CN114900085B - Robot joint servo motor model prediction parameter optimization method and device - Google Patents

Robot joint servo motor model prediction parameter optimization method and device Download PDF

Info

Publication number
CN114900085B
CN114900085B CN202210550079.XA CN202210550079A CN114900085B CN 114900085 B CN114900085 B CN 114900085B CN 202210550079 A CN202210550079 A CN 202210550079A CN 114900085 B CN114900085 B CN 114900085B
Authority
CN
China
Prior art keywords
robot joint
permanent magnet
prediction
model
magnet synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210550079.XA
Other languages
Chinese (zh)
Other versions
CN114900085A (en
Inventor
潘月斗
张亚涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210550079.XA priority Critical patent/CN114900085B/en
Publication of CN114900085A publication Critical patent/CN114900085A/en
Application granted granted Critical
Publication of CN114900085B publication Critical patent/CN114900085B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开了一种机器人关节伺服电机模型预测参数优化方法及装置,涉及机器人关节控制技术领域。包括:对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型;根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器;根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。本发明能够在线优化模型预测控制方法中价值函数的参数配置,解决模型预测控制技术中价值函数的参数难以配置的问题,进一步优化系统的控制性能。

Figure 202210550079

The invention discloses a robot joint servo motor model prediction parameter optimization method and device, and relates to the technical field of robot joint control. Including: modeling the permanent magnet synchronous motor to obtain the permanent magnet synchronous motor mathematical model that meets the robot joint predictive control standard; according to the permanent magnet synchronous motor mathematical model, establish a model predictive controller for the robot joint permanent magnet synchronous motor; The controller obtains the optimal voltage vector of the robot joint motor to be predicted. The invention can optimize the parameter configuration of the value function in the model predictive control method on-line, solve the problem that the parameters of the value function in the model predictive control technology are difficult to configure, and further optimize the control performance of the system.

Figure 202210550079

Description

一种机器人关节伺服电机模型预测参数优化方法及装置A robot joint servo motor model prediction parameter optimization method and device

技术领域technical field

本发明涉及机器人关节控制技术领域,特别是指一种机器人关节伺服电机模型预测参数优化方法及装置。The invention relates to the technical field of robot joint control, in particular to a method and device for optimizing parameters of a model prediction parameter of a servo motor of a robot joint.

背景技术Background technique

关节机器人也称关节手臂机器人或关节机械手臂,是当今工业领域中最常见的工业机器人的形态之一,适合用于诸多工业领域的机械自动化作业。比如,自动装配、喷漆、搬运、焊接等工作,关节机器人利用电机驱动,使用高精度永磁同步电机实现机器人关节的高精度控制。PMSM(permanent magnet synchronous motor,永磁同步电机)具有尺寸小、惯量小、响应速度快、效率高等优点。传统的控制方法往往需要工作人员反复调试控制器参数,并且在进行参数调节时往往不够精确,难以达到满意的效果。Jointed robots, also known as jointed arm robots or jointed mechanical arms, are one of the most common forms of industrial robots in today's industrial fields, and are suitable for mechanical automation operations in many industrial fields. For example, for automatic assembly, painting, handling, welding and other tasks, joint robots are driven by motors, and high-precision permanent magnet synchronous motors are used to achieve high-precision control of robot joints. PMSM (permanent magnet synchronous motor, permanent magnet synchronous motor) has the advantages of small size, small inertia, fast response, and high efficiency. Traditional control methods often require staff to repeatedly debug controller parameters, and the parameter adjustment is often not accurate enough to achieve satisfactory results.

发明内容Contents of the invention

本发明针对传统模型预测控制中权重系数难以精确配置的问题,提出了本发明。The invention proposes the invention aiming at the problem that the weight coefficients are difficult to configure accurately in the traditional model predictive control.

为解决上述技术问题,本发明提供如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:

一方面,本发明提供了一种机器人关节伺服电机模型预测参数优化方法,该方法由电子设备实现,该方法包括:On the one hand, the present invention provides a kind of robot joint servo motor model prediction parameter optimization method, and this method is realized by electronic equipment, and this method comprises:

S1、对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型。S1. The permanent magnet synchronous motor is modeled, and the mathematical model of the permanent magnet synchronous motor that meets the robot joint predictive control standard is obtained.

S2、根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器。S2. According to the mathematical model of the permanent magnet synchronous motor, a model predictive controller for the permanent magnet synchronous motor of the robot joint is established.

S3、根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。S3. Obtain the optimal voltage vector of the robot joint motor to be predicted according to the model predictive controller.

可选地,永磁同步电机数学模型包括永磁同步电机d轴和q轴电压电流方程、永磁同步电机d轴和q轴电压在旋转坐标系变换方程、磁链方程以及永磁同步电机电磁转矩方程。Optionally, the permanent magnet synchronous motor mathematical model includes permanent magnet synchronous motor d-axis and q-axis voltage and current equations, permanent magnet synchronous motor d-axis and q-axis voltage transformation equations in the rotating coordinate system, flux linkage equations, and permanent magnet synchronous motor electromagnetic torque equation.

可选地,模型预测控制器包括判定单元、电流预测控制单元以及参数优化单元。Optionally, the model predictive controller includes a determination unit, a current predictive control unit and a parameter optimization unit.

S3中的根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量包括:According to the model predictive controller in S3, the optimal voltage vector of the robot joint motor to be predicted includes:

S31、通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态;其中,运动状态包括动态调节阶段与稳定调节阶段。S31. Collect the speed feedback data and current feedback data of the permanent magnet synchronous motor through the determination unit, and judge the motion state of the joint motor of the robot; wherein, the motion state includes a dynamic adjustment phase and a stable adjustment phase.

S32、根据电流预测控制单元,得到价值函数;其中,价值函数包括动态调节阶段价值函数与稳定调节阶段价值函数。S32. Obtain a value function according to the current prediction control unit; wherein, the value function includes a dynamic adjustment stage value function and a stable adjustment stage value function.

S33、通过参数优化单元对价值函数进行参数优化,得到待预测的机器人关节电机的最优的电压矢量。S33. Perform parameter optimization on the value function by the parameter optimization unit to obtain an optimal voltage vector of the robot joint motor to be predicted.

可选地,S31中的通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态包括:Optionally, the passing determination unit in S31 collects the speed feedback data and current feedback data of the permanent magnet synchronous motor, and judging the motion state of the robot joint motor includes:

通过判定单元采集设定条件的永磁同步电机的速度反馈数据以及电流反馈数据;其中,设定条件包括设定的循环周期和设定的采样时间。The speed feedback data and current feedback data of the permanent magnet synchronous motor with set conditions are collected through the determination unit; wherein the set conditions include a set cycle period and a set sampling time.

根据速度反馈数据以及电流反馈数据,判定机器人关节电机的运动状态为动态调节阶段或稳定调节阶段。According to the speed feedback data and the current feedback data, it is determined that the motion state of the robot joint motor is in the dynamic adjustment stage or the stable adjustment stage.

可选地,S32中的根据电流预测控制单元,得到价值函数包括:Optionally, according to the current prediction control unit in S32, the value function obtained includes:

构建电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型。Construct current prediction mathematical model, electromagnetic torque prediction mathematical model and inverter switching frequency prediction model.

根据电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型,得到价值函数。According to the current prediction mathematical model, the electromagnetic torque prediction mathematical model and the inverter switching frequency prediction model, the value function is obtained.

可选地,价值函数如下式(1)所示:Optionally, the value function is shown in the following formula (1):

gm=λ[|iq k+1-iq k|+|id k+1-id k|]-βTe k+1+γSw k+1 (1)g m =λ[|i q k+1 -i q k |+|i d k+1 -i d k |]-βT e k+1 +γS w k+1 (1)

其中,λ表示电流误差的权重系数;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;id k、iq k为经过补偿预测后的k+1时刻和k时刻d、q轴电流;β表示电磁转矩的权重系数;Te k +1表示k+1时刻的电磁转矩预测值;γ表示逆变器开关频率的权重系数;Sw k+1表示k+1时刻的逆变器开关频率变化次数。Among them, λ represents the weight coefficient of the current error; id k+1 and i q k+1 are the d and q axis currents at time k+1 after compensation prediction; id k and i q k are the currents after compensation prediction d and q axis currents at time k+1 and time k; β represents the weight coefficient of electromagnetic torque; T e k +1 represents the predicted value of electromagnetic torque at time k+1; γ represents the weight coefficient of inverter switching frequency; S w k+1 represents the number of switching frequency changes of the inverter at time k+1.

可选地,S33中的通过参数优化单元对价值函数进行参数优化包括:Optionally, optimizing the parameters of the value function through the parameter optimization unit in S33 includes:

通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化。The parameter optimization of the weight coefficient of the value function in the dynamic adjustment stage is performed online through the optimization algorithm of the parameter optimization unit.

以及通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化。And through the optimization algorithm of the parameter optimization unit, the parameters of the weight coefficients of the value function in the stable adjustment stage are optimized online.

可选地,通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化包括:Optionally, online parameter optimization of the weight coefficient of the value function in the dynamic adjustment stage through the optimization algorithm of the parameter optimization unit includes:

判断动态调节阶段的上升时间是否超过预设阈值,若是,则减少动态调节阶段价值函数中电流误差的权重系数,增加动态调节阶段价值函数中电磁转矩的权重系数。Determine whether the rise time of the dynamic adjustment stage exceeds the preset threshold, and if so, reduce the weight coefficient of the current error in the value function of the dynamic adjustment stage, and increase the weight coefficient of the electromagnetic torque in the value function of the dynamic adjustment stage.

可选地,通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化包括:Optionally, online parameter optimization of the weight coefficient of the value function in the stable adjustment stage through the optimization algorithm of the parameter optimization unit includes:

判断稳定调节阶段的静态误差是否超过预设阈值,若是,则增加稳定调节阶段价值函数中电流误差的权重系数,减小稳定调节阶段价值函数中电磁转矩的权重系数。Determine whether the static error in the stable adjustment stage exceeds the preset threshold, and if so, increase the weight coefficient of the current error in the value function of the stable adjustment stage, and decrease the weight coefficient of the electromagnetic torque in the value function of the stable adjustment stage.

另一方面,本发明提供了一种机器人关节伺服电机模型预测参数优化装置,该装置应用于实现机器人关节伺服电机模型预测参数优化方法,该装置包括:In another aspect, the present invention provides a robot joint servo motor model prediction parameter optimization device, which is applied to realize a robot joint servo motor model prediction parameter optimization method, and the device includes:

数学模型构建模块,用于对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型。The mathematical model building block is used to model the permanent magnet synchronous motor to obtain a permanent magnet synchronous motor mathematical model that meets the robot joint predictive control standard.

控制器构建模块,用于根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器。The controller building block is used to establish a model predictive controller of the permanent magnet synchronous motor of the robot joint according to the mathematical model of the permanent magnet synchronous motor.

输出模块,用于根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。The output module is used to predict the controller according to the model to obtain the optimal voltage vector of the robot joint motor to be predicted.

可选地,永磁同步电机数学模型包括永磁同步电机d轴和q轴电压电流方程、永磁同步电机d轴和q轴电压在旋转坐标系变换方程、磁链方程以及永磁同步电机电磁转矩方程。Optionally, the permanent magnet synchronous motor mathematical model includes permanent magnet synchronous motor d-axis and q-axis voltage and current equations, permanent magnet synchronous motor d-axis and q-axis voltage transformation equations in the rotating coordinate system, flux linkage equations, and permanent magnet synchronous motor electromagnetic torque equation.

可选地,模型预测控制器包括判定单元、电流预测控制单元以及参数优化单元。Optionally, the model predictive controller includes a determination unit, a current predictive control unit and a parameter optimization unit.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

S31、通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态;其中,运动状态包括动态调节阶段与稳定调节阶段。S31. Collect the speed feedback data and current feedback data of the permanent magnet synchronous motor through the determination unit, and judge the motion state of the joint motor of the robot; wherein, the motion state includes a dynamic adjustment phase and a stable adjustment phase.

S32、根据电流预测控制单元,得到价值函数;其中,价值函数包括动态调节阶段价值函数与稳定调节阶段价值函数。S32. Obtain a value function according to the current prediction control unit; wherein, the value function includes a dynamic adjustment stage value function and a stable adjustment stage value function.

S33、通过参数优化单元对价值函数进行参数优化,得到待预测的机器人关节电机的最优的电压矢量。S33. Perform parameter optimization on the value function by the parameter optimization unit to obtain an optimal voltage vector of the robot joint motor to be predicted.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

通过判定单元采集设定条件的永磁同步电机的速度反馈数据以及电流反馈数据;其中,设定条件包括设定的循环周期和设定的采样时间。The speed feedback data and current feedback data of the permanent magnet synchronous motor with set conditions are collected through the determination unit; wherein the set conditions include a set cycle period and a set sampling time.

根据速度反馈数据以及电流反馈数据,判定机器人关节电机的运动状态为动态调节阶段或稳定调节阶段。According to the speed feedback data and the current feedback data, it is determined that the motion state of the robot joint motor is in the dynamic adjustment stage or the stable adjustment stage.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

构建电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型。Construct current prediction mathematical model, electromagnetic torque prediction mathematical model and inverter switching frequency prediction model.

根据电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型,得到价值函数。According to the current prediction mathematical model, the electromagnetic torque prediction mathematical model and the inverter switching frequency prediction model, the value function is obtained.

可选地,价值函数如下式(1)所示:Optionally, the value function is shown in the following formula (1):

gm=λ[|iq k+1-iq k|+|id k+1-id k|]-βTe k+1+γSw k+1 (1)g m =λ[|i q k+1 -i q k |+|i d k+1 -i d k |]-βT e k+1 +γS w k+1 (1)

其中,λ表示电流误差的权重系数;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;id k、iq k为经过补偿预测后的k+1时刻和k时刻d、q轴电流;β表示电磁转矩的权重系数;Te k +1表示k+1时刻的电磁转矩预测值;γ表示逆变器开关频率的权重系数;Sw k+1表示k+1时刻的逆变器开关频率变化次数。Among them, λ represents the weight coefficient of the current error; id k+1 and i q k+1 are the d and q axis currents at time k+1 after compensation prediction; id k and i q k are the currents after compensation prediction d and q axis currents at time k+1 and time k; β represents the weight coefficient of electromagnetic torque; T e k +1 represents the predicted value of electromagnetic torque at time k+1; γ represents the weight coefficient of inverter switching frequency; S w k+1 represents the number of switching frequency changes of the inverter at time k+1.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化。The parameter optimization of the weight coefficient of the value function in the dynamic adjustment stage is performed online through the optimization algorithm of the parameter optimization unit.

以及通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化。And through the optimization algorithm of the parameter optimization unit, the parameters of the weight coefficients of the value function in the stable adjustment stage are optimized online.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

判断动态调节阶段的上升时间是否超过预设阈值,若是,则减少动态调节阶段价值函数中电流误差的权重系数,增加动态调节阶段价值函数中电磁转矩的权重系数。Determine whether the rise time of the dynamic adjustment stage exceeds the preset threshold, and if so, reduce the weight coefficient of the current error in the value function of the dynamic adjustment stage, and increase the weight coefficient of the electromagnetic torque in the value function of the dynamic adjustment stage.

可选地,输出模块,进一步用于:Optionally, output modules, further used to:

判断稳定调节阶段的静态误差是否超过预设阈值,若是,则增加稳定调节阶段价值函数中电流误差的权重系数,减小稳定调节阶段价值函数中电磁转矩的权重系数。Determine whether the static error in the stable adjustment stage exceeds the preset threshold, and if so, increase the weight coefficient of the current error in the value function of the stable adjustment stage, and decrease the weight coefficient of the electromagnetic torque in the value function of the stable adjustment stage.

一方面,提供了一种电子设备,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述机器人关节伺服电机模型预测参数优化方法。In one aspect, an electronic device is provided, the electronic device includes a processor and a memory, and at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to realize the robot joint servo motor described above Model prediction parameter optimization method.

一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现上述机器人关节伺服电机模型预测参数优化方法。In one aspect, a computer-readable storage medium is provided, wherein at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the above method for optimizing parameters of robot joint servo motor model prediction.

本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solutions provided by the embodiments of the present invention at least include:

上述方案中,提供了一种机器人关节伺服电机模型预测参数优化方法,将一种参数整定的方法用于传统模型预测当中,该方法解决了传统模型预测控制方法权重系数难以精确配置的问题,通过该算法在线优化价值函数权重系数配比,可以很好地提高系统的动态性能和稳定性能。In the above scheme, a method for optimizing parameters of robot joint servo motor model prediction is provided, and a method of parameter tuning is used in traditional model prediction. This method solves the problem that the weight coefficients of traditional model predictive control methods are difficult to configure accurately. Through The algorithm optimizes the weight coefficient ratio of the value function online, which can improve the dynamic performance and stability of the system.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.

图1是本发明实施例提供的机器人关节伺服电机模型预测参数优化方法流程示意图;Fig. 1 is a schematic flow chart of a method for optimizing a model prediction parameter of a robot joint servo motor provided by an embodiment of the present invention;

图2是本发明实施例提供的机器人关节伺服电机模型预测参数优化方法控制框图;Fig. 2 is a control block diagram of the method for optimizing the prediction parameters of the robot joint servo motor model provided by the embodiment of the present invention;

图3是本发明实施例提供的基于模型预测控制方法的优化算法流程示意图;Fig. 3 is a schematic flowchart of an optimization algorithm based on a model predictive control method provided by an embodiment of the present invention;

图4是本发明实施例提供的机器人关节伺服电机模型预测参数优化装置框图;4 is a block diagram of a robot joint servo motor model prediction parameter optimization device provided by an embodiment of the present invention;

图5是本发明实施例提供的一种电子设备的结构示意图。Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.

如图1所示,本发明实施例提供了一种机器人关节伺服电机模型预测参数优化方法,该方法可以由电子设备实现。如图1所示的机器人关节伺服电机模型预测参数优化方法流程图,该方法的处理流程可以包括如下的步骤:As shown in FIG. 1 , an embodiment of the present invention provides a method for optimizing parameters of robot joint servo motor model prediction, which can be implemented by electronic equipment. As shown in Figure 1, the flow chart of the method for optimizing the prediction parameters of the robot joint servo motor model, the processing flow of the method may include the following steps:

S1、对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型。S1. The permanent magnet synchronous motor is modeled, and the mathematical model of the permanent magnet synchronous motor that meets the robot joint predictive control standard is obtained.

可选地,永磁同步电机数学模型包括永磁同步电机d轴和q轴电压电流方程、永磁同步电机d轴和q轴电压在旋转坐标系变换方程、磁链方程以及永磁同步电机电磁转矩方程。Optionally, the permanent magnet synchronous motor mathematical model includes permanent magnet synchronous motor d-axis and q-axis voltage and current equations, permanent magnet synchronous motor d-axis and q-axis voltage transformation equations in the rotating coordinate system, flux linkage equations, and permanent magnet synchronous motor electromagnetic torque equation.

其中,永磁同步电机d轴和q轴电压电流方程,如下式(1)所示:Among them, the d-axis and q-axis voltage and current equations of the permanent magnet synchronous motor are shown in the following formula (1):

Figure BDA0003654597380000061
Figure BDA0003654597380000061

其中,ud、uq分别表示d轴电压、q轴电压,Rs表示定子等效电阻,id、iq分别表示d轴电流、q轴电流,ωt表示t时刻的电机角速度,L表示直轴与交轴电感,ψf为转子总磁链矢量。Among them, u d and u q represent the d-axis voltage and q-axis voltage respectively, R s represents the stator equivalent resistance, id and i q represent the d -axis current and q-axis current respectively, ω t represents the angular velocity of the motor at time t, L Indicates the direct axis and quadrature axis inductance, ψ f is the total flux vector of the rotor.

永磁同步电机d轴和q轴电压在旋转坐标系变换方程,如下式(2)所示:The d-axis and q-axis voltage transformation equations of the permanent magnet synchronous motor in the rotating coordinate system are shown in the following formula (2):

Figure BDA0003654597380000071
Figure BDA0003654597380000071

其中,ω表示t时刻的电机角速度,ua、ub、uc表示自然坐标系下的电压。Among them, ω represents the angular velocity of the motor at time t , and u a , ub and uc represent the voltages in the natural coordinate system.

磁链方程,如下式(3)所示:The flux linkage equation is shown in the following formula (3):

Figure BDA0003654597380000072
Figure BDA0003654597380000072

其中,ψd、ψq分别为电机定子磁链d轴和q轴分量。Among them, ψ d , ψ q are the d-axis and q-axis components of the motor stator flux linkage, respectively.

永磁同步电机电磁转矩方程,如下式(4)所示:The electromagnetic torque equation of the permanent magnet synchronous motor is shown in the following formula (4):

Figure BDA0003654597380000073
Figure BDA0003654597380000073

其中,p为微分算子,id、iq分别表示d轴电流、q轴电流,Ld、Lq分别表示d轴、q轴定子等效电感,ψf为转子总磁链矢量,ψd、ψq分别为电机定子磁链d轴和q轴分量,J表示电机转子的转动惯量,Te表示电磁转矩,pn为电机极对数。Among them, p is the differential operator, id and i q represent the d -axis current and q-axis current respectively, L d and L q represent the equivalent inductance of the d-axis and q-axis stators respectively, ψ f is the total flux vector of the rotor, ψ d , ψ q are the d-axis and q-axis components of the motor stator flux linkage, J represents the moment of inertia of the motor rotor, T e represents the electromagnetic torque, and p n is the number of pole pairs of the motor.

S2、根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器。S2. According to the mathematical model of the permanent magnet synchronous motor, a model predictive controller for the permanent magnet synchronous motor of the robot joint is established.

S3、根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。S3. Obtain the optimal voltage vector of the robot joint motor to be predicted according to the model predictive controller.

可选地,模型预测控制器包括判定单元、电流预测控制单元以及参数优化单元。Optionally, the model predictive controller includes a determination unit, a current predictive control unit and a parameter optimization unit.

S3中的根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量包括:According to the model predictive controller in S3, the optimal voltage vector of the robot joint motor to be predicted includes:

S31、通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态。S31. Collect the speed feedback data and current feedback data of the permanent magnet synchronous motor through the determination unit to determine the motion state of the joint motor of the robot.

其中,运动状态包括动态调节阶段与稳定调节阶段。Among them, the motion state includes a dynamic adjustment phase and a stable adjustment phase.

可选地,S31中的通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态包括:Optionally, the passing determination unit in S31 collects the speed feedback data and current feedback data of the permanent magnet synchronous motor, and judging the motion state of the robot joint motor includes:

通过判定单元采集设定条件的永磁同步电机的速度反馈数据以及电流反馈数据。The speed feedback data and current feedback data of the permanent magnet synchronous motor with set conditions are collected through the determination unit.

其中,设定条件包括设定的循环周期和设定的采样时间。Wherein, the setting condition includes a set cycle period and a set sampling time.

根据速度反馈数据以及电流反馈数据,判定机器人关节电机的运动状态为动态调节阶段或稳定调节阶段。According to the speed feedback data and the current feedback data, it is determined that the motion state of the robot joint motor is in the dynamic adjustment stage or the stable adjustment stage.

一种可行的实施方式中,判定机器人关节电机的运动状态为动态调节阶段或稳定调节阶段可以是设定一个循环周期和采样时间,获取永磁同步电机的转速数据,数据采集范围可设置为1000个,采集完成后进行判定是否上升时间长(静差值在10%内的数据小于总数据的3/4);判断静态误差是否满足系统要求(后1/5数据静差值平均值小于给定值的0.5%)。In a feasible implementation, determining that the motion state of the robot joint motor is a dynamic adjustment phase or a stable adjustment phase can be to set a cycle and sampling time to obtain the speed data of the permanent magnet synchronous motor, and the data acquisition range can be set to 1000 After the collection is completed, judge whether the rising time is long (the data within 10% of the static difference is less than 3/4 of the total data); judge whether the static error meets the system requirements (the average value of the last 1/5 data static difference is less than the given 0.5% of the fixed value).

如图2所示,其中,

Figure BDA0003654597380000081
分别表示转速给定值与反馈值,Ia、Ib、Ic表示电机自然坐标系下的三相电流,Iα、Iβ表示静止坐标系下的电流,Id、Iq表示同步旋转坐标系下的d-q轴电流。Iq *、Id *表示预测控制模型的电流参考值,Iq *由PI控制器输出,Id *设定Id *=0,将转速参考值与转速检测器检测到的电机角速度作差得到差值,通过速度环PI控制器输出参考电流,通过模型预测控制的判定单元采集转速数据,判断电机的状态及性能。As shown in Figure 2, where,
Figure BDA0003654597380000081
Represent the speed given value and feedback value respectively, I a , I b , I c represent the three-phase current in the motor natural coordinate system, I α , I β represent the current in the stationary coordinate system, I d , I q represent synchronous rotation The dq-axis current in the coordinate system. I q * and I d * represent the current reference value of the predictive control model, I q * is output by the PI controller, I d * is set to I d * = 0, and the rotational speed reference value and the motor angular velocity detected by the rotational speed detector are made The difference is obtained by the difference, the reference current is output through the speed loop PI controller, and the speed data is collected through the judgment unit of the model predictive control to judge the state and performance of the motor.

S32、根据电流预测控制单元,得到价值函数。S32. Obtain a value function according to the current prediction control unit.

其中,价值函数包括动态调节阶段价值函数与稳定调节阶段价值函数。Wherein, the value function includes a dynamic adjustment stage value function and a stable adjustment stage value function.

可选地,S32中的根据电流预测控制单元,得到价值函数包括:Optionally, according to the current prediction control unit in S32, the value function obtained includes:

构建电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型。Construct current prediction mathematical model, electromagnetic torque prediction mathematical model and inverter switching frequency prediction model.

其中,电流预测数学模型表示为下式(5)(6)所示:Among them, the current prediction mathematical model is expressed as the following formula (5) (6):

Figure BDA0003654597380000082
Figure BDA0003654597380000082

Figure BDA0003654597380000083
Figure BDA0003654597380000083

其中,id k、iq k为k时刻d、q轴电流;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;λd k、λq k为补偿因子;、Ld、Lq分别表示d轴、q轴定子等效电感;ψf为转子总磁链矢量;Δt为采样周期。Among them, id k and i q k are d and q axis currents at time k; id k+1 and i q k+1 are d and q axis currents at time k+1 after compensation prediction; λ d k , λ q k is the compensation factor; , L d , and L q represent the equivalent inductance of the d-axis and q-axis stators respectively; ψ f is the total flux vector of the rotor; Δt is the sampling period.

电磁转矩预测数学模型表示下式(7)所示:The mathematical model of electromagnetic torque prediction is shown in the following formula (7):

Figure BDA0003654597380000084
Figure BDA0003654597380000084

其中,Te k+1表示下一时刻的电磁转矩预测值;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;Ld、Lq分别表示d轴、q轴定子等效电感;ψf为转子总磁链矢量。Among them, T e k+1 represents the predicted value of electromagnetic torque at the next moment; id k+1 and i q k+1 are the d and q axis currents at time k+1 after compensation prediction; L d , L q Represent the equivalent inductance of the d-axis and q-axis stators respectively; ψ f is the total flux vector of the rotor.

模型预测单元输出最优电压矢量备选的8个基本电压矢量,具体包括:The model prediction unit outputs 8 alternative basic voltage vectors for the optimal voltage vector, including:

U0(000)、U1(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、U7(111),分别对应三相电压源逆变器的8种不同的电压矢量。U 0 (000), U 1 (001), U 2 (010), U 3 (011), U 4 (100), U 5 (101), U 6 (110), U 7 (111), corresponding to 8 different voltage vectors for a three-phase voltage source inverter.

逆变器开关频率预测模型表示为下式(8)所示:The inverter switching frequency prediction model is expressed as the following formula (8):

Figure BDA0003654597380000091
Figure BDA0003654597380000091

其中,Uk+1、Uk分别表示下一时刻和当前时刻的最优电压矢量,Sw k+1表示k+1时刻电压矢量变化的量,可表示为逆变器开关频率次数,U1 i表示下一时刻逆变器开关第i维的变化量。Among them, U k+1 and U k represent the optimal voltage vector at the next moment and the current moment respectively, S w k+1 represents the amount of voltage vector change at the moment k+1, which can be expressed as the frequency of inverter switching, U 1 i represents the variation of the i-th dimension of the inverter switch at the next moment.

具体地,U′1i表示1行3列矩阵U′的第1行第i列。Specifically, U' 1i represents the 1st row and the ith column of the 1-row 3-column matrix U'.

根据电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型,得到价值函数。According to the current prediction mathematical model, the electromagnetic torque prediction mathematical model and the inverter switching frequency prediction model, the value function is obtained.

可选地,价值函数如下式(9)所示:Optionally, the value function is shown in the following formula (9):

gm=λ[|iq k+1-iq k|+|id k+1-id k|]-βTe k+1+γSw k+1 (9)g m =λ[|i q k+1 -i q k |+|i d k+1 -i d k |]-βT e k+1 +γS w k+1 (9)

其中,λ表示电流误差权重系数;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;id k、iq k为经过补偿预测后的k+1时刻和k时刻d、q轴电流;β表示电磁转矩权重系数;Te k+1表示k+1时刻的电磁转矩预测值;γ表示逆变器开关频率权重系数;Sw k+1表示k+1时刻的逆变器开关频率变化次数。Among them, λ represents the current error weight coefficient; id k+1 and i q k+1 are the d and q axis currents at time k+1 after compensation prediction; id k and i q k are k after compensation prediction +1 time and k time d, q axis current; β represents the electromagnetic torque weight coefficient; T e k+1 represents the electromagnetic torque prediction value at k+1 time; γ represents the inverter switching frequency weight coefficient; S w k +1 represents the number of inverter switching frequency changes at time k+1.

S33、通过参数优化单元对价值函数进行参数优化,得到待预测的机器人关节电机的最优的电压矢量。S33. Perform parameter optimization on the value function by the parameter optimization unit to obtain an optimal voltage vector of the robot joint motor to be predicted.

可选地,S33中的通过参数优化单元对价值函数进行参数优化包括:Optionally, optimizing the parameters of the value function through the parameter optimization unit in S33 includes:

S331、通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化。S331. Perform online parameter optimization on the weight coefficients of the value function in the dynamic adjustment stage through the optimization algorithm of the parameter optimization unit.

可选地,通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化包括:Optionally, online parameter optimization of the weight coefficient of the value function in the dynamic adjustment stage through the optimization algorithm of the parameter optimization unit includes:

判断动态调节阶段的上升时间是否超过预设阈值,若是,则减少动态调节阶段价值函数中电流误差的权重系数,增加动态调节阶段价值函数中电磁转矩的权重系数。Determine whether the rise time of the dynamic adjustment stage exceeds the preset threshold, and if so, reduce the weight coefficient of the current error in the value function of the dynamic adjustment stage, and increase the weight coefficient of the electromagnetic torque in the value function of the dynamic adjustment stage.

一种可行的实施方式中,当转速第一次达到给定值时记为上升时间tr,当转速误差稳定在±5%时记为调节时间ts,在ts时间内选用价值函数gm=λ1[|iq k+1-iq k|+|id k+1-id k|]-β1Te k+11Sw k+1,初始值λ1=β1,γ1=0。In a feasible implementation, when the speed reaches a given value for the first time, it is recorded as the rise time t r , when the speed error is stable at ±5%, it is recorded as the adjustment time t s , and the value function g is selected within the time of t s m =λ 1 [|i q k+1 -i q k |+|i d k+1 -i d k |]-β 1 T e k+11 S w k+1 , initial value λ 11 , γ 1 =0.

ts时间后选用gm=λ2[|iq k+1-iq k|+|id k+1-id k|]-β2Te k+12Sw k+1,其中λ2=β2,γ2=0。After t s , select g m =λ 2 [|i q k+1 -i q k |+|i d k+1 -i d k |]-β 2 T e k+12 S w k+ 1 , where λ 22 , γ 2 =0.

S332、通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化。S332. Perform online parameter optimization on the weight coefficients of the value function in the stable adjustment stage by using the optimization algorithm of the parameter optimization unit.

可选地,通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化包括:Optionally, online parameter optimization of the weight coefficient of the value function in the stable adjustment stage through the optimization algorithm of the parameter optimization unit includes:

判断稳定调节阶段的静态误差是否超过预设阈值,若是,则增加稳定调节阶段价值函数中电流误差的权重系数,减小稳定调节阶段价值函数中电磁转矩的权重系数。Determine whether the static error in the stable adjustment stage exceeds the preset threshold, and if so, increase the weight coefficient of the current error in the value function of the stable adjustment stage, and decrease the weight coefficient of the electromagnetic torque in the value function of the stable adjustment stage.

一种可行的实施方式中,如图3所示,根据获取的反馈数据在线计算系统的上升时间、静态误差是否满足系统要求,若不满足要求,则通过参数优化单元优化算法在线优化各阶段价值函数的权重系数,若上升时间长,则减少上升阶段价值函数中电流误差的权重系数,增加虚拟转矩的权重系数,每次减小或增加1%,即λ1′=λ1*99%,β1′=β1*101%;若静态误差大,则增加稳定阶段价值函数中电流误差的权重系数,减小虚拟转矩的权重系数,每次减小或增加1%,即λ2′=λ2*101%,β2′=β2*99%,一直到系统的动态性能和稳定性能均达到系统的要求后引入逆变器开关频率价值函数γ1=10*λ1,γ2=10*λ2In a feasible implementation, as shown in Figure 3, according to the obtained feedback data, the online calculation of the rise time and static error of the system meets the system requirements, and if the requirements are not met, the value of each stage is optimized online through the parameter optimization unit optimization algorithm The weight coefficient of the function, if the rising time is long, reduce the weight coefficient of the current error in the value function of the rising stage, increase the weight coefficient of the virtual torque, and decrease or increase by 1% each time, that is, λ 1 ′=λ 1 *99% , β 1 ′=β 1 *101%; if the static error is large, increase the weight coefficient of the current error in the value function in the stable stage, reduce the weight coefficient of the virtual torque, and decrease or increase by 1% each time, that is, λ 2 ′=λ 2 *101%, β 2 ′=β 2 *99%, until the dynamic performance and stability of the system meet the requirements of the system, then introduce the inverter switching frequency value function γ 1 =10*λ 1 , γ 2 =10*λ 2 .

一种可行的实施方式中,本发明实施例的机器人关节伺服电机模型预测参数优化方法,建立符合机器人关节模型预测控制标准的永磁同步电机数学模型;根据建立的永磁同步电机数学模型,建立速度环PI控制单元、电流预测控制单元、参数优化单元;根据的电流预测控制单元获取速度反馈数据,判断机器人关节电机的状态,运行状态包括动态调节阶段与稳定调节阶段,获取电机的实际电流值,与PI控制器输出的给定值比较,设置分阶段价值函数对系统进行控制;根据的参数优化单元在线计算系统的上升时间、静态误差是否满足系统要求,若不满足要求,则通过参数优化单元优化算法在线优化各阶段价值函数的权重系数。采用本发明,可以在线优化模型预测控制方法中价值函数的参数,并综合考虑电机的动态性能、稳态性能以及逆变器开关频率,进一步优化系统性能。In a feasible implementation mode, the robot joint servo motor model prediction parameter optimization method of the embodiment of the present invention establishes a permanent magnet synchronous motor mathematical model that meets the robot joint model predictive control standard; according to the established permanent magnet synchronous motor mathematical model, establishes Speed loop PI control unit, current prediction control unit, and parameter optimization unit; according to the current prediction control unit, the speed feedback data is obtained to judge the state of the robot joint motor. The operating state includes the dynamic adjustment stage and the stable adjustment stage, and the actual current value of the motor is obtained. , compared with the given value output by the PI controller, set a stage-by-stage value function to control the system; according to the parameter optimization unit, the online calculation system whether the rise time and static error meet the system requirements, if not, optimize the parameters The unit optimization algorithm optimizes the weight coefficients of the value function of each stage online. By adopting the invention, the parameters of the value function in the model predictive control method can be optimized online, and the dynamic performance, steady-state performance and switching frequency of the inverter are comprehensively considered to further optimize the system performance.

本发明实施例中,提供了一种机器人关节伺服电机模型预测参数优化方法,将一种参数整定的方法用于传统模型预测当中,该方法解决了传统模型预测控制方法权重系数难以精确配置的问题,通过该算法在线优化价值函数权重系数配比,可以很好地提高系统的动态性能和稳定性能。In the embodiment of the present invention, a method for optimizing parameters of robot joint servo motor model prediction is provided. A method of parameter tuning is used in traditional model prediction. This method solves the problem that the weight coefficients of traditional model predictive control methods are difficult to accurately configure. , through the online optimization of the value function weight coefficient ratio by this algorithm, the dynamic performance and stability performance of the system can be well improved.

如图4所示,本发明实施例提供了一种机器人关节伺服电机模型预测参数优化装置400,该机器人关节伺服电机模型预测参数优化装置400应用于实现机器人关节伺服电机模型预测参数优化方法,该装置400包括:As shown in Figure 4, the embodiment of the present invention provides a robot joint servo motor model prediction parameter optimization device 400, the robot joint servo motor model prediction parameter optimization device 400 is applied to realize the robot joint servo motor model prediction parameter optimization method, the Device 400 includes:

数学模型构建模块410,用于对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型。The mathematical model building module 410 is used to model the permanent magnet synchronous motor to obtain a permanent magnet synchronous motor mathematical model that meets the robot joint predictive control standard.

控制器构建模块420,用于根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器。The controller construction module 420 is used to establish a model predictive controller of the permanent magnet synchronous motor of the robot joint according to the mathematical model of the permanent magnet synchronous motor.

输出模块430,用于根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。The output module 430 is configured to obtain the optimal voltage vector of the robot joint motor to be predicted according to the model predictive controller.

可选地,永磁同步电机数学模型包括永磁同步电机d轴和q轴电压电流方程、永磁同步电机d轴和q轴电压在旋转坐标系变换方程、磁链方程以及永磁同步电机电磁转矩方程。Optionally, the permanent magnet synchronous motor mathematical model includes permanent magnet synchronous motor d-axis and q-axis voltage and current equations, permanent magnet synchronous motor d-axis and q-axis voltage transformation equations in the rotating coordinate system, flux linkage equations, and permanent magnet synchronous motor electromagnetic torque equation.

可选地,模型预测控制器包括判定单元、电流预测控制单元以及参数优化单元。Optionally, the model predictive controller includes a determination unit, a current predictive control unit and a parameter optimization unit.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

S31、通过判定单元采集永磁同步电机的速度反馈数据以及电流反馈数据,判断机器人关节电机的运动状态;其中,运动状态包括动态调节阶段与稳定调节阶段。S31. Collect the speed feedback data and current feedback data of the permanent magnet synchronous motor through the determination unit, and judge the motion state of the joint motor of the robot; wherein, the motion state includes a dynamic adjustment phase and a stable adjustment phase.

S32、根据电流预测控制单元,得到价值函数;其中,价值函数包括动态调节阶段价值函数与稳定调节阶段价值函数。S32. Obtain a value function according to the current prediction control unit; wherein, the value function includes a dynamic adjustment stage value function and a stable adjustment stage value function.

S33、通过参数优化单元对价值函数进行参数优化,得到待预测的机器人关节电机的最优的电压矢量。S33. Perform parameter optimization on the value function by the parameter optimization unit to obtain an optimal voltage vector of the robot joint motor to be predicted.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

通过判定单元采集设定条件的永磁同步电机的速度反馈数据以及电流反馈数据;其中,设定条件包括设定的循环周期和设定的采样时间。The speed feedback data and current feedback data of the permanent magnet synchronous motor with set conditions are collected through the determination unit; wherein the set conditions include a set cycle period and a set sampling time.

根据速度反馈数据以及电流反馈数据,判定机器人关节电机的运动状态为动态调节阶段或稳定调节阶段。According to the speed feedback data and the current feedback data, it is determined that the motion state of the robot joint motor is in the dynamic adjustment stage or the stable adjustment stage.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

构建电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型。Construct current prediction mathematical model, electromagnetic torque prediction mathematical model and inverter switching frequency prediction model.

根据电流预测数学模型、电磁转矩预测数学模型以及逆变器开关频率预测模型,得到价值函数。According to the current prediction mathematical model, the electromagnetic torque prediction mathematical model and the inverter switching frequency prediction model, the value function is obtained.

可选地,价值函数如下式(1)所示:Optionally, the value function is shown in the following formula (1):

gm=λ[|iq k+1-iq k|+|id k+1-id k|]-βTe k+1+γSw k+1 (1)g m =λ[|i q k+1 -i q k |+|i d k+1 -i d k |]-βT e k+1 +γS w k+1 (1)

其中,λ表示电流误差的权重系数;id k+1、iq k+1为经过补偿预测后的k+1时刻d、q轴电流;id k、iq k为经过补偿预测后的k+1时刻和k时刻d、q轴电流;β表示电磁转矩的权重系数;Te k +1表示k+1时刻的电磁转矩预测值;γ表示逆变器开关频率的权重系数;Sw k+1表示k+1时刻的逆变器开关频率变化次数。Among them, λ represents the weight coefficient of the current error; id k+1 and i q k+1 are the d and q axis currents at time k+1 after compensation prediction; id k and i q k are the currents after compensation prediction d and q axis currents at time k+1 and time k; β represents the weight coefficient of electromagnetic torque; T e k +1 represents the predicted value of electromagnetic torque at time k+1; γ represents the weight coefficient of inverter switching frequency; S w k+1 represents the number of switching frequency changes of the inverter at time k+1.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

通过参数优化单元的优化算法在线对动态调节阶段价值函数的权重系数进行参数优化。The parameter optimization of the weight coefficient of the value function in the dynamic adjustment stage is performed online through the optimization algorithm of the parameter optimization unit.

以及通过参数优化单元的优化算法在线对稳定调节阶段价值函数的权重系数进行参数优化。And through the optimization algorithm of the parameter optimization unit, the parameters of the weight coefficients of the value function in the stable adjustment stage are optimized online.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

判断动态调节阶段的上升时间是否超过预设阈值,若是,则减少动态调节阶段价值函数中电流误差的权重系数,增加动态调节阶段价值函数中电磁转矩的权重系数。Determine whether the rise time of the dynamic adjustment stage exceeds the preset threshold, and if so, reduce the weight coefficient of the current error in the value function of the dynamic adjustment stage, and increase the weight coefficient of the electromagnetic torque in the value function of the dynamic adjustment stage.

可选地,输出模块430,进一步用于:Optionally, the output module 430 is further used for:

判断稳定调节阶段的静态误差是否超过预设阈值,若是,则增加稳定调节阶段价值函数中电流误差的权重系数,减小稳定调节阶段价值函数中电磁转矩的权重系数。Determine whether the static error in the stable adjustment stage exceeds the preset threshold, and if so, increase the weight coefficient of the current error in the value function of the stable adjustment stage, and decrease the weight coefficient of the electromagnetic torque in the value function of the stable adjustment stage.

本发明实施例中,提供了一种机器人关节伺服电机模型预测参数优化方法,将一种参数整定的方法用于传统模型预测当中,该方法解决了传统模型预测控制方法权重系数难以精确配置的问题,通过该算法在线优化价值函数权重系数配比,可以很好地提高系统的动态性能和稳定性能。In the embodiment of the present invention, a method for optimizing parameters of robot joint servo motor model prediction is provided. A method of parameter tuning is used in traditional model prediction. This method solves the problem that the weight coefficients of traditional model predictive control methods are difficult to accurately configure. , through the online optimization of the value function weight coefficient ratio by this algorithm, the dynamic performance and stability performance of the system can be well improved.

图5是本发明实施例提供的一种电子设备500的结构示意图,该电子设备500可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(centralprocessing units,CPU)501和一个或一个以上的存储器502,其中,存储器502中存储有至少一条指令,至少一条指令由处理器501加载并执行以实现下述机器人关节伺服电机模型预测参数优化方法:5 is a schematic structural diagram of an electronic device 500 provided by an embodiment of the present invention. The electronic device 500 may have relatively large differences due to different configurations or performances, and may include one or more central processing units (CPU) 501 And one or more memory 502, wherein at least one instruction is stored in the memory 502, at least one instruction is loaded and executed by the processor 501 to realize the following robot joint servo motor model prediction parameter optimization method:

S1、对永磁同步电机进行建模,得到符合机器人关节预测控制标准的永磁同步电机数学模型。S1. The permanent magnet synchronous motor is modeled, and the mathematical model of the permanent magnet synchronous motor that meets the robot joint predictive control standard is obtained.

S2、根据永磁同步电机数学模型,建立机器人关节永磁同步电机的模型预测控制器。S2. According to the mathematical model of the permanent magnet synchronous motor, a model predictive controller for the permanent magnet synchronous motor of the robot joint is established.

S3、根据模型预测控制器,得到待预测的机器人关节电机的最优的电压矢量。S3. Obtain the optimal voltage vector of the robot joint motor to be predicted according to the model predictive controller.

在示例性实施例中,还提供了一种计算机可读存储介质,例如包括指令的存储器,上述指令可由终端中的处理器执行以完成上述机器人关节伺服电机模型预测参数优化方法。例如,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, there is also provided a computer-readable storage medium, such as a memory including instructions, which can be executed by a processor in a terminal to implement the above method for optimizing parameters of robot joint servo motor model prediction. For example, the computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage device, among others.

本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above embodiments can be completed by hardware, and can also be completed by instructing related hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (9)

1. A robot joint servo motor model prediction parameter optimization method is characterized by comprising the following steps:
s1, modeling is carried out on a permanent magnet synchronous motor to obtain a permanent magnet synchronous motor mathematical model meeting a robot joint prediction control standard;
s2, establishing a model prediction controller of the robot joint permanent magnet synchronous motor according to the permanent magnet synchronous motor mathematical model;
s3, obtaining an optimal voltage vector of the robot joint motor to be predicted according to the model prediction controller;
the model predictive controller includes a determination unit, a current predictive control unit, and a parameter optimization unit;
in the S3, obtaining the optimal voltage vector of the robot joint motor to be predicted according to the model prediction controller includes:
s31, acquiring speed feedback data and current feedback data of the permanent magnet synchronous motor through the judging unit, and judging the motion state of the robot joint motor; wherein the motion state comprises a dynamic regulation phase and a stable regulation phase;
s32, obtaining a value function according to the current prediction control unit; wherein the cost function comprises a dynamic adjustment stage cost function and a stable adjustment stage cost function;
and S33, performing parameter optimization on the cost function through the parameter optimization unit to obtain the optimal voltage vector of the robot joint motor to be predicted.
2. The method of claim 1, wherein the PMSM mathematical model comprises a PMSM d-axis and q-axis voltage-current equation, a PMSM d-axis and q-axis voltage-to-rotating coordinate system transformation equation, a flux linkage equation, and a PMSM electromagnetic torque equation.
3. The method according to claim 1, wherein the step S31 of collecting speed feedback data and current feedback data of the permanent magnet synchronous motor by the determination unit and determining the motion state of the robot joint motor comprises:
acquiring speed feedback data and current feedback data of the permanent magnet synchronous motor under set conditions through the judging unit; wherein the set condition comprises a set cycle period and a set sampling time;
and judging the motion state of the robot joint motor to be a dynamic regulation stage or a stable regulation stage according to the speed feedback data and the current feedback data.
4. The method of claim 1, wherein the step of obtaining a cost function according to the current prediction control unit in S32 comprises:
constructing a current prediction mathematical model, an electromagnetic torque prediction mathematical model and an inverter switching frequency prediction model;
and obtaining a value function according to the current prediction mathematical model, the electromagnetic torque prediction mathematical model and the inverter switching frequency prediction model.
5. The method of claim 1, wherein the cost function is represented by the following equation (1):
g m =λ[|i q k+1 -i q k |+|i d k+1 -i d k |]-βT e k+1 +γS w k+1 (1)
wherein λ represents a weighting coefficient of the current error; i.e. i d k+1 、i q k+1 D-axis current and q-axis current at the k +1 moment after compensation prediction; i.e. i d k 、i q k D and q axis currents at the k moment; β represents a weight coefficient of the electromagnetic torque; t is e k+1 Representing the predicted value of the electromagnetic torque at the moment k + 1; gamma represents a weight coefficient of the switching frequency of the inverter; s. the w k+1 Indicating the number of inverter switching frequency changes at time k + 1.
6. The method according to claim 1, wherein the parameter optimization of the cost function by the parameter optimization unit in S33 comprises:
the weight coefficient of the dynamic adjustment stage cost function is optimized on line through the optimization algorithm of the parameter optimization unit,
and carrying out parameter optimization on the weight coefficient of the value function in the stable adjusting stage on line through the optimization algorithm of the parameter optimization unit.
7. The method of claim 6, wherein the parameter optimizing weight coefficients of the dynamic adjustment phase cost function on-line by an optimization algorithm of the parameter optimization unit comprises:
and judging whether the rising time of the dynamic regulation stage exceeds a preset threshold value, if so, reducing the weight coefficient of the current error in the value function of the dynamic regulation stage, and increasing the weight coefficient of the electromagnetic torque in the value function of the dynamic regulation stage.
8. The method of claim 6, wherein the parameter optimizing the weight coefficients of the stability adjustment phase cost function on-line by the optimization algorithm of the parameter optimization unit comprises:
and judging whether the static error of the stable regulation stage exceeds a preset threshold value, if so, increasing the weight coefficient of the current error in the cost function of the stable regulation stage, and reducing the weight coefficient of the electromagnetic torque in the cost function of the stable regulation stage.
9. A robot joint servo motor model prediction parameter optimization device is characterized by comprising:
the mathematical model construction module is used for modeling the permanent magnet synchronous motor to obtain a permanent magnet synchronous motor mathematical model which accords with the robot joint prediction control standard;
the controller building module is used for building a model prediction controller of the robot joint permanent magnet synchronous motor according to the permanent magnet synchronous motor mathematical model;
the output module is used for predicting the controller according to the model to obtain the optimal voltage vector of the robot joint motor to be predicted;
the model predictive controller includes a determination unit, a current predictive control unit, and a parameter optimization unit;
the obtaining of the optimal voltage vector of the robot joint motor to be predicted according to the model prediction controller comprises:
s31, acquiring speed feedback data and current feedback data of the permanent magnet synchronous motor through the judging unit, and judging the motion state of the robot joint motor; wherein the motion state comprises a dynamic regulation stage and a stable regulation stage;
s32, obtaining a value function according to the current prediction control unit; wherein the cost function comprises a dynamic adjustment stage cost function and a stable adjustment stage cost function;
and S33, performing parameter optimization on the value function through the parameter optimization unit to obtain the optimal voltage vector of the robot joint motor to be predicted.
CN202210550079.XA 2022-05-20 2022-05-20 Robot joint servo motor model prediction parameter optimization method and device Active CN114900085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210550079.XA CN114900085B (en) 2022-05-20 2022-05-20 Robot joint servo motor model prediction parameter optimization method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210550079.XA CN114900085B (en) 2022-05-20 2022-05-20 Robot joint servo motor model prediction parameter optimization method and device

Publications (2)

Publication Number Publication Date
CN114900085A CN114900085A (en) 2022-08-12
CN114900085B true CN114900085B (en) 2022-11-29

Family

ID=82723422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210550079.XA Active CN114900085B (en) 2022-05-20 2022-05-20 Robot joint servo motor model prediction parameter optimization method and device

Country Status (1)

Country Link
CN (1) CN114900085B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740669A (en) * 2020-07-31 2020-10-02 北京科技大学 A kind of robot joint servo motor control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391697B2 (en) * 2009-01-16 2014-01-15 株式会社デンソー Rotating machine control device and control system
CN103731084B (en) * 2014-01-10 2016-06-01 西北工业大学 The low inverter power consumption direct torque control of permanent-magnet synchronous motor and device
CN106788045B (en) * 2017-02-17 2019-03-12 天津工业大学 A kind of permanent magnet synchronous motor model prediction PI changeable weight concurrency control method
CN108448961B (en) * 2018-05-04 2019-09-03 南通大学 Model Predictive Torque Control Method for Permanent Magnet Synchronous Motor Considering Switching Frequency Optimization
CN114421829B (en) * 2021-12-20 2023-12-08 西安理工大学 Predictive control double-inertia servo system backlash oscillation suppression method based on shaft torque

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740669A (en) * 2020-07-31 2020-10-02 北京科技大学 A kind of robot joint servo motor control method

Also Published As

Publication number Publication date
CN114900085A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
CN106788075B (en) Rapid vector screening prediction method for controlling torque based on improved Euler method
CN112271972B (en) Direct Torque Control Method of Permanent Magnet Synchronous Motor with Current Error Correction
CN111342729B (en) Self-adaptive reverse thrust control method of permanent magnet synchronous motor based on gray wolf optimization
CN110707978A (en) Three-level permanent magnet synchronous motor model prediction control method considering vector partition
Zhang et al. Robustness optimization of model predictive current control for PMSM drives considering dynamic response influence
CN111679644A (en) A Motion Control Method for Uncertain Industrial Robots Considering System Delay
WO2023124921A1 (en) Torque estimation method and apparatus for permanent magnet synchronous motor, and device and storage medium
WO2022252369A1 (en) Method, apparatus and device for controlling three-phase permanent magnet synchronous electric motor, and medium
Zhang et al. Predictive current control of a PMSM three-level dual-vector model based on self-anti-disturbance techniques
WO2025145678A1 (en) Permanent magnet synchronous motor control method and apparatus, and storage medium
CN114900085B (en) Robot joint servo motor model prediction parameter optimization method and device
CN113364373B (en) Control method for permanent magnet synchronous motor model prediction based on event triggering
CN119093795A (en) Sensorless Model Predictive Speed Control Method for Induction Motor
CN118646308A (en) A disturbance-resistant underwater joint motor control method and related device
CN118137907A (en) Current prediction control method and computer equipment based on sensorless deadbeat motor
CN108880383B (en) Discretization design method for proportional resonant controller of permanent magnet motor
CN117081454A (en) Active disturbance rejection current tracking control method for permanent magnet synchronous motor simulator
CN116094400A (en) A MTPA predictive control method for permanent magnet synchronous motor
WO2023124893A1 (en) Torque estimation method and apparatus based on neural network, and device and storage medium
CN114679098A (en) Feedforward compensation method, device, computer equipment and medium for permanent magnet synchronous motor
CN119051523B (en) A method for compensating time delay estimation error in current tracking control of robot joint motors
Bahloul et al. Modified robust model reference adaptive system scheme for a speed sensorless vector control of induction motor
CN115395846B (en) Large telescope spliced arc motor parameter identification and control method thereof
CN115347835B (en) Weight-adaptive motor control method, system, medium and electronic device
CN118249691B (en) Permanent magnet synchronous motor three-vector model prediction torque control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant