have been developed to attach surgical end effectors to associated shafts in order to facilitate such articulation of the surgical end effector. As may be desired, in many surgical procedures it is desirable to employ a surgical end effector with the greatest possible range of articulation.

由于套管针套管的尺寸所施加的尺寸约束,因此关节运动接头部件的尺寸必须被设定成可通过套管针套管自由插入。这些尺寸约束还限制了各种驱动构件和部件的尺寸和组成,该驱动构件和部件与马达和/或支撑在可以是手持式或构成较大自动化系统的一部分的外壳中的其他控制系统可操作地交接。在许多情况下,这些驱动构件必须可操作地穿过关节运动接头,以便可操作地耦接到外科端部执行器或与外科端部执行器可操作地交接。例如,一个此类驱动构件通常用于将关节运动控制运动施加到外科端部执行器。在使用期间,关节运动驱动构件可未致动以将外科端部执行器定位在非关节运动位置以便促进外科端部执行器通过套管针插入,并且然后一旦外科端部执行器已经进入患者就可被致动以使外科端部执行器关节运动到期望位置。Due to the dimensional constraints imposed by the size of the trocar cannula, the articulation joint components must be sized to be freely insertable through the trocar cannula. These dimensional constraints also limit the size and composition of the various drive components and components operable with motors and/or other control systems supported in housings that may be hand-held or form part of a larger automation system ground handover. In many cases, these drive members must be operably passed through the articulation joint in order to be operably coupled to or operably interfaced with the surgical end effector. For example, one such drive member is commonly used to apply articulation control motion to a surgical end effector. During use, the articulation drive member may be unactuated to position the surgical end effector in a non-articulating position to facilitate insertion of the surgical end effector through the trocar, and then once the surgical end effector has entered the patient Can be actuated to articulate the surgical end effector to a desired position.

因此,上述尺寸约束形成了对于开发可实现期望关节运动范围,但适应操作外科端部执行器的各种特征部所必需的各种不同驱动系统的关节运动系统的许多挑战。此外,一旦外科端部执行器已经定位在期望关节运动位置,关节运动系统和关节运动接头必须能够在端部执行器的致动以及外科规程的完成期间将外科端部执行器保持在该位置。此类关节运动接头布置还必须能够承受在使用期间由端部执行器经历的外力。Thus, the aforementioned dimensional constraints create many challenges for developing articulation systems that can achieve the desired range of articulation, but accommodate the various different drive systems necessary to operate the various features of the surgical end effector. Furthermore, once the surgical end effector has been positioned in the desired articulation position, the articulation system and articulation joint must be able to hold the surgical end effector in that position during actuation of the end effector and completion of the surgical procedure. Such articulation joint arrangements must also be able to withstand the external forces experienced by the end effector during use.

在整个特定外科规程中通常使用一个或多个外科装置的各种模式。例如,在外科装置和集中式外科中心之间延伸的通信通路可促进外科规程的效率并增加外科规程的成功。在各种情况下,外科系统内的每个外科装置包括显示器,其中显示器传送外科系统内的其他外科装置的存在和/或操作状态。外科中心可使用通过通信通路接收的信息来评估外科装置针对彼此一起使用的兼容性,评估外科装置针对在特定外科规程期间使用的兼容性和/或优化外科装置的操作参数。如本文更详细地描述,可基于患者人口统计资料、特定外科规程和/或检测的环境状况(诸如组织厚度)来优化一个或多个外科装置的操作参数。Various modalities of one or more surgical devices are commonly used throughout a particular surgical procedure. For example, a communication pathway extending between a surgical device and a centralized surgical center can facilitate the efficiency and increase the success of the surgical procedure. In various cases, each surgical device within the surgical system includes a display, wherein the display communicates the presence and/or operational status of other surgical devices within the surgical system. The surgical center may use the information received through the communication pathway to evaluate the compatibility of the surgical devices for use with each other, evaluate the compatibility of the surgical devices for use during a particular surgical procedure, and/or optimize the operating parameters of the surgical devices. As described in more detail herein, the operating parameters of one or more surgical devices may be optimized based on patient demographics, specific surgical procedures, and/or detected environmental conditions, such as tissue thickness.

图4和图5示出了电外科器械(例如,美国专利申请代理人案卷号END9234USNP2/190717-2中描述的外科器械)的端部执行器1200的分解视图(图4)和剖视图(图5)。例如,端部执行器1200可以与美国专利申请代理人案卷号END9234USNP2/190717-2中描述的端部执行器类似的方式相对于外科器械的轴组件进行致动、关节运动和/或旋转。另外,在本文其他地方描述的端部执行器1200和其他类似的端部执行器可由外科系统的一个或多个发生器供电。用于与外科器械一起使用的示例性外科系统在2019年9月5日提交并且名称为“METHOD FOR CONSTRUCTING AND USING A MODULAR SURGICAL ENERGY SYSTEM WITHMULTIPLE DEVICES”的美国申请号16/562,123中描述,该申请据此全文并入本文。FIGS. 4 and 5 show an exploded view (FIG. 4) and a cross-sectional view (FIG. 5) of an end effector 1200 of an electrosurgical instrument (eg, the surgical instrument described in US Patent Application Attorney Docket No. END9234USNP2/190717-2). ). For example, the end effector 1200 may be actuated, articulated and/or rotated relative to a shaft assembly of a surgical instrument in a manner similar to the end effector described in US Patent Application Attorney Docket No. END9234USNP2/190717-2. Additionally, the end effector 1200 and other similar end effectors described elsewhere herein may be powered by one or more generators of the surgical system. An exemplary surgical system for use with surgical instruments is described in U.S. Application No. 16/562,123, filed on September 5, 2019, and entitled "METHOD FOR CONSTRUCTING AND USING A MODULAR SURGICAL ENERGY SYSTEM WITH MULTIPLE DEVICES," This text is incorporated herein in its entirety.

参考图6至图8,端部执行器1200包括第一钳口1250和第二钳口1270。第一钳口1250和第二钳口1270中的至少一者可朝向或远离另一钳口枢转以使端部执行器1200在打开配置和闭合配置之间转变。钳口1250、1270被配置成能够在两个钳口之间抓持组织以将治疗能量和非治疗能量中的至少一者施加到组织。到由端部执行器1200的钳口1250、1270抓持的组织的能量递送由电极1252、1272、1274实现,该电极被配置成能够以单极模式、双极模式、和/或具有交替或混合的双极能量和单极能量的组合模式递送能量。可由端部执行器1200递送到组织的不同能量模态在本公开中其他地方更详细地描述。Referring to FIGS. 6-8 , the end effector 1200 includes a first jaw 1250 and a second jaw 1270 . At least one of the first jaw 1250 and the second jaw 1270 can be pivoted toward or away from the other jaw to transition the end effector 1200 between an open configuration and a closed configuration. The jaws 1250, 1270 are configured to grasp tissue between the two jaws to apply at least one of therapeutic energy and non-therapeutic energy to the tissue. Energy delivery to tissue grasped by jaws 1250, 1270 of end effector 1200 is accomplished by electrodes 1252, 1272, 1274 configured to be capable of monopolar mode, bipolar mode, and/or having alternating or A combined mode of mixed bipolar and monopolar energy delivers energy. The different energy modalities that can be delivered to tissue by the end effector 1200 are described in more detail elsewhere in this disclosure.

除了电极1252、1272、1274之外,还关于单极能量的施加采用患者返回垫。此外,使用电隔离的发生器来递送双极能量和单极能量。在使用期间,患者返回垫可通过经由返回垫上的一个或多个合适传感器监测到返回垫的电力传输来检测意外电力交叉。在同时使用双极能量模态和单极能量模态的情况下,可发生意外电力交叉。在至少一个示例中,双极模式使用比单极模式的电流(例如,1amp)更高的电流(例如,2amp-3amp)。在至少一个示例中,返回垫包括控制电路和耦接到其的至少一个传感器(例如,电流传感器)。在使用中,控制电路可接收基于至少一个传感器的测量值来指示意外电力交叉的输入。作为响应,控制电路可采用反馈系统来发出警报和/或暂停将双极能量模态和单极能量模态中的一者或两者施加到组织。In addition to electrodes 1252, 1272, 1274, a patient return pad is employed for the application of monopolar energy. Additionally, electrically isolated generators are used to deliver bipolar and monopolar energy. During use, the patient return pad may detect accidental power crossings by monitoring power transmission to the return pad via one or more suitable sensors on the return pad. In situations where both bipolar and unipolar energy modes are used simultaneously, unexpected power crossovers can occur. In at least one example, bipolar mode uses a higher current (eg, 2 amp-3 amp) than unipolar mode (eg, 1 amp). In at least one example, the return pad includes a control circuit and at least one sensor (eg, a current sensor) coupled thereto. In use, the control circuit may receive an input indicative of an unexpected power crossing based on a measurement of the at least one sensor. In response, the control circuit may employ a feedback system to issue an alarm and/or suspend the application of one or both of the bipolar energy modality and the monopolar energy modality to the tissue.

除上述之外,端部执行器1200的钳口1250、1270包括角轮廓,其中在钳口1250、1270中的每一者的离散部分之间限定多个角度。例如,第一角度由部分1250a、1250b(图4)限定,并且第二角度由第一钳口1250的部分1250b、1250c限定。类似地,第一角度由部分1270a、1270b限定,并且第二角度由第二钳口1270的部分1270b、1270c限定。在各个方面,钳口1250、1270的离散部分是线性区段。连续线性区段以诸如第一角度或第二角度的角度相交。线性区段协作以形成钳口1250、1270中的每一者的大致角轮廓。角轮廓通常远离中心轴线弯曲。In addition to the above, the jaws 1250, 1270 of the end effector 1200 include angular profiles, wherein multiple angles are defined between discrete portions of each of the jaws 1250, 1270. For example, a first angle is defined by portions 1250a , 1250b ( FIG. 4 ), and a second angle is defined by portions 1250b , 1250c of the first jaw 1250 . Similarly, the first angle is defined by portions 1270a, 1270b, and the second angle is defined by portions 1270b, 1270c of the second jaw 1270. In various aspects, the discrete portions of jaws 1250, 1270 are linear segments. Consecutive linear segments intersect at an angle such as a first angle or a second angle. The linear segments cooperate to form the general angular profile of each of the jaws 1250 , 1270 . The angular profile is generally curved away from the central axis.

在一个示例中,第一角度和第二角度相同或至少基本上相同。在另一个示例中,第一角度和第二角度不同。在另一个示例中,第一角度和第二角度包括选自约120°至约175°的范围的值。在又一个示例中,第一角度和第二角度包括选自约130°至约170°的范围的值。In one example, the first angle and the second angle are the same or at least substantially the same. In another example, the first angle and the second angle are different. In another example, the first angle and the second angle include values selected from the range of about 120° to about 175°. In yet another example, the first angle and the second angle include values selected from the range of about 130° to about 170°.

此外,作为近侧部分的部分1250a、1270a大于作为中间部分的部分1250b、1270b。类似地,中间部分1250b、1270b大于部分1250c、1270c。在其他示例中,远侧部分可大于中间和/或近侧部分。在其他示例中,中间部分大于近侧和/或远侧部分。Furthermore, the portions 1250a, 1270a, which are the proximal portions, are larger than the portions 1250b, 1270b, which are the intermediate portions. Similarly, middle portions 1250b, 1270b are larger than portions 1250c, 1270c. In other examples, the distal portion may be larger than the medial and/or proximal portion. In other examples, the intermediate portion is larger than the proximal and/or distal portions.

除上述之外,钳口1250、1270的电极1252、1272、1274包括与钳口1250、1270的角轮廓类似的角轮廓。在图4、图5的示例中,电极1252、1272、1274分别包括离散区段1252a、1252b、1252c、1272a、1272b、1272c、1274a、1274b、1274c,该离散区段在其相应交叉点处限定第一角度和第二角度,如上所述。In addition to the above, the electrodes 1252 , 1272 , 1274 of the jaws 1250 , 1270 include angular profiles similar to those of the jaws 1250 , 1270 . In the example of FIGS. 4, 5, electrodes 1252, 1272, 1274 include discrete segments 1252a, 1252b, 1252c, 1272a, 1272b, 1272c, 1274a, 1274b, 1274c, respectively, which are defined at their respective intersections The first angle and the second angle, as described above.

当处于闭合配置时,钳口1250、1270协作以限定分别在钳口1250、1270的远侧端部处由电极部分1261、1262形成的末端电极1260。末端电极1260可被供能以将单极能量递送到与其接触的组织。例如,可同时激活电极部分1261、1262两者以递送单极能量,如图6所示,或者另选地,可选择性地激活电极部分1261、1262中的仅一者以在远侧末端电极1260的一侧上递送单极能量,如图10所示。When in the closed configuration, the jaws 1250, 1270 cooperate to define a tip electrode 1260 formed by electrode portions 1261, 1262 at the distal ends of the jaws 1250, 1270, respectively. The tip electrode 1260 can be energized to deliver monopolar energy to tissue in contact therewith. For example, both electrode portions 1261, 1262 may be activated simultaneously to deliver monopolar energy, as shown in FIG. 6, or alternatively, only one of the electrode portions 1261, 1262 may be selectively activated to electrode at the distal tip Monopolar energy is delivered on one side of 1260, as shown in Figure 10.

在闭合配置中,钳口1250、1270的角轮廓致使末端电极1260处于在近侧部分1252c与近侧部分1272c之间横向延伸的平面的一侧上。角轮廓还可致使部分1252b、1252c、部分1272b、1272c和部分1274b、1274c之间的交叉点与末端电极1260处于平面的相同侧上。In the closed configuration, the angular profiles of jaws 1250, 1270 cause tip electrode 1260 to be on one side of a plane extending laterally between proximal portion 1252c and proximal portion 1272c. The angular profile may also cause the intersections between portions 1252b, 1252c, portions 1272b, 1272c, and portions 1274b, 1274c to be on the same side of the plane as end electrode 1260.

在至少一个示例中,钳口1250、1270包括传导骨架1253、1273,该传导骨架可由导电材料(例如,钛)组成或至少部分地由导电材料构成。骨架1253、1273可由其他导电材料(例如,铝)构成。在至少一个示例中,骨架1253、1273通过注射模制来制备。在各种示例中,骨架1253、1273被选择性地涂覆/覆盖有绝缘材料以防止在形成电极1252、1272、1274、1260的所有但预定义的薄可供能区中的热传导和电传导。骨架1253、1273充当具有电子聚焦的电极,其中钳口1250、1270具有从一个钳口到另一钳口的内置隔离。绝缘材料可以是绝缘聚合物,例如,聚四氟乙烯(例如,

Figure BDA0003720857540000191
)。由电极1252、1272限定的可供能区在钳口1250、1270的内部上,并且可以双极模式独立地操作以将能量递送到抓持在钳口1250、1270之间的组织。同时,由电极末端1260和电极1274限定的可供能区在钳口1250、1270的外部上,并且可以单极模式操作以将能量递送到与端部执行器1200的外表面邻近的组织。钳口1250、1270两者都可被供能以便以单极模式递送能量。In at least one example, jaws 1250, 1270 include conductive skeletons 1253, 1273 that may be composed of or at least partially composed of a conductive material (eg, titanium). The skeletons 1253, 1273 may be constructed of other conductive materials (eg, aluminum). In at least one example, the skeletons 1253, 1273 are prepared by injection molding. In various examples, the skeletons 1253, 1273 are selectively coated/covered with insulating material to prevent thermal and electrical conduction in all but predefined thin energizable regions forming the electrodes 1252, 1272, 1274, 1260 . The skeletons 1253, 1273 act as electrodes with electron focusing, with the jaws 1250, 1270 having built-in isolation from one jaw to the other. The insulating material may be an insulating polymer such as Teflon (eg,
Figure BDA0003720857540000191
). The energizable regions defined by the electrodes 1252 , 1272 are on the interior of the jaws 1250 , 1270 and can operate independently in a bipolar mode to deliver energy to tissue grasped between the jaws 1250 , 1270 . Meanwhile, the energizable region defined by electrode tip 1260 and electrode 1274 is on the exterior of jaws 1250 , 1270 and can be operated in a monopolar mode to deliver energy to tissue adjacent the outer surface of end effector 1200 . Both jaws 1250, 1270 may be energized to deliver energy in a monopolar mode.

在各个方面,涂层1264是高温聚四氟乙烯(例如,

Figure BDA0003720857540000192
)涂层,其被选择性地施加到传导骨架,从而产生选择性暴露的金属内部部分,该金属内部部分限定用于聚焦解剖和凝固的三维几何电子调制(GEM)。在至少一个示例中,涂层1264包括约0.003英寸、约0.0035英寸或约0.0025英寸的厚度。在各种示例中,涂层1264的厚度可以是选自以下的任何值:约0.002英寸至约0.004英寸的范围、约0.0025英寸至约0.0035英寸的范围、或约0.0027英寸至约0.0033英寸的范围。本公开涵盖能够进行三维几何电子调制(GEM)的涂层1263的其他厚度。In various aspects, the coating 1264 is high temperature polytetrafluoroethylene (eg,
Figure BDA0003720857540000192
) coating, which is selectively applied to the conductive framework, resulting in selectively exposed metallic interior portions that define three-dimensional geometric electronic modulation (GEM) for focused dissection and coagulation. In at least one example, the coating 1264 includes a thickness of about 0.003 inches, about 0.0035 inches, or about 0.0025 inches. In various examples, the thickness of coating 1264 can be any value selected from the range of about 0.002 inches to about 0.004 inches, the range of about 0.0025 inches to about 0.0035 inches, or the range of about 0.0027 inches to about 0.0033 inches . The present disclosure encompasses other thicknesses of the coating 1263 capable of three-dimensional geometric electronic modulation (GEM).

协作以通过组织传输双极能量的电极1252、1272偏置以防止电路短路。当能量在偏置电极1252、1272之间流动时,在其间抓持的组织被加热,从而在电极1252、1272之间的区域处生成密封。同时,钳口1250、1270的围绕电极1252、1272的区域由于绝缘涂层1264在此类区域上选择性地沉积到钳口1250、1270上,而不沉积到电极1252、1272上,来提供非导电组织接触表面。因此,电极1252、1272由金属钳口1250、1270的在将绝缘涂层1264施加到钳口1250、1270之后保持暴露的区域限定。虽然钳口1250、1270在该示例中通常由电传导材料形成,但非导电区域由电绝缘涂层1264限定。Electrodes 1252, 1272 that cooperate to deliver bipolar energy through tissue are biased to prevent shorting of the circuit. As energy flows between the biasing electrodes 1252, 1272, the tissue grasped therebetween is heated, creating a seal at the area between the electrodes 1252, 1272. At the same time, the areas of the jaws 1250, 1270 surrounding the electrodes 1252, 1272 are selectively deposited on the jaws 1250, 1270, but not on the electrodes 1252, 1272 due to the insulating coating 1264 over such areas, to provide non- The conductive tissue contacts the surface. Thus, the electrodes 1252 , 1272 are defined by areas of the metal jaws 1250 , 1270 that remain exposed after the insulating coating 1264 is applied to the jaws 1250 , 1270 . While jaws 1250 , 1270 are typically formed of electrically conductive material in this example, non-conductive regions are defined by electrically insulating coating 1264 .

图6示出了将双极能量模式施加到抓持在钳口1250、1270之间的组织。在双极能量模式中,RF能量沿路径1271流过组织,该路径相对于在中心延伸并纵向平分钳口1250、1270以使得电极1252、1272在弯曲平面(CL)的相对侧上的弯曲平面(CL)倾斜。换句话说,实际接收双极RF能量的组织区域将仅是在电极1252、1257之间接触和延伸的组织。因此,由钳口1250、1270抓持的组织将不会在钳口1250、1270的整个横向宽度上接收RF能量。因此,该配置可最小化通过将双极RF能量施加到组织而引起的热量的热扩散。这种热扩散最小化可继而最小化对于与外科医生希望接合/密封/凝固和/或切割的特定组织区域邻近的组织的潜在附带损伤。FIG. 6 illustrates the application of a bipolar energy pattern to tissue grasped between jaws 1250, 1270. In the bipolar energy mode, RF energy flows through the tissue along a path 1271 relative to a curved plane that extends in the center and bisects the jaws 1250, 1270 longitudinally such that the electrodes 1252, 1272 are on opposite sides of the curved plane (CL). (CL) Inclined. In other words, the area of tissue that actually receives bipolar RF energy will be only the tissue that contacts and extends between electrodes 1252, 1257. Thus, tissue grasped by the jaws 1250 , 1270 will not receive RF energy over the entire lateral width of the jaws 1250 , 1270 . Thus, this configuration can minimize thermal diffusion of heat caused by the application of bipolar RF energy to the tissue. This thermal spread minimization may in turn minimize potential collateral damage to tissue adjacent to the particular tissue area the surgeon wishes to engage/seal/coagulate and/or cut.

在至少一个示例中,在其间没有组织的闭合配置中,在偏置电极1252、1272之间限定横向间隙。在至少一个示例中,在闭合配置中通过选自以下的任何距离在偏置电极1252、1272之间限定横向间隙:约0.01英寸至约0.025英寸的范围、约0.015英寸至约0.020英寸的范围、或约0.016英寸至约0.019英寸的范围。在至少一个示例中,横向间隙由约0.017英寸的距离限定。In at least one example, a lateral gap is defined between bias electrodes 1252, 1272 in a closed configuration with no tissue therebetween. In at least one example, a lateral gap is defined between the bias electrodes 1252, 1272 in the closed configuration by any distance selected from the range of about 0.01 inches to about 0.025 inches, the range of about 0.015 inches to about 0.020 inches, or in the range of about 0.016 inches to about 0.019 inches. In at least one example, the lateral gap is defined by a distance of about 0.017 inches.

在图4和图5所示的示例中,电极1252、1272、1274具有在电极1252、1272、1274中的每一者从近侧端部延伸到远侧端部时的逐渐变窄的宽度。因此,近侧区段1252a、1272a、1274a分别包括大于中间部分1252b、1272b、1274b的表面面积。而且,中间区段1252b、1272b、1274b包括大于远侧区段1252c、1272c、1274c的表面。In the example shown in FIGS. 4 and 5, the electrodes 1252, 1272, 1274 have a gradually narrowing width as each of the electrodes 1252, 1272, 1274 extends from the proximal end to the distal end. Accordingly, proximal sections 1252a, 1272a, 1274a include a greater surface area than intermediate portions 1252b, 1272b, 1274b, respectively. Also, the intermediate sections 1252b, 1272b, 1274b include a larger surface than the distal sections 1252c, 1272c, 1274c.

钳口1250、1270的角轮廓和变窄轮廓使端部执行器1200在闭合配置中具有弯曲的指状形状或角钩形状。通过将端部执行器1200取向成使得电极末端1260朝向组织向下指向,这种形状允许使用末端电极1260(图10)将能量准确地递送到组织的小部分。在此类取向中,仅电极末端1260与组织接触,这将能量递送聚焦到组织。The angular and narrowed profiles of the jaws 1250, 1270 give the end effector 1200 a curved finger shape or angular hook shape in the closed configuration. By orienting the end effector 1200 such that the electrode tip 1260 points downward toward the tissue, this shape allows the use of the tip electrode 1260 (FIG. 10) to accurately deliver energy to a small portion of tissue. In such an orientation, only the electrode tip 1260 is in contact with the tissue, which focuses energy delivery to the tissue.

此外,如图8所示,电极1274在第二钳口1270的外围侧1275上的外表面上延伸,这为其提供在端部执行器1200处于闭合配置时有效地分离与其接触的组织的能力。为了分离组织,端部执行器1200至少部分地定位在包括电极1274的外围侧1275上。通过钳口1270的单极能量模式的激活致使单极能量流过电极1274到与其接触的组织中。In addition, as shown in FIG. 8, electrodes 1274 extend on the outer surface on the peripheral side 1275 of the second jaw 1270, which provides it with the ability to effectively separate tissue in contact with the end effector 1200 when it is in a closed configuration . To separate tissue, the end effector 1200 is positioned at least partially on the peripheral side 1275 including the electrodes 1274 . Activation of the monopolar energy mode by jaw 1270 causes monopolar energy to flow through electrode 1274 into the tissue in contact therewith.

图9至图11示出了端部执行器1200',其用于在双极能量操作模式中通过电极1252'、1272'(图9)将双极能量递送到组织,在第一单极操作模式中通过电极末端1261将单极能量递送到组织,和/或在第二单极操作模式中通过外部电极1274将单极能量递送到组织。端部执行器1200'在许多方面类似于端部执行器1200。因此,为了简洁起见,先前关于端部执行器1200描述的端部执行器1200'的各种特征部在本文中不再以相同细节级别进行重复。Figures 9-11 illustrate an end effector 1200' for delivering bipolar energy to tissue through electrodes 1252', 1272' (Figure 9) in a bipolar energy mode of operation, in a first monopolar operation Monopolar energy is delivered to the tissue through the electrode tip 1261 in the mode and/or through the external electrode 1274 in the second monopolar mode of operation. End effector 1200' is similar to end effector 1200 in many respects. Accordingly, for the sake of brevity, various features of end effector 1200' previously described with respect to end effector 1200 are not repeated herein at the same level of detail.

电极1252'、1272'与电极1252”、1272”的不同之处在于,它们限定阶梯状或不均匀的组织接触表面1257、1277。钳口1250'、1270'的电传导骨架1253'、1273'包括形成电极1252'、1272'的导电组织接触表面的凸出或突出部分。涂层1264部分地围绕形成电极1252'、1272'的凸出或突出部分包裹,仅使电极1252'、1272'的导电组织接触表面暴露。因此,在图9所示的示例中,组织接触表面1257、1277中的每一者包括台阶,该台阶包括定位在使台阶逐渐下降的两个绝缘组织接触表面之间的导电组织接触表面。换句话说,组织接触表面1257、1277中的每一者包括第一部分导电的组织接触表面和相对于第一部分导电的组织接触表面阶梯式降低的第二绝缘组织接触表面。用于形成电极1252'、1272'的方法稍后结合图12描述。Electrodes 1252', 1272' differ from electrodes 1252", 1272" in that they define stepped or uneven tissue contacting surfaces 1257, 1277. The electrically conductive backbones 1253', 1273' of the jaws 1250', 1270' include projections or protrusions that form the electrically conductive tissue-contacting surfaces of the electrodes 1252', 1272'. The coating 1264 wraps partially around the projections or protrusions forming the electrodes 1252', 1272', leaving only the conductive tissue-contacting surfaces of the electrodes 1252', 1272' exposed. Thus, in the example shown in Figure 9, each of the tissue-contacting surfaces 1257, 1277 includes a step including a conductive tissue-contacting surface positioned between two insulating tissue-contacting surfaces that gradually descend the step. In other words, each of the tissue contacting surfaces 1257, 1277 includes a first partially conductive tissue contacting surface and a second insulating tissue contacting surface that is stepped down relative to the first partially conductive tissue contacting surface. The method for forming the electrodes 1252', 1272' is described later in conjunction with FIG. 12 .

此外,在其间没有组织的闭合配置中,偏置电极1252'、1272'重叠,从而限定钳口1250'、1270'的相对绝缘外表面之间的间隙。因此,该配置提供当钳口1250'、1270'闭合时彼此竖直偏置并且彼此横向偏置的电极表面。在一个示例中,间隙为约0.01英寸至约0.025英寸。此外,虽然重叠,但电极1252'、1272'通过横向间隙间隔开。为了防止电路短路,横向间隙小于或等于预定阈值。在一个示例中,预定阈值选自0.006英寸至0.008英寸的范围。在一个示例中,预定阈值是约0.006英寸。Furthermore, in the closed configuration with no tissue therebetween, the bias electrodes 1252', 1272' overlap, thereby defining a gap between the opposing insulating outer surfaces of the jaws 1250', 1270'. Thus, this configuration provides electrode surfaces that are vertically offset from each other and laterally offset from each other when the jaws 1250', 1270' are closed. In one example, the gap is about 0.01 inches to about 0.025 inches. Furthermore, although overlapping, electrodes 1252', 1272' are separated by a lateral gap. To prevent short circuits, the lateral gap is less than or equal to a predetermined threshold. In one example, the predetermined threshold is selected from the range of 0.006 inches to 0.008 inches. In one example, the predetermined threshold is about 0.006 inches.

再次参考图7、图10,末端电极1260由未涂覆的电极部分1261、1262限定,该未涂覆的电极部分直接先于被周向涂覆的近侧涂覆部分,以允许从钳口1250、1270中的任一者或两者进行末端凝固和切开口创建。在某些示例中,电极部分1261、1262被弹簧偏置或顺应性的绝缘外壳覆盖,该绝缘外壳允许仅在端部执行器1200的远侧端部压靠待治疗的组织时暴露电极部分1261、1262。Referring again to Figures 7, 10, the tip electrodes 1260 are defined by uncoated electrode portions 1261, 1262 that immediately precede the circumferentially coated proximally coated portion to allow removal from the jaws Either or both 1250, 1270 perform end coagulation and incision opening creation. In some examples, the electrode portions 1261, 1262 are covered by a spring biased or compliant insulating housing that allows the electrode portions 1261 to be exposed only when the distal end of the end effector 1200 is pressed against the tissue to be treated , 1262.

另外,区段1274a、1274b、1274c限定沿钳口1270的外围侧1275延伸的角轮廓。区段1274a、1274b、1274c由外围侧1275上的从骨架1273的成角度主体突出的未涂覆线性部分限定。区段1274a、1274b、1274c包括与外围侧1275上限定的涂层1264的外表面齐平的外表面。在各种示例中,水平平面延伸通过区段1274a、1274b、1274c。电极1274的角轮廓限定在水平平面中,使得电极1274不会偏离曲率中心线延伸超过45度,以防止在使用电极1274来解剖或分离组织时的非计划横向热损伤。Additionally, the segments 1274a , 1274b , 1274c define angular profiles extending along the peripheral side 1275 of the jaw 1270 . Sections 1274a, 1274b, 1274c are defined by uncoated linear portions on peripheral side 1275 that protrude from the angled body of skeleton 1273. Sections 1274a, 1274b, 1274c include outer surfaces that are flush with the outer surface of coating 1264 defined on peripheral side 1275. In various examples, horizontal planes extend through segments 1274a, 1274b, 1274c. The angular profile of electrodes 1274 is defined in a horizontal plane such that electrodes 1274 do not extend more than 45 degrees from the centerline of curvature to prevent unintended lateral thermal damage when electrodes 1274 are used to dissect or separate tissue.

图14示出了用于与电外科器械(例如,电外科器械1106)的端部执行器(例如,1200)一起使用以使用RF能量来治疗组织的钳口6270。此外,钳口6270可电耦接到发生器(例如,发生器1100),并且可由发生器供能以将单极RF能量递送到组织和/或与端部执行器的另一个钳口协作以将双极RF能量递送到组织。此外,钳口6270在许多方面类似于钳口1250、1270。例如,钳口6270包括与钳口1270的角轮廓类似的角轮廓。另外,钳口6270呈现可施加到钳口1250、1270中的一者或两者的热减轻改进。Figure 14 shows jaws 6270 for use with an end effector (eg, 1200) of an electrosurgical instrument (eg, electrosurgical instrument 1106) to treat tissue using RF energy. Additionally, jaw 6270 can be electrically coupled to a generator (eg, generator 1100), and can be powered by the generator to deliver monopolar RF energy to tissue and/or to cooperate with another jaw of the end effector to Bipolar RF energy is delivered to tissue. Furthermore, the jaws 6270 are similar in many respects to the jaws 1250, 1270. For example, jaw 6270 includes an angular profile similar to that of jaw 1270 . Additionally, the jaws 6270 exhibit thermal mitigation improvements that can be applied to one or both of the jaws 1250, 1270.

在使用中,电外科器械的端部执行器的钳口经受可干扰其电极的性能的热负载。为了最小化热负载干扰而不会负面影响电极组织治疗能力,钳口6270包括电传导骨架6273,该电传导骨架具有热隔离部分和与热隔离部分成一体的热传导部分。热传导部分限定散热器并且热隔离部分抵抗热传递。在某些示例中,热隔离部分包括内部间隙、空隙或凹坑,其有效地隔离与组织直接接触的钳口6270的外表面的热质量而不损害钳口6270的电导率。In use, the jaws of an electrosurgical instrument's end effector are subjected to thermal loads that can interfere with the performance of its electrodes. To minimize thermal load interference without negatively affecting electrode tissue treatment capabilities, jaw 6270 includes an electrically conductive backbone 6273 having a thermally isolated portion and a thermally conductive portion integral with the thermally isolated portion. The thermally conductive portion defines a heat sink and the thermally insulating portion resists heat transfer. In some examples, the thermal isolation portion includes internal gaps, voids, or dimples that effectively isolate the thermal mass of the outer surface of the jaws 6270 in direct contact with tissue without compromising the electrical conductivity of the jaws 6270 .

在所示的示例中,热传导部分限定围绕或至少部分地围绕内传导芯的传导外层6269。在至少一个示例中,内传导芯包括间隙设置构件,其可以支柱、柱和/或壁的形式在外层6269的相对侧之间延伸,其中间隙、空隙或凹坑在间隙设置构件之间延伸。In the example shown, the thermally conductive portion defines a conductive outer layer 6269 that surrounds or at least partially surrounds the inner conductive core. In at least one example, the inner conductive core includes gap-setting members, which may extend between opposing sides of the outer layer 6269 in the form of struts, posts, and/or walls, with gaps, voids, or pockets extending between the gap-setting members.

在至少一个示例中,间隙设置构件形成蜂窝状晶格结构6267以在钳口(即,钳口6270和端部执行器的另一个钳口)转变到闭合配置,以在钳口之间抓持组织时提供定向力能力(类似于图6的钳口1250、1270)。可通过使晶格6267在与钳口6270的组织接触表面相交的方向上对准来实现定向力,使得其蜂窝壁6268相对于组织接触表面垂直定位。In at least one example, the gap setting member forms the honeycomb lattice structure 6267 to transition to a closed configuration at the jaws (ie, the jaw 6270 and the other jaw of the end effector) to grip between the jaws Provides directional force capability (similar to jaws 1250, 1270 of Figure 6) while organizing. The directional force can be achieved by aligning the lattice 6267 in a direction that intersects the tissue-contacting surface of the jaws 6270 so that its honeycomb walls 6268 are positioned perpendicularly relative to the tissue-contacting surface.

另选地或另外地,钳口6270的传导内芯可包括微空气凹坑,其可更均匀地分布和成形并且相对于钳口的外部形状不具有预定义组织以在钳口内产生更均匀的应力-应变分布。在各个方面,电传导骨架6273可通过三维打印来制备并且可包括三维打印的内部凹坑,该三维打印的内部凹坑产生电传导但相称热隔离的芯。Alternatively or additionally, the conductive inner core of the jaws 6270 can include micro air pockets that can be more uniformly distributed and shaped and have no predefined tissue relative to the external shape of the jaws to create a more uniform distribution within the jaws Stress-strain distribution. In various aspects, the electrically conductive backbone 6273 can be prepared by three-dimensional printing and can include three-dimensionally printed internal dimples that create an electrically conductive but commensurately thermally isolated core.

仍然参考图14,电传导骨架6273可连接到能量源(例如,发生器1100),并且包括限定在外层6273的选择性地未被涂层1264覆盖的部分上的电极6262、6272和6274。因此,钳口6270的选择性热导率和电导率控制/聚焦通过电极6272、6274的与组织的能量交互,同时减小热扩散和热质量。传导骨架6273的热隔离部分在使用期间限制电极6262、6272和6274上的热负载。Still referring to FIG. 14 , an electrically conductive skeleton 6273 can be connected to an energy source (eg, generator 1100 ) and includes electrodes 6262 , 6272 , and 6274 defined on portions of outer layer 6273 that are selectively uncovered by coating 1264 . Thus, selective thermal and electrical conductivity of jaws 6270 controls/focuses energy interaction with tissue through electrodes 6272, 6274 while reducing thermal diffusion and thermal mass. The thermally isolated portion of the conductive skeleton 6273 limits the thermal load on the electrodes 6262, 6272 and 6274 during use.

此外,外层6273限定在电极6272的相对侧上延伸并且至少部分地由涂层1264覆盖的抓持特征部6277。抓持特征部6277改善钳口6270粘附到组织的能力,并且抵抗组织相对于钳口6270的滑移。Additionally, the outer layer 6273 defines gripping features 6277 that extend on opposite sides of the electrode 6272 and are at least partially covered by the coating 1264 . The gripping features 6277 improve the ability of the jaws 6270 to adhere to tissue and resist slippage of tissue relative to the jaws 6270.

在所示的示例中,壁6268从钳口6270的第一横向侧对角延伸到钳口6270的第二横向侧。壁6268在结构节点处相交。在所示的示例中,相交壁6268限定由外层6269从顶部和/或底部覆盖的凹坑6271。下文描述了用于制造钳口6270的各种方法。In the example shown, wall 6268 extends diagonally from a first lateral side of jaw 6270 to a second lateral side of jaw 6270 . Walls 6268 meet at structural nodes. In the example shown, intersecting walls 6268 define pockets 6271 covered by outer layer 6269 from the top and/or bottom. Various methods for manufacturing the jaws 6270 are described below.

图12、13示出了用于制造钳口1273”、1273”'的方法1280、1281。在各种示例中,钳口1250、1270、1250'、1270'中的一者或多者根据方法1280、1281来制造。通过将涂层1264(例如,具有厚度d)施加到其整个外表面来制备钳口1273'、1273”。然后,电极是通过从期望区选择性地移除涂层1264的部分来限定的,以在此类区处暴露骨架1273”、1273”'的外表面。在至少一个示例中,可通过蚀刻(图12)或通过部分切除(图13)骨架1273”'的锥形部分以及其相应的涂层部分来执行对涂层的选择性移除以形成齐平的导电和非导电表面。在图12所示的示例中,通过蚀刻形成电极1272”、1274”。在图13所示的示例中,电极1274”'由在骨架1273”'旁边延伸的凸起窄带或脊1274d形成。切掉脊1274D和直接覆盖脊1274D的涂层1264的一部分,从而产生与涂层1264的外表面齐平的电极1274”'的外表面。12, 13 illustrate methods 1280, 1281 for manufacturing jaws 1273", 1273"'. In various examples, one or more of jaws 1250 , 1270 , 1250 ′, 1270 ′ are fabricated according to methods 1280 , 1281 . The jaws 1273', 1273" are prepared by applying a coating 1264 (eg, having a thickness d) to its entire outer surface. The electrodes are then defined by selectively removing portions of the coating 1264 from the desired areas, To expose the outer surfaces of the skeletons 1273", 1273"' at such regions. In at least one example, the tapered portion of the skeleton 1273"' and its corresponding may be etched (FIG. 12) or by partial cutting (FIG. 13) Part of the coating to perform selective removal of the coating to form flush conductive and non-conductive surfaces. In the example shown in FIG. 12, electrodes 1272", 1274" are formed by etching. In the example shown in FIG. 13, electrodes 1274"' are formed by raised strips or ridges 1274d extending alongside backbone 1273"'. Ridge 1274D and a portion of coating 1264 directly overlying ridge 1274D are cut away, resulting in an outer surface of electrode 1274"' that is flush with the outer surface of coating 1264.

因此,通过方法1281制造的钳口1270”'包括锥形电极1274”',该锥形电极由在骨架1273”'旁边延伸的窄凸起电传导部分1274e构成,其可帮助聚焦从骨架1273”'递送到组织的能量,其中部分1274e具有与涂层1264齐平的导电外表面。Thus, jaw 1270"' fabricated by method 1281 includes a tapered electrode 1274"' consisting of narrow raised electrically conductive portions 1274e extending beside skeleton 1273"' that can assist in focusing from skeleton 1273" ' energy delivered to tissue, wherein portion 1274e has a conductive outer surface flush with coating 1264.

在另一个制造过程6200中,可如图15所描绘的那样制备钳口6270。电传导骨架6273形成有窄凸起带或脊6274e、6274f,其限定电极6272和6274。在所示的示例中,钳口6270的骨架6273包括具有平坦或至少基本上平坦的外表面的脊6274e、6274f,其被配置成能够限定电极6272、6274。在至少一个示例中,骨架6273通过3D打印制备。将掩模6265、6266施加到脊6274e、6274f,并且将类似于涂层1264的涂层1264施加到骨架6273。在涂覆之后,移除掩模6265、6266,使电极6272、6274的与涂层1264的外表面齐平的外表面暴露。In another manufacturing process 6200, jaws 6270 may be prepared as depicted in FIG. The electrically conductive skeleton 6273 is formed with narrow raised strips or ridges 6274e, 6274f that define electrodes 6272 and 6274. In the example shown, the backbone 6273 of the jaws 6270 includes ridges 6274e, 6274f having flat or at least substantially flat outer surfaces configured to define the electrodes 6272, 6274. In at least one example, the skeleton 6273 is prepared by 3D printing. Masks 6265, 6266 are applied to ridges 6274e, 6274f, and a coating 1264 similar to coating 1264 is applied to skeleton 6273. After coating, the masks 6265, 6266 are removed, exposing the outer surfaces of the electrodes 6272, 6274 that are flush with the outer surface of the coating 1264.

参考图14和图15,在各种示例中,外层6269包括在电极6272中的每一者的一侧或两侧上横向延伸的抓持特征部6277。抓持特征部6277被涂层1264覆盖。在一个示例中,涂层1264限定可压缩特征部,从而致使端部执行器的钳口之间的间隙根据施加到端部执行器1200的夹持负载而变化。在至少一个示例中,钳口上的涂层1264沿钳口的中心线产生至少0.010"-0.020"的绝缘体重叠。涂层1264可直接施加在抓持特征部6277和/或夹具诱导的钳口重新对准特征部上。14 and 15, in various examples, the outer layer 6269 includes gripping features 6277 extending laterally on one or both sides of each of the electrodes 6272. The gripping features 6277 are covered by the coating 1264. In one example, the coating 1264 defines compressible features such that the gap between the jaws of the end effector varies according to the clamping load applied to the end effector 1200 . In at least one example, the coating 1264 on the jaws creates an insulator overlap of at least 0.010"-0.020" along the centerline of the jaws. The coating 1264 may be applied directly on the gripping features 6277 and/or the clamp-induced jaw realignment features.

在各个方面,涂层1264可包含涂层材料,诸如氮化钛、类金刚石涂层(DLC)、氮化铬、Graphit iCTM等。在至少一个示例中,DLC由具有石墨和碳原子之间的金刚石粘结的非晶碳-氢网络构成。DLC涂层1264可在骨架1253、1273周围形成具有低摩擦和高硬度特性的膜(图6)。DLC涂层1264可以是掺杂的或未掺杂的,并且通常呈含有大部分sp3键的无定形碳(a-C)或氢化无定形碳(a-C:H)的形式。各种表面涂层技术可用于形成DLC涂层1264,诸如由Oerlikon Balzers开发的表面涂层技术。在至少一个示例中,使用等离子体辅助化学气相沉积(PACVD)来生成DLC涂层1264。In various aspects, the coating 1264 may comprise a coating material such as titanium nitride, diamond-like coating (DLC), chromium nitride, Graphit iC , and the like. In at least one example, the DLC is composed of an amorphous carbon-hydrogen network with diamond bonds between graphite and carbon atoms. The DLC coating 1264 can form a film with low friction and high hardness properties around the backbones 1253, 1273 (FIG. 6). The DLC coating 1264 may be doped or undoped, and is typically in the form of amorphous carbon (aC) or hydrogenated amorphous carbon (aC:H) containing a majority of sp3 bonds. Various surface coating techniques can be used to form the DLC coating 1264, such as the surface coating technology developed by Oerlikon Balzers. In at least one example, the DLC coating 1264 is generated using plasma assisted chemical vapor deposition (PACVD).

仍然参考图15,在使用中,电能通过电极6272从电传导骨架6269流动到组织。涂层1264防止电能从覆盖有涂层1264的外层6269的其他区域传递到组织。由于电极6272的表面在组织治疗期间的温度增加,因此由于内芯的壁6268所限定的间隙、空隙或凹坑,从外层6269到骨架6273的内芯的热能传递减慢或减弱。Still referring to FIG. 15, in use, electrical energy flows from the electrically conductive scaffold 6269 through the electrodes 6272 to the tissue. The coating 1264 prevents electrical energy from being transferred to the tissue from other areas of the outer layer 6269 covered with the coating 1264. As the surface of the electrode 6272 increases in temperature during tissue treatment, thermal energy transfer from the outer layer 6269 to the inner core of the backbone 6273 is slowed or diminished due to gaps, voids or pockets defined by the walls 6268 of the inner core.

图16示出了制造以用于与电外科器械的端部执行器的钳口一起使用的骨架6290。骨架1253、1273、1253'、1273'、1273”、1273”'中的一者或多者可包含材料组合物和/或可以与骨架6290类似的方式制造。在所示的示例中,骨架6290由至少两种材料构成:电传导材料,诸如钛,以及热隔离材料,诸如陶瓷材料(例如,陶瓷氧化物)。钛和陶瓷氧化物的组合产生具有复合热、机械和电性质的钳口部件。Figure 16 shows a skeleton 6290 manufactured for use with the jaws of an end effector of an electrosurgical instrument. One or more of the skeletons 1253, 1273, 1253', 1273', 1273", 1273"' may comprise a material composition and/or may be fabricated in a similar manner to the skeleton 6290. In the example shown, the skeleton 6290 is constructed of at least two materials: an electrically conductive material, such as titanium, and a thermally insulating material, such as a ceramic material (eg, ceramic oxide). The combination of titanium and ceramic oxide produces jaw components with composite thermal, mechanical and electrical properties.

在所示的示例中,复合骨架6290包括例如由三维打印形成的陶瓷基部6291。另外,复合骨架6290包括使用例如三维打印与陶瓷基部6291分开制备的钛冠部6292。基部6291和冠部6292包括互补附接特征部6294。在所示的示例中,基部6291包括接收在冠部6292的对应孔中的立柱或突起。附接特征部6294还控制收缩。另外或另选地,基部6291和冠部6292的接触表面包括互补的表面不规则6296,其具体地设计用于彼此配合接合。表面不规则6296还抵抗由基部6291和冠部6292的不同材料组成引起的收缩。在各种示例中,复合骨架6290选择性地涂覆有绝缘涂层1264,从而产生冠部6292的暴露的某些部分,其限定电极,例如,如上文结合钳口1250、1270所描述的。In the example shown, the composite skeleton 6290 includes a ceramic base 6291 formed, for example, by three-dimensional printing. Additionally, the composite framework 6290 includes a titanium crown 6292 fabricated separately from the ceramic base 6291 using, for example, three-dimensional printing. Base 6291 and crown 6292 include complementary attachment features 6294. In the example shown, the base 6291 includes posts or protrusions that are received in corresponding holes in the crown 6292. The attachment feature 6294 also controls retraction. Additionally or alternatively, the contact surfaces of the base 6291 and crown 6292 include complementary surface irregularities 6296 that are specifically designed for cooperative engagement with each other. Surface irregularities 6296 also resist shrinkage caused by the different material compositions of base 6291 and crown 6292. In various examples, the composite backbone 6290 is selectively coated with an insulating coating 1264, resulting in exposed portions of the crown 6292 that define electrodes, eg, as described above in connection with the jaws 1250, 1270.

图17和图18示出了用于制造用于与电外科器械的端部执行器的钳口一起使用的骨架6296的制造过程。骨架1253、1273、1253'、1273'、1273”、1273”'中的一者或多者可包含材料组合物和/或可以与骨架6295类似的方式制造。在所示的示例中,复合骨架6295通过利用陶瓷粉末6297和钛粉末6298进行注射模制来产生。粉末熔合在一起(图18)以形成钛-陶瓷复合材料6299(图19)。在至少一个示例中,聚四氟乙烯(例如,

Figure BDA0003720857540000251
)涂层可选择性地施加到复合骨架6295的金属区域以用于热隔离以及电绝缘。Figures 17 and 18 illustrate a manufacturing process for manufacturing a skeleton 6296 for use with the jaws of an end effector of an electrosurgical instrument. One or more of the skeletons 1253, 1273, 1253', 1273', 1273", 1273"' may comprise a material composition and/or may be fabricated in a similar manner to the skeleton 6295. In the example shown, the composite framework 6295 is produced by injection molding with ceramic powder 6297 and titanium powder 6298. The powders were fused together (FIG. 18) to form titanium-ceramic composite 6299 (FIG. 19). In at least one example, polytetrafluoroethylene (eg,
Figure BDA0003720857540000251
) coating can be selectively applied to the metal regions of the composite framework 6295 for thermal and electrical isolation.

图20至图22示出了用于与电外科器械(例如,电外科器械1106)的端部执行器(例如,1200)一起使用以使用RF能量来治疗组织的钳口1290。此外,钳口6270可电耦接到发生器(例如,发生器1100),并且可由发生器供能以将单极RF能量递送到组织和/或与端部执行器的另一个钳口协作以将双极RF能量递送到组织。此外,钳口1290在许多方面类似于钳口1250、1270。例如,钳口1290包括与钳口1270的角轮廓或弯曲轮廓类似的角轮廓。20-22 illustrate jaws 1290 for use with an end effector (eg, 1200) of an electrosurgical instrument (eg, electrosurgical instrument 1106) to treat tissue using RF energy. Additionally, jaw 6270 can be electrically coupled to a generator (eg, generator 1100), and can be powered by the generator to deliver monopolar RF energy to tissue and/or to cooperate with another jaw of the end effector to Bipolar RF energy is delivered to tissue. Furthermore, the jaws 1290 are similar in many respects to the jaws 1250, 1270. For example, jaw 1290 includes an angular profile similar to the angular or curved profile of jaw 1270 .

另外,钳口1290类似于钳口6270,因为钳口1290也呈现热减轻改进。与钳口6270一样,钳口1290包括传导骨架1293,该传导骨架具有热隔离部分和与热隔离部分成一体或附接到热隔离部分的热传导部分。热传导部分限定散热器并且热隔离部分抵抗热传递。在某些示例中,传导骨架1293的热隔离部分包括传导内芯1297,该传导内芯具有内部间隙、空隙或凹坑,该内部间隙、空隙或凹坑有效地隔离钳口1290的限定与组织直接接触的电极1294的外表面的热质量,而不损害钳口1290的电导率。热传导部分限定围绕或至少部分地围绕传导内芯1297的传导外层1303。在至少一个示例中,传导内芯1297包括间隙设置构件1299,其可以支柱、柱和/或壁的形式在钳口1290的外层1303的相对侧之间延伸,其中间隙、空隙或凹坑在间隙设置构件之间延伸。Additionally, jaw 1290 is similar to jaw 6270 in that jaw 1290 also exhibits thermal mitigation improvements. Like jaw 6270, jaw 1290 includes a conductive skeleton 1293 having a thermally insulating portion and a thermally conductive portion integral with or attached to the thermally insulating portion. The thermally conductive portion defines a heat sink and the thermally insulating portion resists heat transfer. In certain examples, the thermally isolated portion of the conductive backbone 1293 includes a conductive inner core 1297 having internal gaps, voids or dimples that effectively isolate the definition of the jaws 1290 from tissue The thermal mass of the outer surface of the electrode 1294 in direct contact without compromising the conductivity of the jaws 1290. The thermally conductive portion defines a conductive outer layer 1303 that surrounds or at least partially surrounds the conductive inner core 1297 . In at least one example, the conductive inner core 1297 includes gap setting members 1299 that may extend between opposing sides of the outer layer 1303 of the jaws 1290 in the form of struts, posts, and/or walls, wherein the gaps, voids, or pockets are in the A gap setting member extends between the members.

另选地或另外地,传导内芯1297可包括分布在传导内芯1297中的可均匀地或非均匀地分布的空气的微凹坑。凹坑可包括预定义或随机形状,并且可分散在传导内芯1297的预定或随机部分处。在至少一个示例中,凹坑以在钳口1290内产生更均匀的应力-应变分布的方式分散。在各个方面,骨架1293可通过三维打印来制备并且可包括三维打印的内部凹坑,该三维打印的内部凹坑产生电传导但相称热隔离的芯。Alternatively or additionally, the conductive inner core 1297 may include micro-dimples of air distributed in the conductive inner core 1297, which may be uniformly or non-uniformly distributed. The dimples may include predefined or random shapes, and may be dispersed at predetermined or random portions of the conductive core 1297 . In at least one example, the dimples are dispersed in a manner that produces a more uniform stress-strain distribution within the jaws 1290 . In various aspects, the skeleton 1293 can be prepared by three-dimensional printing and can include three-dimensional printed internal dimples that create an electrically conductive but commensurately thermally isolated core.

因此,钳口1290包括控制/聚焦与组织的能量交互的选择性热导率和电导率,同时减小热扩散和热质量。传导骨架1293的热隔离部分在使用期间限制钳口1290的电极上的热负载。Thus, jaws 1290 include selective thermal and electrical conductivities that control/focus energy interaction with tissue, while reducing thermal diffusion and thermal mass. The thermally isolated portions of the conductive skeleton 1293 limit the thermal load on the electrodes of the jaws 1290 during use.

图22示出了钳口1290的组织接触表面1291的扩展部分。在各个方面,骨架1293的外层1303被包含第一材料(例如DLC)的第一绝缘层1264选择性地涂覆/覆盖。在所示的示例中,DLC涂层致使组织接触表面1291是电绝缘的,除了沿组织接触表面1291的长度延伸的中间区域,其限定电极1294。在至少一个示例中,DLC涂层围绕骨架1293延伸,覆盖钳口1290多至电极1294的相对侧1294'、1294”上限定的周边。导电区1294a、1294b、1294c保持暴露,并且沿电极1294的长度与绝缘区1298交替。在各个方面中,绝缘区1298包含具有高温度聚四氟乙烯(例如,

Figure BDA0003720857540000271
)。由于DLC涂层是导热的,因此仅组织接触表面1291的包括绝缘区域1298的部分是热隔离的。覆盖有DLC涂层和薄导电可供能区1294a、1294b、1294c的组织接触表面1291的部分是导热的。另外,仅薄导电可供能区1294a、1294b、1294c是电传导的。用DLC涂层或聚四氟乙烯(例如
Figure BDA0003720857540000272
)覆盖的组织接触表面1291的剩余部分是电绝缘的。FIG. 22 shows an expanded portion of the tissue contacting surface 1291 of the jaws 1290. In various aspects, the outer layer 1303 of the skeleton 1293 is selectively coated/covered by a first insulating layer 1264 comprising a first material (eg, DLC). In the example shown, the DLC coating renders the tissue-contacting surface 1291 electrically insulating except for an intermediate region extending along the length of the tissue-contacting surface 1291, which defines the electrodes 1294. In at least one example, the DLC coating extends around the backbone 1293, covering the jaws 1290 as much as the perimeter defined on opposite sides 1294', 1294" of the electrode 1294. The conductive regions 1294a, 1294b, 1294c remain exposed, and along the perimeter of the electrode 1294 Lengths alternate with insulating regions 1298. In various aspects, insulating regions 1298 comprise polytetrafluoroethylene having a high temperature (eg,
Figure BDA0003720857540000271
). Since the DLC coating is thermally conductive, only the portion of the tissue contacting surface 1291 that includes the insulating region 1298 is thermally isolated. Portions of the tissue contacting surface 1291 covered with the DLC coating and thin electrically conductive energizable regions 1294a, 1294b, 1294c are thermally conductive. Additionally, only the thin conductive energizable regions 1294a, 1294b, 1294c are electrically conductive. Coated with DLC or Teflon (e.g.
Figure BDA0003720857540000272
) covering the remainder of the tissue contacting surface 1291 is electrically insulating.

导电区1294a、1294b、1294c基于区1294a、1294b、1294c的几何结构限定沿钳口1290的能量聚集位置。此外,导电区1294a、1294b、1294c和绝缘区1298的大小、形状和布置致使通过电极1294传输的凝固能量被引导到预定义治疗区域中的组织,从而防止来自治疗区域的能量和热量两者的寄生浸出。此外,热隔离传导内芯1297抵抗到钳口1290的不形成治疗区域的部分的热传递,这防止了通过组织与钳口1290的非治疗区域的偶然接触而引起的无意附带热损伤。Conductive regions 1294a , 1294b , 1294c define energy concentration locations along jaw 1290 based on the geometry of regions 1294a , 1294b , 1294c . In addition, the size, shape and arrangement of the conductive regions 1294a, 1294b, 1294c and the insulating region 1298 cause the coagulation energy delivered by the electrodes 1294 to be directed to the tissue in the predefined treatment area, thereby preventing the transfer of both energy and heat from the treatment area. Parasitic leaching. In addition, thermally insulating conductive core 1297 resists heat transfer to portions of jaws 1290 that do not form a treatment area, which prevents inadvertent collateral thermal damage through accidental tissue contact with non-treatment areas of jaws 1290 .

电极1294被区域1298选择性地中断。将高温聚四氟乙烯(例如,

Figure BDA0003720857540000273
)涂层选择性施加到电极1294的部分会产生选择性暴露的金属内部部分,该金属内部部分限定三维几何电子调制(GEM)以用于电极1294的导电区1294a、1294b、1294c处的聚焦解剖和凝固。如图22所示,区域1298选择性地沉积到电极1294上,从而产生治疗表面,该治疗表面具有交替的热传导和电传导区域以及热隔离和电绝缘区域,其被DLC涂层限定的导热但电绝缘的外周边区域围绕。Electrodes 1294 are selectively interrupted by regions 1298. High temperature PTFE (for example,
Figure BDA0003720857540000273
) coating selectively applied to portions of electrode 1294 results in selectively exposed metallic interior portions that define three-dimensional geometric electron modulation (GEM) for focused dissection at conductive regions 1294a, 1294b, 1294c of electrode 1294 and solidification. As shown in FIG. 22, regions 1298 are selectively deposited onto electrodes 1294, resulting in a treatment surface having alternating thermally and electrically conductive regions and thermally isolated and electrically insulating regions defined by the DLC coating for thermally conductive but electrically conductive An electrically insulating outer peripheral region surrounds.

参考图22,钳口1290包括角轮廓,其中多个角度在钳口1290的离散部分1290a、1290b、1290c、1290d之间限定。例如,第一角度(α1)由部分1290a、1290b限定,第二角度(α2)由部分1290b、1290c限定,并且第三角度(α3)由第一钳口1250的部分1290c、1290d限定。在其他示例中,钳口1290的至少一部分包括不具有角度的平滑弯曲轮廓。在各个方面,钳口1290的离散部分1290a、1290b、1290c、1290d是线性区段。连续线性区段以例如第一角度(α1)或第二角度(α2)和第三角度(α3)的角度相交。线性区段协作以形成钳口1290中的每一者的大致弯曲轮廓。Referring to FIG. 22 , the jaw 1290 includes an angular profile, wherein a plurality of angles are defined between discrete portions 1290a , 1290b , 1290c , 1290d of the jaw 1290 . For example, a first angle (α1) is defined by portions 1290a, 1290b, a second angle (α2) is defined by portions 1290b, 1290c, and a third angle (α3) is defined by portions 1290c, 1290d of the first jaw 1250. In other examples, at least a portion of jaw 1290 includes a smoothly curved profile without angles. In various aspects, the discrete portions 1290a, 1290b, 1290c, 1290d of the jaws 1290 are linear segments. Consecutive linear segments intersect at angles such as the first angle (α1) or the second angle (α2) and the third angle (α3). The linear segments cooperate to form the generally curved profile of each of the jaws 1290 .

在一个示例中,角度(α1,α2,α3)包括相同或至少基本上相同的值。在另一个示例中,角度(α1,α2,α3)中的至少两个包括不同值。在另一个示例中,角度(α1,α2,α3)中的至少一个包括选自约120°至约175°的范围的值。在又一个示例中,角度(α1,α2,α3)中的至少一个包括选自约130°至约170°的范围的值。In one example, the angles (α1, α2, α3) comprise the same or at least substantially the same values. In another example, at least two of the angles (α1, α2, α3) comprise different values. In another example, at least one of the angles (α1, α2, α3) includes a value selected from the range of about 120° to about 175°. In yet another example, at least one of the angles (α1, α2, α3) includes a value selected from the range of about 130° to about 170°.

此外,由于钳口1290的逐渐变窄的轮廓,作为近侧部分的部分1290a大于作为中间部分的部分1290b。类似地,中间部分1290b大于限定钳口1290的远侧部分的部分1290d。在其他示例中,远侧部分可大于中间和/或近侧部分。在其他示例中,中间部分大于近侧和/或远侧部分。此外,钳口1290的电极1294包括与钳口1290的角轮廓类似的角轮廓。Furthermore, due to the tapered profile of the jaws 1290, the portion 1290a, which is the proximal portion, is larger than the portion 1290b, which is the middle portion. Similarly, the middle portion 1290b is larger than the portion 1290d that defines the distal portion of the jaw 1290 . In other examples, the distal portion may be larger than the medial and/or proximal portion. In other examples, the intermediate portion is larger than the proximal and/or distal portions. Additionally, the electrodes 1294 of the jaws 1290 include an angular profile similar to the angular profile of the jaws 1290 .

参考图23,在某些方面,钳口1300包括被DLC涂层1264部分围绕的实心传导骨架1301。骨架1301的暴露区域限定一个或多个电极1302。这种布置产生钳口1300的热传导部分和电传导部分,其中热能不加选择地递送,但电能仅通过一个或多个电极1302递送。Referring to FIG. 23 , in certain aspects, jaw 1300 includes a solid conductive skeleton 1301 partially surrounded by DLC coating 1264 . The exposed areas of the skeleton 1301 define one or more electrodes 1302 . This arrangement creates a thermally and electrically conductive portion of jaw 1300 in which thermal energy is delivered indiscriminately, but electrical energy is delivered only through one or more electrodes 1302 .

现在参考图24至图26,电外科器械1500包括端部执行器1400,该端部执行器被配置成能够将单极能量和/或双极能量递送到由端部执行器1400抓持的组织,如下文更详细地描述。端部执行器1400在许多方面类似于端部执行器1200。例如,端部执行器1400包括第一钳口1450和第二钳口1470。第一钳口1450和第二钳口1470中的至少一者可相对于另一钳口运动以使端部执行器1400从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。然后可使用单极和双极能量密封和/或切割所抓持的组织。如下文更详细描述的,端部执行器1400利用GEM来调整钳口1450、1470的组织治疗界面处的能量密度以实现期望的组织治疗。Referring now to FIGS. 24-26 , electrosurgical instrument 1500 includes end effector 1400 configured to deliver monopolar and/or bipolar energy to tissue grasped by end effector 1400 , as described in more detail below. End effector 1400 is similar to end effector 1200 in many respects. For example, the end effector 1400 includes a first jaw 1450 and a second jaw 1470 . At least one of the first jaw 1450 and the second jaw 1470 is movable relative to the other jaw to transition the end effector 1400 from the open configuration to the closed configuration to Grasp the organization in between. The grasped tissue can then be sealed and/or cut using monopolar and bipolar energy. As described in more detail below, the end effector 1400 utilizes GEM to adjust the energy density at the tissue treatment interface of the jaws 1450, 1470 to achieve the desired tissue treatment.

与钳口1250、1270一样,钳口1450、1470包括由相对于彼此成角度的线性部分形成的大致角轮廓,从而产生弯曲或指状形状,如图26所示。此外,钳口1450、1470包括传导骨架1452、1472,该传导骨架具有沿钳口1450、1470的角轮廓向远侧延伸的变窄角体。传导骨架1452、1472可由导电材料(例如,钛)构成。在某些方面,传导骨架1453、1473中的每一者包括热隔离部分和与热隔离部分成一体的热传导部分。热传导部分限定散热器并且热隔离部分抵抗热传递。在某些示例中,骨架1453、1473的热隔离部分限定内芯,该内芯包括内部间隙、空隙或凹坑,其有效地隔离与组织直接接触的钳口1452、1472的外表面的热质量而不损害钳口1450、1470的电导率。As with the jaws 1250, 1270, the jaws 1450, 1470 include a generally angular profile formed by linear portions angled relative to each other, resulting in a curved or finger-like shape, as shown in FIG. In addition, the jaws 1450 , 1470 include conductive skeletons 1452 , 1472 with narrowed horns extending distally along the angular profiles of the jaws 1450 , 1470 . The conductive frameworks 1452, 1472 may be constructed of a conductive material (eg, titanium). In certain aspects, each of the conductive backbones 1453, 1473 includes a thermally insulating portion and a thermally conductive portion integral with the thermally insulating portion. The thermally conductive portion defines a heat sink and the thermally insulating portion resists heat transfer. In certain examples, the thermally insulating portions of the skeletons 1453, 1473 define an inner core that includes internal gaps, voids, or pockets that effectively isolate the thermal mass of the outer surfaces of the jaws 1452, 1472 that are in direct contact with tissue The conductivity of the jaws 1450, 1470 is not compromised.

热传导部分包括围绕或至少部分地围绕内传导芯的传导外层1469、1469'。在至少一个示例中,内传导芯包括间隙设置构件,其可以支柱、柱和/或壁的形式在钳口1250、1270中的每一者的外层1469、1469'的相对侧之间延伸,其中间隙、空隙或凹坑在间隙设置构件之间延伸。在至少一个示例中,间隙设置构件形成蜂窝状网格结构1467、1467'。The thermally conductive portion includes conductive outer layers 1469, 1469' surrounding or at least partially surrounding the inner conductive core. In at least one example, the inner conductive core includes gap setting members that may extend between opposing sides of the outer layers 1469, 1469' of each of the jaws 1250, 1270 in the form of struts, posts, and/or walls, Wherein the gaps, voids or pockets extend between the gap setting members. In at least one example, the gap setting members form a honeycomb lattice structure 1467, 1467'.

除上述之外,传导骨架1453、1473包括沿钳口1450、1470的角轮廓向远侧延伸的第一导电部分1453a、1473a,以及从第一导电部分1453a、1473a突出并且沿骨架1453、1473的逐渐变窄的主体的至少一部分向远侧延伸的锥形电极的第二导电部分1453b、1473b。在至少一个示例中,在骨架1453、1473的逐渐变窄的主体的横向截面(例如,图25)中,第一导电部分1453a、1473a比第二导电部分1453b、1473b厚。在至少一个示例中,第二导电部分1453b、1473b与第一导电部分1453a、1473a成一体或永久地附接到第一导电部分,使得电能仅通过第二导电部分1453b、1473b从第一导电部分1453a、1473a流动到组织。电绝缘层1464、1464'被配置成能够完全使第一导电部分1453a、1473a电绝缘,而不使第二导电部分1453b、1473b电绝缘。限定电极1452、1472的第二导电部分1453b、1473b的至少外表面不被电绝缘层1464、1464'覆盖。在所示的示例中,电极1452、1472和电绝缘层1464、1464'限定齐平组织治疗表面。In addition to the above, the conductive backbones 1453, 1473 include first conductive portions 1453a, 1473a extending distally along the angular profiles of the jaws 1450, 1470, At least a portion of the tapered body extends distally to the second conductive portion 1453b, 1473b of the tapered electrode. In at least one example, the first conductive portions 1453a, 1473a are thicker than the second conductive portions 1453b, 1473b in a lateral cross-section (eg, FIG. 25) of the tapered bodies of the backbones 1453, 1473. In at least one example, the second conductive portion 1453b, 1473b is integral with the first conductive portion 1453a, 1473a or is permanently attached to the first conductive portion such that electrical energy flows from the first conductive portion only through the second conductive portion 1453b, 1473b 1453a, 1473a flow to the tissue. The electrically insulating layers 1464, 1464' are configured to completely electrically insulate the first conductive portions 1453a, 1473a without electrically insulating the second conductive portions 1453b, 1473b. At least the outer surfaces of the second conductive portions 1453b, 1473b defining the electrodes 1452, 1472 are not covered by the electrically insulating layer 1464, 1464'. In the example shown, electrodes 1452, 1472 and electrically insulating layers 1464, 1464' define flush tissue treatment surfaces.

如上所述,第一导电部分1453a、1473a大体上比第二导电部分1453b、1473b更厚,并且用电绝缘层1464、1464'包裹,这致使第二导电部分1453b、1473b变成高能量密度区域。在至少一个示例中,电绝缘层1464、1464'由高温聚四氟乙烯(例如,

Figure BDA0003720857540000291
)涂层、DLC涂层和/或陶瓷涂层构成以用于绝缘和对焦炭粘附的耐受性。在各种示例中,较厚的第一导电部分1453a传导更多的潜在功率,具有对组织接触的第二导电部分1453b的较小电阻,从而在电极1452处产生更高的能量密度。As described above, the first conductive portions 1453a, 1473a are substantially thicker than the second conductive portions 1453b, 1473b and are wrapped with an electrically insulating layer 1464, 1464', which causes the second conductive portions 1453b, 1473b to become regions of high energy density . In at least one example, the electrically insulating layers 1464, 1464' are made of high temperature polytetrafluoroethylene (eg,
Figure BDA0003720857540000291
) coating, DLC coating and/or ceramic coating for insulation and resistance to coke adhesion. In various examples, the thicker first conductive portion 1453a conducts more potential power, with less resistance to the tissue-contacting second conductive portion 1453b, resulting in a higher energy density at the electrode 1452.

在各个方面,电极1452、1472的外表面包括沿钳口1450、1470的成角度的组织治疗表面延伸的连续线性区段。线性区段以预定义角度相交,并且具有随着线性段向远侧延伸而逐渐变窄的宽度。在图24所示的示例中,电极1452包括区段1452a、1452b、1452c、1452c、1452d,并且电极1472包括区段1472a、1472b、1472c、1472c、1472d。钳口1450的电极1452由图24的钳口1470上的虚线示出,以示出电极1452相对于在端部执行器1400的闭合配置中的电极1452的横向位置。电极1452、1472在闭合配置中彼此横向偏置。在双极能量模式中,由发生器(例如,发生器1100)供应的电能从第一导电部分1453a流动到第二导电部分1453b的电极1452,并且从电极1452流动到钳口1450、1470之间抓持的组织。然后,双极能量从组织流到第二导电部分1473b的电极1472,并且从电极1472流到第一导电部分1473a。In various aspects, the outer surfaces of the electrodes 1452 , 1472 include continuous linear segments extending along the angled tissue treatment surfaces of the jaws 1450 , 1470 . The linear segments intersect at a predefined angle and have a width that gradually narrows as the linear segments extend distally. In the example shown in Figure 24, electrode 1452 includes segments 1452a, 1452b, 1452c, 1452c, 1452d, and electrode 1472 includes segments 1472a, 1472b, 1472c, 1472c, 1472d. The electrodes 1452 of the jaws 1450 are shown by dashed lines on the jaws 1470 of FIG. 24 to illustrate the lateral position of the electrodes 1452 relative to the electrodes 1452 in the closed configuration of the end effector 1400 . Electrodes 1452, 1472 are laterally offset from each other in the closed configuration. In the bipolar energy mode, electrical energy supplied by a generator (eg, generator 1100 ) flows from the first conductive portion 1453a to the electrode 1452 of the second conductive portion 1453b, and from the electrode 1452 to between the jaws 1450, 1470 grabbed organization. Bipolar energy then flows from the tissue to the electrode 1472 of the second conductive portion 1473b, and from the electrode 1472 to the first conductive portion 1473a.

在各个方面,如图24、图25中所示,第二钳口1470还包括与骨架1473间隔开的电极1474。在至少一个示例中,电极1474是单极电极,其被配置成能够以闭合配置将单极能量递送到抓持在钳口1450、1470之间的组织。返回垫可放置在患者下方,例如,以从患者接收单极能量。与电极1472一样,电极1474包括连续线性段1474a、1474b、1474c、1474d,该连续线性段沿由第二钳口1470限定的角轮廓向远侧从电极近侧端部延伸到电极远侧端部。此外,电极1474与电极1472、1452横向偏置。In various aspects, as shown in FIGS. 24 and 25 , the second jaw 1470 also includes an electrode 1474 spaced from the backbone 1473 . In at least one example, electrode 1474 is a monopolar electrode configured to deliver monopolar energy to tissue grasped between jaws 1450, 1470 in a closed configuration. The return pad can be placed under the patient, for example, to receive monopolar energy from the patient. Like electrode 1472, electrode 1474 includes continuous linear segments 1474a, 1474b, 1474c, 1474d that extend distally from the electrode proximal end to the electrode distal end along the angular profile defined by the second jaw 1470 . Additionally, electrode 1474 is laterally offset from electrodes 1472, 1452.

电极1474包括位于托架1480中的基部1474e,该基部沿第二钳口1470的角轮廓向远侧从托架近侧端部1480a延伸到托架远侧端部1480b。托架1480相对于第二钳口1470的横向边缘1470e、1470f居中定位。电极1474还包括锥形边缘1474f,该锥形边缘从基部1474e延伸超过托架1480的侧壁。另外,托架1480部分地嵌入在变窄的弯曲主体的外部组织治疗表面上限定的谷部中。托架1480通过电绝缘涂层1464'与骨架1473的逐渐变窄的主体间隔开。如图24所示,基部1480具有在基部沿角轮廓从基部近侧端部1480a延伸到基部远侧端部1480b时逐渐变窄的宽度。Electrode 1474 includes a base 1474e in bracket 1480 that extends distally along the angular profile of second jaw 1470 from bracket proximal end 1480a to bracket distal end 1480b. The bracket 1480 is centrally positioned relative to the lateral edges 1470e , 1470f of the second jaw 1470 . Electrode 1474 also includes a tapered edge 1474f that extends from base 1474e beyond the sidewall of bracket 1480. Additionally, the brackets 1480 are partially embedded in valleys defined on the outer tissue treatment surface of the narrowed curved body. Bracket 1480 is spaced from the tapered body of skeleton 1473 by an electrically insulating coating 1464'. As shown in FIG. 24, the base 1480 has a width that gradually narrows as the base extends along the angular profile from the base proximal end 1480a to the base distal end 1480b.

在各种示例中,托架1480由顺应性衬底构成。在未压缩状态中,如图25所示,托架1480的侧壁延伸超过钳口1472的组织治疗表面。当组织在钳口1450、1470之间被压缩时,压缩组织对托架1480的侧壁施加偏置力,从而进一步暴露电极1474的锥形边缘1474f。In various examples, the carrier 1480 is constructed from a compliant substrate. In the uncompressed state, as shown in FIG. 25 , the sidewalls of the bracket 1480 extend beyond the tissue treatment surface of the jaws 1472 . As tissue is compressed between the jaws 1450, 1470, the compressed tissue exerts a biasing force on the sidewalls of the bracket 1480, thereby further exposing the tapered edge 1474f of the electrode 1474.

本公开描述的钳口中的一者或多者包括止动构件或间隙设置构件,其是从端部执行器的钳口的组织治疗表面中的一者或两者向外延伸的特征部。止动构件有助于在闭合配置中维持钳口之间的分离或预定间隙,其中在钳口之间没有组织。在至少一个示例中,托架1480的侧壁限定此类止动构件。在另一个示例中,止动构件可呈绝缘柱或横向延伸的弹簧偏置特征部的形式,其允许相对钳口之间的间隙与闭合配置以基于夹持负载而变化。One or more of the jaws described in this disclosure include stop members or gap setting members that are features extending outwardly from one or both of the tissue treatment surfaces of the jaws of the end effector. The stop member helps maintain the separation or predetermined gap between the jaws in a closed configuration, wherein there is no tissue between the jaws. In at least one example, the sidewalls of bracket 1480 define such stop members. In another example, the stop member may be in the form of an insulating post or a laterally extending spring biased feature that allows the clearance and closed configuration between opposing jaws to vary based on clamping load.

大多数电外科发生器使用恒定功率模式。在恒定功率模式下,功率输出保持恒定,因为阻抗增加。在恒定功率模式中,电压随着阻抗增加而增加。增加的电压导致对组织的热损伤。GEM聚焦钳口1250、1270的能量输出,例如,通过控制电极1252、1272、1274、1260、1294、1472、1452、1474的尺寸和形状,如上所述,并且基于组织阻抗调制功率水平以产生低压等离子体。Most electrosurgical generators use constant power mode. In constant power mode, the power output remains constant because the impedance increases. In constant power mode, the voltage increases as the impedance increases. The increased voltage results in thermal damage to the tissue. The energy output of the GEM focusing jaws 1250, 1270, eg, by controlling the size and shape of the electrodes 1252, 1272, 1274, 1260, 1294, 1472, 1452, 1474, as described above, and modulating the power level based on tissue impedance to produce low voltages plasma.

在某些情况下,GEM维持在外科手术部位处切割所需的恒定最小电压。发生器(例如,1100)调节功率以便将电压维持在尽可能接近外科手术部位处切割所需的最小电压。为了获得弧等离子体和切割,电流被电压从电极1252、1272、1274、1260、1294、1472、1452、1474的逐渐变窄部分推动到组织。在某些示例中,维持大约200伏的最小电压。用大于200伏的切割增加了热损伤,并且用小于200伏切割导致组织中的最小电弧放电和阻力。因此,发生器(例如,1100)调节功率以确保利用可能仍将形成弧等离子体和切割的最小电压。In some cases, the GEM maintains a constant minimum voltage required to cut at the surgical site. The generator (eg, 1100) regulates the power to maintain the voltage as close as possible to the minimum voltage required for cutting at the surgical site. To achieve arc plasma and cutting, current is driven by a voltage from tapered portions of electrodes 1252, 1272, 1274, 1260, 1294, 1472, 1452, 1474 to the tissue. In some examples, a minimum voltage of about 200 volts is maintained. Cutting with greater than 200 volts increased thermal damage, and cutting with less than 200 volts resulted in minimal arcing and drag in the tissue. Therefore, the generator (eg, 1100) adjusts the power to ensure that the minimum voltage that is likely to still form arc plasma and cut is utilized.

主要参考图26,外科器械1500包括端部执行器1400。外科器械1500在许多方面类似于美国专利申请代理人案卷号END9234USNP2/190717-2中描述的其他外科器械。结合此类外科器械在其他地方描述的各种致动和关节运动机构可类似地用于关节运动和/或致动外科器械1500。为简洁起见,本文不再重复这种机制。Referring primarily to FIG. 26 , surgical instrument 1500 includes end effector 1400 . Surgical instrument 1500 is similar in many respects to other surgical instruments described in US Patent Application Attorney Docket No. END9234USNP2/190717-2. Various actuation and articulation mechanisms described elsewhere in connection with such surgical instruments may similarly be used to articulate and/or actuate surgical instrument 1500 . For brevity, this paper does not repeat this mechanism.

端部执行器1400包括端部执行器框架组件11210,该端部执行器框架组件包括可旋转地支撑在近侧框架外壳11230中的远侧框架构件11220。在所示的示例中,远侧框架构件11220通过远侧框架构件11220上的环形肋可旋转地附接到近侧框架外壳11230,该环形肋被接收在近侧框架外壳11230中的环形凹槽内。The end effector 1400 includes an end effector frame assembly 11210 that includes a distal frame member 11220 rotatably supported in a proximal frame housing 11230. In the example shown, the distal frame member 11220 is rotatably attached to the proximal frame housing 11230 by an annular rib on the distal frame member 11220 that is received in an annular groove in the proximal frame housing 11230 Inside.

电能由通过远侧框架构件11220或在其旁边向远侧延伸的一个或多个柔性电路传输到端部执行器1400的电极1452、1472、1474。在所示的示例中,柔性电路1490固定地附接到第一钳口1450。更具体地,柔性电路1490包括远侧部分1492,该远侧部分可固定地附接到第一钳口1450的暴露部分1491,该暴露部分不被绝缘层1464覆盖。Electrical energy is delivered to the electrodes 1452, 1472, 1474 of the end effector 1400 by one or more flexible circuits extending distally through or beside the distal frame member 11220. In the example shown, the flex circuit 1490 is fixedly attached to the first jaw 1450 . More specifically, the flex circuit 1490 includes a distal portion 1492 that is fixedly attachable to an exposed portion 1491 of the first jaw 1450 that is not covered by the insulating layer 1464 .

近侧框架外壳11230内的滑环组件1550允许端部执行器1400围绕外科器械1500的轴自由旋转,而没有将电能传输到电极1452、1472、1474的电路的电线缠结。在所示的示例中,柔性电路1490包括与滑环组件1550的滑环1550a可运动地接合的电触点1493。电能从滑环1550a传输到传导骨架1453,然后通过柔性电路1490传输到电极1452。由于电触点1493未固定地附接到滑环1550a,因此端部执行器1400围绕外科器械1500的轴的旋转是可允许的,而不会损失电触点1493与滑环1550a之间的电连接。此外,类似的电触点将电能传输到滑环1550a。The slip ring assembly 1550 within the proximal frame housing 11230 allows the end effector 1400 to rotate freely about the axis of the surgical instrument 1500 without tangling the wires that transmit electrical power to the circuits of the electrodes 1452, 1472, 1474. In the example shown, flex circuit 1490 includes electrical contacts 1493 that movably engage slip ring 1550a of slip ring assembly 1550 . Electrical energy is transferred from slip ring 1550a to conductive bobbin 1453 and then to electrodes 1452 through flex circuit 1490. Because the electrical contacts 1493 are not fixedly attached to the slip ring 1550a, rotation of the end effector 1400 about the axis of the surgical instrument 1500 is allowable without loss of electrical power between the electrical contacts 1493 and the slip ring 1550a connect. Additionally, similar electrical contacts transmit power to slip ring 1550a.

在图26所示的示例中,滑环1550a被配置成能够将双极能量传输到钳口1450的电极1452。滑环1550b与类似电触点和电极1472协作以限定双极能量的返回路径。此外,滑环1550c与类似电触点和电极1474协作以提供单极电能进入组织的通路。双极和单极电能可通过一个或多个电发生器(例如,发生器1100)递送到滑环1550a、1550b。双极和单极电能可同时或单独递送,如本文其他地方更详细地描述。In the example shown in FIG. 26 , slip ring 1550a is configured to transmit bipolar energy to electrode 1452 of jaw 1450 . Slip ring 1550b cooperates with similar electrical contacts and electrodes 1472 to define a return path for bipolar energy. Additionally, slip ring 1550c cooperates with similar electrical contacts and electrodes 1474 to provide access for monopolar electrical energy into the tissue. Bipolar and monopolar electrical energy may be delivered to slip rings 1550a, 1550b by one or more electrical generators (eg, generator 1100). Bipolar and monopolar electrical energy can be delivered simultaneously or separately, as described in more detail elsewhere herein.

在各种示例中,滑环1550a、1550b、1550c是集成电滑环,其具有机械特征部1556a、1556b、1556c,该机械特征部被配置成能够将滑环1550a、1550b、1550c耦接到绝缘支撑结构1557,或涂覆有绝缘材料的导电支撑结构,如图26所示。此外,滑环1550a、1550b、1550c足够间隔开以确保如果导电流体填充滑环1550a、1550b、1550c之间的空间,则将不会发生电路短路。在至少一个示例中,芯平坦冲压金属轴构件包括三维打印或包覆模制的非导电部分以用于支撑滑环组件1550。In various examples, slip rings 1550a, 1550b, 1550c are integrated electrical slip rings having mechanical features 1556a, 1556b, 1556c configured to couple slip rings 1550a, 1550b, 1550c to insulation Support structure 1557, or conductive support structure coated with insulating material, as shown in FIG. 26 . In addition, the slip rings 1550a, 1550b, 1550c are spaced apart sufficiently to ensure that if a conductive fluid fills the space between the slip rings 1550a, 1550b, 1550c, a short circuit will not occur. In at least one example, the core flat stamped metal shaft member includes a three-dimensional printed or overmolded non-conductive portion for supporting the slip ring assembly 1550 .

图27示出了电外科器械12000的一部分,其包括外科端部执行器12200,该外科端部执行器可以各种合适的方式通过关节运动接头耦接到近侧轴区段。在某些情况下,外科端部执行器12200包括端部执行器框架组件12210,该端部执行器框架组件包括可旋转地支撑在附接到关节运动接头的近侧框架外壳中的远侧框架构件12220。27 shows a portion of an electrosurgical instrument 12000 that includes a surgical end effector 12200 that may be coupled to a proximal shaft section by an articulation joint in various suitable manners. In some cases, surgical end effector 12200 includes an end effector frame assembly 12210 that includes a distal frame rotatably supported in a proximal frame housing attached to an articulation joint Component 12220.

外科端部执行器12200包括第一钳口12250和第二钳口12270。在所示的示例中,第一钳口12250枢转地固定到远侧框架构件12220,以围绕由第一钳口销12221限定的第一钳口轴线FJA相对于其选择性地枢转行进。第二钳口12270枢转地固定到第一钳口12250,以相对于第一钳口12250围绕由第二钳口销12272限定的第二钳口轴线SJA选择性地枢转行进。在所示的示例中,外科端部执行器12200采用致动器轭组件12610,其通过第二钳口附接销12273枢转地耦接到第二钳口12270以用于围绕钳口致动轴线JAA枢转行进,该钳口致动轴线接近且平行于第一钳口轴线FJA和第二钳口轴线SJA。致动器轭组件12610包括近侧螺纹驱动轴12614,该近侧螺纹驱动轴以螺纹方式接收在远侧锁定板12630中的螺纹孔12632中。螺纹驱动轴12614安装到致动器轭组件12610以用于其间的相对旋转。远侧锁定板12630被支撑用于在远侧框架构件12220内旋转行进。因此,远侧锁定板12630的旋转将导致致动器轭组件12610的轴向行进。The surgical end effector 12200 includes a first jaw 12250 and a second jaw 12270. In the example shown, the first jaw 12250 is pivotally secured to the distal frame member 12220 for selective pivotal travel relative thereto about a first jaw axis FJA defined by the first jaw pin 12221 . The second jaw 12270 is pivotally secured to the first jaw 12250 for selective pivotal travel relative to the first jaw 12250 about a second jaw axis SJA defined by the second jaw pin 12272 . In the example shown, the surgical end effector 12200 employs an actuator yoke assembly 12610 pivotally coupled to the second jaw 12270 by a second jaw attachment pin 12273 for actuation about the jaw The axis JAA travels pivotally, the jaw actuation axis being proximate to and parallel to the first and second jaw axes FJA and SJA. The actuator yoke assembly 12610 includes a proximal threaded drive shaft 12614 that is threadedly received in a threaded hole 12632 in the distal locking plate 12630. A threaded drive shaft 12614 is mounted to the actuator yoke assembly 12610 for relative rotation therebetween. The distal locking plate 12630 is supported for rotational advancement within the distal frame member 12220. Thus, rotation of the distal locking plate 12630 will cause axial travel of the actuator yoke assembly 12610.

在某些情况下,远侧锁定板12630包括端部执行器锁定系统12225的一部分。端部执行器锁定系统12225还包括双作用旋转锁定头12640,其附接到本文公开的各种类型的旋转驱动轴12602。锁定头12640包括第一多个径向布置的远侧锁定特征部12642,其适于锁定地接合形成在远侧锁定板12630中的多个面向近侧的径向凹槽或凹陷部12634。当远侧锁定特征部12642与远侧锁定板12630中的径向凹槽12634锁定接合时,旋转锁定头12640的旋转将致使远侧锁定板12630在远侧框架构件12220内旋转。同样在至少一个示例中,旋转锁定头12640还包括第二系列的面向近侧的近侧锁定特征部12644,其适于锁定地接合设置在远侧框架构件12220中的对应的一系列锁定凹槽。锁定弹簧12646用于将旋转锁定头向远侧偏置成与远侧锁定板12630锁定接合。在各种情况下,旋转锁定头12640可以本文所述的方式通过解锁电缆或其他构件向近侧拉动。在另一个布置中,旋转驱动轴12602可被配置成能够也轴向运动以使旋转锁定头12640在远侧框架构件12220内轴向运动。当旋转锁定头12640中的近侧锁定特征部12644与远侧框架构件12220中的一系列锁定凹槽锁定接合时,旋转驱动轴12602的旋转将导致外科端部执行器12200围绕轴轴线SA旋转。In some cases, the distal locking plate 12630 includes a portion of the end effector locking system 12225. The end effector locking system 12225 also includes a double-acting rotary locking head 12640 that attaches to the various types of rotary drive shafts 12602 disclosed herein. The locking head 12640 includes a first plurality of radially disposed distal locking features 12642 adapted to lockingly engage a plurality of proximally facing radial grooves or recesses 12634 formed in the distal locking plate 12630. Rotation of the rotational locking head 12640 will cause the distal locking plate 12630 to rotate within the distal frame member 12220 when the distal locking feature 12642 is in locking engagement with the radial groove 12634 in the distal locking plate 12630. Also in at least one example, the rotational locking head 12640 further includes a second series of proximally facing proximal locking features 12644 adapted to lockingly engage a corresponding series of locking grooves provided in the distal frame member 12220 . A locking spring 12646 is used to bias the rotational locking head distally into locking engagement with the distal locking plate 12630. In various cases, the rotational locking head 12640 can be pulled proximally by an unlocking cable or other member in the manner described herein. In another arrangement, the rotational drive shaft 12602 can be configured to also move axially to move the rotational locking head 12640 axially within the distal frame member 12220. When proximal locking features 12644 in rotational locking head 12640 are in locking engagement with a series of locking grooves in distal frame member 12220, rotation of rotational drive shaft 12602 will cause surgical end effector 12200 to rotate about shaft axis SA.

在某些情况下,第一钳口12250和第二钳口12270如下打开和关闭。为了打开和关闭钳口,如上详细讨论,旋转锁定头12640与远侧锁定板12630锁定接合。此后,旋转驱动轴12602在第一方向上的旋转将旋转远侧锁定板12630,该远侧锁定板将在远侧方向DD上轴向驱动致动器轭组件12610,并且使第一钳口12250和第二钳口12270朝向打开位置运动。旋转驱动轴12602在相反的第二方向上的旋转将向近侧轴向驱动致动器轭组件12610,并且将钳口12250、12270拉向关闭位置。为了使外科端部执行器12200绕轴轴线SA旋转,锁定电缆或构件被向近侧拉动以致使旋转锁定头12640与远侧锁定板12630脱离并且接合远侧框架构件12220。此后,当旋转驱动轴12602沿期望方向旋转时,远侧框架构件12220(和外科端部执行器12200)将绕轴轴线SA旋转。In some cases, the first jaw 12250 and the second jaw 12270 open and close as follows. To open and close the jaws, as discussed in detail above, the rotational locking head 12640 is in locking engagement with the distal locking plate 12630. Thereafter, rotation of the rotational drive shaft 12602 in the first direction will rotate the distal locking plate 12630, which will axially drive the actuator yoke assembly 12610 in the distal direction DD and cause the first jaw 12250 and the second jaw 12270 is moved towards the open position. Rotation of the rotational drive shaft 12602 in the opposite second direction will axially drive the actuator yoke assembly 12610 proximally and pull the jaws 12250, 12270 toward the closed position. To rotate the surgical end effector 12200 about the shaft axis SA, the locking cable or member is pulled proximally to cause the rotational locking head 12640 to disengage from the distal locking plate 12630 and engage the distal frame member 12220. Thereafter, when the rotational drive shaft 12602 is rotated in the desired direction, the distal frame member 12220 (and the surgical end effector 12200) will rotate about the shaft axis SA.

图27进一步示出了用于将钳口12250、12270电耦接到例如发生器3106、3107(图36)的一个或多个功率源的电连接组件5000。电连接组件5000限定延伸通过电外科器械12000的两个单独的电通路5001、5002,如图27所示。在第一配置中,电通路5001、5002协作以将双极能量递送到端部执行器12200,其中电通路5001、5002中的一者充当返回通路。此外,在第二配置中,电通路5001、5002单独和/或同时递送单极能量12200。因此,在第二配置中,电通路5001、5002两者可用作供应通路。此外,电连接组件5000可与本文其他地方描述的其他外科器械(例如,外科器械1500)一起使用,以将此类外科器械与一个或多个功率源(例如,发生器3106、3107)电耦接。Figure 27 further illustrates an electrical connection assembly 5000 for electrically coupling the jaws 12250, 12270 to one or more power sources such as the generators 3106, 3107 (Figure 36). The electrical connection assembly 5000 defines two separate electrical pathways 5001, 5002 extending through the electrosurgical instrument 12000, as shown in FIG. In the first configuration, the electrical paths 5001, 5002 cooperate to deliver bipolar energy to the end effector 12200, with one of the electrical paths 5001, 5002 serving as the return path. Furthermore, in the second configuration, the electrical pathways 5001, 5002 deliver the monopolar energy 12200 individually and/or simultaneously. Thus, in the second configuration, both the electrical paths 5001, 5002 can be used as supply paths. Additionally, electrical connection assembly 5000 may be used with other surgical instruments (eg, surgical instrument 1500 ) described elsewhere herein to electrically couple such surgical instruments to one or more power sources (eg, generators 3106 , 3107 ) catch.

在所示的示例中,使用柔性电路5004来实施电通路5001、5002,该柔性电路至少部分地延伸通过线圈管5005。如图30所示,柔性电路5004包括嵌入PCB(印刷电路板)衬底5009中的两个单独的导电迹线元件5006、5007。在某些情况下,柔性电路5004可附接到具有3D打印或包覆模制塑料壳体的芯平坦冲压金属轴构件以提供全轴填充/支撑。In the example shown, the electrical paths 5001 , 5002 are implemented using a flex circuit 5004 that extends at least partially through the coil bobbin 5005 . As shown in FIG. 30 , the flex circuit 5004 includes two separate conductive trace elements 5006 , 5007 embedded in a PCB (printed circuit board) substrate 5009 . In some cases, the flex circuit 5004 can be attached to a core flat stamped metal shaft member with a 3D printed or overmolded plastic housing to provide full shaft fill/support.

在另选示例中,如图32所示,延伸通过线圈管5005'的柔性电路5004'可包括在PCB衬底5009'中以螺旋轮廓扭曲的导电迹线元件5006'、5007',该导电迹线元件导致柔性电路5004'的总体尺寸减小,并且继而减少了线圈管5005'的内径/外径。图31和图32示出了柔性电路5004”、5004”'的其他示例,该柔性电路延伸通过线圈管5005'、5005”并且分别包括导电迹线元件5006”、5007”和5006”'、5007”',其包括用于尺寸减小的另选轮廓。例如,柔性电路5004”'包括折叠轮廓,而柔性电路5004'包括PCB 5009”的相对侧上的迹线元件5006”、5007”。In an alternative example, as shown in Figure 32, a flex circuit 5004' extending through coil bobbin 5005' may include conductive trace elements 5006', 5007' twisted in a helical profile in a PCB substrate 5009', the conductive traces The wire elements result in a reduction in the overall size of the flex circuit 5004' and, in turn, the inner/outer diameter of the coil bobbin 5005'. Figures 31 and 32 show other examples of flex circuits 5004", 5004"' extending through coil bobbins 5005', 5005" and including conductive trace elements 5006", 5007" and 5006"', 5007, respectively "', which includes alternative profiles for size reduction. For example, flex circuit 5004"' includes a folded profile, while flex circuit 5004' includes trace elements 5006", 5007" on opposite sides of PCB 5009".

除上述之外,通路5001、5002分别由迹线部分5006a-5006g、5007a-5007g限定。迹线部分5006b、5006c和迹线部分5007b、5007c呈限定环组件5010的环的形式,该环组件保持通过通路5001、5002的电连接,同时允许端部执行器12200相对于外科器械12000的轴旋转。此外,迹线部分5006e、5007e设置在致动器轭组件12610的相对侧上。在所示的示例中,部分5006e、5007e围绕被配置成能够接收第二钳口附接销12273的孔设置,如图27所示。迹线部分5006e、5007e被配置成能够与设置在第二钳口12270上的对应部分5006f、5007f电接触。此外,当第一钳口12250与第二钳口12270组装时,迹线部分5007f、5007g变得电连接。In addition to the above, vias 5001, 5002 are defined by trace portions 5006a-5006g, 5007a-5007g, respectively. Trace portions 5006b, 5006c and trace portions 5007b, 5007c are in the form of a ring that defines ring assembly 5010 that maintains electrical connection through passages 5001, 5002 while allowing end effector 12200 to be relative to the axis of surgical instrument 12000 rotate. Additionally, trace portions 5006e, 5007e are provided on opposite sides of the actuator yoke assembly 12610. In the example shown, portions 5006e, 5007e are disposed around holes configured to receive second jaw attachment pins 12273, as shown in FIG. 27 . The trace portions 5006e, 5007e are configured to be able to make electrical contact with corresponding portions 5006f, 5007f provided on the second jaw 12270. Furthermore, when the first jaw 12250 is assembled with the second jaw 12270, the trace portions 5007f, 5007g become electrically connected.

参考图29,柔性电路5014包括弹簧偏置迹线元件5016、5017。迹线元件5016、5017被配置成能够针对对应迹线元件施加偏置力以确保保持与其的电连接,特别是当对应迹线部分相对于彼此运动时。可修改通路5001、5002的迹线部分中的一者或多者以包括根据柔性电路5014的弹簧偏置迹线元件。Referring to FIG. 29 , the flex circuit 5014 includes spring biased trace elements 5016 , 5017 . The trace elements 5016, 5017 are configured to apply a biasing force against the corresponding trace element to ensure that the electrical connection therewith is maintained, particularly when the corresponding trace portions are moved relative to each other. One or more of the trace portions of vias 5001 , 5002 may be modified to include spring biased trace elements according to flex circuit 5014 .

参考图34,曲线图3000示出了由端部执行器1400或本公开的任何其他合适的端部执行器向由端部执行器1400抓持的组织施加的组织治疗循环3001的功率方案3005'。组织治疗循环3001包括组织凝固阶段3006,该组织凝固阶段3006包括羽化区段3008、组织加温区段3009和密封区段3010。组织治疗循环3001还包括组织横切或切割阶段3007。Referring to Figure 34, a graph 3000 illustrates a power scheme 3005' of a tissue treatment cycle 3001 applied by the end effector 1400 or any other suitable end effector of the present disclosure to tissue grasped by the end effector 1400 . The tissue treatment cycle 3001 includes a tissue coagulation stage 3006 that includes an eclosion section 3008 , a tissue warming section 3009 , and a sealing section 3010 . The tissue treatment cycle 3001 also includes a tissue transection or cutting phase 3007 .

图36示出了包括被配置成能够执行功率方案3005'的控制电路3101的电外科系统3100。在所示的示例中,控制电路3101包括具有存储器3103的形式的存储介质和处理器3102的控制器3104。存储介质存储用于执行功率方案3005'的程序指令。根据功率方案3005',电外科系统3100包括被配置成能够向端部执行器1400供应单极能量的发生器3106,以及被配置成能够向端部执行器1400供应双极能量的发生器3107。在所示的示例中,控制电路3101与外科器械1500和发生器3106、3107分开描绘。然而,在其他示例中,控制电路3101可与外科器械1500、发生器3106或发生器3107集成。在各个方面,功率方案3005'可以算法、方程和/或查找表的形式或任何合适的其他合适格式存储在存储器3103中。控制电路3101可致使发生器3106、3107根据功率方案3005'向端部执行器1400供应单极和/或双极能量。Figure 36 shows an electrosurgical system 3100 that includes a control circuit 3101 configured to implement a power scheme 3005'. In the example shown, the control circuit 3101 includes a storage medium in the form of a memory 3103 and a controller 3104 of the processor 3102 . The storage medium stores program instructions for executing the power scheme 3005'. According to power scheme 3005', electrosurgical system 3100 includes generator 3106 configured to supply monopolar energy to end effector 1400, and generator 3107 configured to supply bipolar energy to end effector 1400. In the example shown, control circuit 3101 is depicted separately from surgical instrument 1500 and generators 3106, 3107. However, in other examples, control circuit 3101 may be integrated with surgical instrument 1500 , generator 3106 , or generator 3107 . In various aspects, power scheme 3005' may be stored in memory 3103 in the form of algorithms, equations, and/or look-up tables, or any other suitable format that is suitable. Control circuit 3101 may cause generators 3106, 3107 to supply monopolar and/or bipolar energy to end effector 1400 according to power scheme 3005'.

在所示的示例中,电外科系统3100还包括与控制电路3101通信的反馈系统3109。例如,反馈系统3109可以是独立系统,或者可与外科器械1500集成。在各个方面,控制电路3101可采用反馈系统3109来执行预定功能,例如,当满足一个或多个预定条件时发出警报。在某些情况下,反馈系统3109可包括例如一个或多个视觉反馈系统,诸如显示屏、背光源和/或LED。在某些情况下,反馈系统3109可包括例如一个或多个音频反馈系统,诸如扬声器和/或蜂鸣器。在某些情况下,反馈系统3109可包括例如一个或多个触觉反馈系统。在某些情况下,反馈系统3109可包括例如视觉、音频和/或触觉反馈系统的组合。另外,电外科系统3100还包括与控制电路3101通信的用户界面3110。例如,用户界面3110可以是独立界面,或者可与外科器械1500集成。In the example shown, the electrosurgical system 3100 also includes a feedback system 3109 in communication with the control circuit 3101 . For example, feedback system 3109 may be a stand-alone system or may be integrated with surgical instrument 1500. In various aspects, the control circuit 3101 may employ the feedback system 3109 to perform predetermined functions, eg, to issue an alarm when one or more predetermined conditions are met. In some cases, feedback system 3109 may include, for example, one or more visual feedback systems, such as a display screen, backlights, and/or LEDs. In some cases, feedback system 3109 may include, for example, one or more audio feedback systems, such as speakers and/or buzzers. In some cases, feedback system 3109 may include, for example, one or more haptic feedback systems. In some cases, feedback system 3109 may include, for example, a combination of visual, audio, and/or haptic feedback systems. Additionally, the electrosurgical system 3100 also includes a user interface 3110 in communication with the control circuit 3101 . For example, user interface 3110 may be a stand-alone interface, or may be integrated with surgical instrument 1500.

曲线图3000描绘了y轴上的功率(W)和x轴上的时间。双极能量曲线3020跨越组织凝固阶段3005,并且单极能量曲线3030开始于组织凝固阶段3006并且终止于组织横切阶3007的结束。因此,组织治疗循环3001被配置成能够在整个组织凝固阶段3006中但不在组织横切阶段3007中将双极能量施加到组织,并且在凝固阶段3006的一部分和横切阶段3007中将单极能量施加到组织,如图34所示。Graph 3000 depicts power (W) on the y-axis and time on the x-axis. Bipolar energy curve 3020 spans tissue coagulation stage 3005 , and monopolar energy curve 3030 begins at tissue coagulation stage 3006 and ends at the end of tissue transection stage 3007 . Thus, the tissue treatment cycle 3001 is configured to be able to apply bipolar energy to tissue throughout the tissue coagulation phase 3006 but not during the tissue transection phase 3007 , and to apply monopolar energy to a portion of the coagulation phase 3006 and during the transection phase 3007 Apply to tissue as shown in Figure 34.

在各个方面,控制电路3101可从用户界面3110接收用户输入。用户输入致使控制电路3101在时间t1处初始化功率方案3005'的执行。另选地,功率方案3005'的执行的初始化可通过来自与控制电路3101通信的一个或多个传感器3111的传感器信号自动触发。例如,功率方案3005'可由控制电路3101响应于指示端部执行器1400的钳口1450、1470之间的预定间隙的传感器信号而自动触发。In various aspects, control circuitry 3101 may receive user input from user interface 3110 . User input causes control circuit 3101 to initiate execution of power scheme 3005 ' at time ti. Alternatively, initialization of execution of the power scheme 3005' may be automatically triggered by sensor signals from one or more sensors 3111 in communication with the control circuit 3101. For example, the power scheme 3005' may be automatically triggered by the control circuit 3101 in response to a sensor signal indicative of a predetermined gap between the jaws 1450, 1470 of the end effector 1400.

在羽化区段3008期间,控制电路3101致使发生器3107逐渐增加向端部执行器1400供应的双极能量功率以达到预定功率值P1(例如,100W),并且在整个羽化区段3008的剩余部分和组织加温区段3009中将双极能量功率维持在或基本上维持在预定功率值P1。预定功率值P1可存储在存储器3103中和/或可由用户通过用户界面3110提供。在密封区段3010期间,控制电路3101致使发生器3107逐渐减少双极能量功率。双极能量施加终止于组织凝固阶段3006的密封区段3010的结束,并且在切割/横切阶段3007开始之前。During the feather segment 3008 , the control circuit 3101 causes the generator 3107 to gradually increase the bipolar energy power supplied to the end effector 1400 to reach a predetermined power value P1 (eg, 100W), and throughout the remainder of the feather segment 3008 and tissue warming section 3009 to maintain bipolar energy power at or substantially at a predetermined power value P1. The predetermined power value P1 may be stored in the memory 3103 and/or may be provided by the user through the user interface 3110. During the sealing section 3010, the control circuit 3101 causes the generator 3107 to gradually reduce the bipolar energy power. Bipolar energy application ends at the end of the sealing section 3010 of the tissue coagulation stage 3006 and before the cutting/transection stage 3007 begins.

除上述之外,例如,在t2,控制电路3101致使发生器3107开始向端部执行器1400的电极1474供应单极能量功率。向组织的单极能量施加开始于羽化区段3008的结束和组织加温区段3009的开始。控制电路3101致使发生器3107逐渐增加单极能量功率以达到预定功率水平P2(例如,75W),并且在组织加温区段3009的剩余部分和密封区段3010的第一部分内维持或至少基本上维持预定功率水平P2。预定功率水平P2也可存储在存储器3103中和/或可由用户通过用户界面3110提供。In addition to the above, for example, at t 2 , the control circuit 3101 causes the generator 3107 to begin supplying monopolar energy power to the electrodes 1474 of the end effector 1400 . The application of monopolar energy to the tissue begins at the end of the feathering section 3008 and the beginning of the tissue warming section 3009. The control circuit 3101 causes the generator 3107 to gradually increase the monopolar energy power to reach a predetermined power level P2 (eg, 75W) and maintain or at least substantially within the remainder of the tissue warming segment 3009 and the first portion of the sealing segment 3010 The predetermined power level P2 is maintained. The predetermined power level P2 may also be stored in the memory 3103 and/or may be provided by the user through the user interface 3110.

在组织凝固阶段3006的密封区段3010期间,控制电路3101致使发生器3107逐渐增加供应到端部执行器1400的单极能量功率。组织横切阶段3007的开始由单极能量曲线3030中的拐点推动,其中在密封区段3010期间经历的单极能量的先前逐渐增加之后是逐步上升至足以横切凝固的组织的预定最大阈值功率水平P3(例如,150W)。During the sealing section 3010 of the tissue coagulation stage 3006 , the control circuit 3101 causes the generator 3107 to gradually increase the monopolar energy power supplied to the end effector 1400 . The onset of the tissue transection phase 3007 is driven by an inflection point in the monopolar energy curve 3030, where the previous gradual increase in monopolar energy experienced during the sealing segment 3010 is followed by a gradual rise to a predetermined maximum threshold power sufficient to transection the coagulated tissue Level P3 (eg 150W).

在t4处,控制电路3101致使发生器3107将供应到端部执行器1400的单极能量功率逐步上升到预定最大阈值功率水平P3,并且在预定时间段(t4-t5)或直到组织横切阶段3007的结束维持或至少基本上维持预定最大阈值功率水平P3。在所示的示例中,单极能量功率在t5由控制电路3101终止。组织横切机械地继续,因为钳口1450、1470继续对抓持的组织施加压力,直到在t6的组织横切阶段3007的结束。另选地,在其他示例中,控制电路3101可致使发生器3107继续向端部执行器1400供应单极能量能力直到组织横切阶段3007的结束。 At t4, the control circuit 3101 causes the generator 3107 to step up the monopolar energy power supplied to the end effector 1400 to a predetermined maximum threshold power level P3, and for a predetermined period of time (t4 - t5 ) or until the tissue The end of the traverse phase 3007 maintains, or at least substantially maintains, the predetermined maximum threshold power level P3. In the example shown, the monopolar energy power is terminated by the control circuit 3101 at t5. Tissue transection continues mechanically as the jaws 1450, 1470 continue to apply pressure to the grasped tissue until the end of the tissue transection phase 3007 at t6. Alternatively, in other examples, the control circuit 3101 may cause the generator 3107 to continue supplying the monopolar energy capability to the end effector 1400 until the end of the tissue transection phase 3007 .

控制电路3101可采用传感器3111的传感器读数和/或处理器3102的定时器时钟,以根据功率方案(例如功率方案3005')确定何时致使发生器3107和/或发生器3106开始、增加、减少和/或终止向端部执行器1400的能量供应。例如,控制电路3101可通过使一个或多个定时器时钟从一个或多个预定时间段(例如,t1-t2、t2-t3、t3-t4、t5-t6)向下计数来执行功率方案3005',这些预定时间段可存储在存储器3103中。尽管功率方案3005'是基于时间的,但控制电路3101可基于从传感器3111(例如组织阻抗传感器)中的一者或多者接收到的传感器读数来调整单独区段3008、3009、3010和/或阶段3006、3007中的任一者的预定时间段。Control circuit 3101 may employ sensor readings of sensor 3111 and/or timer clocks of processor 3102 to determine when to cause generator 3107 and/or generator 3106 to start, increase, decrease according to a power scheme (eg, power scheme 3005') and/or terminate the supply of energy to the end effector 1400 . For example, the control circuit 3101 may operate by clocking one or more timers from one or more predetermined time periods (eg, t 1 -t 2 , t 2 -t 3 , t 3 -t 4 , t 5 -t 6 ) Counting down to execute the power scheme 3005', these predetermined time periods may be stored in the memory 3103. Although the power scheme 3005' is time based, the control circuit 3101 may adjust the individual sections 3008, 3009, 3010 and/or based on sensor readings received from one or more of the sensors 3111 (eg, tissue impedance sensors) A predetermined time period for either of stages 3006, 3007.

端部执行器1400被配置成能够将三种不同能量模态递送到所抓持的组织。在羽化区段3008期间施加到组织的第一能量模态包括双极能量但不包括单极能量。第二能量模态是包括单极能量和双极能量的组合的混合能量模态,并且在组织加温阶段3009和组织密封阶段3010期间施加到组织。最后,第三能量模态包括单极能量但不包括双极能量,并且在切割阶段3007期间施加到组织。在各个方面,第二能量模态包括作为单极能量和双极能量的功率水平的总和3040的功率水平。在至少一个示例中,第二能量模态的功率水平包括最大阈值Ps(例如,120W)。The end effector 1400 is configured to deliver three different energy modalities to grasped tissue. The first energy modality applied to the tissue during the feathering section 3008 includes bipolar energy but not monopolar energy. The second energy modality is a hybrid energy modality comprising a combination of monopolar energy and bipolar energy, and is applied to the tissue during the tissue warming phase 3009 and the tissue sealing phase 3010 . Finally, the third energy modality includes monopolar energy but not bipolar energy, and is applied to the tissue during cutting stage 3007 . In various aspects, the second energy modality includes a power level that is the sum 3040 of power levels of monopolar energy and bipolar energy. In at least one example, the power level of the second energy modality includes a maximum threshold Ps (eg, 120W).

在各个方面,控制电路3101致使单极能量和双极能量从两个不同发生器3106、3107递送到端部执行器1400。在至少一个示例中,可使用另一个发生器的返回路径,或者利用另一个发生器的附接电极来短接到非预期组织交互来检测来自发生器3106、3107中的一者的能量。因此,通过不预期的返回路径的能量寄生损失可由连接到返回路径的发生器检测。通过实现使用之间的电压、功率、波形或定时可减轻无意导电路径。In various aspects, the control circuit 3101 causes monopolar and bipolar energy to be delivered to the end effector 1400 from the two different generators 3106, 3107. In at least one example, energy from one of the generators 3106, 3107 can be detected using the return path of the other generator, or shorting to unintended tissue interaction with the other generator's attached electrodes. Therefore, parasitic losses of energy through the unintended return path can be detected by the generator connected to the return path. Unintentional conductive paths can be mitigated by implementing voltage, power, waveform, or timing between uses.

外科器械1500的柔性电路内的集成传感器可在不应存在电势时检测电极/导电路径的供能/短路,并且一旦感测到无意使用,防止导电路径的能力。此外,还可利用防止从一个发生器向下到另一发生器的源的串扰的定向电子门控元件。Integrated sensors within the flex circuit of surgical instrument 1500 can detect energization/shorting of electrodes/conductive paths when the potential should not be present, and prevent the ability of the conductive paths once inadvertent use is sensed. In addition, directional electronic gating elements that prevent crosstalk from one generator down to the source of another generator can also be utilized.

本公开所描述的电极中的一个或多个电极(例如,与钳口1450、1470连接的电极1452、1472、1474)可包括分段图案,其具有当电极由发生器(例如,发生器1100)供能时连接在一起的区段。然而,当电极未被供能时,区段被分离以防止电路跨电极短接到钳口的其他区域。One or more of the electrodes described in this disclosure (eg, electrodes 1452 , 1472 , 1474 connected to jaws 1450 , 1470 ) can include a segmented pattern that has a ) are connected together when energized. However, when the electrodes are not energized, the segments are separated to prevent the circuit from shorting across the electrodes to other areas of the jaws.

在各个方面,热阻电极材料与端部执行器1400一起使用。材料可被配置成能够抑制通过处于或高于预定温度水平的电极的电流,但继续允许低于温度阈值的电极的其他部分的供能。In various aspects, thermally resistive electrode materials are used with end effector 1400 . The material may be configured to inhibit current flow through the electrode at or above a predetermined temperature level, but continue to allow energization of other portions of the electrode below the temperature threshold.

图37示出了表示另选功率方案3005”的表,该另选功率方案可存储在存储器3103中,并且可由处理器3102以与功率方案3005'类似的方式执行。在执行功率方案3005”时,控制电路3101除了发生器3106、3107的设置功率值的时间之外或代替时间,依赖于钳口孔。因此,功率方案3005”是基于钳口孔的功率方案。Figure 37 shows a table representing an alternative power scheme 3005" that may be stored in memory 3103 and executed by processor 3102 in a similar manner to power scheme 3005'. When executing power scheme 3005" , the control circuit 3101 is dependent on the jaw holes in addition to or instead of the time at which the generators 3106, 3107 set the power value. Therefore, the power scheme 3005" is a jaw hole based power scheme.

在所示的示例中,来自功率方案3005”的钳口孔d0、d1、d2、d3、d4对应于来自功率方案3005'的时间值t1、t2、t3、t4。因此,羽化区段对应于从约d1至约d2(例如,约0.700”至约0.500”)的钳口孔。此外,组织加温区段对应于从约d2至约d3(例如,约0.500”至约0.300”)的钳口孔。进一步地,密封区段对应于从约d2至约d3(例如,约0.030”至约0.010”)的钳口孔。进一步地,组织切割阶段对应于从约d3至约d4(例如,约0.010”至约0.003”)的钳口孔。In the example shown, the jaw holes d 0 , d 1 , d 2 , d 3 , d 4 from power scheme 3005 ″ correspond to time values t 1 , t 2 , t 3 , t from power scheme 3005 ′ 4. Thus, the feathering segment corresponds to a jaw hole from about d1 to about d2 (eg, about 0.700" to about 0.500"). Additionally, the tissue warming segment corresponds to from about d2 to about d3 (eg, about 0.500" to about 0.300"). Further, the sealing section corresponds to a jaw hole from about d2 to about d3 (eg, about 0.030" to about 0.010"). Further , the tissue cutting stage corresponds to a jaw hole from about d3 to about d4 (eg, about 0.010" to about 0.003").

因此,控制电路3101被配置成能够当来自传感器3111中的一个或多个传感器的读数对应于例如预定钳口孔d1时,致使发生器3106开始向端部执行器1400供应双极能量功率,由此初始化羽化区段。同样,控制电路3101被配置成能够当来自传感器3111中的一个或多个传感器的读数对应于例如预定钳口孔d2时,致使发生器3106停止向端部执行器1400供应双极能量功率,由此终止羽化区段。同样,控制电路3101被配置成能够当来自传感器3111中的一个或多个传感器的读数对应于例如预定钳口孔d2时,致使发生器3107开始向端部执行器1400供应的单极能量功率,由此初始化加温区段。Accordingly, the control circuit 3101 is configured to cause the generator 3106 to begin supplying bipolar energy power to the end effector 1400 when readings from one or more of the sensors 3111 correspond to, for example, a predetermined jaw hole d1, by This initializes the feathered section. Likewise, the control circuit 3101 is configured to cause the generator 3106 to cease supplying bipolar energy power to the end effector 1400 when readings from one or more of the sensors 3111 correspond to, for example, a predetermined jaw hole d2, by This terminates the feathered segment. Likewise, the control circuit 3101 is configured to cause the generator 3107 to begin supplying monopolar energy power to the end effector 1400 when readings from one or more of the sensors 3111 correspond to, for example, a predetermined jaw hole d2, The warm-up section is thus initialized.

在所示的示例中,钳口孔由钳口1450、1470上的两个对应基准点之间的距离限定。当钳口1450、1470处于其间没有组织的闭合配置时,对应的基准点彼此接触。另选地,钳口孔可由沿与钳口1450、1470相交,并且与中心延伸通过端部执行器1500的纵向轴线垂直地相交的线测量的钳口1450、1470之间的距离限定。另选地,钳口孔可由分别与钳口1450、1470相交的第一和第二平行线之间的距离限定。距离沿垂直于第一和第二平行线延伸,并且延伸通过第一平行线和第一钳口1450之间的交叉点,并且通过第二平行线与第二钳口1470之间的交叉点的线测量。In the example shown, the jaw holes are defined by the distance between two corresponding reference points on the jaws 1450, 1470. When the jaws 1450, 1470 are in a closed configuration with no tissue therebetween, the corresponding fiducials touch each other. Alternatively, the jaw aperture may be defined by the distance between the jaws 1450 , 1470 measured along a line that intersects the jaws 1450 , 1470 and intersects centrally extending through the longitudinal axis of the end effector 1500 . Alternatively, the jaw holes may be defined by the distance between first and second parallel lines intersecting the jaws 1450, 1470, respectively. The distance extends perpendicular to the first and second parallel lines and extends through the intersection between the first parallel line and the first jaw 1450 and through the intersection between the second parallel line and the second jaw 1470 line measurement.

参考图35,在各种示例中,电外科系统3100(图36)被配置成能够使用功率方案3005来执行组织治疗循环4003。组织治疗循环4003包括初始组织接触阶段4013、组织凝固阶段4006和组织横切阶段4007。组织接触阶段4013包括开放配置区段4011,其中组织不位于钳口1450和1470之间,以及正确取向区段4012,其中钳口1450和1470相对于期望的组织治疗区域适当地定位。组织凝固阶段4006包括羽化区段4008、组织加温区段4009和密封区段3010。组织横切阶段4007包括组织切割区段。组织治疗循环4003涉及根据功率方案3005单独且同时向组织治疗区域施加双极能量和单极能量。组织治疗循环4003在许多方面类似于组织治疗循环3001,该组织治疗循环为简洁起见在本文中不再重复。Referring to FIG. 35 , in various examples, electrosurgical system 3100 ( FIG. 36 ) is configured to be capable of performing tissue treatment cycle 4003 using power scheme 3005 . The tissue treatment cycle 4003 includes an initial tissue contact phase 4013 , a tissue coagulation phase 4006 and a tissue transection phase 4007 . Tissue contact stage 4013 includes open configuration section 4011, wherein tissue is not located between jaws 1450 and 1470, and correct orientation section 4012, wherein jaws 1450 and 1470 are properly positioned relative to the desired tissue treatment area. The tissue coagulation stage 4006 includes an eclosion section 4008, a tissue warming section 4009, and a sealing section 3010. Tissue transection stage 4007 includes a tissue cutting segment. Tissue treatment cycle 4003 involves the separate and simultaneous application of bipolar and monopolar energy to the tissue treatment area according to power scheme 3005 . Tissue treatment cycle 4003 is similar in many respects to tissue treatment cycle 3001, which is not repeated herein for brevity.

图35示出了曲线图4000,其表示在许多方面类似于功率方案3005'的功率方案3005。例如,控制电路3101可以与功率方案3005'类似的方式执行功率方案3005,以在组织治疗循环4001的三个连续时间段向组织治疗区域递送三种不同能量模态。在羽化区段4008中,包括双极能量但不包括单极能量的第一能量模态在t1至t2施加到组织治疗区域。在组织加温区段4009和组织密封区段中,作为包括单极能量和双极能量的组合的混合能量模态的第二能量模态在t2至t4施加到组织治疗区域。最后,在组织横切阶段4007中,包括单极能量但不包括双极能量4010的第三能量模态在t4至t5施加到组织。此外,第二能量模态包括作为单极能量和双极能量的功率水平的总和的功率水平。在至少一个示例中,第二能量模态的功率水平包括最大阈值(例如,120W)。在各个方面,功率方案3005可从两个不同发生器3106、3107递送到端部执行器1400。为了简洁起见,与功率方案3005'的方面类似的功率方案3005的附加方面在本文中不再以相同细节级别进行重复。Figure 35 shows a graph 4000 representing a power scheme 3005 that is similar in many respects to the power scheme 3005'. For example, control circuit 3101 may execute power scheme 3005 in a manner similar to power scheme 3005' to deliver three different energy modalities to the tissue treatment area during three consecutive time periods of tissue treatment cycle 4001. In the feathering section 4008, a first energy modality including bipolar energy but not monopolar energy is applied to the tissue treatment area at t 1 to t 2 . In the tissue warming section 4009 and the tissue sealing section, a second energy modality, which is a hybrid energy modality comprising a combination of monopolar and bipolar energy, is applied to the tissue treatment area at t 2 to t 4 . Finally, in the tissue transection stage 4007, a third energy modality including monopolar energy but not bipolar energy 4010 is applied to the tissue at t 4 to t 5 . Furthermore, the second energy modality includes a power level that is the sum of the power levels of monopolar energy and bipolar energy. In at least one example, the power level of the second energy modality includes a maximum threshold (eg, 120W). In various aspects, the power scheme 3005 may be delivered to the end effector 1400 from two different generators 3106, 3107. For the sake of brevity, additional aspects of power scheme 3005 that are similar to aspects of power scheme 3005' are not repeated herein at the same level of detail.

在各个方面,控制电路3101致使发生器3106、3107基于一个或多个测量参数(包括组织阻抗4002、钳口马达速度27920d、钳口马达力27920c、端部执行器1400的钳口孔27920b和/或实现端部执行器闭合的马达的电流汲取)来调整由端部执行器1400施加到组织治疗区域的功率方案3005的双极和/或单极功率水平。图35是示出此类测量参数与功率方案3005之间随时间推移的相关性的曲线图4000。In various aspects, control circuitry 3101 causes generators 3106, 3107 to cause generators 3106, 3107 based on one or more measured parameters including tissue impedance 4002, jaw motor speed 27920d, jaw motor force 27920c, jaw aperture 27920b of end effector 1400 and/or or current draw of a motor that achieves end effector closure) to adjust the bipolar and/or monopolar power levels of the power scheme 3005 applied by the end effector 1400 to the tissue treatment area. FIG. 35 is a graph 4000 showing the correlation between such measurement parameters and the power scheme 3005 over time.

在各种示例中,控制电路3101致使发生器3106、3107基于由一个或多个传感器3111确定的一个或多个参数(例如,组织阻抗4002、钳口/闭合马达速度27920d、钳口/闭合马达力27920c、端部执行器1400的钳口间隙/孔27920b和/或马达的电流汲取)来调整由端部执行器1400施加到组织治疗区域的功率方案(例如,功率方案3005、3005')的功率水平。例如,控制电路3101可致使发生器3106、3107基于钳口1450、1470内的压力来调整功率水平。In various examples, control circuit 3101 causes generators 3106, 3107 to be based on one or more parameters determined by one or more sensors 3111 (eg, tissue impedance 4002, jaw/closure motor speed 27920d, jaw/closure motor force 27920c, the jaw gap/bore 27920b of the end effector 1400 and/or the current draw of the motor) to adjust the power scheme (eg, power scheme 3005, 3005') applied by the end effector 1400 to the tissue treatment area power level. For example, the control circuit 3101 may cause the generators 3106, 3107 to adjust the power level based on the pressure within the jaws 1450, 1470.

在至少一个示例中,功率水平与钳口1450、1470内的压力成反比。控制电路3101可利用这样的逆相关性来基于压力值选择功率水平。在至少一个示例中,采用实现端部执行器闭合的马达的电流汲取来确定压力值。另选地,由控制电路3101利用的逆相关性可直接基于电流汲取作为压力的代理。在各种示例中,钳口1450、1470施加到组织治疗区域的压缩越大,控制电路3101设置的功率水平越低,这有助于最小化组织的粘附和无意切割。In at least one example, the power level is inversely proportional to the pressure within the jaws 1450 , 1470 . The control circuit 3101 may utilize such an inverse correlation to select a power level based on the pressure value. In at least one example, the pressure value is determined using the current draw of a motor that achieves end effector closure. Alternatively, the inverse correlation utilized by the control circuit 3101 may be directly based on current draw as a proxy for pressure. In various examples, the greater the compression applied by the jaws 1450, 1470 to the tissue treatment area, the lower the power level set by the control circuit 3101, which helps minimize tissue adhesion and unintentional cutting.

曲线图4000提供了组织阻抗4002、钳口/闭合马达速度27920d、钳口/闭合马达力27920c、端部执行器1400的钳口间隙/孔27920b和/或影响端部执行器闭合的马达的电流汲取的测量参数的若干提示,其可在组织治疗循环4003期间触发对于组织的双极能量和/或单极能量施加的激活、调整和/或终止。Graph 4000 provides tissue impedance 4002, jaw/closure motor speed 27920d, jaw/closure motor force 27920c, jaw gap/bore 27920b of the end effector 1400 and/or the current of the motor affecting end effector closure Several cues of the measured parameters drawn, which can trigger activation, adjustment, and/or termination of bipolar energy and/or monopolar energy application to the tissue during tissue treatment cycle 4003.

控制电路3101可依赖于在组织治疗循环4003中执行和/或调整默认功率方案3005的此类提示中的一者或多者。在某些示例中,控制电路3101可依赖于一个或多个传感器3111的传感器读数,以检测例如一个或多个所监测的参数何时满足可存储在存储器3103中的一个或多个预定条件。一个或多个预定条件可达到预定阈值和/或检测所监测参数中的一个或多个参数的有意义增加和/或减少。预定条件的满足或其缺乏构成用于执行和/或调整组织治疗循环4003中的默认功率方案3005的部分的触发/确认点。控制电路3101可仅在执行和/或调整功率方案时依赖于提示,或者另选地,使用提示来指导或调整基于时间的功率方案(例如功率方案3005')的定时器时钟。The control circuit 3101 may rely on one or more of such prompts to perform and/or adjust the default power scheme 3005 in the tissue treatment cycle 4003 . In some examples, control circuitry 3101 may rely on sensor readings from one or more sensors 3111 to detect, for example, when one or more monitored parameters satisfy one or more predetermined conditions that may be stored in memory 3103 . One or more predetermined conditions may reach predetermined thresholds and/or detect meaningful increases and/or decreases in one or more of the monitored parameters. The fulfillment of the predetermined condition, or lack thereof, constitutes a trigger/confirmation point for performing and/or adjusting part of the default power scheme 3005 in the tissue treatment cycle 4003. Control circuitry 3101 may rely on hints only when executing and/or adjusting power schemes, or alternatively, use hints to direct or adjust timer clocks for time-based power schemes (eg, power scheme 3005').

例如,组织阻抗突然减少(A1)到预定阈值(Z1),单独发生或者与钳口马达力增加(A2)到预定阈值(F1)和/或钳口孔减少(A3)到预定阈值(d1)(例如,0.5”)一致地发生可触发控制电路3101,以通过激活双极能量向组织治疗区域的施加来开始组织凝固阶段4006的羽化区段4008。控制电路3101可发信号通知发生器3106以开始向端部执行器1400供应双极功率。For example, a sudden decrease (A 1 ) in tissue impedance to a predetermined threshold (Z 1 ), either alone or in conjunction with an increase (A 2 ) in jaw motor force to a predetermined threshold (F 1 ) and/or a decrease (A 3 ) in jaw hole to The consistent occurrence of a predetermined threshold (dl) (eg, 0.5") may trigger the control circuit 3101 to initiate the feathering section 4008 of the tissue coagulation stage 4006 by activating the application of bipolar energy to the tissue treatment area. The control circuit 3101 may signal The generator 3106 is notified to begin supplying bipolar power to the end effector 1400.

此外,在双极能量的激活之后的钳口马达速度减少(B1)到预定值(v1)触发控制电路3101以发信号通知发生器3106,从而将双极能量的功率水平(B2)稳定在恒定或至少基本上恒定值(例如,100W)。Additionally, the reduction (B 1 ) of the jaw motor speed to a predetermined value (v1 ) after activation of the bipolar energy triggers the control circuit 3101 to signal the generator 3106 to stabilize the power level (B 2 ) of the bipolar energy At a constant or at least substantially constant value (eg, 100W).

在又另一个示例中,在t2的从羽化区段4008到加温区段4009的移位(其触发对于组织治疗区域的单极能量施加的激活(D1))与以下一致:钳口马达力增加(C2)到预定阈值(F2)、钳口孔减少(C3)到预定阈值(例如,0.03”)和/或组织阻抗减少(C1)到预定值Z2。条件C1、C2、C3中的一个或某些情况下的两个或某些情况下的全部的满足致使控制电路3101使发生器3101开始向组织治疗区域施加单极能量。在另一个示例中,在或大约时间t2的条件C1、C2、C3中的一个或某些情况下的两个或某些情况下的全部的满足触发将单极能量施加到组织治疗区域。In yet another example, the displacement at t2 from the feathering section 4008 to the warming section 4009, which triggers the activation of monopolar energy application to the tissue treatment area (D1), is consistent with: jaw motor The force increases ( C2 ) to a predetermined threshold (F2 ) , the jaw hole decreases (C3 ) to a predetermined threshold (eg, 0.03"), and/or the tissue impedance decreases (C1) to a predetermined value Z2 . Conditions C1, C2 Satisfaction of one or both of C3, C3, or both of some cases causes the control circuit 3101 to cause the generator 3101 to begin applying monopolar energy to the tissue treatment area. In another example, at or about time Satisfaction of one or in some cases both or all of the conditions C1, C2, C3 of t2 triggers the application of monopolar energy to the tissue treatment area.

由发生器3107响应于控制电路3101的激活信号对单极能量进行激活会致使单极能量和双极能量的混合(D1)被递送到组织治疗区域,这导致由阻抗中的从Z2至Z3的较快减少(E1)(与在激活单极能量之前的稳定减少(C1)相比)表征的阻抗曲线中的偏移。在所示的示例中,组织阻抗Z3限定组织治疗循环4003的最小阻抗。Activation of monopolar energy by generator 3107 in response to an activation signal from control circuit 3101 causes a mixture of monopolar and bipolar energy (D 1 ) to be delivered to the tissue treatment area, which results in a change in impedance from Z 2 to A faster decrease (E1) of Z3 (compared to a steady decrease (C1) before activation of the monopolar energy) characterizes the shift in the impedance curve. In the example shown, tissue impedance Z 3 defines the minimum impedance for tissue treatment cycle 4003 .

在所示的示例中,如果(E1)最小阻抗值Z3与(E3)预定最大钳口马达力阈值(F3)和/或(E2)预定钳口孔阈值范围(例如,0.01"-0.003")一致或至少基本上一致,则控制电路3101确定实现可接受的密封。条件E1、E2、E3中的一个或某些情况下的两个或某些情况下的全部的满足发信号通知控制电路3101从加温区段4009移位到密封区段4010。In the example shown, if (E 1 ) a minimum impedance value Z 3 and (E 3 ) a predetermined maximum jaw motor force threshold (F 3 ) and/or (E 2 ) a predetermined jaw hole threshold range (eg, 0.01 "-0.003") consistent or at least substantially consistent, the control circuit 3101 determines that an acceptable seal is achieved. Satisfaction of one or both of the conditions E1 , E2 , E3 or all of the conditions in some cases signals the control circuit 3101 to shift from the warming section 4009 to the sealing section 4010 .

除上述之外,超出最小阻抗值Z3,在t4,阻抗水平逐渐增加到对应于密封区段4010的结束的阈值Z4。阈值Z4的满足致使控制电路3101发信号通知发生器3107以逐步增加单极功率水平,以开始组织横切阶段4007,并且发信号通知发生器3106以终止将双极能量施加到组织治疗区域。In addition to the above, beyond the minimum impedance value Z 3 , at t 4 the impedance level gradually increases to a threshold value Z 4 corresponding to the end of the sealing section 4010 . Satisfaction of threshold Z4 causes control circuit 3101 to signal generator 3107 to gradually increase the monopolar power level to initiate tissue transection phase 4007 and to signal generator 3106 to terminate application of bipolar energy to the tissue treatment area.

在各种示例中,控制电路3101可被配置成能够(G2)验证随着(G1)阻抗逐渐从其最小值Z3增加,钳口马达力减少,和/或在逐步增加单极能量的功率水平以切割组织之前,(G3)钳口马达力已经减少到预定阈值(例如,0.01"-0.003")。In various examples, the control circuit 3101 may be configured to be able to (G 2 ) verify that as the (G 1 ) impedance gradually increases from its minimum value Z 3 , the jaw motor force decreases, and/or the unipolar energy is gradually increased The (G 3 ) jaw motor force has been reduced to a predetermined threshold (eg, 0.01"-0.003") before the power level to cut tissue.

然而,如果钳口马达力继续增加,则控制电路3101可暂停将单极能量施加到组织治疗区域持续预定时间段,以允许钳口马达力开始减少。另选地,控制电路可发信号通知发生器3107以去激活单极能量,并且仅使用双极能量完成密封。However, if the jaw motor force continues to increase, the control circuit 3101 may suspend the application of monopolar energy to the tissue treatment area for a predetermined period of time to allow the jaw motor force to begin to decrease. Alternatively, the control circuit may signal the generator 3107 to deactivate the monopolar energy and use only the bipolar energy to complete the seal.

在某些情况下,控制电路3101可采用反馈系统3109来警告用户和/或提供指令或建议以暂停单极能量的施加。在某些情况下,控制电路3101可指示用户利用机械刀以横切组织。In some cases, the control circuit 3101 may employ a feedback system 3109 to alert the user and/or provide instructions or recommendations to suspend the application of monopolar energy. In some cases, the control circuit 3101 may instruct the user to utilize a mechanical knife to transect tissue.

在所示的示例中,控制电路3101保持(H)逐步上升的单极功率,直到在组织阻抗中检测到尖峰(I)。控制电路3101可在从Z3到Z4的逐渐增加之后检测到阻抗水平中的到Z5的尖峰(I)之后,致使发生器3107终止(J)将单极能量施加到组织。尖峰指示组织治疗循环4003的完成。In the example shown, the control circuit 3101 maintains (H) a ramped up monopolar power until a spike (I) is detected in tissue impedance. Control circuit 3101 may cause generator 3107 to terminate (J) the application of monopolar energy to the tissue after detecting a spike (I ) in impedance level to Z5 following a gradual increase from Z3 to Z4 . The spike indicates the completion of the tissue treatment cycle 4003.

在各种示例中,控制电路3101防止钳口1450、1470的电极在达到合适的闭合阈值之前被供能。闭合阈值可基于例如可存储在存储器3103中的预定钳口孔阈值和/或预定钳口马达力阈值。在此类示例中,控制电路3101可能不会通过请求治疗循环4003的用户界面3110作用于用户输入。在某些情况下,控制电路3101可通过通过反馈系统3109警告用户尚未达到合适的闭合阈值来响应。控制电路3101还可向用户提供超控选项。In various examples, the control circuit 3101 prevents the electrodes of the jaws 1450, 1470 from being energized until a suitable closure threshold is reached. The closure threshold may be based on a predetermined jaw hole threshold and/or a predetermined jaw motor force threshold, which may be stored in memory 3103, for example. In such examples, control circuitry 3101 may not act on user input through user interface 3110 requesting therapy cycle 4003 . In some cases, the control circuit 3101 may respond by alerting the user through the feedback system 3109 that an appropriate closure threshold has not been reached. The control circuit 3101 may also provide an override option to the user.

最终,在时间t4和t5之间,单极能量是仅递送的能量以便切割患者组织。当切割患者组织时,夹持端部执行器的钳口的力可变化。在用于夹持钳口的力27952从时间t3和t4之间维持的其稳态水平减少的情况下,由外科器械和/或外科中心识别高效和/或有效的组织切割。在用于夹持钳口的力27954从时间t3和t4之间维持的其稳态水平增加的情况下,由外科器械和/或外科中心识别低效和/或无效的组织切割。在此类情况下,可向用户传达错误。Finally, between times t 4 and t 5 , the monopolar energy is the only energy delivered to cut patient tissue. The force with which the jaws of the end effector are gripped may vary as the patient tissue is cut. Efficient and/or effective tissue cutting is identified by the surgical instrument and/or surgical center where the force 27952 for gripping the jaws is reduced from its steady state level maintained between times t3 and t4. Inefficient and/or ineffective tissue cuts are identified by the surgical instrument and/or surgical center as the force 27954 for gripping the jaws increases from its steady state level maintained between times t3 and t4 . In such cases, the error may be communicated to the user.

参考图38至图42,外科器械1601包括在许多方面类似于端部执行器1400、1500的端部执行器1600,为了简洁起见,这些端部执行器在本文中不再以相同细节级别进行重复。端部执行器1600包括第一钳口1650和第二钳口1670。第一钳口1650和第二钳口1670中的至少一者可运动以使端部执行器1600从打开配置转变到闭合配置,从而在第一钳口1650和第二钳口1670之间抓持组织(T)。电极1652、1672被配置成能够协作以将双极能量从双极能量源1610递送到组织,如图39所示。电极1674被配置成能够将单极能量从单极能量源1620递送到组织。返回垫1621限定用于单极能量的返回通路。在至少一个示例中,单极能量和双极能量同时(图36)或以交替方式递送到组织,如图36所示,以例如密封和/或切割组织。38-42, surgical instrument 1601 includes an end effector 1600 that is similar in many respects to end effectors 1400, 1500, which end effectors are not repeated herein at the same level of detail for the sake of brevity . The end effector 1600 includes a first jaw 1650 and a second jaw 1670 . At least one of the first jaw 1650 and the second jaw 1670 is movable to transition the end effector 1600 from an open configuration to a closed configuration to grip between the first jaw 1650 and the second jaw 1670 Organization (T). Electrodes 1652, 1672 are configured to cooperate to deliver bipolar energy from bipolar energy source 1610 to tissue, as shown in FIG. Electrode 1674 is configured to deliver monopolar energy from monopolar energy source 1620 to tissue. Return pad 1621 defines a return path for monopolar energy. In at least one example, monopolar energy and bipolar energy are delivered to tissue simultaneously (FIG. 36) or in an alternating fashion, as shown in FIG. 36, for example, to seal and/or cut tissue.

图42示出了电外科系统1607的简化示意图,该电外科系统包括可连接到包括端部执行器1600的电外科器械1601的单极功率源1620和双极功率源1610。电外科系统1607还包括可在与电极1672的连接配置和与电极1672的断开配置之间选择性地转变的导电电路1602。切换机构可由例如可打开和关闭导电电路1602的任何合适的开关构成。在连接配置中,电极1672被配置成能够与电极1652协作以将双极能量递送到组织,其中导电电路1602在穿过组织之后限定双极能量的返回路径。然而,在断开配置中,电极1672被隔离并且因此变为钳口1670上的惰性内部导电和外部绝缘结构。因此,在断开配置中,电极1652被配置成能够除了通过电极1674递送的单极能量之外或与其分离地将单极能量递送到组织。在另选示例中,电极1652而不是电极1672可在与导电电路1602的连接配置和断开配置之间转变,从而允许电极1672除了通过电极1674递送的单极能量之外或与其分离地向组织递送单极能量。42 shows a simplified schematic diagram of an electrosurgical system 1607 that includes a monopolar power source 1620 and a bipolar power source 1610 connectable to an electrosurgical instrument 1601 including an end effector 1600. The electrosurgical system 1607 also includes a conductive circuit 1602 that is selectively transitionable between a connected configuration with the electrode 1672 and a disconnected configuration with the electrode 1672 . The switching mechanism may consist of any suitable switch that can open and close the conductive circuit 1602, for example. In the connected configuration, the electrode 1672 is configured to cooperate with the electrode 1652 to deliver bipolar energy to tissue, wherein the conductive circuit 1602 defines a return path for the bipolar energy after passing through the tissue. In the open configuration, however, the electrodes 1672 are isolated and thus become an inert inner conductive and outer insulating structure on the jaws 1670. Thus, in the disconnected configuration, electrode 1652 is configured to deliver monopolar energy to tissue in addition to or separately from the monopolar energy delivered by electrode 1674. In an alternative example, electrode 1652, rather than electrode 1672, can transition between a connected configuration with conductive circuit 1602 and a disconnected configuration, allowing electrode 1672 to target tissue in addition to or separately from the monopolar energy delivered by electrode 1674 Delivers monopolar energy.

在各个方面,电外科器械1601还包括控制电路1604,该控制电路被配置成能够调整递送到组织的单极能量和双极能量的水平,以最小化对周围组织的非预期热损伤。调整可基于至少一个传感器的读数,例如温度传感器、阻抗传感器和/或电流传感器。在图41和图42所示的示例中,控制电路1604分别耦接到钳口1650、1670上的温度传感器1651、1671。控制电路1604基于传感器1651、1671的温度读数来调整递送到组织的单极能量和双极能量的水平。In various aspects, electrosurgical instrument 1601 also includes control circuitry 1604 configured to adjust the levels of monopolar and bipolar energy delivered to the tissue to minimize unintended thermal damage to surrounding tissue. The adjustment may be based on readings from at least one sensor, such as a temperature sensor, an impedance sensor, and/or a current sensor. In the example shown in Figures 41 and 42, the control circuit 1604 is coupled to temperature sensors 1651, 1671 on the jaws 1650, 1670, respectively. Control circuitry 1604 adjusts the levels of monopolar and bipolar energy delivered to the tissue based on temperature readings from sensors 1651, 1671.

在所示的示例中,控制电路1604包括具有存储器3103的形式的存储介质和处理器3102的控制器3104。存储器3103存储程序指令,该程序指令在由处理器3102执行时致使处理器3102基于从一个或多个传感器(例如,温度传感器1651、1671)接收的传感器读数调整递送到组织的单极能量和双极能量的水平。在各种示例中,如下文更详细地描述,控制电路1604可基于来自一个或多个传感器(例如,温度传感器1651、1671)的读数来调整默认功率方案1701。功率方案1701在许多方面类似于功率方案3005',该功率方案为简洁起见在本文中不再以相同细节级别进行重复。In the example shown, the control circuit 1604 includes a storage medium in the form of a memory 3103 and a controller 3104 of the processor 3102 . The memory 3103 stores program instructions that, when executed by the processor 3102, cause the processor 3102 to adjust the monopolar energy and bipolar energy delivered to the tissue based on sensor readings received from one or more sensors (eg, temperature sensors 1651, 1671). Extreme energy level. In various examples, as described in more detail below, the control circuit 1604 may adjust the default power scheme 1701 based on readings from one or more sensors (eg, temperature sensors 1651 , 1671 ). Power scheme 1701 is similar in many respects to power scheme 3005', which for brevity is not repeated herein at the same level of detail.

图43示出了用于到由端部执行器1600抓持的组织的能量递送的功率方案1701的基于温度的调整。曲线图1700描绘了x轴上的时间和y轴上的功率和温度。在组织羽化区段(t1-t2)中,控制电路1604致使双极能量的功率水平逐渐增加到预定阈值(例如,120W),这致使由端部执行器1600抓持的组织的温度逐渐增加到预定范围内的温度(例如,100℃-120℃)。然后,只要组织温度保持在预定范围内,双极能量的功率水平就维持预定阈值。在组织加温区段(t2-t3)中,控制电路1604激活单极能量,并且逐渐减少双极能量的功率水平,同时逐渐增加单极能量的功率水平以将组织温度维持在预定范围内。FIG. 43 shows temperature-based adjustment of power scheme 1701 for energy delivery to tissue grasped by end effector 1600 . Graph 1700 depicts time on the x-axis and power and temperature on the y-axis. During the tissue feathering segment (t 1 -t 2 ), the control circuit 1604 causes the power level of the bipolar energy to gradually increase to a predetermined threshold (eg, 120W), which causes the temperature of the tissue grasped by the end effector 1600 to gradually increase Increase to a temperature within a predetermined range (eg, 100°C-120°C). The power level of the bipolar energy is then maintained at a predetermined threshold as long as the tissue temperature remains within the predetermined range. During the tissue warming segment (t 2 -t 3 ), the control circuit 1604 activates the monopolar energy and gradually reduces the power level of the bipolar energy while gradually increasing the power level of the monopolar energy to maintain the tissue temperature within the predetermined range Inside.

在所示的示例中,在组织密封区段(t3-t4)期间,控制电路1604基于温度传感器1651、1671的读数检测到组织温度已达到预定范围的上限。控制电路1604通过逐步降低单极能量的功率水平来响应。在其他示例中,可逐渐执行减小。在某些示例中,减小值或用于确定减小值的方式,例如表或等式可存储在存储器3103中。在某些示例中,减小值可以是单极能量的当前功率水平的百分比。在其他示例中,减小值可基于与预定范围内的组织温度相对应的单极能量的先前功率水平。在某些示例中,减小可在时间上间隔开的多个步骤中执行。在每个向下步骤之后,控制电路1604允许在评估组织温度之前通过预定时间段。In the example shown, during the tissue sealing segment (t 3 -t 4 ), the control circuit 1604 detects that the tissue temperature has reached the upper limit of the predetermined range based on the readings of the temperature sensors 1651 , 1671 . The control circuit 1604 responds by gradually reducing the power level of the monopolar energy. In other examples, the reduction may be performed gradually. In some examples, the reduction value or the means used to determine the reduction value, such as a table or equation, may be stored in memory 3103 . In some examples, the reduction value may be a percentage of the current power level of the monopolar energy. In other examples, the reduction value may be based on a previous power level of the monopolar energy corresponding to a tissue temperature within a predetermined range. In some examples, the reduction may be performed in multiple steps spaced apart in time. After each downward step, the control circuit 1604 allows a predetermined period of time to pass before evaluating the tissue temperature.

在所示的示例中,控制电路1604根据默认功率方案1701维持双极能量的功率水平,但减小单极能量的功率水平以将组织的温度维持在预定范围内,同时组织密封完成。在其他示例中,通过减小双极能量的功率水平,组合或更换单极能量的功率水平的减小。In the example shown, the control circuit 1604 maintains the power level of the bipolar energy according to the default power scheme 1701, but reduces the power level of the monopolar energy to maintain the temperature of the tissue within a predetermined range while the tissue sealing is complete. In other examples, the reduction in the power level of the monopolar energy is combined or replaced by reducing the power level of the bipolar energy.

除上述之外,可通过反馈系统3109发出警报以使用机械刀完成组织的横切,例如,代替单极能量以避免对周围组织的非预期横向热损伤。在某些示例中,控制电路1604可暂时暂停单极能量和/或双极能量,直到组织的温度返回到预定温度范围内的水平。然后可再激活单极能量以执行密封组织的横切。In addition to the above, an alarm may be issued by the feedback system 3109 to accomplish transection of tissue using a mechanical knife, eg, instead of monopolar energy to avoid unintended lateral thermal damage to surrounding tissue. In some examples, the control circuit 1604 may temporarily suspend monopolar energy and/or bipolar energy until the temperature of the tissue returns to a level within a predetermined temperature range. The monopolar energy can then be reactivated to perform transection of the sealed tissue.

参考图44,端部执行器1600正在将单极能量施加到血管处的组织治疗区域1683,例如由端部执行器1600抓持的动脉。单极能量从端部执行器1600流到治疗区域1683,并且最终流动到返回垫(例如,返回垫1621)。治疗区域1683处的组织的温度随着单极能量施加到组织而上升。然而,由于例如无意中吸收单极能能量的动脉的收缩部分1684,实际热扩散1681大于预期的热扩散1682。44, the end effector 1600 is applying monopolar energy to a tissue treatment area 1683 at a blood vessel, such as an artery grasped by the end effector 1600. Monopolar energy flows from the end effector 1600 to the treatment area 1683 and ultimately to the return pad (eg, return pad 1621). The temperature of the tissue at the treatment area 1683 rises as monopolar energy is applied to the tissue. However, the actual thermal spread 1681 is greater than the expected thermal spread 1682 due, for example, to the constricted portion 1684 of the artery that inadvertently absorbs monopolar energy energy.

在各个方面,控制电路1604监测治疗区域1683处的热效应,其由将单极能量施加到治疗区域1683导致。控制电路1604可进一步检测所监测的热效应的故障以遵循所施加的单极能量与从在治疗区域处施加单极能量所期望的热效应之间的预定相关性。在所示的示例中,动脉的收缩部分处的无意能量消耗减小了治疗区域处的热效应,其由控制电路1604检测。In various aspects, the control circuit 1604 monitors thermal effects at the treatment area 1683 that result from the application of monopolar energy to the treatment area 1683 . The control circuit 1604 can further detect a failure of the monitored thermal effect to follow a predetermined correlation between the applied monopolar energy and the thermal effect expected from the application of the monopolar energy at the treatment area. In the example shown, unintentional energy consumption at the constricted portion of the artery reduces thermal effects at the treatment area, which is detected by the control circuit 1604 .

在某些示例中,存储器3103存储如施加到由端部执行器1600抓持的组织治疗区域的单极能量水平与从将单极能量施加到组织治疗区域预期的热效应之间的预定相关性算法。相关性算法可呈例如阵列、查找表、数据库、数学等式或公式等的形式。在至少一个示例中,所存储的相关算法限定单极能量的功率水平与预期温度之间的相关性。控制电路1604可使用温度传感器1651、1671来监测治疗区域1683处的组织的温度,并且可确定所监测的温度读数是否对应于在特定功率水平下的预期温度读数。In some examples, the memory 3103 stores a predetermined correlation algorithm, such as between the monopolar energy level applied to the tissue treatment area grasped by the end effector 1600 and the thermal effect expected from applying the monopolar energy to the tissue treatment area . The correlation algorithm may be in the form of, for example, an array, look-up table, database, mathematical equation or formula, or the like. In at least one example, the stored correlation algorithm defines a correlation between the power level of the monopolar energy and the expected temperature. Control circuitry 1604 can use temperature sensors 1651, 1671 to monitor the temperature of the tissue at treatment area 1683, and can determine whether the monitored temperature readings correspond to expected temperature readings at a particular power level.

如果检测到无法符合所存储的相关性,则控制电路1604可被配置成能够采取某些动作。例如,控制电路1604可警告用户故障。另外地或另选地,控制电路1604可减小或暂停将单极能量递送到治疗区域。在至少一个示例中,控制电路1604可从单极能量调整或移位到对于组织治疗区域的双极能量施加以确认寄生功率汲取的存在。如果确认寄生功率汲取,则控制电路1604可在治疗区域处继续使用双极能量。然而,如果控制电路1604拒绝寄生功率汲取的存在,则控制电路1604可重新激活或重新增加单极功率水平。控制电路1604可例如通过发信号通知单极功率源1620和/或双极功率源1610来实现对单极和/或双极功率水平的改变。The control circuit 1604 may be configured to be able to take certain actions if it is detected that the stored correlation cannot be met. For example, the control circuit 1604 may alert the user of a malfunction. Additionally or alternatively, the control circuit 1604 may reduce or suspend the delivery of monopolar energy to the treatment area. In at least one example, the control circuit 1604 can adjust or shift from monopolar energy to bipolar energy application to the tissue treatment area to confirm the presence of parasitic power draw. If parasitic power draw is confirmed, the control circuit 1604 may continue to use bipolar energy at the treatment area. However, if the control circuit 1604 rejects the presence of parasitic power draw, the control circuit 1604 may reactivate or re-increase the unipolar power level. Control circuitry 1604 may effect changes to unipolar and/or bipolar power levels, eg, by signaling unipolar power source 1620 and/or bipolar power source 1610 .

在各个方面,一个或多个成像装置(例如多光谱范围1690和/或红外成像装置)可用于监测组织治疗区域1691处的光谱组织变化和/或热效应,如图45所示。可处理来自一个或多个成像装置的成像数据以估计组织治疗区域1691处的温度。例如,当单极能量通过端部执行器1600施加到治疗区域1691时,用户可将红外成像装置引导在治疗区域1691处。随着治疗区域1691加热,其红外热特征变化。因此,热特征的变化对应于治疗区域1691处组织的温度的变化。因此,可基于由一个或多个成像装置捕获的热特征来确定治疗区域1691处的组织的温度。如果基于与特定部分水平相关联的治疗区域1691处的热特征估计的温度小于或等于功率水平下的预期温度,则控制电路1604检测治疗区域1691处的热效应的差异。In various aspects, one or more imaging devices (eg, multispectral range 1690 and/or infrared imaging devices) may be used to monitor spectral tissue changes and/or thermal effects at the tissue treatment area 1691, as shown in FIG. 45 . Imaging data from one or more imaging devices can be processed to estimate the temperature at the tissue treatment area 1691. For example, a user may direct an infrared imaging device at the treatment area 1691 when monopolar energy is applied to the treatment area 1691 through the end effector 1600 . As the treatment area 1691 heats, its infrared thermal signature changes. Thus, changes in thermal characteristics correspond to changes in the temperature of the tissue at the treatment area 1691. Accordingly, the temperature of the tissue at the treatment area 1691 can be determined based on thermal signatures captured by one or more imaging devices. If the temperature estimated based on the thermal characteristics at the treatment area 1691 associated with a particular portion level is less than or equal to the expected temperature at the power level, the control circuit 1604 detects the difference in thermal effect at the treatment area 1691 .

在其他示例中,由一个或多个成像装置捕获的热特征不被转换成估计的温度。相反,将其直接与存储到存储器3103中的热量特征比较以评估是否需要功率水平调整。In other examples, thermal signatures captured by one or more imaging devices are not converted into estimated temperatures. Instead, it is compared directly to the thermal signature stored into memory 3103 to assess whether power level adjustment is required.

在某些示例中,存储器3103存储如施加到由端部执行器1600抓持的组织治疗区域1691的单极能量的功率水平与从将单极能量施加到组织治疗区域预期所得的热特征之间的预定相关性算法。相关性算法可呈例如阵列、查找表、数据库、数学等式或公式等的形式。在至少一个示例中,所存储的相关算法限定单极能量的功率水平与预期热特征或与预期热特征相关联的温度之间的相关性。In some examples, the memory 3103 stores the power level between the monopolar energy as applied to the tissue treatment area 1691 grasped by the end effector 1600 and the thermal characteristics expected from applying the monopolar energy to the tissue treatment area predetermined correlation algorithm. The correlation algorithm may be in the form of, for example, an array, look-up table, database, mathematical equation or formula, or the like. In at least one example, the stored correlation algorithm defines a correlation between the power level of the monopolar energy and the expected thermal signature or a temperature associated with the expected thermal signature.

参考图46和图47,电外科系统包括电外科器械1801,该电外科器械具有在许多方面类似于端部执行器1400、1500、1600的端部执行器1800,为了简洁起见,该端部执行器在本文中不再以相同细节级别进行重复。端部执行器1800包括第一钳口1850和第二钳口1870。第一钳口1850和第二钳口1870中的至少一者可运动以使端部执行器1800从打开配置转变到闭合配置,从而在第一钳口1850和第二钳口1870之间抓持组织(T)。电极1852、1872被配置成能够协作以将双极能量递送到组织。电极1874被配置成能够将单极能量递送到组织。在至少一个示例中,单极能量和双极能量同时或以交替方式递送到组织,如图34所示,以例如密封和/或切割组织。Referring to Figures 46 and 47, an electrosurgical system includes an electrosurgical instrument 1801 having an end effector 1800 similar in many respects to end effectors 1400, 1500, 1600, which for the sake of brevity The device is not repeated at the same level of detail in this article. The end effector 1800 includes a first jaw 1850 and a second jaw 1870 . At least one of the first jaw 1850 and the second jaw 1870 is movable to transition the end effector 1800 from an open configuration to a closed configuration to grip between the first jaw 1850 and the second jaw 1870 Organization (T). Electrodes 1852, 1872 are configured to cooperate to deliver bipolar energy to tissue. Electrode 1874 is configured to deliver monopolar energy to tissue. In at least one example, monopolar energy and bipolar energy are delivered to tissue simultaneously or in an alternating fashion, as shown in FIG. 34, for example, to seal and/or cut tissue.

在所示的示例中,双极能量和单极能量由单独的发生器1880、1881生成,并且分别通过将发生器1880连接到电极1852、1872以及将发生器1881连接到电极1874和返回垫1803的单独电路1882、1883来提供给组织。相关联的功率水平是由电极1852、1872递送到组织的双极能量并且由发生器1880设置,并且与通过电极1874递送到组织的单极能量相关联的功率水平由发生器1881根据例如功率方案3005'设置。In the example shown, bipolar energy and monopolar energy are generated by separate generators 1880, 1881, and by connecting generator 1880 to electrodes 1852, 1872 and generator 1881 to electrode 1874 and return pad 1803, respectively The separate circuits 1882, 1883 are provided to the tissue. The associated power levels are the bipolar energy delivered to the tissue by the electrodes 1852, 1872 and set by the generator 1880, and the power level associated with the monopolar energy delivered to the tissue by the electrodes 1874 by the generator 1881 according to, for example, a power scheme. 3005' set.

在使用中,如图46所示,端部执行器1800将双极能量和/或单极能量施加到组织治疗区域1804以密封,并且在某些情况下,横切组织。然而,在某些情况下,能量从组织治疗区域1804处的预期目标偏移,从而导致对周围组织的部位外热损伤。为了避免或至少减少此类发生,外科器械1801包括阻抗传感器1810、1811、1812、1813,该阻抗传感器定位在不同的电极之间以及不同的位置,如图46所示,以便检测部位外热损伤。In use, as shown in Figure 46, the end effector 1800 applies bipolar and/or monopolar energy to the tissue treatment area 1804 to seal, and in some cases, transect the tissue. However, in some cases, the energy is deflected from the intended target at the tissue treatment area 1804, resulting in site-specific thermal damage to the surrounding tissue. To avoid or at least reduce such occurrences, surgical instrument 1801 includes impedance sensors 1810, 1811, 1812, 1813 positioned between different electrodes and at different locations, as shown in Figure 46, to detect extra-site thermal damage .

在各个方面,外科系统1807还包括耦接到阻抗传感器1810、1811、1812、1813的控制电路1809。控制电路1809可基于阻抗传感器1810、1811、1812、1813的一个或多个读数来检测部位外或非预期的热损伤。作为响应,控制电路1809可向用户警告部位外热损伤,并且指示用户暂停能量递送到组织治疗区域1804,或自动暂停能量递送,同时根据预定功率方案(例如,功率方案3005')来维持双极能量以完成组织密封。在某些情况下,控制电路1809可指示用户采用机械刀来横切组织以避免进一步的部位外热损伤。In various aspects, the surgical system 1807 also includes a control circuit 1809 coupled to the impedance sensors 1810 , 1811 , 1812 , 1813 . Control circuitry 1809 may detect extra-site or unintended thermal damage based on one or more readings of impedance sensors 1810, 1811, 1812, 1813. In response, control circuitry 1809 may alert the user of extra-site thermal damage and instruct the user to suspend energy delivery to tissue treatment area 1804, or automatically suspend energy delivery while maintaining bipolar according to a predetermined power scheme (eg, power scheme 3005'). energy to complete the tissue seal. In some cases, the control circuitry 1809 may instruct the user to use a mechanical knife to transect the tissue to avoid further extra-site thermal damage.

仍参考图46,阻抗传感器1810被配置成能够测量双极电极1852、1872之间的阻抗。另外,阻抗传感器1811被配置成能够测量电极1874与返回垫1803之间的阻抗。此外,阻抗传感器1812被配置成能够测量电极1872与返回垫1803之间的阻抗。此外,阻抗传感器1813被配置成能够测量电极1852与返回垫1803之间的阻抗。在其他示例中,附加阻抗传感器在单极电路1882和双极电路1883之间在线添加,其可用于测量各个位置处的阻抗以检测关于位置和阻抗路径具有更大特异性的部位外热异常。Still referring to FIG. 46 , the impedance sensor 1810 is configured to measure the impedance between the bipolar electrodes 1852 , 1872 . Additionally, the impedance sensor 1811 is configured to measure the impedance between the electrode 1874 and the return pad 1803 . Additionally, impedance sensor 1812 is configured to measure the impedance between electrode 1872 and return pad 1803 . Additionally, impedance sensor 1813 is configured to measure the impedance between electrode 1852 and return pad 1803 . In other examples, additional impedance sensors are added in-line between unipolar circuit 1882 and bipolar circuit 1883, which can be used to measure impedance at various locations to detect extra-site thermal anomalies with greater specificity with respect to location and impedance path.

在各个方面,部位外热损伤发生在端部执行器1800的一侧(左/右)上的组织中。控制电路1809可通过比较阻抗传感器1810、1811、1812、1813的读数来检测发生部位外热损伤的侧面。在一个示例中,单极和双极阻抗读数中的非比例变化指示部位外热损伤。相反,如果检测到阻抗读数中的比例,则控制电路1809保持不发生部位外热损伤。在一个示例中,如下文更详细地描述,可由控制电路1809根据双极阻抗与单极阻抗的比率检测部位外热损伤。In various aspects, extra-site thermal injury occurs in tissue on one side (left/right) of the end effector 1800 . The control circuit 1809 can detect the side of the site where external thermal damage occurs by comparing the readings of the impedance sensors 1810, 1811, 1812, 1813. In one example, non-proportional changes in monopolar and bipolar impedance readings indicate extra-site thermal damage. Conversely, if a proportion in the impedance reading is detected, the control circuit 1809 remains free of extra-site thermal damage. In one example, as described in more detail below, extra-site thermal damage may be detected by the control circuit 1809 based on the ratio of bipolar impedance to unipolar impedance.

图48示出了描绘x轴上的时间和y轴上的功率的曲线图1900。曲线图1900示出了在许多方面类似于图34所示的功率方案3005'的功率方案1901,该功率方案为简洁起见在不再以相同细节级别进行重复。控制电路3101致使功率方案1901由发生器1880(GEN.2)、1881(GEN.1)施加以便由端部执行器1800实现组织治疗循环。功率方案1901包括治疗功率部件1902和非治疗或感测功率部件1903。治疗功率部件1902限定类似于结合功率方案3005'描述的单极和双极功率水平的单极和双极功率水平。感测功率部件1903包括单极1905和双极1904感测拾取件,其在由端部执行器1800执行的整个组织治疗循环中的各个点处递送。在至少一个示例中,感测功率部件的感测拾取件1903、1904以预定电流值(例如10mA)或预定范围递送。在至少一个示例中,利用三个不同的感测拾取件来确定潜在部位外热损伤的位置/取向。FIG. 48 shows a graph 1900 depicting time on the x-axis and power on the y-axis. Graph 1900 shows a power scheme 1901 that is similar in many respects to power scheme 3005' shown in FIG. 34, which for brevity is not repeated at the same level of detail. The control circuit 3101 causes the power scheme 1901 to be applied by the generators 1880 (GEN.2), 1881 (GEN.1) to effect the tissue treatment cycle by the end effector 1800. Power scheme 1901 includes therapy power components 1902 and non-therapeutic or sensing power components 1903 . The therapy power component 1902 defines monopolar and bipolar power levels similar to the monopolar and bipolar power levels described in connection with the power scheme 3005'. Sensing power components 1903 include monopolar 1905 and bipolar 1904 sensing pickups, which are delivered at various points throughout the tissue treatment cycle performed by end effector 1800 . In at least one example, the sensing pickups 1903, 1904 of the sensing power components are delivered at a predetermined current value (eg, 10 mA) or a predetermined range. In at least one example, three different sensing pickups are utilized to determine the location/orientation of the potential site-external thermal damage.

控制电路3101可通过致使感测拾取件1903、1904以预定的时间间隔递送来确定是否在组织治疗循环期间将能量转移到非组织疗法定向部位。然后,控制电路3101可基于递送的感测拾取件来评估返回路径电导率。如果确定能量从目标部位偏移,则控制电路3101可采取一个或多个反应性措施。例如,控制电路3101可调整由发生器1880(GEN.2)、1881(GEN.1)施加的功率方案1901。控制电路3101可暂停到目标部位的双极和/或单极能量施加。另外,控制电路3101可例如通过反馈系统3109向用户发出警告。然而,如果确定未检测到能量偏移,则控制电路3101继续执行功率方案1901。The control circuit 3101 can determine whether to transfer energy to a non-tissue therapy directed site during a tissue therapy cycle by causing the sensing pickups 1903, 1904 to deliver at predetermined time intervals. The control circuit 3101 can then evaluate the return path conductivity based on the delivered sense pickup. If it is determined that the energy is displaced from the target site, the control circuit 3101 may take one or more reactive measures. For example, the control circuit 3101 may adjust the power scheme 1901 applied by the generators 1880 (GEN.2), 1881 (GEN.1). The control circuit 3101 can suspend the application of bipolar and/or monopolar energy to the target site. Additionally, the control circuit 3101 may issue a warning to the user, such as through the feedback system 3109. However, if it is determined that no energy offset is detected, then the control circuit 3101 continues to execute the power scheme 1901 .

在各个方面,例如,控制电路3101通过将测量的返回电导率与存储在存储器3103中的预定返回路径电导率进行比较来评估返回路径电导率。如果比较指示测量和预定的返回路径电导率不同于预定阈值,则控制电路3101结束能量被偏移到非组织治疗定向部位,并且执行先前描述的反应性措施中的一个或多个措施。In various aspects, for example, the control circuit 3101 evaluates the return path conductance by comparing the measured return conductance to predetermined return path conductivities stored in the memory 3103 . If the comparison indicates that the measured and predetermined return path conductivities are different from the predetermined threshold, the control circuit 3101 ends the energy being diverted to the non-tissue therapy directed site and performs one or more of the reactive measures previously described.

图49是示出在t3'的由于检测到的部位外热损伤而中断的功率方案2001的曲线图2000。功率方案2001在许多方面类似于图34、图48所示的功率方案,该功率方案为简洁起见在本文中不再以相同细节级别进行重复。例如,控制电路1809致使发生器1880(曲线2010)、1881(曲线2020)施加功率方案2001以便由端部执行器1800实现组织治疗循环。除了功率方案2001之外,曲线图2000还描绘了双极阻抗2011(Z双极)、单极阻抗2021(Z单极),以及y轴上的单极阻抗与双极阻抗的比率2030(Z单极/Z双极)。在正常操作期间,当单极能量和双极能量同时施加到组织时,双极阻抗2011(Z双极)和单极阻抗2021(Z单极)的值保持成比例,或者至少基本上成比例。因此,在正常操作期间,单极阻抗2021与双极阻抗2011的恒定或至少基本上恒定的阻抗比率2030(Z单极/Z双极)维持在预定范围2031内。49 is a graph 2000 showing a power scheme 2001 interrupted due to detected external thermal damage to the site at t3'. The power scheme 2001 is similar in many respects to the power schemes shown in Figures 34, 48, which are not repeated herein at the same level of detail for the sake of brevity. For example, control circuit 1809 causes generators 1880 (curve 2010 ), 1881 (curve 2020 ) to apply power scheme 2001 to effect a tissue treatment cycle by end effector 1800 . In addition to power scheme 2001, graph 2000 also depicts bipolar impedance 2011 (Z bipolar ), unipolar impedance 2021 (Z monopolar ), and the ratio of unipolar to bipolar impedance on the y-axis 2030 (Z Unipolar /Z Bipolar ). During normal operation, when both monopolar and bipolar energy are applied to tissue simultaneously, the values of bipolar impedance 2011 (Z bipolar ) and monopolar impedance 2021 (Z monopolar ) remain proportional, or at least substantially proportional . Thus, during normal operation, a constant or at least substantially constant impedance ratio 2030 (Z unipolar /Z bipolar ) of unipolar impedance 2021 to bipolar impedance 2011 is maintained within a predetermined range 2031 .

在各个方面,控制电路1809监测阻抗比率2030以评估单极能量是否偏转到非组织疗法定向部位。偏转改变检测到的双极阻抗2011(Z双极)和单极阻抗2021(Z单极)的值的比例,其改变阻抗比率2030。在预定范围2031内的阻抗比率2030的变化可致使控制电路1908发出警告。然而,如果变化延伸到或低于预定范围的下阈值2031,则控制电路1908可采取附加的反应性措施。In various aspects, the control circuit 1809 monitors the impedance ratio 2030 to assess whether the monopolar energy is deflected to a non-tissue therapy directed site. The deflection changes the ratio of the detected values of bipolar impedance 2011 (Z bipolar ) and unipolar impedance 2021 (Z monopolar ), which changes the impedance ratio 2030 . Changes in the impedance ratio 2030 within the predetermined range 2031 may cause the control circuit 1908 to issue a warning. However, if the change extends to or below the lower threshold 2031 of the predetermined range, the control circuit 1908 may take additional reactive measures.

在所示的示例中,对于涉及对组织的混合的单极和双极能量施加的治疗循环的初始部分,阻抗比率2030(Z单极/Z双极)保持恒定或至少基本上恒定。然而,在B1,发生了差异,其中单极阻抗(Z单极)出乎意料地下降,或者与双极阻抗(Z双极)不成比例地下降,从而指示潜在的部位外热损伤。在至少一个示例中,控制电路1809监测单极阻抗与双极阻抗的比率(Z单极/Z双极)的变化,并且如果改变持续预定时间量,和/或其值改变至或低于预定范围2031的下阈值,则检测到部位外热损伤。在B1,由于所检测的阻抗比率2030仍在预定范围2031内,因此控制电路3101仅通过反馈系统3109发出警告,即已经检测到部位外热损伤,并继续监测阻抗比率2030。In the example shown, the impedance ratio 2030 (Z monopolar /Z bipolar ) remains constant, or at least substantially constant, for the initial portion of a treatment cycle involving mixed monopolar and bipolar energy application to tissue. However, at B1, a difference occurred where the unipolar impedance (Z monopole ) dropped unexpectedly or disproportionately to the bipolar impedance (Z bipolar ), indicating potential extra-site thermal damage. In at least one example, the control circuit 1809 monitors changes in the ratio of unipolar impedance to bipolar impedance (Z unipolar /Z bipolar ), and if the change lasts for a predetermined amount of time, and/or its value changes to or below a predetermined The lower threshold of range 2031, external thermal damage to the site is detected. At B1, since the detected impedance ratio 2030 is still within the predetermined range 2031, the control circuit 3101 only issues a warning via the feedback system 3109 that extra-site thermal damage has been detected and continues to monitor the impedance ratio 2030.

在t3',控制电路3101进一步检测阻抗比率2030已经变为处于或低于预定范围2031的下阈值的值。作为响应,控制电路3101可发出另一个警告,并且任选地,可指示用户在B2暂停能量递送到组织,或者自动暂停能量递送,同时维持或调整双极能量的功率水平,以完成组织密封而无需单极能量。在某些示例中,控制电路1809进一步指示用户采用机械刀(t4’)来横切组织以避免进一步的部位外热损伤。在所示的示例中,控制电路1809进一步致使发生器1880调整其功率水平,以在没有单极能量的情况下完成组织密封,并且增加为时间t4到时间t4'的组织密封区段的分配的时间段。换句话说,控制电路1809将增加到组织的双极能量递送以通过增加双极功率水平和其递送时间来补偿单极能量的损失。At t3 ′, the control circuit 3101 further detects that the impedance ratio 2030 has become a value at or below the lower threshold of the predetermined range 2031 . In response, the control circuit 3101 may issue another warning and, optionally, may instruct the user to suspend energy delivery to the tissue at B2, or automatically suspend energy delivery while maintaining or adjusting the power level of the bipolar energy to complete the tissue seal while Monopolar energy is not required. In some examples, the control circuit 1809 further instructs the user to employ a mechanical knife (t4') to transect the tissue to avoid further extra-site thermal damage. In the example shown, the control circuit 1809 further causes the generator 1880 to adjust its power level to complete the tissue seal without monopolar energy, and increases the amount of the assigned tissue seal segment from time t4 to time t4' period. In other words, the control circuit 1809 will increase bipolar energy delivery to the tissue to compensate for the loss of monopolar energy by increasing the bipolar power level and its delivery time.

本文所述主题的各个方面在以下实施例中阐述。Various aspects of the subject matter described herein are set forth in the Examples below.

本文所述主题的各个方面在以下实施例中阐述。Various aspects of the subject matter described herein are set forth in the Examples below.

实施例集1Example set 1

实施例1—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括从近侧端部延伸到远侧端部的逐渐变窄的主体。逐渐变窄的主体包含导电材料。逐渐变窄的主体包括从近侧端部延伸到远侧端部的第一导电部分,以及限定从第一导电部分突出并且沿逐渐变窄的主体的至少一部分向远侧延伸的锥形电极的第二导电部分。第二导电部分与第一导电部分成一体。在逐渐变窄的主体的横向截面中,第一导电部分比第二导电部分厚。第二钳口还包括电绝缘层,该电绝缘层被配置成能够使第一导电部分与组织电绝缘,而不使第二导电部分电绝缘。第一导电部分被配置成能够仅通过第二导电部分将电能传输到组织。Embodiment 1—An electrosurgical instrument that includes an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a tapered body extending from the proximal end to the distal end. The tapered body contains a conductive material. The tapered body includes a first conductive portion extending from the proximal end to the distal end, and a tape defining a tapered electrode protruding from the first conductive portion and extending distally along at least a portion of the tapered body the second conductive portion. The second conductive portion is integral with the first conductive portion. In a transverse cross-section of the tapered body, the first conductive portion is thicker than the second conductive portion. The second jaw also includes an electrically insulating layer configured to electrically insulate the first conductive portion from tissue without electrically insulating the second conductive portion. The first conductive portion is configured to transmit electrical energy to the tissue only through the second conductive portion.

实施例2—根据实施例1所述的电外科器械,其中,锥形电极包括与电绝缘层的外表面齐平的外表面。Embodiment 2—The electrosurgical instrument of Embodiment 1, wherein the tapered electrode includes an outer surface that is flush with an outer surface of the electrically insulating layer.

实施例3—根据实施例1或2所述的电外科器械,其中,锥形电极具有随着锥形电极从近侧端部朝向远侧端部延伸而逐渐变窄的宽度。Embodiment 3—The electrosurgical instrument of Embodiment 1 or 2, wherein the tapered electrode has a width that gradually narrows as the tapered electrode extends from the proximal end toward the distal end.

实施例4—根据实施例1、2或3所述的电外科器械,其中,电能通过锥形电极的外表面递送到组织。Embodiment 4—The electrosurgical instrument of Embodiment 1, 2, or 3, wherein electrical energy is delivered to the tissue through the outer surface of the tapered electrode.

实施例5—根据实施例1、2、3或4所述的电外科器械,其中,第一钳口包括沿第一钳口的至少一部分向远侧延伸的第一电极,其中锥形电极是第二电极,并且其中第一电极在闭合配置中与第二电极横向偏置。Embodiment 5—The electrosurgical instrument of Embodiments 1, 2, 3, or 4, wherein the first jaw includes a first electrode extending distally along at least a portion of the first jaw, wherein the tapered electrode is The second electrode, and wherein the first electrode is laterally offset from the second electrode in the closed configuration.

实施例6—根据实施例5所述的电外科器械,其中,第二钳口还包括与逐渐变窄的主体间隔开的第三电极。Embodiment 6—The electrosurgical instrument of Embodiment 5, wherein the second jaw further comprises a third electrode spaced from the tapered body.

实施例7—根据实施例6所述的电外科器械,其中,第三电极沿由第二钳口限定的角轮廓从电极近侧端部向远侧延伸到电极远侧端部。Embodiment 7—The electrosurgical instrument of Embodiment 6, wherein the third electrode extends distally from the electrode proximal end to the electrode distal end along an angular profile defined by the second jaw.

实施例8—根据实施例7所述的电外科器械,其中,第三电极包括基部,该基部定位在托架中,沿第二钳口的角轮廓从托架近侧端部向远侧延伸到托架远侧端部。Embodiment 8—The electrosurgical instrument of Embodiment 7, wherein the third electrode includes a base positioned in the cradle extending distally from the proximal end of the cradle along the angular profile of the second jaw to the distal end of the bracket.

实施例9—根据实施例8所述的电外科器械,其中,托架相对于第二钳口的横向边缘居中定位。Embodiment 9—The electrosurgical instrument of Embodiment 8, wherein the bracket is centrally positioned relative to the lateral edge of the second jaw.

实施例10—根据实施例8或9所述的电外科器械,其中,第三电极还包括从基部延伸超过托架的侧壁的锥形边缘。Embodiment 10—The electrosurgical instrument of Embodiment 8 or 9, wherein the third electrode further comprises a tapered edge extending from the base beyond the sidewall of the cradle.

实施例11—根据实施例8、9或10所述的电外科器械,其中,托架由顺应性衬底构成。Embodiment 11—The electrosurgical instrument of Embodiments 8, 9, or 10, wherein the carrier is comprised of a compliant substrate.

实施例12—根据实施例8、9、10或11所述的电外科器械,其中,托架部分地嵌入在逐渐变窄的主体中限定的谷部中。Embodiment 12—The electrosurgical instrument of Embodiments 8, 9, 10, or 11, wherein the carrier is partially embedded in a valley defined in the tapered body.

实施例13—根据实施例8、9、10、11或12所述的电外科器械,其中,托架通过电绝缘涂层与逐渐变窄的主体间隔开。Embodiment 13—The electrosurgical instrument of Embodiments 8, 9, 10, 11, or 12, wherein the carrier is spaced from the tapered body by an electrically insulating coating.

实施例14—根据实施例8、9、10、11、12或13所述的电外科器械,其中,基部包括基部近侧端部、基部远侧端部,以及随着基部沿角轮廓从基部近侧端部延伸到基部远侧端部而逐渐变窄的宽度。Embodiment 14—The electrosurgical instrument of Embodiments 8, 9, 10, 11, 12, or 13, wherein the base includes a base proximal end, a base distal end, and a The proximal end extends to a tapered width at the distal end of the base.

实施例15—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括导电主体,该导电主体包括从近侧端部延伸到远侧端部的锥形角轮廓。导电主体包括从近侧端部延伸到远侧端部的第一导电部分,以及限定从第一导电部分突出并且沿导电主体的至少一部分向远侧延伸的锥形电极的第二导电部分。第二导电部分与第一导电部分成一体。第一导电部分比第二导电部分厚。第二钳口还包括电绝缘层,该电绝缘层被配置成能够使第一导电部分与组织电绝缘,而不使第二导电部分电绝缘。第一导电部分被配置成能够仅通过第二导电部分将电能传输到组织。Embodiment 15 - An electrosurgical instrument comprising an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a conductive body that includes a tapered angular profile extending from the proximal end to the distal end. The conductive body includes a first conductive portion extending from the proximal end to the distal end, and a second conductive portion defining a tapered electrode protruding from the first conductive portion and extending distally along at least a portion of the conductive body. The second conductive portion is integral with the first conductive portion. The first conductive portion is thicker than the second conductive portion. The second jaw also includes an electrically insulating layer configured to electrically insulate the first conductive portion from tissue without electrically insulating the second conductive portion. The first conductive portion is configured to transmit electrical energy to the tissue only through the second conductive portion.

实施例16—根据实施例15所述的电外科器械,其中,锥形电极具有随着锥形电极从近侧端部朝向远侧端部延伸而逐渐变窄的宽度。Embodiment 16—The electrosurgical instrument of Embodiment 15, wherein the tapered electrode has a width that gradually narrows as the tapered electrode extends from the proximal end toward the distal end.

实施例17—根据实施例15或16所述的电外科器械,其中,第一钳口包括沿第一钳口的至少一部分向远侧延伸的第一电极,其中锥形电极是第二电极,并且其中第一电极在闭合配置中与第二电极横向偏置。Embodiment 17—The electrosurgical instrument of Embodiment 15 or 16, wherein the first jaw includes a first electrode extending distally along at least a portion of the first jaw, wherein the tapered electrode is the second electrode, and wherein the first electrode is laterally offset from the second electrode in the closed configuration.

实施例18—根据实施例15、16或17所述的电外科器械,其中,第二钳口还包括与导电主体间隔开的第三电极。Embodiment 18—The electrosurgical instrument of Embodiment 15, 16, or 17, wherein the second jaw further comprises a third electrode spaced from the conductive body.

实施例19—根据实施例18所述的电外科器械,其中,第三电极沿锥形角轮廓的至少一部分向远侧延伸。Embodiment 19—The electrosurgical instrument of Embodiment 18, wherein the third electrode extends distally along at least a portion of the tapered angular profile.

实施例20—根据实施例19所述的电外科器械,其中,第三电极包括基部,该基部定位在托架中,沿锥形角轮廓的至少一部分从托架近侧端部向远侧延伸到托架远侧端部,并且其中托架由顺应性衬底构成。Embodiment 20—The electrosurgical instrument of Embodiment 19, wherein the third electrode includes a base positioned in the yoke extending distally from the proximal end of the yoke along at least a portion of the tapered angular profile to the distal end of the cradle, and wherein the cradle is constructed of a compliant substrate.

实施例集2Example set 2

实施例1—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括协作以形成角轮廓的线性部分和包括沿角轮廓延伸的区段的治疗表面。区段包括不同的几何结构和不同的电导率。区段被配置成能够沿治疗表面产生可变能量密度。Embodiment 1—An electrosurgical instrument that includes an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a linear portion that cooperates to form an angular profile and a treatment surface that includes a segment extending along the angular profile. Sections include different geometries and different conductivities. The segments are configured to generate variable energy densities along the treatment surface.

实施例2—根据实施例1所述的电外科器械,其中,区段包括近侧区段和远侧区段。近侧区段包括第一表面面积。远侧区段包括第二表面面积。第二表面面积小于第一表面面积。Embodiment 2—The electrosurgical instrument of Embodiment 1, wherein the segments include a proximal segment and a distal segment. The proximal section includes a first surface area. The distal section includes a second surface area. The second surface area is smaller than the first surface area.

实施例3—根据实施例1或2所述的电外科器械,其中,区段中的至少一者包括被非导电治疗区域纵向中断的导电治疗区域。Embodiment 3—The electrosurgical instrument of Embodiment 1 or 2, wherein at least one of the segments comprises a conductive treatment area longitudinally interrupted by a non-conductive treatment area.

实施例4—根据实施例1、2或3所述的电外科器械,其中,可变能量密度是基于区段的不同几何结构和不同电导率的选择而预定的。Embodiment 4—The electrosurgical instrument of Embodiment 1, 2, or 3, wherein the variable energy density is predetermined based on selection of different geometries and different conductivities of the segments.

实施例5—根据实施例1、2、3或4所述的电外科器械,其中,区段中的至少一者具有沿其长度的逐渐变窄的宽度。Embodiment 5—The electrosurgical instrument of Embodiment 1, 2, 3, or 4, wherein at least one of the segments has a tapering width along its length.

实施例6—根据实施例1、2、3、4或5所述的电外科器械,其中,区段沿第二钳口的外围侧延伸。Embodiment 6—The electrosurgical instrument of Embodiment 1, 2, 3, 4, or 5, wherein the segment extends along a peripheral side of the second jaw.

实施例7—根据实施例1、2、3、4、5或6所述的电外科器械,其中,区段限定在第二钳口中而不是第一钳口中。Embodiment 7—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, or 6, wherein the segment is defined in the second jaw instead of the first jaw.

实施例8—根据实施例1、2、3、4、5、6或7所述的电外科器械,其中,第二钳口包括部分涂覆有第一材料和第二材料的电传导骨架,其中第一材料是导热但电绝缘的,并且其中第二材料是热隔离且电绝缘的。Embodiment 8—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, 6, or 7, wherein the second jaw includes an electrically conductive backbone partially coated with the first material and the second material, wherein the first material is thermally conductive but electrically insulating, and wherein the second material is thermally insulating and electrically insulating.

实施例9—根据实施例8所述的电外科器械,其中,第一材料包含类金刚石碳。Embodiment 9—The electrosurgical instrument of Embodiment 8, wherein the first material comprises diamond-like carbon.

实施例10—根据实施例8或9所述的电外科器械,其中,第二材料包含聚四氟乙烯。Embodiment 10—The electrosurgical instrument of Embodiment 8 or 9, wherein the second material comprises polytetrafluoroethylene.

实施例11—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括从近侧端部延伸到远侧端部的逐渐变窄的主体。逐渐变窄的主体包括组织接触表面。组织接触表面包括包含第一材料的绝缘层。绝缘层在沿逐渐变窄的主体的长度延伸的中间区域的相对侧上延伸。组织接触表面还包括被配置成能够沿组织接触表面产生可变能量密度的区段。区段包括导电区段和绝缘区段,该绝缘区段沿中间区域与导电区段交替。绝缘区段包含不同于第一材料的第二材料。Embodiment 11 - An electrosurgical instrument comprising an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a tapered body extending from the proximal end to the distal end. The tapered body includes a tissue-contacting surface. The tissue-contacting surface includes an insulating layer comprising a first material. The insulating layers extend on opposite sides of the intermediate region extending along the length of the tapered body. The tissue-contacting surface also includes a section configured to generate variable energy density along the tissue-contacting surface. The segments include conductive segments and insulating segments that alternate with conductive segments along an intermediate region. The insulating section includes a second material different from the first material.

实施例12—根据实施例11所述的电外科器械,其中,导电区段包括近侧区段和远侧区段。近侧区段包括第一表面面积。远侧区段包括第二表面面积。第二表面面积小于第一表面面积。Embodiment 12—The electrosurgical instrument of Embodiment 11, wherein the conductive segment includes a proximal segment and a distal segment. The proximal section includes a first surface area. The distal section includes a second surface area. The second surface area is smaller than the first surface area.

实施例13—根据实施例11或12所述的电外科器械,其中,第二钳口包括部分涂覆有第一材料的电传导骨架。Embodiment 13—The electrosurgical instrument of Embodiment 11 or 12, wherein the second jaw includes an electrically conductive backbone partially coated with the first material.

实施例14—根据实施例13所述的电外科器械,其中,电传导骨架包括内部热隔离芯和外部导热层,该外部导热层至少部分地围绕内部热隔离芯。Embodiment 14—The electrosurgical instrument of Embodiment 13, wherein the electrically conductive backbone includes an inner thermally insulating core and an outer thermally conductive layer that at least partially surrounds the inner thermally insulating core.

实施例15—根据实施例11、12、13或14所述的电外科器械,其中,可变能量密度是基于导电区段的不同几何结构和不同电导率的选择而预定的。Embodiment 15—The electrosurgical instrument of Embodiments 11, 12, 13, or 14, wherein the variable energy density is predetermined based on selection of different geometries and different conductivities of the conductive segments.

实施例16—根据实施例11、12、13、14或15所述的电外科器械,其中,区段中的至少一者具有沿其长度的逐渐变窄的宽度。Embodiment 16—The electrosurgical instrument of Embodiments 11, 12, 13, 14, or 15, wherein at least one of the segments has a tapering width along its length.

实施例17-根据实施例11、12、13、14、15或16所述的电外科器械,其中,区段沿第二钳口的外围侧延伸。Embodiment 17 - The electrosurgical instrument of Embodiments 11, 12, 13, 14, 15, or 16, wherein the segment extends along a peripheral side of the second jaw.

实施例18—根据实施例11、12、13、14、15、16或17所述的电外科器械,其中,区段限定在第二钳口中而不是第一钳口中。Embodiment 18—The electrosurgical instrument of Embodiments 11, 12, 13, 14, 15, 16, or 17, wherein the segments are defined in the second jaw instead of the first jaw.

实施例19—根据实施例11、12、13、14、15、16、17或18所述的电外科器械,其中,第一材料包含类金刚石碳。Embodiment 19—The electrosurgical instrument of Embodiments 11, 12, 13, 14, 15, 16, 17, or 18, wherein the first material comprises diamond-like carbon.

实施例20—根据实施例11、12、13、14、15、16、17、18或19所述的电外科器械,其中,第二材料包含聚四氟乙烯。Embodiment 20—The electrosurgical instrument of Embodiments 11, 12, 13, 14, 15, 16, 17, 18, or 19, wherein the second material comprises polytetrafluoroethylene.

实施例集3Example set 3

实施例1—一种电外科器械,该电外科器械包括端部执行器。端部执行器包括第一钳口、第二钳口和电路。第一钳口包括第一电传导骨架、选择性地覆盖第一电传导骨架的部分的第一绝缘涂层和包括第一电传导骨架的暴露部分的第一钳口电极。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括第二电传导骨架、选择性地覆盖第二电传导骨架的部分的第二绝缘涂层和包括第二电传导骨架的暴露部分的第二钳口电极。电路被配置成能够通过第一钳口电极和第二钳口电极向组织传输双极RF能量和单极RF能量。单极RF能量共享由电路限定的用于传输双极RF能量的第一电通路和第二电通路。Embodiment 1—An electrosurgical instrument that includes an end effector. The end effector includes a first jaw, a second jaw, and an electrical circuit. The first jaw includes a first electrically conductive skeleton, a first insulating coating selectively covering portions of the first electrically conductive skeleton, and a first jaw electrode including exposed portions of the first electrically conductive skeleton. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a second electrically conductive backbone, a second insulating coating selectively covering portions of the second electrically conductive backbone, and a second jaw electrode including exposed portions of the second electrically conductive backbone. The circuit is configured to deliver bipolar RF energy and monopolar RF energy to tissue through the first jaw electrode and the second jaw electrode. The monopolar RF energy shares a first electrical path and a second electrical path defined by the circuit for transmitting the bipolar RF energy.

实施例2—根据实施例1所述的电外科器械,其中,电路限定与第一电通路和第二电通路分离的第三电通路。Embodiment 2—The electrosurgical instrument of Embodiment 1, wherein the electrical circuit defines a third electrical pathway separate from the first electrical pathway and the second electrical pathway.

实施例3—根据实施例1或2所述的电外科器械,其中,端部执行器包括与第一电传导骨架和第二电传导骨架电绝缘的切割电极。Embodiment 3—The electrosurgical instrument of Embodiment 1 or 2, wherein the end effector includes a cutting electrode that is electrically isolated from the first and second electrically conductive backbones.

实施例4—根据实施例3所述的电外科器械,其中,切割电极被配置成能够通过第三电通路接收切割单极RF能量。Embodiment 4—The electrosurgical instrument of Embodiment 3, wherein the cutting electrode is configured to receive cutting monopolar RF energy through the third electrical pathway.

实施例5—根据实施例4所述的电外科器械,其中,切割电极被配置成能够在已经通过双极RF能量开始组织的凝固之后,用切割单极RF能量切割组织。Embodiment 5—The electrosurgical instrument of Embodiment 4, wherein the cutting electrode is configured to be capable of cutting tissue with cutting monopolar RF energy after coagulation of the tissue has been initiated by bipolar RF energy.

实施例6—根据实施例3、4或5所述的电外科器械,其中,切割电极居中位于第一钳口和第二钳口中的一者中。Embodiment 6—The electrosurgical instrument of Embodiment 3, 4, or 5, wherein the cutting electrode is centrally located in one of the first jaw and the second jaw.

实施例7—根据实施例4或5所述的电外科器械,其中,端部执行器被配置成能够同时将切割单极RF能量和双极RF能量递送到组织。Embodiment 7—The electrosurgical instrument of Embodiment 4 or 5, wherein the end effector is configured to simultaneously deliver cutting monopolar RF energy and bipolar RF energy to tissue.

实施例8—根据实施例1、2、3、4、5、6或7所述的电外科器械,其中,第一钳口电极包括第一远侧末端电极,并且其中第二钳口电极包括第二远侧末端电极。Embodiment 8—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, 6, or 7, wherein the first jaw electrode comprises a first distal tip electrode, and wherein the second jaw electrode comprises A second distal tip electrode.

实施例9—根据实施例8所述的电外科器械,其中,第一电传导骨架和第二电传导骨架被同时供能,以通过第一远侧末端电极和第二远侧末端电极将单极RF能量递送到组织表面。Embodiment 9—The electrosurgical instrument of Embodiment 8, wherein the first electrically conductive backbone and the second electrically conductive backbone are simultaneously energized to connect the single unit through the first distal tip electrode and the second distal tip electrode. Extreme RF energy is delivered to the tissue surface.

实施例10—根据实施例1、2、3、4、5、6、7、8或9所述的电外科器械,其中,第二钳口包括沿第二钳口的外围表面延伸的解剖电极。Embodiment 10—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the second jaw includes a dissection electrode extending along a peripheral surface of the second jaw .

实施例11—一种电外科器械,该电外科器械包括端部执行器和电路。端部执行器包括至少两个电极组、第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。端部执行器被配置成能够将双极RF能量和单极RF能量的组合从至少两个电极组递送到所抓持的组织。电路被配置成能够传输双极RF能量和单极RF能量。单极RF能量共享由电路限定的用于传输双极RF能量的活动通路和返回通路。Embodiment 11 - An electrosurgical instrument comprising an end effector and an electrical circuit. The end effector includes at least two electrode sets, a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The end effector is configured to deliver a combination of bipolar RF energy and monopolar RF energy from at least two electrode sets to grasped tissue. The circuit is configured to transmit bipolar RF energy and monopolar RF energy. The monopolar RF energy shares the active and return paths defined by the circuit for transmitting the bipolar RF energy.

实施例12—根据实施例11所述的电外科器械,其中,至少两个电极组包括在电路中一起使用的三个电互连件。Embodiment 12—The electrosurgical instrument of Embodiment 11, wherein the at least two electrode sets include three electrical interconnects used together in an electrical circuit.

实施例13—根据实施例11或12所述的电外科器械,其中,至少两个电极组包括三个电互连件,该三个电互连件限定电路的至少一部分和另一个单独电路。Embodiment 13—The electrosurgical instrument of Embodiment 11 or 12, wherein the at least two electrode sets include three electrical interconnects that define at least a portion of an electrical circuit and another separate electrical circuit.

实施例14—根据实施例13所述的电外科器械,其中,单独的电路通向至少两个电极组的切割电极,该切割电极被隔离且居中位于第一钳口和第二钳口中的一者中。Embodiment 14—The electrosurgical instrument of Embodiment 13, wherein a separate electrical circuit leads to the cutting electrodes of the at least two electrode sets, the cutting electrodes being isolated and centered on one of the first jaw and the second jaw among those.

实施例15—根据实施例14所述的电外科器械,其中,切割电极被配置成能够在已经使用至少两个电极组的第二电极和第三电极开始组织的凝固之后切割组织。Embodiment 15—The electrosurgical instrument of Embodiment 14, wherein the cutting electrode is configured to be capable of cutting tissue after coagulation of the tissue has been initiated using the second and third electrodes of the at least two electrode sets.

实施例16—根据实施例14或15所述的电外科器械,其中,至少两个电极组被配置成能够同时将单极RF能量和双极RF能量递送到组织。Embodiment 16—The electrosurgical instrument of Embodiment 14 or 15, wherein the at least two electrode sets are configured to simultaneously deliver monopolar RF energy and bipolar RF energy to tissue.

实施例17—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括至少两种不同材料的复合骨架,该至少两种不同材料被配置成能够选择性地产生电传导部分和热隔离部分。Embodiment 17—An electrosurgical instrument comprising an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a composite backbone of at least two different materials configured to selectively create electrically conductive portions and thermally insulating portions.

实施例18—根据实施例17所述的电外科器械,其中,复合骨架包含钛陶瓷复合材料。Embodiment 18—The electrosurgical instrument of Embodiment 17, wherein the composite framework comprises a titanium-ceramic composite.

实施例19—根据实施例17或18所述的电外科器械,其中,复合骨架包括陶瓷基部和可附接到陶瓷基部的钛冠部。Embodiment 19—The electrosurgical instrument of Embodiment 17 or 18, wherein the composite framework includes a ceramic base and a titanium crown attachable to the ceramic base.

实施例20—根据实施例17、18或19所述的电外科器械,其中,复合骨架部分涂覆有电绝缘材料。Embodiment 20—The electrosurgical instrument of Embodiment 17, 18, or 19, wherein the composite backbone portion is coated with an electrically insulating material.

实施例21—一种用于制造电外科器械的端部执行器的钳口的方法。方法包括通过在金属注射模制过程中将钛粉末与陶瓷粉末融合来制备钳口的复合骨架以及用电绝缘材料选择性地涂覆复合骨架以产生多个电极。Embodiment 21 - A method for making jaws of an end effector of an electrosurgical instrument. The method includes preparing a composite skeleton of the jaws by fusing titanium powder with ceramic powder in a metal injection molding process and selectively coating the composite skeleton with an electrically insulating material to create a plurality of electrodes.

实施例集4Example set 4

实施例1—一种电外科器械,包括第一钳口和第二钳口。第一钳口被配置成能够限定第一电极。第一钳口包括第一电传导骨架和第一电绝缘层。该第一电传导骨架包括:第一热隔离芯;以及第一导热外层,该第一导热外层与该第一热隔离芯成一体并且至少部分地围绕该第一热隔离芯延伸。该第一电极是通过将该第一电绝缘层选择性地施加到该第一导热外层的外表面来限定的。第二钳口被配置成能够限定第二电极。第二钳口包括第二电传导骨架和第二电绝缘层。该第二电传导骨架包括:第二热隔离芯;以及第二导热外层,该第二导热外层与该第二热隔离芯成一体并且至少部分地围绕该第二热隔离芯延伸。该第二电极是通过将该第二电绝缘层选择性地施加到该第二导热外层的外表面来限定的。Example 1 - An electrosurgical instrument comprising a first jaw and a second jaw. The first jaw is configured to define a first electrode. The first jaw includes a first electrically conductive skeleton and a first electrically insulating layer. The first electrically conductive skeleton includes: a first thermal isolation core; and a first thermally conductive outer layer integral with the first thermal isolation core and extending at least partially around the first thermal isolation core. The first electrode is defined by selectively applying the first electrically insulating layer to the outer surface of the first thermally conductive outer layer. The second jaw is configured to define a second electrode. The second jaw includes a second electrically conductive skeleton and a second electrically insulating layer. The second electrically conductive skeleton includes: a second thermal isolation core; and a second thermally conductive outer layer integral with the second thermal isolation core and extending at least partially around the second thermal isolation core. The second electrode is defined by selectively applying the second electrically insulating layer to the outer surface of the second thermally conductive outer layer.

实施例2—根据实施例1所述的电外科器械,其中,第一电极被配置成能够在双极能量操作模式中通过定位在第一电极和第二电极之间的组织将RF能量传输到第二电极。Embodiment 2—The electrosurgical instrument of Embodiment 1, wherein the first electrode is configured to transmit RF energy through tissue positioned between the first electrode and the second electrode in a bipolar energy mode of operation to second electrode.

实施例3—根据实施例1或2所述的电外科器械,其中,第一热隔离芯包括空气凹穴。Embodiment 3—The electrosurgical instrument of Embodiment 1 or 2, wherein the first thermal isolation core includes an air pocket.

实施例4—根据实施例1、2或3所述的电外科器械,其中,第一热隔离芯包括晶格结构。Embodiment 4—The electrosurgical instrument of Embodiment 1, 2, or 3, wherein the first thermally isolated core comprises a lattice structure.

实施例5—根据实施例1、2、3或4所述的电外科器械,其中,第二钳口包括第三电极,并且其中第三电极是通过将第二电绝缘层选择性地施加到第二导热外层的外表面来限定的。Embodiment 5—The electrosurgical instrument of Embodiments 1, 2, 3, or 4, wherein the second jaw includes a third electrode, and wherein the third electrode is selectively applied by applying a second electrically insulating layer to the The outer surface of the second thermally conductive outer layer is defined.

实施例6—根据实施例5所述的电外科器械,其中,第三电极被配置成能够在单极能量操作模式中将RF能量递送到与第三电极接触的组织。Embodiment 6—The electrosurgical instrument of Embodiment 5, wherein the third electrode is configured to deliver RF energy to tissue in contact with the third electrode in a monopolar energy mode of operation.

实施例7—根据实施例1、2、3、4、5或6所述的电外科器械,其中,第一电绝缘层和第二电绝缘层中的至少一者包含类金刚石材料。Embodiment 7—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, or 6, wherein at least one of the first electrically insulating layer and the second electrically insulating layer comprises a diamond-like material.

实施例8—根据实施例1、2、3、4、5、6或7所述的电外科器械,其中,第一钳口包括组织接触表面,并且其中第一热隔离芯包括晶格结构,该晶格结构包括在横切组织接触表面的方向上竖立的壁。Embodiment 8—The electrosurgical instrument of Embodiments 1, 2, 3, 4, 5, 6, or 7, wherein the first jaw includes a tissue-contacting surface, and wherein the first thermally insulating core includes a lattice structure, The lattice structure includes walls that stand in a direction transverse to the tissue contacting surface.

实施例9—根据实施例8所述的电外科器械,其中,方向垂直于组织接触表面。Embodiment 9—The electrosurgical instrument of Embodiment 8, wherein the direction is perpendicular to the tissue contacting surface.

实施例10—一种电外科器械,其包括被配置成能够限定电极的钳口。该钳口包括第一电传导部分、第二电传导部分和电绝缘层。该第一电传导部分被配置成能够抵抗通过其中的热传递。该第二电传导部分与该第一电传导部分成一体并且至少部分地围绕该第一电传导部分延伸。该第二电传导部分被配置成能够限定散热器。该电极是通过将该电绝缘层选择性地施加到该第二电传导部分的外表面来限定的。Embodiment 10 - An electrosurgical instrument comprising jaws configured to define electrodes. The jaw includes a first electrically conductive portion, a second electrically conductive portion, and an electrically insulating layer. The first electrically conductive portion is configured to resist heat transfer therethrough. The second electrically conductive portion is integral with the first electrically conductive portion and extends at least partially around the first electrically conductive portion. The second electrically conductive portion is configured to define a heat sink. The electrode is defined by selectively applying the electrically insulating layer to the outer surface of the second electrically conductive portion.

实施例11—根据实施例10所述的电外科器械,其中,电极被配置成能够将RF能量传输到抵靠电极定位的组织。Embodiment 11—The electrosurgical instrument of Embodiment 10, wherein the electrodes are configured to transmit RF energy to tissue positioned against the electrodes.

实施例12—根据实施例10或11所述的电外科器械,其中,第一电传导部分包括空气凹穴。Embodiment 12—The electrosurgical instrument of Embodiment 10 or 11, wherein the first electrically conductive portion comprises an air pocket.

实施例13—根据实施例10、11或12所述的电外科器械,其中,第一电传导部分包括晶格结构。Embodiment 13—The electrosurgical instrument of Embodiments 10, 11, or 12, wherein the first electrically conductive portion comprises a lattice structure.

实施例14—根据实施例10、11、12或13所述的电外科器械,其中,电绝缘层包含类金刚石材料。Embodiment 14—The electrosurgical instrument of Embodiments 10, 11, 12, or 13, wherein the electrically insulating layer comprises a diamond-like material.

实施例15—根据实施例10、11、12、13或14所述的电外科器械,其中,钳口包括组织接触表面,并且其中第一电传导部分包括晶格结构,该晶格结构包括在横切组织接触表面的方向上竖立的壁。Embodiment 15—The electrosurgical instrument of Embodiments 10, 11, 12, 13, or 14, wherein the jaws include a tissue-contacting surface, and wherein the first electrically conductive portion includes a lattice structure included in the Erect the wall in a direction transverse to the tissue-contacting surface.

实施例16—根据实施例15所述的电外科器械,其中,方向垂直于组织接触表面。Embodiment 16—The electrosurgical instrument of Embodiment 15, wherein the direction is perpendicular to the tissue contacting surface.

实施例17—一种电外科器械,其包括被配置成能够限定电极的钳口。钳口包括电传导骨架和电绝缘层。该电传导骨架包括:热隔离芯;以及导热外层,该导热外层与该热隔离芯成一体并且至少部分地围绕该热隔离芯延伸。该电极是通过将该电绝缘层选择性地施加到该导热外层的外表面来限定的。Embodiment 17 - An electrosurgical instrument comprising jaws configured to define electrodes. The jaws include an electrically conductive skeleton and an electrically insulating layer. The electrically conductive framework includes: a thermally insulating core; and a thermally conductive outer layer integral with the thermally insulating core and extending at least partially around the thermally insulating core. The electrodes are defined by selectively applying the electrically insulating layer to the outer surface of the thermally conductive outer layer.

实施例18—根据实施例17所述的电外科器械,其中,热隔离芯包括晶格结构。Embodiment 18—The electrosurgical instrument of Embodiment 17, wherein the thermally isolated core comprises a lattice structure.

实施例19—根据实施例18所述的电外科器械,其中,钳口包括组织接触表面,并且其中晶格结构包括在横切组织接触表面的方向上竖立的壁。Embodiment 19—The electrosurgical instrument of Embodiment 18, wherein the jaws include a tissue-contacting surface, and wherein the lattice structure includes walls that stand in a direction transverse to the tissue-contacting surface.

实施例20—根据实施例19所述的电外科器械,其中,方向垂直于组织接触表面。Embodiment 20—The electrosurgical instrument of Embodiment 19, wherein the direction is perpendicular to the tissue contacting surface.

实施例集5Example set 5

实施例1—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口包括第一电极。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括被配置成能够将第一单极能量递送到组织的第二电极、第三电极和导电电路,该导电电路能够在与第三电极的连接配置和与第三电极的断开配置之间选择性转变。在连接配置中,第三电极被配置成能够与第一电极协作以将双极能量递送到组织。导电电路限定双极能量的返回路径。在断开配置中,第一电极被配置成能够将第二单极能量递送到组织。Embodiment 1—An electrosurgical instrument that includes an end effector. The end effector includes a first jaw and a second jaw. The first jaw includes a first electrode. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a second electrode configured to deliver the first monopolar energy to tissue, a third electrode, and a conductive circuit capable of being in a connected configuration with the third electrode and disconnected from the third electrode Selective transition between configurations. In the connected configuration, the third electrode is configured to cooperate with the first electrode to deliver bipolar energy to tissue. The conductive circuit defines a return path for the bipolar energy. In the disconnected configuration, the first electrode is configured to deliver the second monopolar energy to tissue.

实施例2—根据实施例1所述的电外科器械,还包括用于在连接配置与断开配置之间交替的切换机构。Embodiment 2—The electrosurgical instrument of Embodiment 1, further comprising a switching mechanism for alternating between the connected configuration and the disconnected configuration.

实施例3—根据实施例1或2所述的电外科器械,还包括用于在通过第一电极将双极能量和第二单极能量递送到组织之间交替的切换机构。Embodiment 3—The electrosurgical instrument of Embodiment 1 or 2, further comprising a switching mechanism for alternating between delivery of bipolar energy and second monopolar energy to tissue through the first electrode.

实施例4—根据实施例1、2或3所述的电外科器械,其中,端部执行器被配置成能够同时将双极能量和第一单极能量递送到组织。Embodiment 4—The electrosurgical instrument of Embodiments 1, 2, or 3, wherein the end effector is configured to simultaneously deliver bipolar energy and the first monopolar energy to tissue.

实施例5—根据实施例1、2、3或4所述的电外科器械,其中,端部执行器被配置成能够将双极能量和第一单极能量的能量混合递送到组织。Embodiment 5—The electrosurgical instrument of Embodiments 1, 2, 3, or 4, wherein the end effector is configured to deliver a mixture of bipolar energy and a first monopolar energy to tissue.

实施例6—根据实施例5所述的电外科器械,其中,基于指示组织的至少一个温度的温度传感器的至少一个读数来确定能量混合中的双极能量和第一单极能量的水平。Embodiment 6—The electrosurgical instrument of Embodiment 5, wherein the levels of the bipolar energy and the first monopolar energy in the energy mix are determined based on at least one reading of a temperature sensor indicative of at least one temperature of the tissue.

实施例7—根据实施例5或6所述的电外科器械,其中,基于指示组织的至少一个阻抗的阻抗传感器的至少一个读数来确定能量混合中的双极能量和第一单极能量的水平。Embodiment 7—The electrosurgical instrument of embodiment 5 or 6, wherein the levels of the bipolar energy and the first monopolar energy in the energy mix are determined based on at least one reading of an impedance sensor indicative of at least one impedance of the tissue .

实施例8—根据实施例5、6或7所述的电外科器械,其中,调整能量混合中的双极能量和第一单极能量的水平,以减小超出第一钳口与第二钳口之间的组织治疗区域的检测到的横向热损伤。Embodiment 8—The electrosurgical instrument of embodiment 5, 6, or 7, wherein the levels of bipolar energy and first monopolar energy in the energy mix are adjusted to reduce excess of the first and second jaws Detected lateral thermal damage to the tissue treatment area between the mouths.

实施例9—一种电外科器械,该电外科器械包括端部执行器和控制电路。端部执行器包括第一钳口、第二钳口和至少一个传感器。第一钳口包括第一电极。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。第二钳口包括第二电极,该第二电极被配置成能够将单极能量递送到组织;以及第三电极,该第三电极被配置成能够与第一电极协作以递送双极能量。控制电路被配置成能够执行预定功率方案以在组织治疗循环中密封和切割组织。功率方案包括单极能量和双极能量的预定功率水平。控制电路被进一步配置成能够基于在组织治疗循环期间的至少一个传感器的读数来调整单极能量和双极能量的预定功率水平中的至少一者。Embodiment 9—An electrosurgical instrument comprising an end effector and a control circuit. The end effector includes a first jaw, a second jaw, and at least one sensor. The first jaw includes a first electrode. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The second jaw includes a second electrode configured to deliver monopolar energy to tissue, and a third electrode configured to cooperate with the first electrode to deliver bipolar energy. The control circuit is configured to execute a predetermined power regime to seal and cut tissue during a tissue treatment cycle. The power scheme includes predetermined power levels for monopolar energy and bipolar energy. The control circuit is further configured to be capable of adjusting at least one of the predetermined power levels of the monopolar energy and the bipolar energy based on readings of the at least one sensor during the tissue treatment cycle.

实施例10—根据实施例9所述的电外科器械,其中,预定功率方案包括在组织治疗循环中将双极能量和单极能量同时施加和单独施加到组织。Embodiment 10—The electrosurgical instrument of Embodiment 9, wherein the predetermined power regimen includes simultaneous and separate application of bipolar energy and monopolar energy to tissue during a tissue treatment cycle.

实施例11—根据实施例9或10所述的电外科器械,其中,预定功率方案包括在组织治疗循环的羽化区段中将双极能量而非单极能量施加到组织,以及在组织治疗循环的组织加温区段和组织密封区段中将双极能量和单极能量同时施加到组织。Embodiment 11 - The electrosurgical instrument of embodiment 9 or 10, wherein the predetermined power scheme includes applying bipolar energy to the tissue rather than monopolar energy during the feathering section of the tissue treatment cycle, and wherein the Bipolar and monopolar energy are simultaneously applied to the tissue in the tissue warming section and the tissue sealing section.

实施例12—根据实施例11所述的电外科器械,其中,功率方案还包括在组织治疗循环的组织横切区段中将单极能量而非双极能量施加到组织。Embodiment 12—The electrosurgical instrument of Embodiment 11, wherein the power scheme further comprises applying monopolar energy rather than bipolar energy to the tissue in the tissue transecting segment of the tissue treatment cycle.

实施例13—根据实施例9、10、11或12所述的电外科器械,其中,至少一个传感器包括阻抗传感器。Embodiment 13—The electrosurgical instrument of Embodiments 9, 10, 11, or 12, wherein the at least one sensor comprises an impedance sensor.

实施例14—根据实施例13所述的电外科器械,其中,控制电路被配置成能够基于来自阻抗传感器的读数来监测单极组织阻抗与双极组织阻抗的阻抗比率。Embodiment 14—The electrosurgical instrument of Embodiment 13, wherein the control circuit is configured to monitor an impedance ratio of monopolar tissue impedance to bipolar tissue impedance based on readings from the impedance sensor.

实施例15—根据实施例14所述的电外科器械,其中,在预定范围内的阻抗比率的变化致使控制电路发出警告。Embodiment 15—The electrosurgical instrument of Embodiment 14, wherein a change in the impedance ratio within a predetermined range causes the control circuit to issue an alert.

实施例16—根据实施例15所述的电外科器械,其中,处于或低于预定范围的下阈值的阻抗比率的变化致使控制电路调整预定功率方案。Embodiment 16—The electrosurgical instrument of Embodiment 15, wherein a change in the impedance ratio at or below the lower threshold of the predetermined range causes the control circuit to adjust the predetermined power scheme.

实施例17—根据实施例15或16所述的电外科器械,其中,处于或低于预定范围的下阈值的阻抗比率的变化致使控制电路暂停将单极能量施加到组织。Embodiment 17—The electrosurgical instrument of Embodiment 15 or 16, wherein the change in the impedance ratio at or below the lower threshold of the predetermined range causes the control circuit to suspend the application of monopolar energy to the tissue.

实施例18—根据实施例17所述的电外科器械,其中,处于或低于预定范围的下阈值的阻抗比率的变化还致使控制电路调整向组织的双极能量的施加以完成密封组织。Embodiment 18—The electrosurgical instrument of Embodiment 17, wherein the change in the impedance ratio at or below the lower threshold of the predetermined range further causes the control circuit to adjust the application of bipolar energy to the tissue to complete the sealing of the tissue.

实施例19—一种电外科器械,该电外科器械包括端部执行器和控制电路。该端部执行器包括第一钳口和第二钳口。第一钳口包括第一电极。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。组织位于目标部位处。第二钳口包括第二电极,该第二电极被配置成能够将单极能量递送到组织;以及第三电极,该第三电极被配置成能够与第一电极协作以递送双极能量。控制电路被配置成能够执行预定功率方案以在组织治疗循环中密封和切割组织。功率方案包括单极能量和双极能量的预定功率水平。控制电路被进一步配置成能够检测从目标部位的能量偏移以及调整单极能量和双极能量的预定功率水平中的至少一者以减轻能量偏移。Embodiment 19—An electrosurgical instrument comprising an end effector and a control circuit. The end effector includes a first jaw and a second jaw. The first jaw includes a first electrode. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. Tissue is located at the target site. The second jaw includes a second electrode configured to deliver monopolar energy to tissue, and a third electrode configured to cooperate with the first electrode to deliver bipolar energy. The control circuit is configured to execute a predetermined power regime to seal and cut tissue during a tissue treatment cycle. The power scheme includes predetermined power levels for monopolar energy and bipolar energy. The control circuit is further configured to detect the energy excursion from the target site and adjust at least one of the predetermined power levels of monopolar energy and bipolar energy to mitigate the energy excursion.

实施例20—根据实施例19所述的电外科器械,其中,预定功率方案包括在组织治疗循环中将双极能量和单极能量同时施加和单独施加到组织。Embodiment 20—The electrosurgical instrument of Embodiment 19, wherein the predetermined power regimen includes simultaneous and separate application of bipolar energy and monopolar energy to tissue during a tissue treatment cycle.

实施例21—根据实施例19或20所述的电外科器械,其中,预定功率方案包括在组织治疗循环的羽化区段中将双极能量而非单极能量施加到组织,以及在组织治疗循环的组织加温区段和组织密封区段中将双极能量和单极能量同时施加到组织。Embodiment 21 - The electrosurgical instrument of embodiment 19 or 20, wherein the predetermined power scheme includes applying bipolar energy to the tissue rather than monopolar energy during the feathering section of the tissue treatment cycle, and wherein the Bipolar and monopolar energy are simultaneously applied to the tissue in the tissue warming section and the tissue sealing section.

实施例集6Example set 6

实施例1—一种电外科系统,该电外科系统包括端部执行器和控制电路。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。控制电路被配置成能够在包括组织凝固阶段和组织横切阶段的组织治疗循环期间同时和单独地将两种不同能量模态施加到组织。Embodiment 1—An electrosurgical system that includes an end effector and a control circuit. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The control circuit is configured to simultaneously and independently apply two different energy modalities to the tissue during a tissue treatment cycle including a tissue coagulation phase and a tissue transection phase.

实施例2—根据实施例1所述的电外科系统,其中,第一能量模态为单极能量模态。Embodiment 2—The electrosurgical system of Embodiment 1, wherein the first energy modality is a monopolar energy modality.

实施例3—根据实施例2所述的电外科系统,其中,第二能量模态为双极能量模态。Embodiment 3—The electrosurgical system of Embodiment 2, wherein the second energy modality is a bipolar energy modality.

实施例4—根据实施例2或3所述的电外科系统,其中,控制电路被配置成能够在通过双极能量模态的组织凝固阶段的完成之前激活单极能量模态向组织的施加。Embodiment 4—The electrosurgical system of Embodiment 2 or 3, wherein the control circuit is configured to activate application of the monopolar energy modality to tissue prior to completion of the tissue coagulation phase by the bipolar energy modality.

实施例5—根据实施例2或3所述的电外科系统,其中,控制电路被配置成能够在向组织的双极能量模态施加的去激活之前激活单极能量模态向组织的施加。Embodiment 5—The electrosurgical system of Embodiment 2 or 3, wherein the control circuit is configured to activate the application of the monopolar energy modality to the tissue prior to deactivation of the bipolar energy modality application to the tissue.

实施例6—根据实施例3、4或5所述的电外科系统,其中,控制电路被配置成能够在组织凝固阶段期间将单极能量模态和双极能量模态同时施加到组织。Embodiment 6—The electrosurgical system of Embodiment 3, 4, or 5, wherein the control circuit is configured to enable simultaneous application of the monopolar energy modality and the bipolar energy modality to the tissue during the tissue coagulation phase.

实施例7—根据实施例1、2、3、4、5或6所述的电外科系统,其中,控制电路包括处理器和存储介质,并且其中两种不同能量模态向组织的施加基于存储在存储介质中的默认功率方案。Embodiment 7—The electrosurgical system of Embodiments 1, 2, 3, 4, 5, or 6, wherein the control circuit includes a processor and a storage medium, and wherein the application of the two different energy modalities to the tissue is based on storage Default power scheme in storage medium.

实施例8—根据实施例7所述的电外科系统,还包括至少一个传感器,并且其中控制电路被配置成能够基于至少一个传感器的一个或多个传感器读数来修改默认功率方案。Embodiment 8—The electrosurgical system of Embodiment 7, further comprising at least one sensor, and wherein the control circuit is configured to modify the default power scheme based on one or more sensor readings of the at least one sensor.

实施例9—一种电外科器械,该电外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。端部执行器被配置成能够在包括组织凝固阶段和组织横切阶段的组织治疗循环期间将三种不同能量模态施加到组织。Embodiment 9—An electrosurgical instrument that includes an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The end effector is configured to apply three different energy modalities to tissue during a tissue treatment cycle including a tissue coagulation phase and a tissue transection phase.

实施例10—根据实施例9所述的电外科器械,其中,第一能量模态包括双极能量。Embodiment 10—The electrosurgical instrument of Embodiment 9, wherein the first energy modality comprises bipolar energy.

实施例11—根据实施例10所述的电外科器械,其中,第二能量模态包括单极能量和双极能量的能量混合。Embodiment 11—The electrosurgical instrument of Embodiment 10, wherein the second energy modality comprises an energy mix of monopolar energy and bipolar energy.

实施例12—根据实施例11所述的电外科器械,其中,第三能量模态包括单极能量但不包括双极能量。Embodiment 12—The electrosurgical instrument of Embodiment 11, wherein the third energy modality includes monopolar energy but does not include bipolar energy.

实施例13—根据实施例11或12所述的电外科器械,其中,向组织的单极能量施加的激活被配置成能够在组织凝固阶段的完成之前开始。Embodiment 13—The electrosurgical instrument of Embodiment 11 or 12, wherein the activation of the monopolar energy application to the tissue is configured to be able to begin prior to completion of the tissue coagulation phase.

实施例14—根据实施例12或13所述的电外科器械,其中,向组织的单极能量施加的激活被配置成能够在双极能量模态向组织的施加的去激活之前开始。Embodiment 14—The electrosurgical instrument of Embodiment 12 or 13, wherein the activation of the monopolar energy application to the tissue is configured to be able to begin prior to the deactivation of the bipolar energy modality application to the tissue.

实施例15—根据实施例9、10、11、12、13或14所述的电外科器械,还包括控制电路,其中控制电路包括处理器和存储介质,并且其中两种不同能量模态向组织的施加基于存储在存储介质中的默认功率方案。Embodiment 15—The electrosurgical instrument of Embodiments 9, 10, 11, 12, 13, or 14, further comprising a control circuit, wherein the control circuit includes a processor and a storage medium, and wherein the two different energy modalities direct the tissue The application is based on the default power scheme stored in the storage medium.

实施例16—根据实施例15所述的电外科器械,还包括至少一个传感器,其中控制电路被配置成能够基于至少一个传感器的一个或多个传感器读数在组织治疗循环期间调整默认功率方案。Embodiment 16—The electrosurgical instrument of Embodiment 15, further comprising at least one sensor, wherein the control circuit is configured to adjust the default power scheme during the tissue treatment cycle based on one or more sensor readings of the at least one sensor.

实施例17—一种电外科系统,包括被配置成能够输出双极能量的第一发生器、被配置成能够输出单极能量的第二发生器、电耦接到第一发生器和第二发生器的外科器械以及控制电路。外科器械包括端部执行器。该端部执行器包括第一钳口和第二钳口。第一钳口和第二钳口中的至少一者可运动以使端部执行器从打开配置转变到闭合配置,以在第一钳口和第二钳口之间抓持组织。控制电路包括处理器和存储介质,该存储介质包括程序指令,该程序指令在由处理器执行时致使处理器使第一发生器和第二发生器将预定功率方案施加到端部执行器。功率方案包括在组织治疗循环中将双极能量和单极能量同时施加和单独施加到组织。Embodiment 17 - An electrosurgical system comprising a first generator configured to output bipolar energy, a second generator configured to output monopolar energy, electrically coupled to the first generator and the second generator The generator's surgical instrument and control circuitry. The surgical instrument includes an end effector. The end effector includes a first jaw and a second jaw. At least one of the first and second jaws is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first and second jaws. The control circuit includes a processor and a storage medium including program instructions that, when executed by the processor, cause the processor to cause the first generator and the second generator to apply a predetermined power scheme to the end effector. The power regimen includes simultaneous and separate application of bipolar and monopolar energy to the tissue during a tissue treatment cycle.

实施例18—根据实施例17所述的电外科系统,还包括至少一个传感器,其中控制电路被配置成能够基于至少一个传感器的一个或多个传感器读数在组织治疗循环期间调整功率方案。Embodiment 18—The electrosurgical system of Embodiment 17, further comprising at least one sensor, wherein the control circuit is configured to adjust the power scheme during the tissue treatment cycle based on one or more sensor readings of the at least one sensor.

实施例19—根据实施例17或18所述的电外科系统,其中,功率方案包括在组织治疗循环的羽化区段中将双极能量而非单极能量施加到组织,以及在组织治疗循环的组织加温区段和组织密封区段中将双极能量和单极能量同时施加到组织。Embodiment 19—The electrosurgical system of embodiment 17 or 18, wherein the power scheme includes applying bipolar energy to the tissue rather than monopolar energy during the feathering section of the tissue treatment cycle, and wherein the The bipolar and monopolar energy are simultaneously applied to the tissue in the tissue warming section and the tissue sealing section.

实施例20—根据实施例17、18或19所述的电外科系统,其中,功率方案还包括在组织治疗循环的组织横切区段中将单极能量而非双极能量施加到组织。Embodiment 20—The electrosurgical system of Embodiments 17, 18, or 19, wherein the power protocol further comprises applying monopolar energy rather than bipolar energy to the tissue in the tissue transecting section of the tissue treatment cycle.

尽管已举例说明和描述了多个形式,但是申请人的意图并非将所附权利要求的范围约束或限制在此类细节中。在不脱离本公开的范围的情况下,可实现对这些形式的许多修改、变型、改变、替换、组合和等同物,并且本领域技术人员将想到这些形式的许多修改、变型、改变、替换、组合和等同物。此外,另选地,可将与所描述的形式相关联的每个元件的结构描述为用于提供由所述元件执行的功能的器件。另外,在公开了用于某些部件的材料的情况下,也可使用其他材料。因此,应当理解,上述具体实施方式和所附权利要求旨在涵盖属于本发明所公开的形式范围内的所有此类修改、组合和变型。所附权利要求旨在涵盖所有此类修改、变型、改变、替换、修改和等同物。While various forms have been illustrated and described, it is not the intention of the applicants to restrict or limit the scope of the appended claims to such details. Numerous modifications, variations, changes, substitutions, combinations and equivalents of these forms may be made without departing from the scope of the present disclosure, and many modifications, variations, changes, substitutions, Combinations and Equivalents. Also, alternatively, the structure of each element associated with the described form may be described as a means for providing the function performed by the element. Additionally, where materials are disclosed for certain components, other materials may also be used. Therefore, it is to be understood that the foregoing detailed description and the appended claims are intended to cover all such modifications, combinations and variations as fall within the scope of the present disclosure. The appended claims are intended to cover all such modifications, variations, changes, substitutions, alterations and equivalents.

上述具体实施方式已经由使用框图、流程图和/或示例阐述了装置和/或方法的各种形式。只要此类框图、流程图和/或示例包含一个或多个功能和/或操作,本领域的技术人员就要将其理解为此类框图、流程图和/或示例中的每个功能和/或操作都可以单独和/或共同地通过多种硬件、软件、固件或实际上它们的任何组合来实施。本领域的技术人员将会认识到,本文公开的形式中的一些方面可作为在一台或多台计算机上运行的一个或多个计算机程序(例如,作为在一个或多个计算机系统上运行的一个或多个程序),作为在一个或多个处理器上运行的一个或多个程序(例如,作为在一个或多个微处理器上运行的一个或多个程序),作为固件,或作为实际上它们的任何组合全部或部分地在集成电路中等效地实现,并且根据本公开,设计电路系统和/或编写软件和/或硬件的代码将在本领域技术人员的技术范围内。另外,本领域的技术人员将会认识到,本文所述主题的机制能够作为多种形式的一个或多个程序产品进行分布,并且本文所述主题的例示性形式适用,而不管用于实际进行分布的信号承载介质的具体类型是什么。The foregoing detailed description has illustrated various forms of apparatus and/or methods using block diagrams, flowcharts, and/or examples. So long as such block diagrams, flowcharts and/or examples include one or more functions and/or operations, those skilled in the art will understand each function and/or operation in such block diagrams, flowcharts and/or examples or operations may be implemented individually and/or collectively by a variety of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein can be implemented as one or more computer programs running on one or more computers (eg, as a program running on one or more computer systems) one or more programs), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as Indeed any combination of them is equivalently implemented in whole or in part in an integrated circuit, and it would be within the skill of those skilled in the art to design circuitry and/or code software and/or hardware in light of this disclosure. In addition, those skilled in the art will recognize that the mechanisms of the subject matter described herein can be distributed as one or more program products in a variety of forms, and that the illustrative forms of the subject matter described herein are applicable regardless of use in actual implementation. What is the specific type of signal bearing medium distributed.

用于编程逻辑以执行各种所公开的方面的指令可存储在系统中的存储器内,诸如动态随机存取存储器(DRAM)、高速缓存、闪存存储器或其他存储器。此外,指令可经由网络或通过其他计算机可读介质来分发。因此,机器可读介质可包括用于存储或传输以机器(例如,计算机)可读形式的信息的任何机构,但不限于软盘、光学盘、光盘只读存储器(CD-ROM)、和磁光盘、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、磁卡或光卡、闪存存储器、或经由电信号、光学信号、声学信号或其他形式的传播信号(例如,载波、红外信号、数字信号等)在因特网上传输信息时使用的有形的、机器可读存储装置。因此,非暂态计算机可读介质包括适于以机器(例如,计算机)可读的形式存储或传输电子指令或信息的任何类型的有形机器可读介质。Instructions for programming logic to perform the various disclosed aspects may be stored in memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other memory. Furthermore, the instructions may be distributed over a network or through other computer-readable media. Thus, a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (eg, a computer), but is not limited to floppy disks, optical disks, compact disk read only memory (CD-ROM), and magneto-optical disks , read only memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), magnetic or optical cards, flash memory, or A tangible, machine-readable storage device used in transmitting information over the Internet via electrical, optical, acoustic, or other forms of propagated signals (eg, carrier waves, infrared signals, digital signals, etc.). Accordingly, non-transitory computer-readable media includes any type of tangible machine-readable media suitable for storing or transmitting electronic instructions or information in a form readable by a machine (eg, a computer).

如本文任一方面所用,术语“控制电路”可指例如硬连线电路系统、可编程电路系统(例如,计算机处理器,该计算机处理器包括一个或多个单独指令处理内核、处理单元,处理器、微控制器、微控制器单元、控制器、数字信号处理器(DSP)、可编程逻辑装置(PLD)、可编程逻辑阵列(PLA)、场可编程门阵列(FPGA))、状态机电路系统、存储由可编程电路系统执行的指令的固件、以及它们的任何组合。控制电路可以集体地或单独地实现为形成更大系统的一部分的电路系统,例如集成电路(IC)、专用集成电路(ASIC)、片上系统(SoC)、台式计算机、膝上型计算机、平板计算机、服务器、智能电话等。因此,如本文所用,“控制电路”包括但不限于具有至少一个离散电路的电子电路、具有至少一个集成电路的电子电路、具有至少一个专用集成电路的电子电路、形成由计算机程序配置的通用计算设备的电子电路(如,至少部分地实施本文所述的方法和/或设备的由计算机程序配置的通用计算机,或至少部分地实施本文所述的方法和/或设备的由计算机程序配置的微处理器)、形成存储器设备(如,形成随机存取存储器)的电子电路,和/或形成通信设备(如,调节解调器、通信开关或光电设备)的电子电路。本领域的技术人员将会认识到,可以模拟或数字方式或它们的一些组合实施本文所述的主题。As used in any aspect herein, the term "control circuitry" may refer to, for example, hardwired circuitry, programmable circuitry (eg, a computer processor that includes one or more individual instruction processing cores, processing units, processing devices, microcontrollers, microcontroller units, controllers, digital signal processors (DSPs), programmable logic devices (PLDs), programmable logic arrays (PLAs), field programmable gate arrays (FPGAs), state machines Circuitry, firmware that stores instructions for execution by programmable circuitry, and any combination thereof. The control circuits may be implemented collectively or individually as circuitry forming part of a larger system, such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a system on a chip (SoC), a desktop computer, a laptop computer, a tablet computer , servers, smartphones, etc. Thus, as used herein, "control circuit" includes, but is not limited to, an electronic circuit having at least one discrete circuit, an electronic circuit having at least one integrated circuit, an electronic circuit having at least one application specific integrated circuit, forming a general-purpose computer configured by a computer program Electronic circuitry of an apparatus (eg, a general-purpose computer configured by a computer program at least partially implementing the methods and/or apparatus described herein, or a microcomputer configured by a computer program at least partially implementing the methods and/or apparatus described herein) processors), electronic circuits that form memory devices (eg, random access memory), and/or electronic circuits that form communication devices (eg, modems, communication switches, or optoelectronic devices). Those skilled in the art will recognize that the subject matter described herein may be implemented in analog or digital fashion, or some combination thereof.

如本文的任何方面所用,术语“逻辑”可指被配置成能够执行前述操作中的任一者的应用程序、软件、固件和/或电路系统。软件可体现为记录在非暂态计算机可读存储介质上的软件包、代码、指令、指令集和/或数据。固件可体现为在存储器装置中硬编码(例如,非易失性)的代码、指令或指令集和/或数据。As used in any aspect herein, the term "logic" may refer to applications, software, firmware and/or circuitry configured to perform any of the foregoing operations. Software may be embodied as a software package, code, instructions, sets of instructions, and/or data recorded on a non-transitory computer-readable storage medium. Firmware may be embodied as code, instructions or a set of instructions and/or data hard-coded (eg, non-volatile) in a memory device.

如本文任一方面所用,术语“部件”、“系统”、“模块”等可指计算机相关实体、硬件、硬件和软件的组合、软件或执行中的软件。As used in any aspect herein, the terms "component," "system," "module," etc. may refer to a computer-related entity, hardware, a combination of hardware and software, software, or software in execution.

如本文任一方面中所用,“算法”是指导致所期望结果的有条理的步骤序列,其中“步骤”是指物理量和/或逻辑状态的操纵,物理量和/或逻辑状态可(但不一定)采用能被存储、转移、组合、比较和以其他方式操纵的电或磁信号的形式。常用于指这些信号,如位、值、元素、符号、字符、术语、数字等。这些和类似的术语可与适当的物理量相关联并且仅仅是应用于这些量和/或状态的方便的标签。As used in any aspect herein, an "algorithm" refers to an organized sequence of steps leading to a desired result, wherein "step" refers to the manipulation of physical quantities and/or logical states that may (but need not necessarily be) ) take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared and otherwise manipulated. Often used to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, etc. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.

网络可包括分组交换网络。通信装置可能够使用所选择的分组交换网络通信协议来彼此通信。一个示例性通信协议可包括可能够允许使用传输控制协议/因特网协议(TCP/IP)进行通信的以太网通信协议。以太网协议可符合或兼容电气和电子工程师学会(IEEE)于2008年12月发布的标题为“IEEE 802.3Standard”的以太网标准和/或本标准的更高版本。另选地或附加地,通信装置可能够使用X.25通信协议彼此通信。X.25通信协议可符合或兼容由国际电信联盟电信标准化部门(ITU-T)发布的标准。另选地或附加地,通信装置可能够使用帧中继通信协议彼此通信。帧中继通信协议可符合或兼容由国际电报电话咨询委员会(CCITT)和/或美国国家标准学会(ANSI)发布的标准。另选地或附加地,收发器可能够使用异步传输模式(ATM)通信协议彼此通信。ATM通信协议可符合或兼容ATM论坛于2001年8月发布的名为“ATM-MPLS Network Interworking 2.0”的ATM标准和/或该标准的更高版本。当然,本文同样设想了不同的和/或之后开发的连接取向的网络通信协议。The network may include a packet-switched network. The communication devices may be capable of communicating with each other using the selected packet-switched network communication protocol. An exemplary communication protocol may include an Ethernet communication protocol that may enable communication using Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may conform to or be compatible with the Ethernet standard titled "IEEE 802.3 Standard" published by the Institute of Electrical and Electronics Engineers (IEEE) in December 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be able to communicate with each other using the X.25 communication protocol. The X.25 communication protocol may conform to or be compatible with standards published by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be able to communicate with each other using a frame relay communication protocol. The Frame Relay communication protocol may conform to or be compatible with standards published by the Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an asynchronous transfer mode (ATM) communication protocol. The ATM communication protocol may conform to or be compatible with the ATM standard named "ATM-MPLS Network Interworking 2.0" published by the ATM Forum in August 2001 and/or a later version of the standard. Of course, different and/or later developed connection-oriented network communication protocols are also contemplated herein.

除非上述公开中另外明确指明,否则可以理解的是,在上述公开中,使用术语如“处理”、“估算”、“计算”、“确定”、“显示”的讨论是指计算机系统或类似的电子计算装置的动作和进程,其操纵表示为计算机系统的寄存器和存储器内的物理(电子)量的数据并将其转换成相似地表示为计算机系统存储器或寄存器或其他此类信息存储、传输或显示装置内的物理量的其他数据。Unless explicitly stated otherwise in the above disclosure, it is understood that in the above disclosure, discussions using terms such as "processing," "estimating," "calculating," "determining," "displaying," refer to computer systems or similar The acts and processes of electronic computing devices that manipulate data represented as physical (electronic) quantities within the registers and memory of a computer system and convert it into data similarly represented as computer system memory or registers or other such information storage, transmission or Displays other data of physical quantities within the device.

一个或多个部件在本文中可被称为“被配置成能够”、“可配置成能够”、“可操作/可操作地”、“适于/可适于”、“能够”、“可适形/适形于”等。本领域的技术人员将会认识到,除非上下文另有所指,否则“被配置成能够”通常可涵盖活动状态的部件和/或未活动状态的部件和/或待机状态的部件。One or more components may be referred to herein as "configured to be able", "configurable to be able", "operable/operable", "adapted/adaptable", "capable", "possible" Conform/Conform to" etc. Those skilled in the art will recognize that unless the context dictates otherwise, "configured to be able" may generally encompass active state components and/or inactive state components and/or standby state components.

术语“近侧”和“远侧”在本文中是相对于操纵外科器械的柄部部分的临床医生来使用的。术语“近侧”是指最靠近临床医生的部分,术语“远侧”是指远离临床医生定位的部分。还应当理解,为简洁和清楚起见,本文可结合附图使用诸如“竖直”、“水平”、“上”和“下”等空间术语。然而,外科器械在许多取向和方位中使用,并且这些术语并非是限制性的和/或绝对的。The terms "proximal" and "distal" are used herein with respect to a clinician manipulating the handle portion of a surgical instrument. The term "proximal" refers to the portion closest to the clinician, and the term "distal" refers to the portion located away from the clinician. It should also be understood that, for brevity and clarity, spatial terms such as "vertical," "horizontal," "upper," and "lower" may be used herein in connection with the drawings. However, surgical instruments are used in many orientations and orientations, and these terms are not intended to be limiting and/or absolute.

本领域的技术人员将认识到,一般而言,本文、以及特别是所附权利要求(例如,所附权利要求的正文)中所使用的术语通常旨在为“开放”术语(例如,术语“包括”应解释为“包括但不限于”,术语“具有”应解释为“至少具有”,术语“包含”应解释为“包含但不限于”等)。本领域的技术人员还应当理解,如果所引入权利要求表述的具体数目为预期的,则此类意图将在权利要求中明确表述,并且在不存在此类叙述的情况下,不存在此类意图。例如,为有助于理解,下述所附权利要求可含有对介绍性短语“至少一个”和“一个或多个”的使用以引入权利要求。然而,对此类短语的使用不应视为暗示通过不定冠词“一个”或“一种”引入权利要求表述将含有此类引入权利要求表述的任何特定权利要求限制在含有仅一个这样的表述的权利要求中,甚至当同一权利要求包括介绍性短语“一个或多个”或“至少一个”和诸如“一个”或“一种”(例如,“一个”和/或“一种”通常应解释为意指“至少一个”或“一个或多个”)的不定冠词时;这也适用于对用于引入权利要求表述的定冠词的使用。Those of skill in the art will recognize that the terms used herein, in general, and in the appended claims in particular (eg, the body of the appended claims) are generally intended to be "open" terms (eg, the term "" Including" should be interpreted as "including but not limited to", the term "having" should be interpreted as "having at least", the term "including" should be interpreted as "including but not limited to", etc.). It will also be understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present . For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claims. However, use of such phrases should not be taken to imply that introduction of a claim expression by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim expression to containing only one such expression even when the same claim includes the introductory phrases "one or more" or "at least one" and phrases such as "a" or "an" (eg, "an" and/or "an" should generally be When interpreted as an indefinite article meaning "at least one" or "one or more"); this also applies to the use of the definite article for introducing claim expressions.

另外,即使明确叙述引入权利要求叙述的特定数目,本领域的技术人员应当认识到,此种叙述通常应解释为意指至少所叙述的数目(例如,在没有其他修饰语的情况下,对“两个叙述”的裸叙述通常意指至少两个叙述、或两个或更多个叙述)。此外,在其中使用类似于“A、B和C中的至少一者等”的惯例的那些情况下,一般而言,此类构造意在具有本领域的技术人员将理解所述惯例的意义(例如,“具有A、B和C中的至少一者的系统”将包括但不限于具有仅A、仅B、仅C、A和B一起、A和C一起、B和C一起和/或A、B和C一起等的系统)。在其中使用类似于“A、B或C中的至少一者等”的惯例的那些情况下,一般而言,此类构造意在具有本领域的技术人员将理解所述惯例的意义(例如,“具有A、B或C中的至少一者的系统”应当包括但不限于具有仅A、仅B、仅C、A和B一起、A和C一起、B和C一起和/或A、B和C一起等的系统)。本领域的技术人员还应当理解,通常,除非上下文另有指示,否则无论在具体实施方式、权利要求或附图中呈现两个或更多个替代术语的转折性词语和/或短语应理解为涵盖包括所述术语中的一者、所述术语中的任一个或这两个术语的可能性。例如,短语“A或B”通常将被理解为包括“A”或“B”或“A和B”的可能性。Additionally, even if a specific number of an introduced claim recitation is explicitly recited, one skilled in the art will recognize that such recitation should generally be construed to mean at least the recited number (eg, in the absence of other modifiers, a reference to "" The "naked narration of two narrations" generally means at least two narrations, or two or more narrations). Furthermore, in those cases where a convention similar to "at least one of A, B, and C, etc." is used, such constructions are, in general, intended to have the meaning that those skilled in the art would understand the convention ( For example, "a system having at least one of A, B, and C" would include, but not be limited to, having A only, B only, C only, A and B together, A and C together, B and C together, and/or A , B and C together etc.). In those cases where a convention similar to "at least one of A, B, or C, etc." is used, such constructions are generally intended to have the meaning that those skilled in the art would understand the convention (eg, "A system having at least one of A, B, or C" shall include, but is not limited to, having A only, B only, C only, A and B together, A and C together, B and C together, and/or A, B systems such as with C). It will also be understood by those skilled in the art that, generally, unless the context dictates otherwise, the presentation of two or more alternative terms in the detailed description, claims, or drawings, inflectional words and/or phrases should be construed as The possibility of including one of the terms, either of the terms, or both of the terms is encompassed. For example, the phrase "A or B" will generally be understood to include the possibilities of "A" or "B" or "A and B".

对于所附的权利要求,本领域的技术人员将会理解,其中表述的操作通常可以任何顺序进行。另外,尽管以一个或多个序列出了各种操作流程图,但应当理解,可以不同于所示顺序的其他顺序执行各种操作,或者可同时执行所述各种操作。除非上下文另有规定,否则此类替代排序的示例可包括重叠、交错、中断、重新排序、增量、预备、补充、同时、反向,或其他改变的排序。此外,除非上下文另有规定,否则像“响应于”、“相关”这样的术语或其他过去式的形容词通常不旨在排除此类变体。With regard to the appended claims, those skilled in the art will understand that the operations recited therein can generally be performed in any order. Additionally, although various operational flowcharts are presented in one or more sequences, it should be understood that the various operations may be performed in other orders than shown, or may be performed concurrently. Unless the context dictates otherwise, examples of such alternative orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reversed, or other altered orderings. Furthermore, terms like "responsive to," "related to," or other past-tense adjectives are generally not intended to exclude such variations unless the context dictates otherwise.

值得一提的是,任何对“一个方面”、“一方面”、“一范例”、“一个范例”的提及均意指结合所述方面所述的具体特征部、结构或特征包括在至少一个方面中。因此,在整个说明书的各种位置出现的短语“在一个方面”、“在一方面”、“在一范例中”、“在一个范例中”不一定都指同一方面。此外,具体特征部、结构或特征可在一个或多个方面中以任何合适的方式组合。It is worth mentioning that any reference to "an aspect", "an aspect", "an example", "an example" means that the particular feature, structure or characteristic described in connection with the said aspect is included in at least one aspect. in one aspect. Thus, the appearances of the phrases "in one aspect," "in an aspect," "in an example," "in an example" in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.

在本说明书中,除非另有说明,否则如本公开中所使用的术语“约”或“大约”是指如本领域普通技术人员所确定的特定值的可接受误差,这部分地取决于如何测量或确定值。在某些实施方案中,术语“约”或“大约”意指在1、2、3或4标准偏差内。在某些实施方案中,术语“约”或“大约”意指给定值或范围的50%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%或0.05%内。In this specification, unless otherwise stated, the terms "about" or "approximately" as used in this disclosure refer to an acceptable error for a particular value as determined by one of ordinary skill in the art, depending in part on how Measure or determine a value. In certain embodiments, the term "about" or "approximately" means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term "about" or "approximately" means 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, Within 4%, 3%, 2%, 1%, 0.5% or 0.05%.

在本说明书中,除非另外指明,否则所有的数值参数在所有情况下均应理解为以术语“约”作引语或者受术语“约”修饰,其中数值参数具有用于测定参数数值的基础测量技术的固有差异性特征。在最低程度上且不试图将等同原则的应用限制到权利要求的保护范围的前提下,至少应当根据所报告的数值的有效数位并通过应用惯常的四舍五入法来解释本文描述的每一个数值参数。In this specification, unless otherwise indicated, all numerical parameters should in all instances be understood to be referenced by or modified by the term "about", wherein the numerical parameter has the underlying measurement used to determine the value of the parameter The inherently differentiating characteristics of technology. To the minimum extent and without attempting to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described herein should at least be construed in light of the reported number of significant digits and by applying customary rounding.

本文列出的任何数值范围包括涵盖在所列范围内的所有子范围。例如,范围“1至10”包括列出的最小值1与列出的最大值10之间(包括1和10)的所有子范围,也就是说,具有等于或大于1的最小值和等于或小于10的最大值。此外,本文列举的所有范围包括所列出范围的端点。例如,“1到10”的范围包括端点1和10。本说明书中列出的任何上限值旨在包括涵盖在其中的所有较小限值,并且本说明书中列出的任何下限值旨在包括涵盖在其中的所有较大限值。因此,申请人保留修正本说明书(包括权利要求)的权利,以明确地列出涵盖在明确列出的范围内的任何子范围。所有此类范围在本说明书中固有地描述。Any numerical range recited herein includes all subranges subsumed within the recited range. For example, the range "1 to 10" includes all subranges between the listed minimum value of 1 and the listed maximum value of 10, inclusive, that is, having a minimum value equal to or greater than 1 and a minimum value equal to or greater than 1 less than the maximum value of 10. Furthermore, all ranges recited herein are inclusive of the endpoints of the recited range. For example, the range "1 to 10" includes the endpoints 1 and 10. Any upper numerical limitation listed in this specification is intended to include all smaller limitations included therein and any lower numerical limitation listed in this specification is intended to include all larger numerical limitations included therein. Accordingly, Applicants reserve the right to amend this specification, including the claims, to expressly recite any sub-ranges subsumed within the expressly recited ranges. All such ranges are inherently described in this specification.

本说明书提及和/或在任何申请数据表中列出的任何专利申请,专利,非专利公布或其他公开材料均以引用方式并入本文,只要所并入的材料在此不一致。因此,并且在必要的程度下,本文明确列出的公开内容代替以引用方式并入本文的任何冲突材料。据称以引用方式并入本文但与本文列出的现有定义、陈述或其他公开材料相冲突的任何材料或其部分,将仅在所并入的材料与现有的公开材料之间不产生冲突的程度下并入。Any patent applications, patents, non-patent publications or other publications mentioned in this specification and/or listed in any Application Data Sheet are incorporated herein by reference to the extent that the incorporated material is not inconsistent herein. Accordingly, and to the extent necessary, the disclosure expressly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, purportedly incorporated herein by reference, but which conflicts with existing definitions, statements, or other disclosed material set forth herein, will not arise only between the incorporated material and the existing disclosed material merged to the extent of conflict.

概括地说,已经描述了由采用本文所述的概念产生的许多有益效果。为了举例说明和描述的目的,已经提供了一个或多个形式的上述具体实施方式。这些具体实施方式并非意图为详尽的或限定到本发明所公开的精确形式。可以按照上述教导内容对本发明进行修改或变型。选择和描述的一个或多个形式是为了说明原理和实际应用,从而使本领域的普通技术人员能够利用适用于预期的特定用途的各种形式和各种修改。与此一同提交的权利要求书旨在限定完整范围。In summary, a number of benefits have been described that result from employing the concepts described herein. The foregoing detailed description has been presented in one or more forms for the purposes of illustration and description. These detailed descriptions are not intended to be exhaustive or to be limited to the precise forms disclosed. Modifications or variations of the present invention are possible in light of the above teachings. The form or forms was chosen and described in order to illustrate principles and practical application, to thereby enable one of ordinary skill in the art to utilize various forms and modifications as are suited to the particular use contemplated. The claims filed herewith are intended to define the full scope.

Claims (21)

1. An electrosurgical instrument comprising an end effector, the end effector comprising:
a first jaw, the first jaw comprising:
a first electrically conductive backbone;
a first insulating coating selectively covering portions of the first electrically conductive backbone; and
a first jaw electrode comprising an exposed portion of the first electrically conductive skeleton;
a second jaw, wherein at least one of the first jaw and the second jaw is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first jaw and the second jaw, the second jaw comprising:
a second electrically conductive skeleton;
a second insulating coating selectively covering portions of the second electrically conductive skeleton; and
a second jaw electrode comprising an exposed portion of the second electrically conductive skeleton; and
an electrical circuit configured to be capable of transmitting bipolar RF energy and monopolar RF energy to the tissue through the first jaw electrode and the second jaw electrode, wherein the monopolar RF energy shares first and second electrical paths defined by the electrical circuit for transmitting the bipolar RF energy.
2. An electrosurgical instrument according to claim 1, wherein the electrical circuit defines a third electrical pathway separate from the first and second electrical pathways.
3. The electrosurgical instrument of claim 2, wherein the end effector comprises a cutting electrode electrically insulated from the first and second electrically conductive scaffolds.
4. The electrosurgical instrument of claim 3, wherein the cutting electrode is configured to receive cutting monopolar RF energy through the third electrical path.
5. The electrosurgical instrument of claim 4, wherein the cutting electrode is configured to cut the tissue with the cutting monopolar RF energy after coagulation of the tissue has been initiated by the bipolar RF energy.
6. The electrosurgical instrument of claim 3, wherein the cutting electrode is centrally located in one of the first and second jaws.
7. The electrosurgical instrument of claim 4, wherein the end effector is configured to deliver the cutting monopolar RF energy and the bipolar RF energy to the tissue simultaneously.
8. The electrosurgical instrument of claim 1, wherein the first jaw electrode comprises a first distal tip electrode, and wherein the second jaw electrode comprises a second distal tip electrode.
9. The electrosurgical instrument of claim 8, wherein first and second electrically conductive scaffolds are simultaneously energized to deliver the monopolar RF energy to a tissue surface through the first and second distal tip electrodes.
10. The electrosurgical instrument of claim 1, wherein the second jaw comprises a dissection electrode extending along a peripheral surface of the second jaw.
11. An electrosurgical instrument, comprising:
an end effector, the end effector comprising:
at least two electrode sets;
a first jaw; and
a second jaw, wherein at least one of the first jaw and the second jaw is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first jaw and the second jaw, and wherein the end effector is configured to deliver a combination of bipolar RF energy and monopolar RF energy from the at least two electrode sets to the grasped tissue; and
circuitry configured to be capable of transmitting the bipolar RF energy and the monopolar RF energy, wherein the monopolar RF energy shares an active path and a return path defined by the circuitry for transmitting the bipolar RF energy.
12. The electrosurgical instrument of claim 11, wherein the at least two electrode sets comprise three electrical interconnects used together in the circuit.
13. The electrosurgical instrument of claim 11, wherein the at least two electrode sets comprise three electrical interconnects defining at least a portion of the electrical circuit and another separate electrical circuit.
14. The electrosurgical instrument of claim 13, wherein the separate electrical circuit leads to a cutting electrode of the at least two electrode sets, the cutting electrode being isolated and centrally located in one of the first and second jaws.
15. The electrosurgical instrument of claim 14, wherein the cutting electrode is configured to cut the tissue after coagulation of the tissue has been initiated using the second and third electrodes of the at least two electrode sets.
16. The electrosurgical instrument of claim 15, wherein the at least two electrode sets are configured to deliver the monopolar RF energy and the bipolar RF energy to the tissue simultaneously.
17. An electrosurgical instrument, comprising:
an end effector, the end effector comprising:
a first jaw; and
a second jaw, wherein at least one of the first jaw and the second jaw is movable to transition the end effector from an open configuration to a closed configuration to grasp tissue between the first jaw and the second jaw, and wherein the second jaw comprises a composite scaffold of at least two different materials configured to selectively create an electrically conductive portion and a thermally isolated portion.
18. The electrosurgical instrument of claim 17, wherein the composite backbone comprises a titanium ceramic composite.
19. The electrosurgical instrument of claim 18, wherein the composite scaffold comprises:
a ceramic base; and
a titanium crown attachable to the ceramic base.
20. The electrosurgical instrument of claim 17, wherein the composite backbone portion is coated with an electrically insulating material.
21. A method for manufacturing jaws of an end effector of an electrosurgical instrument, the method comprising:
preparing a composite skeleton of the jaws by fusing titanium powder with ceramic powder in a metal injection molding process; and
selectively coating the composite skeleton with an electrically insulating material to produce a plurality of electrodes.
CN202080091268.4A 2019-12-30 2020-11-16 Electrosurgical instrument with monopolar and bipolar energy capabilities Pending CN114901167A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962955299P 2019-12-30 2019-12-30
US62/955,299 2019-12-30
US16/885,881 US20210196361A1 (en) 2019-12-30 2020-05-28 Electrosurgical instrument with monopolar and bipolar energy capabilities
US16/885,881 2020-05-28
PCT/IB2020/060780 WO2021137025A1 (en) 2019-12-30 2020-11-16 Electrosurgical instrument with monopolar and bipolar energy capabilities

Publications (1)

Publication Number Publication Date
CN114901167A true CN114901167A (en) 2022-08-12

Family

ID=82714189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080091268.4A Pending CN114901167A (en) 2019-12-30 2020-11-16 Electrosurgical instrument with monopolar and bipolar energy capabilities

Country Status (3)

Country Link
JP (1) JP7589421B2 (en)
CN (1) CN114901167A (en)
BR (1) BR112022012592A2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072746A1 (en) * 2000-12-08 2002-06-13 Christian Lingenfelder Instrument for surgical purposes and method of cleaning same
US20040116979A1 (en) * 2002-10-01 2004-06-17 Surgrx Electrosurgical instrument and method of use
US20050187547A1 (en) * 2004-02-25 2005-08-25 Yoshihiko Sugi High frequency treatment device having a pair of jaws with electrodes
US20080015567A1 (en) * 2006-07-11 2008-01-17 Olympus Medical Systems Corp. Treatment device
US20090093804A1 (en) * 2007-10-09 2009-04-09 Gyrus Medical Limited, Electrosurgical system
CN102006832A (en) * 2008-04-17 2011-04-06 爱尔伯电子医疗设备公司 Bipolar clamp for hf surgery
CN104602635A (en) * 2012-06-28 2015-05-06 伊西康内外科公司 Multi-axis articulating and rotating surgical tools
CN104853688A (en) * 2012-09-28 2015-08-19 伊西康内外科公司 Multi-function bi-polar forceps
CN105142557A (en) * 2013-03-15 2015-12-09 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Hand switched combined electrosurgical monopolar and bipolar device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072746A1 (en) * 2000-12-08 2002-06-13 Christian Lingenfelder Instrument for surgical purposes and method of cleaning same
US20040116979A1 (en) * 2002-10-01 2004-06-17 Surgrx Electrosurgical instrument and method of use
US20050187547A1 (en) * 2004-02-25 2005-08-25 Yoshihiko Sugi High frequency treatment device having a pair of jaws with electrodes
US20080015567A1 (en) * 2006-07-11 2008-01-17 Olympus Medical Systems Corp. Treatment device
US20090093804A1 (en) * 2007-10-09 2009-04-09 Gyrus Medical Limited, Electrosurgical system
CN102006832A (en) * 2008-04-17 2011-04-06 爱尔伯电子医疗设备公司 Bipolar clamp for hf surgery
CN104602635A (en) * 2012-06-28 2015-05-06 伊西康内外科公司 Multi-axis articulating and rotating surgical tools
CN104853688A (en) * 2012-09-28 2015-08-19 伊西康内外科公司 Multi-function bi-polar forceps
CN105142557A (en) * 2013-03-15 2015-12-09 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Hand switched combined electrosurgical monopolar and bipolar device

Also Published As

Publication number Publication date
JP7589421B2 (en) 2024-11-26
BR112022012592A2 (en) 2022-09-06
JP2023508549A (en) 2023-03-02

Similar Documents

Publication Publication Date Title
CN114901170A (en) Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
CN115209820A (en) Electrosurgical instrument for delivering hybrid energy modalities to tissue
EP3845163B1 (en) Electrosurgical instrument with monopolar and bipolar energy capabilities
CN114901184A (en) Electrosurgical instruments with electrodes with variable energy density
CN114901167A (en) Electrosurgical instrument with monopolar and bipolar energy capabilities
CN115190779A (en) Electrosurgical instrument with electrode having energy focusing feature
CN114901168A (en) Electrosurgical end effector with thermally isolated and thermally conductive portions
CN114901186A (en) Electrosurgical instrument with electrode bias support
CN115666420A (en) Electrosurgical system with integrated and external power source
CN114945333A (en) Electrosurgical instruments with flexible wiring assemblies
CN115151206A (en) Electrosurgical instruments with variable control mechanisms
CN115003239A (en) Electrosurgical instrument with asynchronously energized electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination