CN114897861A - An image processing method and system - Google Patents
An image processing method and system Download PDFInfo
- Publication number
- CN114897861A CN114897861A CN202210584974.3A CN202210584974A CN114897861A CN 114897861 A CN114897861 A CN 114897861A CN 202210584974 A CN202210584974 A CN 202210584974A CN 114897861 A CN114897861 A CN 114897861A
- Authority
- CN
- China
- Prior art keywords
- imaging data
- image
- image processing
- processing
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 314
- 238000003384 imaging method Methods 0.000 claims abstract description 172
- 238000000034 method Methods 0.000 claims abstract description 69
- 230000008569 process Effects 0.000 claims description 45
- 238000002600 positron emission tomography Methods 0.000 claims description 43
- 238000003706 image smoothing Methods 0.000 claims description 28
- 230000000694 effects Effects 0.000 claims description 21
- 239000000700 radioactive tracer Substances 0.000 claims description 19
- 230000035945 sensitivity Effects 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 238000007499 fusion processing Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000002595 magnetic resonance imaging Methods 0.000 description 8
- 238000002591 computed tomography Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012014 optical coherence tomography Methods 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UXCAQJAQSWSNPQ-ZIVQXEJRSA-N 1-[(2r,4s,5r)-4-fluoranyl-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H]([18F])C1 UXCAQJAQSWSNPQ-ZIVQXEJRSA-N 0.000 description 1
- HIIJZYSUEJYLMX-UHFFFAOYSA-N 1-fluoro-3-(2-nitroimidazol-1-yl)propan-2-ol Chemical compound FCC(O)CN1C=CN=C1[N+]([O-])=O HIIJZYSUEJYLMX-UHFFFAOYSA-N 0.000 description 1
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- LRHPLDYGYMQRHN-SFIIULIVSA-N ac1l9ozg Chemical compound CCCC[15OH] LRHPLDYGYMQRHN-SFIIULIVSA-N 0.000 description 1
- LRHPLDYGYMQRHN-NUTRPMROSA-N ac1l9ozh Chemical compound CCC[11CH2]O LRHPLDYGYMQRHN-NUTRPMROSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- KRHYYFGTRYWZRS-BJUDXGSMSA-M fluorine-18(1-) Chemical compound [18F-] KRHYYFGTRYWZRS-BJUDXGSMSA-M 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 238000002608 intravascular ultrasound Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/005—Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
技术领域technical field
本说明书涉及图像处理技术领域,特别涉及一种确定图像处理参数的方法和系统。The present specification relates to the technical field of image processing, and in particular, to a method and system for determining image processing parameters.
背景技术Background technique
医学成像可以应用于各种医学治疗和/或者诊断。在一些医学成像过程中,需要沿医学设备(例如,长轴PET设备)的轴向对目标对象(例如,病人)进行多个身体部位扫描或全身扫描。由于一些因素(例如,医学设备的探测器的灵敏度、目标对象的示踪剂活度、目标对象的身体特征等)在医学设备的轴向方向上存在变化,导致在轴向方向上不同区域采集的成像数据(例如,PET扫描数据)质量差异明显,进而导致重建图像在医学设备的轴向方向上也存在较大图像质量差异,对于后续病情的诊断和治疗带来诸多不利因素。因此,希望提供一种图像处理的方法和系统,可以灵活控制图像在医学设备的轴向方向上的图像质量。Medical imaging can be applied to various medical treatments and/or diagnoses. In some medical imaging procedures, multiple body part scans or whole body scans of a target object (eg, a patient) are required along the axis of the medical device (eg, a long-axis PET device). Due to some factors (eg, the sensitivity of the detector of the medical device, the tracer activity of the target object, the physical characteristics of the target object, etc.) there are variations in the axial direction of the medical device, resulting in different regions in the axial direction. The quality of the imaging data (for example, PET scan data) varies significantly, resulting in a large difference in image quality of the reconstructed image in the axial direction of the medical device, which brings many unfavorable factors to the subsequent diagnosis and treatment of the disease. Therefore, it is desirable to provide an image processing method and system, which can flexibly control the image quality of the image in the axial direction of the medical device.
发明内容SUMMARY OF THE INVENTION
本说明书实施例之一提供一种图像处理方法。所述图像处理方法包括:获取原始成像数据,所述原始成像数据是通过医学设备对目标对象进行扫描获取的;确定与所述目标对象的扫描有关的扫描信息;基于所述扫描信息,确定图像处理参数,所述图像处理参数为目标方向上的位置的变量;以及基于所述图像处理参数,对所述原始成像数据进行处理,以生成目标成像数据。One of the embodiments of this specification provides an image processing method. The image processing method includes: acquiring original imaging data obtained by scanning a target object with a medical device; determining scan information related to the scan of the target object; and determining an image based on the scan information processing parameters, the image processing parameters being variables of position in the target direction; and processing the raw imaging data based on the image processing parameters to generate target imaging data.
在一些实施例中,所述扫描信息包括以下信息中的至少一种:与所述医学设备有关的信息、与所述原始成像数据有关的信息,或与所述目标对象有关的信息。In some embodiments, the scan information includes at least one of: information about the medical device, information about the raw imaging data, or information about the target object.
在一些实施例中,所述医学设备包括正电子发射断层成像设备,所述与医学设备有关的信息包括医学设备的探测器的灵敏度、相邻探测器之间的缝隙和探测器的探测效率中的至少一种,所述与原始成像数据有关的信息包括符合事件计数信息和示踪剂活度中的至少一种,所述与目标对象有关的信息包括目标对象的特征信息和历史成像数据中的至少一种。In some embodiments, the medical device includes a positron emission tomography device, and the information related to the medical device includes the sensitivity of a detector of the medical device, a gap between adjacent detectors, and a detection efficiency of the detector. At least one of the information related to the original imaging data includes at least one of coincident event count information and tracer activity, and the information related to the target object includes feature information of the target object and historical imaging data. at least one of.
在一些实施例中,基于所述图像处理参数,对所述原始成像数据进行处理包括多轮迭代,其中至少一轮迭代包括:获取上一轮迭代中生成的更新成像数据;基于所述图像处理参数对所述更新成像数据进行处理,以生成处理后的成像数据;判断所述迭代是否满足终止条件;以及响应于确定所述迭代满足所述终止条件,将所述处理后的成像数据确定为所述目标成像数据。In some embodiments, processing the raw imaging data based on the image processing parameters includes multiple rounds of iterations, wherein at least one iteration includes: acquiring updated imaging data generated in a previous round of iterations; processing based on the image parameters process the updated imaging data to generate processed imaging data; determine whether the iteration satisfies a termination condition; and in response to determining that the iteration satisfies the termination condition, determine the processed imaging data as the target imaging data.
在一些实施例中,基于所述图像处理参数对所述更新成像数据进行处理,以生成处理后的成像数据包括:基于所述更新成像数据和所述扫描信息,更新所述图像处理参数,以生成更新后的图像处理参数;以及基于所述更新后的图像处理参数对所述更新成像数据进行处理,以生成处理后的成像数据。In some embodiments, processing the updated imaging data based on the image processing parameters to generate processed imaging data comprises: based on the updated imaging data and the scan information, updating the image processing parameters to generating updated image processing parameters; and processing the updated imaging data based on the updated image processing parameters to generate processed imaging data.
在一些实施例中,所述处理包括图像重建处理,所述基于所述图像处理参数对所述更新成像数据进行处理,以生成处理后的成像数据包括:获取迭代更新因子;以及基于所述迭代更新因子和所述图像处理参数,对所述更新成像数据进行重建,以生成重建图像。In some embodiments, the processing comprises image reconstruction processing, and the processing the updated imaging data based on the image processing parameters to generate processed imaging data comprises: obtaining an iterative update factor; and based on the iterative The update factor and the image processing parameters are reconstructed on the updated imaging data to generate a reconstructed image.
在一些实施例中,所述获取迭代更新因子,包括:对所述更新成像数据进行正投影操作,确定第一投影数据;基于所述原始成像数据确定第二投影数据;基于所述第一投影数据和所述第二投影数据,确定第三投影数据;对所述第三投影数据进行反投影操作,确定反投影数据;以及根据所述第一投影数据、所述反投影数据和归一化矩阵确定所述迭代更新因子。In some embodiments, the acquiring the iterative update factor includes: performing an orthographic operation on the updated imaging data to determine first projection data; determining second projection data based on the original imaging data; and based on the first projection data and the second projection data, determine third projection data; perform a back-projection operation on the third projection data to determine back-projection data; and according to the first projection data, the back-projection data and normalization A matrix determines the iterative update factor.
在一些实施例中,所述处理包括以下至少一种:图像平滑处理、图像增强处理、图像融合处理、和图像美化处理。In some embodiments, the processing includes at least one of the following: image smoothing processing, image enhancement processing, image fusion processing, and image beautification processing.
本说明书实施例之一提供一种图像处理系统。所述图像处理系统包括至少一个处理器以及至少一个存储器。所述至少一个存储器用于存储计算机指令。所述至少一个处理器用于执行所述计算机指令中的至少部分指令以实现本说明书所述的图像处理方法。One of the embodiments of this specification provides an image processing system. The image processing system includes at least one processor and at least one memory. The at least one memory is used to store computer instructions. The at least one processor is configured to execute at least part of the computer instructions to implement the image processing method described in this specification.
本说明书实施例之一提供一种图像处理系统。所述图像处理系统包括获取模块、扫描信息确定模块、处理参数确定模块和处理模块。所述获取模块,用于获取原始成像数据,所述原始成像数据是通过医学设备对目标对象进行扫描获取的。所述扫描信息确定模块,用于确定与所述目标对象的扫描有关的扫描信息。所述处理参数确定模块,用于基于所述扫描信息,确定图像处理参数,所述图像处理参数为目标方向上的位置的变量。所述处理模块,用于基于所述图像处理参数,对所述原始成像数据进行处理,以生成目标成像数据。One of the embodiments of this specification provides an image processing system. The image processing system includes an acquisition module, a scan information determination module, a processing parameter determination module and a processing module. The acquisition module is used for acquiring original imaging data, where the original imaging data is acquired by scanning a target object with a medical device. The scan information determination module is configured to determine scan information related to the scan of the target object. The processing parameter determination module is configured to determine an image processing parameter based on the scanning information, where the image processing parameter is a variable of the position in the target direction. The processing module is configured to process the original imaging data based on the image processing parameters to generate target imaging data.
附图说明Description of drawings
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:The present specification will be further described by way of example embodiments, which will be described in detail with reference to the accompanying drawings. These examples are not limiting, and in these examples, the same numbers refer to the same structures, wherein:
图1是根据本说明书一些实施例所示的图像处理系统的应用场景示意图;1 is a schematic diagram of an application scenario of an image processing system according to some embodiments of this specification;
图2是根据本说明书一些实施例所示的生成目标成像数据的示例性流程图;FIG. 2 is an exemplary flowchart of generating target imaging data according to some embodiments of the present specification;
图3是根据本说明书一些实施例所示的生成目标成像数据的示例性流程图;3 is an exemplary flowchart of generating target imaging data according to some embodiments of the present specification;
图4是根据本说明书一些实施例所示的生成目标重建图像的示例性流程图;FIG. 4 is an exemplary flowchart of generating a reconstructed image of a target according to some embodiments of the present specification;
图5是根据本说明书一些实施例所示的获取迭代更新因子的示例性流程图;FIG. 5 is an exemplary flowchart of obtaining an iterative update factor according to some embodiments of the present specification;
图6是根据本说明书一些实施例所示的处理设备的示例性模块图;FIG. 6 is an exemplary block diagram of a processing device according to some embodiments of the present specification;
图7是根据本说明书一些实施例所示的图像平滑参数与即时符合事件计数的关系的曲线图;7 is a graph of the relationship between image smoothing parameters and instant coincidence event counts according to some embodiments of the present specification;
图8是根据本说明书一些实施例所示的图像平滑参数与即时符合事件计数的关系的曲线图;8 is a graph of the relationship between image smoothing parameters and instant coincidence event counts according to some embodiments of the present specification;
图9是根据本说明书一些实施例所示的重建图像的示意图。FIG. 9 is a schematic diagram of a reconstructed image according to some embodiments of the present specification.
具体实施方式Detailed ways
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to illustrate the technical solutions of the embodiments of the present specification more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some examples or embodiments of the present specification. For those of ordinary skill in the art, without creative efforts, the present specification can also be applied to the present specification according to these drawings. other similar situations. Unless obvious from the locale or otherwise specified, the same reference numbers in the figures represent the same structure or operation.
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。It is to be understood that "system", "device", "unit" and/or "module" as used herein is a method used to distinguish different components, elements, parts, parts or assemblies at different levels. However, other words may be replaced by other expressions if they serve the same purpose.
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As shown in the specification and claims, unless the context clearly dictates otherwise, the words "a", "an", "an" and/or "the" are not intended to be specific in the singular and may include the plural. Generally speaking, the terms "comprising" and "comprising" only imply that the clearly identified steps and elements are included, and these steps and elements do not constitute an exclusive list, and the method or apparatus may also include other steps or elements.
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。Flowcharts are used in this specification to illustrate operations performed by a system according to an embodiment of this specification. It should be understood that the preceding or following operations are not necessarily performed in the exact order. Instead, the various steps can be processed in reverse order or simultaneously. At the same time, other actions can be added to these procedures, or a step or steps can be removed from these procedures.
图1是根据本说明书一些实施例所示的图像处理系统的应用场景示意图。图像处理系统100可以包括处理设备110、医学设备120、一个或以上终端130、网络140和存储设备150。FIG. 1 is a schematic diagram of an application scenario of an image processing system according to some embodiments of this specification. The
图像处理系统100中的组件可以以各种方式连接。仅作为示例,医学设备120可以直接(如连接医学设备120和处理设备110的虚线双向箭头所示)或通过网络140连接到处理设备110。作为又一个示例,存储设备150可以直接(如连接存储设备150和医学设备120的虚线双向箭头所示)或通过网络140连接到医学设备120。作为又一个示例,终端130可以直接(如连接终端130和处理设备110的虚线双向箭头所示)或通过网络140连接到处理设备110。Components in
处理设备110可以处理从医学设备120、终端130和/或存储设备150获得的数据和/或信息。例如,处理设备110可以从医学设备120获取目标对象的原始成像数据。又例如,处理设备110可以从存储设备150获取与目标对象的扫描有关的扫描信息。再例如,处理设备110可以基于扫描信息,确定图像处理参数。再例如,处理设备110可以基于图像处理参数,对原始成像数据进行处理,以生成目标成像数据。在一些实施例中,处理设备110可以是单个服务器或服务器组。服务器组可以是集中式或分布式的。在一些实施例中,处理设备110可以是相对于图像处理系统100的一个或多个其他组件的本地组件或远程组件。例如,处理设备110可以经由网络140访问存储在医学设备120、终端130和/或存储设备150中的信息和/或数据。The
医学设备120可以对目标对象进行扫描,以获取目标对象的扫描数据(例如,原始成像数据)。在一些实施例中,目标对象可以包括生物对象和/或非生物对象。例如,目标对象可以包括人身体的特定部分,例如头部、胸部、腹部等或其组合。又例如,目标对象可以是医学设备120待扫描的病人。在一些实施例中,与目标对象有关的扫描数据可以包括医学设备120采集的生数据(例如,目标对象的投影数据)、一个或以上扫描图像等。The
在一些实施例中,医学设备120可以是用于疾病诊断或研究目的的非侵入性医学成像装置。例如,医学设备120可以包括单模态扫描设备和/或多模态扫描设备。单模态扫描设备可以包括超声波扫描设备、X射线扫描设备、计算机断层扫描(CT)扫描设备、磁共振成像(MRI)扫描设备、超声检查设备、正电子发射断层扫描(PET)扫描设备、光学相干断层扫描(OCT)扫描设备、超声(US)扫描设备、血管内超声(IVUS)扫描设备、近红外光谱(NIRS)扫描设备、远红外(FIR)扫描设备等或其任意组合。多模态扫描设备可以包括X射线成像-磁共振成像(X射线-MRI)扫描设备、正电子发射断层扫描-X射线成像(PET-X射线)扫描设备、单光子发射计算机断层扫描-磁共振成像(SPECT-MRI)扫描设备、正电子发射断层扫描-计算机断层摄影(PET-CT)扫描设备、数字减影血管造影-磁共振成像(DSA-MRI)扫描设备等。以上提供的医学设备120仅用于说明目的,而无意限制本申请的范围。如本说明书所使用的,术语“成像模态”或“模态”是指收集、生成、处理和/或分析目标对象的成像信息的成像方法或技术。In some embodiments, the
在一些实施例中,医学设备120(例如,PET设备)可以包括机架、探测器和扫描床。机架可以支撑探测器。目标对象可以被放置在扫描床上并沿医学设备120的轴向方向(例如,图1所示的Z轴方向)移动以对目标对象进行扫描。在一些实施例中,探测器可以包括一个或多个探测器单元。探测器可以包括闪烁探测器(例如,碘化铯探测器)、气体探测器等。In some embodiments, the medical device 120 (eg, a PET device) may include a gantry, a detector, and a couch. The rack can support the detector. The target object may be placed on the scan bed and moved in an axial direction of the medical device 120 (eg, the Z-axis direction shown in FIG. 1 ) to scan the target object. In some embodiments, the detector may include one or more detector units. Detectors may include scintillation detectors (eg, cesium iodide detectors), gas detectors, and the like.
在一些实施例中,医学设备120可以是长轴PET设备。长轴PET设备的轴向长度(例如,图1所示的Z轴方向的长度)通常较大(例如,大于或等于0.75米),因此长轴PET设备通常具有较长的轴向扫描视野,可以同时对目标对象的多个部位进行扫描成像。例如,长轴PET设备的扫描视野可以覆盖目标对象的整个身体,即,扫描过程中单床位可以覆盖目标对象的整个身体,从而确保目标对象体内各处的放射性示踪药物都可以被覆盖和检测到,单次扫描即可完成目标对象的全身成像。In some embodiments, the
终端130可以包括移动设备130-1、平板计算机130-2、膝上型计算机130-3等或其任何组合。在一些实施例中,一个或多个终端130可以是处理设备110的一部分。
网络140可以包括可以促进图像处理系统100的信息和/或数据的交换的任何合适的网络。在一些实施例中,图像处理系统100的一个或以上组件(例如,医学设备120、终端130、处理设备110、存储设备150)可以经由网络140与图像处理系统100的一个或以上其它组件通信信息和/或数据。例如,处理设备110可以经由网络140从医学设备120获得成像数据。作为另一示例,处理设备110可以经由网络140从终端130获得用户指令。
存储设备150可以存储数据、指令和/或任何其他信息。在一些实施例中,存储设备150可以存储从终端130和/或处理设备110获得的数据。在一些实施例中,存储设备150可以存储处理设备110可以执行或用来执行本说明书中描述的示例性方法的数据和/或指令。
在一些实施例中,存储设备150可以连接到网络140以与图像处理系统100的一个或以上其他组件(例如,处理设备110、终端130)通信。图像处理系统100的一个或多个组件可以经由网络140访问存储在存储设备150中的数据或指令。在一些实施例中,存储设备150可以直接连接到图像处理系统100的一个或以上其他组件(例如,处理设备110、终端130)或与之通信。在一些实施例中,存储设备150可以是处理设备110的一部分。In some embodiments,
在一些实施例中,图像处理系统100中的位置信息可以表示在如图1所示的坐标系160中。坐标系160可以包括X轴、Y轴和Z轴。如图1所示,X轴正方向可以是从面向医学设备120的正面的方向看从扫描床的左侧到右侧的方向。Y轴正方向可以是从医学设备120的下部到医学设备120的上部的方向。Z轴正方向可以是扫描台从医学设备120的内部移动到外部的方向。在一些实施例中,Z轴方向也可以被称为医学设备120的轴向方向。In some embodiments, location information in
应该注意的是,上述描述仅出于说明性目的而提供,并不旨在限制本申请的范围。对于本领域普通技术人员而言,在本申请内容的指导下,可做出多种变化和修改。可以以各种方式组合本申请描述的示例性实施例的特征、结构、方法和其他特征,以获得另外的和/或替代的示例性实施例。然而,这些变化与修改不会背离本申请的范围。It should be noted that the above description is provided for illustrative purposes only and is not intended to limit the scope of the present application. Numerous changes and modifications may be made to those of ordinary skill in the art under the guidance of the contents of this application. The features, structures, methods, and other features of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments. However, such changes and modifications do not depart from the scope of this application.
图2是根据本说明书一些实施例所示的生成目标成像数据的示例性流程图。在一些实施例中,流程200可以由处理设备110执行。如图2所示,流程200包括以下步骤。FIG. 2 is an exemplary flowchart of generating target imaging data according to some embodiments of the present specification. In some embodiments,
步骤210,获取原始成像数据。在一些实施例中,步骤210可以由获取模块610执行。
原始成像数据可以指待进行图像处理的数据。原始成像数据可以是通过医学设备(例如,医学设备120)对目标对象进行扫描获取的数据。医学设备可以包括PET设备、SPECT设备、MRI设备、CT设备等。原始成像数据可以包括目标对象的扫描中采集的生数据和/或基于所述生数据生成的扫描图像。例如,原始成像数据可以包括PET数据、SPECT数据、MRI数据、CT数据等。仅作为示例,原始成像数据可以是通过PET设备对目标对象进行扫描获取的PET投影数据。PET投影数据可以包括列表模式数据或正弦图数据。Raw imaging data may refer to data to be subjected to image processing. The raw imaging data may be data obtained by scanning a target object with a medical device (eg, the medical device 120 ). Medical equipment may include PET equipment, SPECT equipment, MRI equipment, CT equipment, and the like. The raw imaging data may include raw data acquired in a scan of the target object and/or scan images generated based on the raw data. For example, raw imaging data may include PET data, SPECT data, MRI data, CT data, and the like. For example only, the raw imaging data may be PET projection data obtained by scanning a target object with a PET device. PET projection data may include list mode data or sinogram data.
在一些实施例中,原始成像数据可以包括扫描图像。例如,处理设备110可以基于PET投影数据生成PET图像。在一些实施例中,处理设备110可以根据图像重建算法基于PET投影数据生成PET图像。PET图像可以呈现对象对示踪剂的摄取。示例性图像重建算法可以包括迭代算法、分析算法等。迭代算法可以包括最大似然估计(MLE)算法、有序子集期望最大化(OSEM)等。分析算法可以包括滤波反投影(FBP)算法等。In some embodiments, the raw imaging data may include scanned images. For example, the
在一些实施例中,处理设备110可以从图像处理系统100的一个或多个组件(例如,医学设备120、终端130、存储设备150)或外部存储器经由网络140获取原始成像数据。例如,医学设备120可以将获取的原始成像数据传输到存储设备(例如,存储设备150、外部存储设备)进行存储。处理设备110可以从存储设备获得原始成像数据。又例如,处理设备110可以直接从医学设备120获得原始成像数据。In some embodiments,
步骤220,确定与目标对象的扫描有关的扫描信息。在一些实施例中,步骤220可以由扫描信息确定模块620执行。In
扫描信息可以指与沿目标方向变化的参数有关的信息。仅作为示例,目标方向可以是医学设备的轴向方向(例如,图1所示的Z轴方向)在一些实施例中,扫描信息可以包括与医学设备有关的信息、与原始成像数据有关的信息,与目标对象有关的信息等或其任意组合。出于示例目的,下文以PET设备为例说明扫描信息的种类。与医学设备有关的示例信息可以包括探测器的灵敏度、相邻探测器之间的缝隙、探测器的探测效率等或其任意组合。The scan information may refer to information about parameters that vary in the direction of the target. For example only, the target direction may be the axial direction of the medical device (eg, the Z-axis direction shown in FIG. 1 ). In some embodiments, the scan information may include information related to the medical device, information related to the raw imaging data , information about the target object, etc., or any combination thereof. For illustrative purposes, the types of scan information are described below using a PET device as an example. Example information related to the medical device may include the sensitivity of the detectors, the gap between adjacent detectors, the detection efficiency of the detectors, etc., or any combination thereof.
在PET扫描过程中,首先将示踪剂注射至目标对象体内。示踪剂可以经历正电子发射衰变并发射正电子。正电子和电子具有相同的质量和相反的电荷,当两种粒子碰撞时,正电子与电子(电子在对象体内大量存在)可以发生湮灭(也称为“湮灭事件”或“符合事件”)。电子-正电子湮灭可以导致两个粒子(例如,两个511keV伽玛光子)开始向彼此相反的方向行进。在目标对象的PET扫描中,由湮灭事件产生的粒子会到达PET设备的探测器并被探测器检测到。During a PET scan, a tracer is first injected into the target subject. Tracers can undergo positron emission decay and emit positrons. Positrons and electrons have the same mass and opposite charges, and when the two particles collide, positrons and electrons (the electrons are abundant in the body of the object) can annihilate (also known as "annihilation events" or "coincidence events"). Electron-positron annihilation can cause two particles (eg, two 511 keV gamma photons) to start traveling in opposite directions from each other. In a PET scan of a target object, the particles produced by the annihilation event reach the detector of the PET device and are detected by the detector.
探测器的灵敏度是指探测器的检测效能。以PET设备为例,探测器的灵敏度可以指探测器在单位时间内单位辐射剂量条件下检测到的符合事件计数。探测器的灵敏度越高,表示对于同样活度的放射源,检测到的信号越多,相应地获得的图像质量越高。探测器的探测效率是指当一个伽玛光子通过探测器晶体时,能够被记录下来的几率。探测器的探测效率越高,获得的图像质量越高。在一些实施例中,医学设备可以包括由多个探测器(例如,LSO晶体、LYSO晶体、BGO晶体、LaBr晶体)构成的探测器阵列,相邻探测器(例如,相邻晶体)之间的间缝隙越小,探测器的探测效率越高。相邻探测器(例如,相邻晶体)之间的间缝隙越大,会导致获得的PET数据缺失得越多,从而影响图像质量。The sensitivity of the detector refers to the detection efficiency of the detector. Taking PET equipment as an example, the sensitivity of the detector can refer to the number of coincident events detected by the detector under the condition of unit radiation dose per unit time. The higher the sensitivity of the detector, the more signals are detected for the same activity of the radioactive source, and the higher the image quality is obtained accordingly. The detection efficiency of a detector refers to the probability that when a gamma photon passes through the detector crystal, it can be recorded. The higher the detection efficiency of the detector, the higher the quality of the image obtained. In some embodiments, a medical device may include a detector array composed of a plurality of detectors (eg, LSO crystals, LYSO crystals, BGO crystals, LaBr crystals), with detectors between adjacent detectors (eg, adjacent crystals) The smaller the gap, the higher the detection efficiency of the detector. Larger gaps between adjacent detectors (eg, adjacent crystals) result in more missing PET data acquired, affecting image quality.
与原始成像数据有关的信息可以包括符合事件计数信息、示踪剂活度等或其任意组合。在一些实施例中,符合事件可以包括即时符合事件、真符合事件、随机事件和散射事件。由探测器检测到的所有符合事件称为即时符合事件。当一对探测器单元在一定时间窗内检测到来自同一个湮灭事件的两个入射光子(也称为符合光子)时,称为真符合事件。当一对探测器单元在一定时间窗内检测到来自两个湮灭事件的两个入射光子时,称为随机事件。在一些实施例中,由湮灭事件产生的光子可以在穿过目标物体时经历康普顿散射,当在一定时间窗内检测到的两个入射光子中的至少一个在其到达探测器单元之前经历了至少一次康普顿散射时,称为散射事件。Information related to the raw imaging data may include coincidence event count information, tracer activity, etc., or any combination thereof. In some embodiments, coincidence events may include instant coincidence events, true coincidence events, random events, and scatter events. All compliance events detected by the detector are called instant compliance events. When a pair of detector units detects two incident photons (also called coincident photons) from the same annihilation event within a certain time window, it is called a true coincidence event. When a pair of detector units detects two incident photons from two annihilation events within a certain time window, it is called a random event. In some embodiments, photons generated by an annihilation event may experience Compton scattering while passing through a target object, when at least one of the two incident photons detected within a certain time window undergoes before it reaches the detector unit When at least one Compton scattering occurs, it is called a scattering event.
示踪剂活度可以反映目标对象的生物活动信息。例如,示踪剂的一个或多个原子可以化学结合到目标对象体内的生物活性分子中。活性分子可以集中在目标对象体内的感兴趣组织中。示踪剂可以包括[15O]H2O、[15O]丁醇、[11C]丁醇、[18F]氟代脱氧葡萄糖(FDG)、[64Cu]二乙酰-双(64Cu-ATSM)、[18F]氟化物、3'-脱氧-3'-[18F]氟胸苷(FLT)、[18F]-氟咪索硝唑(FMISO)、镓、铊等或其任何组合。The tracer activity can reflect the biological activity information of the target object. For example, one or more atoms of the tracer can be chemically bound to a biologically active molecule in the target subject. Active molecules can be concentrated in tissues of interest within the target subject. Tracers may include [ 15 O]H 2 O, [ 15 O]butanol, [ 11 C]butanol, [ 18 F]fluorodeoxyglucose (FDG), [ 64 Cu]diacetyl-bis( 64 Cu -ATSM), [ 18 F]fluoride, 3'-deoxy-3'-[ 18 F]fluorothymidine (FLT), [ 18 F]-flumididazole (FMISO), gallium, thallium, etc. or their any combination.
与目标对象有关的信息可以包括目标对象的特征信息、历史成像数据等或其任意组合。目标对象的特征信息可以包括目标对象的体型(例如,身高、体宽、体厚)、体重、身体各部分的比例信息、身体疾病信息、生理信息(例如,血糖浓度)、解剖结构信息、等或其任意组合。例如,目标对象的血糖浓度升高可以促进胰岛素的分泌,分泌的胰岛素会加速胰岛素敏感的组织(例如,心肌、脂肪、骨骼肌)摄取葡萄糖(例如,FDG),而肿瘤和脑组织的摄取相应减少,从而导致目标对象体内的FDG分布发生变化。目标对象的解剖结构信息可以包括目标对象的器官或组织的位置、形状等其任意组合。目标对象的历史成像数据可以包括在目标对象的历史扫描(例如,PET扫描、CT扫描、MRI扫描)中获取的历史扫描数据(例如,PET扫描数据、CT扫描数据、MRI扫描数据)。The information related to the target object may include characteristic information of the target object, historical imaging data, etc., or any combination thereof. The characteristic information of the target object may include the target object's body type (eg, height, body width, body thickness), weight, proportion information of various body parts, body disease information, physiological information (eg, blood glucose concentration), anatomical structure information, etc. or any combination thereof. For example, elevated blood glucose concentrations in the target subject can promote insulin secretion, which accelerates glucose uptake (eg, FDG) by insulin-sensitive tissues (eg, cardiac, adipose, skeletal muscle), whereas tumor and brain tissue uptake correspondingly decrease, resulting in changes in the distribution of FDG in the target subject. The anatomical structure information of the target object may include any combination of positions, shapes, etc. of the organs or tissues of the target object. The historical imaging data of the target object may include historical scan data (eg, PET scan data, CT scan data, MRI scan data) acquired in historical scans (eg, PET scans, CT scans, MRI scans) of the target object.
在一些实施例中,处理设备110可以从图像处理系统100的一个或多个组件(例如,医学设备120、终端130、存储设备150)或外部存储器获取与目标对象的扫描有关的扫描信息(例如,与医学设备有关的信息、与目标对象有关的信息)。在一些实施例中,处理设备110可以根据原始成像数据确定与目标对象的扫描有关的扫描信息(例如,符合事件计数信息、示踪剂活度)。例如,处理设备110可以基于目标对象的PET图像的像素值(或体素值)确定示踪剂在目标对象体内的活度值(或浓度值)。在一些实施例中,处理设备110可以根据目标对象的历史成像数据确定目标对象的特征信息和/或解剖结构信息。In some embodiments,
步骤230,基于扫描信息,确定图像处理参数。在一些实施例中,步骤230可以由处理参数确定模块630执行。Step 230: Determine image processing parameters based on the scan information. In some embodiments,
图像处理参数可以用于对原始成像数据进行处理(例如,图像重建处理、图像平滑处理、图像增强处理、图像融合处理、图像美化处理)。在一些实施例中,图像处理参数可以包括图像重建参数、图像平滑参数(例如,正则化迭代平滑参数、人工智能迭代平滑参数、后滤波平滑参数)、图像增强参数、图像融合参数、图像美化参数等或其任意组合。在一些实施例中,图像处理参数可以包括与图像处理算法(例如,图像重建处理算法、图像平滑处理算法、图像增强处理算法、图像融合处理算法、图像美化处理算法)相关的参数。Image processing parameters may be used to process raw imaging data (eg, image reconstruction processing, image smoothing processing, image enhancement processing, image fusion processing, image beautification processing). In some embodiments, image processing parameters may include image reconstruction parameters, image smoothing parameters (eg, regularization iterative smoothing parameters, artificial intelligence iterative smoothing parameters, post-filtering smoothing parameters), image enhancement parameters, image fusion parameters, image beautification parameters etc. or any combination thereof. In some embodiments, the image processing parameters may include parameters related to image processing algorithms (eg, image reconstruction processing algorithms, image smoothing processing algorithms, image enhancement processing algorithms, image fusion processing algorithms, image beautification processing algorithms).
在一些实施例中,图像处理参数可以为目标方向上的位置的变量。在本说明书中,如果至少存在两个轴向方向上的不同位置,其对应的图像处理参数不同,则可以认为图像处理参数为目标方向上的位置的变量。仅作为示例,目标方向可以是医学设备的轴向方向(例如,图1所示的Z轴方向)。如果存在轴向上坐标不同的两个或多个位置,其对应的图像处理参数不同(例如,目标对象头部和腹部对应的图像处理参数不同),则可以认为图像参数为轴向上位置的变量。在一些实施例中,在使用医学设备(例如,长轴PET设备)对目标对象进行扫描时,由于有一些会影响成像质量的因素在目标方向上存在变化,导致目标方向上不同位置对应的扫描数据质量不同,从而使重建图像中对应不同轴向位置的部分质量不同,影响后续基于图像的疾病诊断和治疗。例如,在不同轴向位置上,医学设备的探测器灵敏度、被扫描器官或组织、符合事件计数率、示踪剂活度等可能会存在不同,会影响扫描数据和重建图像的质量。In some embodiments, the image processing parameter may be a variable of position in the direction of the target. In this specification, if there are at least two different positions in the axial direction and the corresponding image processing parameters are different, the image processing parameters can be considered as variables of the positions in the target direction. For example only, the target direction may be the axial direction of the medical device (eg, the Z-axis direction shown in FIG. 1 ). If there are two or more positions with different coordinates in the axial direction and the corresponding image processing parameters are different (for example, the image processing parameters corresponding to the head and abdomen of the target object are different), the image parameters can be considered as the axial position. variable. In some embodiments, when a medical device (for example, a long-axis PET device) is used to scan a target object, due to some factors that affect the imaging quality, there are changes in the target direction, resulting in scans corresponding to different positions in the target direction. The data quality is different, so that the quality of the parts corresponding to different axial positions in the reconstructed image is different, which affects the subsequent image-based disease diagnosis and treatment. For example, at different axial positions, the detector sensitivity of the medical device, the organ or tissue being scanned, coincident event count rate, tracer activity, etc., may vary, affecting the quality of scan data and reconstructed images.
在本说明书中的实施例中,通过对目标方向的不同位置设置不同的图像处理参数,可以控制图像在目标方向上的图像质量(例如,空间分辨率、密度分辨率、信噪比)。例如,可以通过对目标方向的不同位置设置不同的图像处理参数,减小目标方向上不同位置的图像质量的差异。又例如,可以对目标方向上的目标对象的特定器官(例如,头部和胸部)设置特定的图像处理参数,从而使重建图像中该器官具有特定的优化效果。再例如,对于在目标方向上处于边缘的位置,可以通过设置特定的图像处理参数,降低重建图像中对应区域的噪声。In the embodiments in this specification, by setting different image processing parameters for different positions in the target direction, the image quality (eg, spatial resolution, density resolution, signal-to-noise ratio) of the image in the target direction can be controlled. For example, by setting different image processing parameters for different positions in the target direction, the difference in image quality at different positions in the target direction can be reduced. For another example, specific image processing parameters may be set for a specific organ (eg, head and chest) of the target object in the target direction, so that the organ in the reconstructed image has a specific optimization effect. For another example, for a position on the edge in the target direction, the noise of the corresponding area in the reconstructed image can be reduced by setting specific image processing parameters.
在一些实施例中,处理设备110可以基于扫描信息,确定图像处理参数。在一些实施例中,处理设备110可以基于目标方向上某个特定位置对应的扫描信息,确定所述特定位置对应的图像处理参数。例如,处理设备110可以基于目标方向上的特定位置对应的与医学设备有关的信息(例如,特定位置对应的探测器的灵敏度、特定位置对应的相邻探测器之间的缝隙、特定位置对应的探测器的探测效率)、与原始图像数据有关的信息(例如,特定位置对应的符合事件计数信息、特定位置对应的示踪剂活度)和/或与目标对象有关的信息(例如,特定位置对应的目标对象的器官和组织的种类和结构),确定所述特定位置对应的图像处理参数。仅作为示例,处理设备110可以基于病人胸部区域对应的扫描信息(例如,符合事件计数信息、示踪剂活度),确定病人胸部区域对应的图像处理参数。处理设备110可以基于病人腹部区域对应的扫描信息(例如,符合事件计数信息、示踪剂活度),确定病人腹部区域对应的图像处理参数。In some embodiments,
在一些实施例中,处理设备110可以基于目标方向上的特定位置及该位置的参考位置有关的扫描信息,确定所述特定位置对应的图像处理参数。在一些实施例中,特定位置的参考位置可以包括该位置的相邻位置(例如,与该位置的距离小于一定阈值的位置)。例如,处理设备110可以基于病人胸部区域对应的扫描信息、颈部区域对应的扫描信息和腹部区域对应的扫描信息,确定病人胸部区域对应的图像处理参数。通过使用特定位置和与特定位置参考位置处对应的扫描信息确定特定位置对应的图像处理参数,可以使图像处理参数的确定更加合理和准确。在一些实施例中,特定位置的参考位置可以包括该位置的不相邻位置(例如,与该位置的距离大于一定阈值的位置)。例如,处理设备110可以基于病人脑部区域对应的扫描信息和肝部区域对应的扫描信息,确定病人脑部区域对应的扫描信息对应的图像处理参数。在一些实施例中,当特定位置的扫描信息较难获取时,可以通过获取参考位置的扫描信息来确定特定位置对应的图像处理参数。例如,由于人体内的血管是相通的,因此可以基于一个或多个参考血管区域的扫描信息(例如,示踪剂活度),来确定特定血管区域对应的图像处理参数。在一些实施例中,处理设备110可以基于目标方向上的特定位置的参考位置有关的扫描信息,确定所述特定位置对应的图像处理参数;处理设备110可以基于目标方向上的特定位置的有关的扫描信息,确定所述特定位置的参考位置对应的图像处理参数。例如,处理设备110可以基于病人脑部区域对应的扫描信息,确定病人肝部区域对应的扫描信息;处理设备110可以基于病人肝部区域对应的扫描信息,确定病人脑部区域对应的扫描信息。In some embodiments, the
在一些实施例中,图像处理系统100的用户(例如,医生、技师)可以根据经验,确定扫描信息与图像处理参数之间的关系。在一些实施例中,可以通过对模体进行模拟扫描实验,确定扫描信息与图像处理参数之间的关系。仅作为示例,PET图像的图像平滑参数可以根据公式(1)确定:In some embodiments, a user of the image processing system 100 (eg, doctor, technician) can empirically determine the relationship between scan information and image processing parameters. In some embodiments, the relationship between scan information and image processing parameters can be determined by performing a simulated scan experiment on a phantom. As an example only, the image smoothing parameters of the PET image can be determined according to formula (1):
λZ=k·(promptCountsZ)n (1),λ Z = k·(promptCounts Z ) n (1),
其中,λZ表示轴向上的位置Z处对应的图像平滑参数;k和n表示固定常量,可以根据经验设定;以及promptCountsZ表示轴向上的位置Z处对应的即时符合事件计数。Among them, λ Z represents the image smoothing parameter corresponding to the position Z on the axis; k and n represent fixed constants, which can be set according to experience; and promptCounts Z represents the corresponding instant coincidence event count at the position Z on the axis.
从上述公式(1)可知,图像平滑参数与即时符合事件计数存在相关性。由于即时符合事件计数是轴向上的位置的变量,图像平滑参数也是轴向上的位置的变量。轴向上的不同位置对应的即时符合事件计数可能不同,则因此轴向上的不同位置对应的图像平滑参数也可能不同。在一些实施例中,图像平滑参数与即时符合事件计数的关系可以用如图7的曲线700或图8中的曲线800来表示。如图7所示,图像平滑参数与即时符合事件计数之间可以存在非线性关系。由图7可见,在即时符合时间计数小于1×105时,随着即时符合事件计数的逐渐增加,图像处理参数迅速减小,当即时符合时间计数达到1×105后,随着即时符合事件计数的逐渐增加,图像处理参数缓慢减小。如图8所示,图像平滑参数与即时符合事件计数之间可以存在线性关系。由图8可见,随着即时符合事件计数的逐渐增加,图像处理参数线性减小。It can be seen from the above formula (1) that there is a correlation between the image smoothing parameter and the instant coincidence event count. Since the instant coincidence event count is a variable of the position on the axis, the image smoothing parameter is also a variable of the position on the axis. The instant coincidence event counts corresponding to different positions on the axis may be different, so the image smoothing parameters corresponding to different positions on the axis may also be different. In some embodiments, the relationship between the image smoothing parameter and the instant coincidence event count may be represented by the
在一些实施例中,处理设备110可以对多种扫描信息分别建模,处理设备110可以将建模函数相乘,确定图像处理参数。例如,处理设备110可以对与医学设备有关的信息(例如,探测器的灵敏度分布、相邻探测器之间的缝隙、探测器的探测效率)、与原始成像数据有关的信息(例如,符合事件计数信息)和与目标对象有关的信息(例如,历史成像数据)进行建模,确定图像处理参数。In some embodiments, the
在一些实施例中,处理设备110可以确定PET图像噪声差异的原因。例如,在二维PET扫描应用场景下,假设对均匀水模进行PET扫描,在其重建图像上某一点真实符合计数为te,即表示当前点均值为mean=te,而当前点产生的噪声(Variance)可以由不同角度下的PET计数对它的影响加和来确定,即为variance=∑mVARe,VARe等于来自对图像元素有贡献的m个投影角中的每一个的样本的加权方差之和,则信噪比可以根据公式(2)确定:In some embodiments, the
其中,SNR表示信噪比;c表示常数;mean表示当前点均值;以及variance表示当前点的噪声。对于某一条响应线采样来说,假设散射计数与随机计数都预估正确的情况下,即时计数的期望为:Among them, SNR represents the signal-to-noise ratio; c represents a constant; mean represents the mean value of the current point; and variance represents the noise of the current point. For a certain response line sampling, assuming that the scatter count and random count are both correctly estimated, the expectation of the immediate count is:
E(p)=Tp+Sp+Rp (3),E(p)=T p +S p +R p (3),
其中,Tp表示真实符合计数;Sp表示散射计数;Rp表示随机计数。Among them, T p represents true coincidence counts; Sp represents scattering counts; R p represents random counts.
由泊松分布的原理,方差等于期望,可以得出:According to the principle of Poisson distribution, variance is equal to expectation, we can get:
variance=∑mwm(Tp+Sp+Rp)=∑mwmTp(1+αsp+αrp) (4),variance=∑ m w m (T p +S p +R p )=∑ m w m T p (1+α sp +α rp ) (4),
其中,wm为第m个角度响应线的噪声权重;分别表示散射计数和随机计数与真实计数的比例。Among them, w m is the noise weight of the mth angle response line; represent the ratio of scatter counts and random counts to true counts, respectively.
假设求取图像的中心点的信噪比,由于对称原则,其噪声在各个方向上的权重(w)是一样的,则每一个角度的噪声为:Assuming that the signal-to-noise ratio of the center point of the image is obtained, due to the principle of symmetry, the weight (w) of its noise in all directions is the same, then the noise of each angle is:
VARe=w(Dteac/d)(1+αsp+αrp) (5),VAR e =w(Dt e a c /d)(1+α sp +α rp ) (5),
其中,D为均匀水模直径;d为像素个数;ac为衰减系数和死时间校正;w为噪声在各个方向上的权重。Among them, D is the diameter of the uniform water model; d is the number of pixels; a c is the attenuation coefficient and dead time correction; w is the weight of the noise in each direction.
可以进一步得出:It can be further concluded that:
te=avg(ac)T/πD2/4d2) (6),t e =avg( ac )T/πD 2 /4d 2 ) (6),
其中T为总的真实符合计数。where T is the total true hit count.
因此,信噪比可以由公式(7)确定:Therefore, the signal-to-noise ratio can be determined by equation (7):
噪声等效计数率(NEC)可以由公式(8)确定:The noise equivalent count rate (NEC) can be determined by equation (8):
NEC=T/(1+αsp+αrp) (8),NEC=T/(1+ αsp + αrp )(8),
单层NEC计数可以由公式(9)确定:The single-layer NEC count can be determined by equation (9):
NEC=T2/(T+S+R) (9),NEC=T 2 /(T+S+R) (9),
由于系统中每一个位置发射光子被探测到的几率不同,导致不同位置的系统灵敏度的差异,从而导致非图像中心点的SNR与中心点SNR分布不同。因此针对系统内不同位置探测计数量不同。Due to the different probability of detecting the emitted photons at each position in the system, the sensitivity of the system at different positions is different, and the SNR of the non-image center point and the SNR distribution of the center point are different. Therefore, the number of detectors for different positions in the system is different.
在一些实施例中,假设存在两个位置x和y,则他们的均值与噪声分别为:In some embodiments, assuming that there are two positions x and y, their mean and noise are:
meanx=Snsx·te (10),mean x = Sns x t e (10),
variancex=E(Snsx·te)=Snsx·te (11),variance x =E(Sns x t e )=Sns x t e (11),
meany=Snsy·te (12),mean y = Sns y ·te (12),
variancey=E(Snsy·te)=Snsy·te (13),variance y =E(Sns y ·t e )=Sns y ·t e (13),
其中,Snsx和Snsy表示系统灵敏度。Among them, Sns x and Sns y represent the system sensitivity.
因此,可以推导出:Therefore, it can be deduced that:
由以上推导可以看出SNR与成正比,因此NEC可以成为衡量图像噪声的依据。SNR与物体的直径有关系,因此病人体积可以成为衡量图像噪声的依据。SNR与系统灵敏度有关系,因此系统灵敏度可以成为衡量图像噪声的依据。From the above derivation, it can be seen that the SNR and is proportional to, so NEC can be the basis for measuring image noise. SNR is related to the diameter of the object, so patient volume can be a measure of image noise. SNR is related to system sensitivity, so system sensitivity can be the basis for measuring image noise.
同理的,在三维PET扫描应用场景下中,可以使用目标方向区域的NEC、目标方向上的病人体积和目标方向上的系统灵敏度,估计目标方向上的噪声。例如,对于每一个目标方向上的区域,NEC标记为NECz,物体体积标记为Volumez,系统灵敏度标记为Snsz,则基于图像处理参数关于计数信息的建模为:Similarly, in the application scenario of 3D PET scanning, the NEC of the target direction area, the patient volume in the target direction, and the system sensitivity in the target direction can be used to estimate the noise in the target direction. For example, for each area in the target direction, the NEC is marked as NEC z , the object volume is marked as Volume z , and the system sensitivity is marked as Sns z , then the modeling of counting information based on image processing parameters is:
其中,k为常数;NECz,Volumez和Snsz分别为目标方向上的位置的变量。Among them, k is a constant; NEC z , Volume z and Sns z are the variables of the position in the target direction, respectively.
步骤240,基于图像处理参数,对原始成像数据进行处理,以生成目标成像数据。在一些实施例中,步骤240可以由处理模块640执行。
目标成像数据可以指对原始成像数据进行处理后的数据。在一些实施例中,对原始成像数据进行处理可以包括对原始成像数据进行图像重建处理、图像平滑处理、图像增强处理、图像融合处理、图像美化处理等或其任意组合。The target imaging data may refer to data after processing the original imaging data. In some embodiments, processing the original imaging data may include image reconstruction processing, image smoothing processing, image enhancement processing, image fusion processing, image beautification processing, etc., or any combination thereof, on the original imaging data.
在一些实施例中,处理设备110可以基于图像处理参数,根据迭代图像处理算法(例如,迭代重建算法),对原始成像数据进行处理,以生成目标成像数据。迭代重建算法可以包括最大似然估计(MLE)算法、有序子集期望最大化(OSEM)等。例如,处理设备110可以基于图像处理参数,通过对原始成像数据进行多轮迭代操作,以生成目标成像数据。关于生成目标成像数据的更多描述参见图3的相关描述。又例如,处理设备110可以获取迭代更新因子。处理设备110可以基于迭代更新因子和图像处理参数,通过对初始化图像进行多轮迭代操作,以生成目标重建图像。关于生成目标重建图像的更多描述参见图4的相关描述。In some embodiments, the
在一些实施例中,处理设备110可以基于图像处理参数,根据非迭代图像处理算法(例如,非迭代重建算法),对原始成像数据进行处理,以生成目标成像数据。非迭代重建算法可以包括滤波反投影重建(FBP)算法等。例如,在滤波反投影重建(FBP)算法中,根据中心切片定理可知,某图像f(x,y0在视角为时的投影的一维立叶变换是f(x,y0的二维傅立叶变换的一个经过原点的切片,因此根据中心切片定理推导出的重建图像I(x,y)的公式如下:In some embodiments, the
其中,h(s)表示滤波函数。在一些实施例中,可以根据目标方向上不同位置对应的不同扫描信息,调节滤波函数的滤波系数。例如,相对于传统FBP重建算法中在目标方向上不同位置使用相同h(s),在本申请一些实施例中,可以使滤波函数为目标方向上的位置的变量,即滤波函数可以为:where h(s) represents the filter function. In some embodiments, the filter coefficient of the filter function may be adjusted according to different scan information corresponding to different positions in the target direction. For example, compared to using the same h(s) at different positions in the target direction in the traditional FBP reconstruction algorithm, in some embodiments of the present application, the filter function can be a variable of the position in the target direction, that is, the filter function can be:
在一些实施例中,处理设备110可以基于图像处理参数,根据多种图像处理联合算法,对原始成像数据进行处理,以生成目标成像数据。例如,处理设备110可以基于图像处理参数,根据图像重建算法(例如,行处理最大似然算法(RAMLA)算法)和滤波算法,对原始成像数据进行处理,以生成目标成像数据。根据RAMLA算法进行图像重建的过程可以表示为:In some embodiments, the
其中,j表示像素索引,i表示迭代次数,b表示投影,a表示系统矩阵,l表示子集索引,λz表示收敛系数,Sn表示子集序列。在完成重建图像之后,使用经过目标方向调节的后滤波算法(例如,高斯后滤波)对图像进行滤波处理:Among them, j represents the pixel index, i represents the number of iterations, b represents the projection, a represents the system matrix, l represents the subset index, λ z represents the convergence coefficient, and Sn represents the subset sequence. After the reconstructed image is completed, the image is filtered using a post-filtering algorithm adjusted for the target orientation (eg, Gaussian post-filtering):
其中,σz表示高斯半高宽,σz可以为目标方向上的位置的变量;以及x表示邻域像素与中心像素的距离。根据本申请的一些实施例,通过联合使用图像重建算法和滤波算法,可以均衡图像中的噪声分布。Among them, σ z represents the Gaussian width at half maximum, σ z can be a variable of the position in the target direction; and x represents the distance between the neighborhood pixel and the center pixel. According to some embodiments of the present application, the noise distribution in an image can be equalized by using an image reconstruction algorithm and a filtering algorithm in combination.
图3是根据本说明书一些实施例所示的生成目标成像数据的示例性流程图。在一些实施例中,流程300可以由处理设备110(例如,处理模块640)执行。在一些实施例中,图2所示的步骤240可以由流程300实现。如图3所示,流程300包括一轮或多轮迭代。每一轮迭代可以包括以下步骤。FIG. 3 is an exemplary flowchart of generating target imaging data according to some embodiments of the present specification. In some embodiments,
步骤310,获取原始成像数据或上一轮迭代中生成的更新成像数据。Step 310: Obtain original imaging data or updated imaging data generated in the previous iteration.
若当前迭代是第一轮迭代,可以获取待进行图像处理(例如,图像重建处理、图像平滑处理、图像增强处理、图像融合处理、图像美化处理)的原始成像数据。例如,原始成像数据可以是PET投影数据(例如,列表模式数据、正弦图数据)、PET重建图像等。在一些实施例中,原始成像数据可以是根据流程400生成的PET重建图像,处理设备110可以进一步根据流程300对PET重建图像进行其它图像处理操作(例如,图像平滑处理、图像增强处理、图像融合处理、图像美化处理)。原始成像数据的获取与步骤210所描述的类似,此处不再赘述。If the current iteration is the first iteration, the original imaging data to be subjected to image processing (eg, image reconstruction processing, image smoothing processing, image enhancement processing, image fusion processing, and image beautification processing) may be acquired. For example, the raw imaging data may be PET projection data (eg, list mode data, sinogram data), PET reconstructed images, and the like. In some embodiments, the original imaging data may be the PET reconstructed image generated according to the
若当前迭代是第二轮或之后的迭代,可以获取上一轮迭代中生成的更新成像数据。If the current iteration is the second or later iteration, the updated imaging data generated in the previous iteration can be obtained.
步骤320,基于图像处理参数对原始成像数据或更新成像数据进行处理,以生成处理后的成像数据。Step 320: Process the original imaging data or the updated imaging data based on the image processing parameters to generate processed imaging data.
在一些实施例中,不同迭代中使用的图像处理参数可以相同也可以不同。在一些实施例中,在当前迭代中,处理设备110可以基于上一轮迭代生成的更新成像数据和扫描信息,更新图像处理参数,以生成更新后的图像处理参数。例如,处理设备110可以基于更新成像数据(例如,更新PET图像)确定示踪剂活度,并根据示踪剂活度调整图像处理参数,以生成更新后的图像处理参数。具体地,更新成像数据(例如,更新PET图像)的像素值(或体素值)可以表示人体内示踪剂活度分布信息,处理设备110可以根据成像数据中的沿目标方向的像素值(或体素值)信息,调整图像处理参数,以生成更新后的图像处理参数。又例如,可以随着迭代次数的增加逐渐减小每次迭代中使用的图像处理参数的值,从而优化收敛路径,使图像处理达到更好的收敛效果。处理设备110可以基于更新后的图像处理参数对更新成像数据进行处理,以生成处理后的成像数据。根据本说明书的一些实施例,通过在每轮迭代中调整图像处理参数,可以提高迭代的收敛速度,从而提高迭代处理的效率。In some embodiments, the image processing parameters used in different iterations may be the same or different. In some embodiments, in the current iteration, the
在一些实施例中,流程300可以用于对原始成像数据进行平滑或增强处理。此时,图像处理参数可以是图像平滑参数或图像增强参数。步骤320中,处理设备110可以基于图像平滑参数(或图像增强参数)和先验函数对上一轮迭代生成的更新成像数据进行图像平滑处理(或图像增强处理)。先验函数可以用来约束图像分布的先验分布。例如,先验函数可以是对图像有平滑效果的马尔科夫随机场模型。在一些实施例中,流程300可以用于对原始成像数据进行重建。此时,图像处理参数可以是图像重建参数。步骤320中,处理设备110可以基于图像重建参数和迭代更新因子对上一轮迭代生成的更新重建图像进行处理。关于图像重建的更多描述参见图4的相关描述。In some embodiments,
步骤330,判断迭代是否满足终止条件。Step 330, determine whether the iteration satisfies the termination condition.
在一些实施例中,终止条件可以与已执行的迭代次数相关。例如,终止条件可以是已执行的迭代次数大于次数阈值。在一些实施例中,终止条件可以与连续两次迭代生成的处理后的成像数据之间的差异相关。例如,终止条件可以是连续两次迭代生成的处理后的成像数据之间的差异小于差值阈值。在一些实施例中,第一成像数据(例如,第一图像)和第二成像数据(例如,第二图像)之间的差异可以通过第一成像数据的像素或体素的平均灰度值与第二成像数据的像素或体素的平均灰度值之间的差值表示。在一些实施例中,终止条件可以与处理后的成像数据的质量有关。例如,终止条件可以是处理后的成像数据的质量(例如,空间分辨率、密度分辨率、信噪比)满足质量阈值(例如,空间分辨率阈值、密度分辨率阈值、信噪比阈值)。次数阈值和/或差值阈值可以由用户手动设置或由图像处理系统100的一个或多个组件(例如,处理设备110)根据不同情况设置。In some embodiments, the termination condition may be related to the number of iterations performed. For example, the termination condition may be that the number of iterations performed is greater than a threshold number of times. In some embodiments, the termination condition may be related to the difference between the processed imaging data generated by two successive iterations. For example, the termination condition may be that the difference between the processed imaging data generated by two successive iterations is less than a difference threshold. In some embodiments, the difference between the first imaging data (eg, the first image) and the second imaging data (eg, the second image) may be determined by the difference between the average gray value of a pixel or voxel of the first imaging data and the A representation of the difference between the average grayscale values of the pixels or voxels of the second imaging data. In some embodiments, the termination condition may be related to the quality of the processed imaging data. For example, a termination condition may be that the quality of the processed imaging data (eg, spatial resolution, density resolution, signal-to-noise ratio) satisfies a quality threshold (eg, spatial resolution threshold, density resolution threshold, signal-to-noise ratio threshold). The count threshold and/or the difference threshold may be manually set by the user or set by one or more components of the image processing system 100 (eg, the processing device 110 ) on a case-by-case basis.
步骤340,响应于确定迭代满足终止条件,将处理后的成像数据确定为目标成像数据。In
在一些实施例中,响应于确定迭代满足终止条件,可以将本轮迭代中得到的处理后的成像数据确定为目标成像数据。在一些实施例中,响应于确定迭代不满足终止条件,可以将本轮迭代中得到的处理后的成像数据作为更新后的成像数据,并返回步骤310进行下一轮迭代,直到在某轮迭代中终止条件被满足。In some embodiments, in response to determining that the iteration satisfies the termination condition, the processed imaging data obtained in this round of iterations may be determined as the target imaging data. In some embodiments, in response to determining that the iteration does not meet the termination condition, the processed imaging data obtained in this round of iterations may be used as the updated imaging data, and the process returns to step 310 for the next round of iterations until a certain round of iterations is performed. The termination condition is satisfied.
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。It should be noted that the above description about the process is only for example and description, and does not limit the scope of application of the present specification. For those skilled in the art, various modifications and changes can be made to the procedures under the guidance of this specification. However, these corrections and changes are still within the scope of this specification.
图4是根据本说明书一些实施例所示的生成目标重建图像的示例性流程图。在一些实施例中,流程400可以由处理设备110(例如,处理模块640)执行。在一些实施例中,图2所示的步骤240可以由流程400实现。如图4所示,流程400包括一轮或多轮迭代。每一轮迭代可以包括以下步骤。FIG. 4 is an exemplary flowchart of generating a reconstructed image of a target according to some embodiments of the present specification. In some embodiments,
步骤410,获取初始化图像或上一轮迭代中生成的更新成像数据。Step 410: Obtain an initialization image or updated imaging data generated in a previous iteration.
若当前迭代是第一轮迭代,可以获取初始化图像。在一些实施例中,初始化图像可以包括至少两个像素或体素,至少两个像素或体素具有估计特征,例如灰度值、强度、颜色等。在一些实施例中,初始化图像可以由用户设置或者由图像处理系统100的一个或多个组件(例如,处理设备110)确定。在一些实施例中,初始化图像中像素或体素的灰度值可以设定为不同的值或相同的值。例如,初始化图像中的像素或体素的灰度值可以均设置为0。If the current iteration is the first iteration, the initialization image can be obtained. In some embodiments, the initialization image may include at least two pixels or voxels having estimated characteristics, such as gray value, intensity, color, and the like. In some embodiments, the initialization image may be set by a user or determined by one or more components of image processing system 100 (eg, processing device 110 ). In some embodiments, the grayscale values of pixels or voxels in the initialization image may be set to different values or the same value. For example, the gray values of pixels or voxels in the initialization image may all be set to 0.
若当前迭代是第二轮或之后的迭代,可以获取上一轮迭代中生成的更新成像数据。If the current iteration is the second or later iteration, the updated imaging data generated in the previous iteration can be obtained.
步骤420,基于迭代更新因子和图像处理参数,对初始化图像或更新图像数据进行重建,以生成重建图像。
迭代更新因子可以指根据组织内发射出的光子数与探测器接收到的光子数的相关性,通过建模多个物理因素(例如,粒子碰撞、探测器效率和事件的随机性),而反推出的重建初始图像与真实组织光子分布图像的差异。在一些实施例中,可以根据流程500确定迭代更新因子。在一些实施例中,在每一轮迭代过程中,处理设备110可以基于图像处理参数和迭代更新因子对初始化图像或上一轮迭代生成的更新成像数据进行重建,以生成重建图像。在每一轮迭代中,图像处理参数可以相同也可以不同,如图3中步骤320所述。The iterative update factor can refer to modeling multiple physical factors (e.g., particle collisions, detector efficiency, and randomness of events) based on the correlation between the number of photons emitted within the tissue and the number of photons received by the detector. Differences between the deduced reconstructed initial image and the real tissue photon distribution image. In some embodiments, an iterative update factor may be determined according to
在一些实施例中,处理设备110可以根据迭代重建算法,基于迭代更新因子和图像处理参数,对初始化图像进行重建,以生成重建图像。在传统的迭代重建过程中,图像处理参数不是目标方向上的位置的变量(也就是说目标方向上的不同位置使用相同的图像处理参数),迭代重建过程可以表示为公式(20):In some embodiments, the
fn+1=fn+λG(f) (20),f n+1 = f n +λG(f) (20),
其中,fn+1表示本轮迭代生成的图像;fn表示上一轮迭代生成的图像;λ表示图像处理参数(也可以被称为图像重建参数或迭代调节因子),可以代表图像重建的收敛步长;G(f)表示迭代更新因子。根据本说明书的一些实施例,图像处理参数可以为目标方向上的位置的变量,此时迭代重建过程可以表示为公式(21):Among them, f n+1 represents the image generated by the current iteration; f n represents the image generated by the previous iteration; λ represents the image processing parameter (also called the image reconstruction parameter or iterative adjustment factor), which can represent the image reconstruction parameter Convergence step size; G(f) represents the iterative update factor. According to some embodiments of the present specification, the image processing parameter may be a variable of the position in the target direction, and the iterative reconstruction process at this time may be expressed as formula (21):
fn+1=fn+λzG(f) (21),f n+1 = f n +λ z G(f) (21),
其中,λZ表示在目标方向上的Z位置处的图像处理参数。仅作为示例,λZ表示在轴向上的Z位置处的图像处理参数,不同Z位置对应的图像处理参数不同。where λ Z represents the image processing parameter at the Z position in the target direction. Just as an example, λ Z represents an image processing parameter at a Z position in the axial direction, and the image processing parameters corresponding to different Z positions are different.
在一些实施例中,公式(3)也可以表示图像平滑、图像降噪、图像增强等其它图像处理迭代过程。例如,在图像平滑迭代(例如,正则化迭代)过程中,λZ表示目标方向上Z位置处的图像平滑处理参数(例如,平滑强度系数)。In some embodiments, formula (3) may also represent other image processing iterative processes such as image smoothing, image noise reduction, and image enhancement. For example, during image smoothing iterations (eg, regularization iterations), λ Z represents the image smoothing parameter (eg, smoothing intensity coefficient) at the Z position in the target direction.
步骤430,判断迭代是否满足终止条件。
步骤430与步骤330类似,此处不再赘述。Step 430 is similar to step 330 and will not be repeated here.
步骤440,响应于确定迭代满足终止条件,将重建图像确定为目标重建图像。
在一些实施例中,响应于确定迭代满足终止条件,可以将最本轮迭代中得到的重建图像确定为目标重建图像。在一些实施例中,响应于确定迭代不满足终止条件,可以将本轮迭代中得到的重建图像作为更新后的成像数据,并返回步骤410进行下一轮迭代,直到在某轮迭代中终止条件被满足。In some embodiments, in response to determining that the iteration satisfies the termination condition, the reconstructed image obtained in the current iteration may be determined as the target reconstructed image. In some embodiments, in response to determining that the iteration does not meet the termination condition, the reconstructed image obtained in this round of iterations may be used as the updated imaging data, and the process returns to step 410 for the next round of iterations until the termination condition is reached in a certain round of iterations satisfied.
图5是根据本说明书一些实施例所示的获取迭代更新因子的示例性流程图。在一些实施例中,流程500可以由处理设备110(例如,处理模块640)执行。如图5所示,流程500包括以下步骤。FIG. 5 is an exemplary flowchart of obtaining an iterative update factor according to some embodiments of the present specification. In some embodiments,
步骤510,对初始化图像或更新成像数据进行正投影操作,确定第一投影数据。Step 510: Perform an orthographic projection operation on the initialization image or the updated imaging data to determine the first projection data.
在一些实施例中,在第一轮迭代过程中,处理设备110可以通过对初始化图像进行正投影操作,以确定第一投影数据。在后续的迭代过程中,处理设备110可以对上一轮迭代生成的更新成像数据(例如,更新重建图像)进行正投影操作,以确定第一投影数据。In some embodiments, during the first round of iterations, the
在一些实施例中,处理设备110可以通过将初始化图像(或更新成像数据)投影到特定投影平面上以确定第一投影数据。在一些实施例中,处理设备110可以基于初始化图像(或更新成像数据)和投影矩阵确定第一投影数据。例如,处理设备110可以通过将投影矩阵乘以初始化图像以确定第一投影数据。在一些实施例中,投影矩阵可以由用户设置或由图像处理系统100的一个或多个组件(例如,处理设备110)根据不同情况设置。In some embodiments,
步骤520,基于原始成像数据确定第二投影数据。
在一些实施例中,原始成像数据可以是医学设备采集的原始投影数据,其可以直接作为第二投影数据。或者,处理设备110可以对原始投影数据(例如,PET投影数据)进行预处理,并将预处理后的原始投影数据作为第二投影数据。在一些实施例中,原始成像数据可以是图像,处理设备110可以获取图像对应的原始投影数据,并将对应图像的原始投影数据作为第二投影数据。或者,处理设备110可以对图像进行正投影操作以确定第二投影数据。In some embodiments, the raw imaging data may be raw projection data collected by a medical device, which may be directly used as the second projection data. Alternatively, the
步骤530,基于第一投影数据和第二投影数据,确定第三投影数据。Step 530: Determine third projection data based on the first projection data and the second projection data.
第三投影数据可以表示第一投影数据和第二投影数据之间的差异。在一些实施例中,第三投影数据可以是第一投影数据与第二投影数据的比率。在一些实施例中,第三投影数据可以是第一投影数据与第二投影数据的差值。例如,处理设备110可以通过将第一投影数据和第二投影数据相减以确定第三投影数据。The third projection data may represent the difference between the first projection data and the second projection data. In some embodiments, the third projection data may be a ratio of the first projection data to the second projection data. In some embodiments, the third projection data may be the difference between the first projection data and the second projection data. For example, the
步骤540,对第三投影数据进行反投影操作,确定反投影数据。Step 540: Perform a back-projection operation on the third projection data to determine back-projection data.
在一些实施例中,处理设备110可以对第三投影数据进行反投影操作(例如,滤波反投影操作),以确定反投影数据。In some embodiments,
步骤550,根据第一投影数据、反投影数据和归一化矩阵确定迭代更新因子。Step 550: Determine an iterative update factor according to the first projection data, the back projection data and the normalization matrix.
在一些实施例中,处理设备110可以获取初始化值为1的图像,并基于初始化值为1的图像,确定归一化矩阵。例如,处理设备110可以通过对初始化值为1的图像进行反投影操作,以确定归一化矩阵。In some embodiments, the
在一些实施例中,处理模块640可以根据第一投影数据、反投影数据和归一化矩阵确定迭代更新因子。In some embodiments, the
应当注意的是,上述有关流程的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。It should be noted that the above description about the process is only for example and description, and does not limit the scope of application of the present specification. For those skilled in the art, various modifications and changes can be made to the procedures under the guidance of this specification. However, these corrections and changes are still within the scope of this specification.
图6是根据本说明书一些实施例所示的图像处理系统的示例性模块图。在一些实施例中,处理设备110可以包括获取模块610、扫描信息确定模块620、处理参数确定模块630和处理模块640。FIG. 6 is an exemplary block diagram of an image processing system according to some embodiments of the present specification. In some embodiments, the
获取模块610可以用于获取与图像处理系统100有关的信息和数据。在一些实施例中,获取模块610可以获取原始成像数据。关于获取原始成像数据的更多描述可以在本说明书的其它地方(例如,图2中的步骤210及其描述)找到。The
扫描信息确定模块620可以用于确定与目标对象的扫描有关的扫描信息。扫描信息可以包括与医学设备有关的信息、与原始成像数据有关的信息、与目标对象有关的信息等或其任意组合。关于确定与目标对象的扫描有关的扫描信息的更多描述可以在本说明书的其它地方(例如,图2中的步骤220及其描述)找到。The scan
处理参数确定模块630可以用于确定图像处理参数。在一些实施例中,处理参数确定模块630可以基于扫描信息,确定图像处理参数。例如,处理参数确定模块630可以基于目标方向上某个特定位置对应的扫描信息,确定所述特定位置对应的图像处理参数。又例如,处理参数确定模块630可以基于目标方向上的特定位置及该位置的参考位置有关的扫描信息,确定所述特定位置对应的图像处理参数。关于确定图像处理参数的更多描述可以在本说明书的其它地方(例如,图2中的步骤230及其描述)找到。Processing
处理模块640可以用于基于图像处理参数,对原始成像数据进行处理,以生成目标成像数据。在一些实施例中,处理模块640可以获取原始成像数据或上一轮迭代中生成的更新成像数据。处理模块640可以基于图像处理参数对原始成像数据或更新成像数据进行处理,以生成处理后的成像数据。处理模块640可以判断迭代是否满足终止条件。处理模块640可以响应于确定迭代满足终止条件,将处理后的成像数据确定为目标成像数据。在一些实施例中,处理模块640可以获取初始化图像或上一轮迭代中生成的更新成像数据。处理模块640可以基于迭代更新因子和图像处理参数,对初始化图像或更新图像数据进行重建,以生成重建图像。处理模块640可以判断迭代是否满足终止条件。处理模块640可以响应于确定迭代满足终止条件,将重建图像确定为目标重建图像。关于生成目标成像数据的更多描述可以在本说明书的其它地方(例如,图2中的步骤240、图3-5及其描述)找到。The
需要注意的是,对处理设备110的上述描述以用于说明的目的,而不是限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。然而,这些变化和修改不脱离本申请的范围。在一些实施例中,可以将一个或多个模块组合成单个模块。例如,扫描信息确定模块620和处理参数确定模块630可以组合成单个模块。在一些实施例中,可以在处理设备110中添加或省略一个或多个模块。例如,处理设备110还可以包括存储模块(图6中未示出),存储模块被配置为存储与图像处理系统100相关联的数据和/或信息(例如,原始成像数据、扫描信息、图像处理参数、目标成像数据)。It should be noted that the above description of the
图9是根据本说明书一些实施例所示的重建图像的示意图。如图9所示,重建图像910A和重建图像920A为根据最大密度投影(MIP)算法生成的目标对象的重建图像。重建图像910B和重建图像920B为对应目标对象的横截面的重建图像。重建图像910A和重建图像910B是基于传统的图像平滑参数(即,图像平滑参数为目标方向上的固定量)处理后得到的图像。重建图像920A和重建图像920B是基于本说明书的实施例确定的图像平滑参数(即,图像平滑参数为目标方向上的位置的变量)处理后得到的图像。从图9中可以看出,重建图像920A和重建图像920B更加平滑,且噪音(例如,图像边缘噪声)明显少于重建图像910A和重建图像910B的噪音,。FIG. 9 is a schematic diagram of a reconstructed image according to some embodiments of the present specification. As shown in FIG. 9, the
本说明书实施例可能带来的有益效果包括但不限于:(1)通过将图像处理参数设置为目标方向上的位置的变量,可以灵活控制图像在目标方向上的图像质量;(2)基于目标方向上与目标对象的扫描有关的扫描信息确定图像处理参数,可以减小目标方向上不同位置的图像差异,从而得到比较均匀的图像质量;(3)可以在目标方向上的预定位置达到预期的图像质量,例如,可以对目标对象的特定器官区域设置特定的图像处理参数,从而得到特定器官的特定优化图像效果;又例如,对于图像中噪声较大的边缘层区域,可以通过设置该区域对应的特定的图像处理参数来抑制噪声的产生;(4)可以根据不同的患者的特征信息和/或不同的扫描相关的信息,确定不同的图像处理参数,从而实现针对不同患者和/或不同扫描的个性化图像处理参数设置,进一步提高目标成像数据的质量。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。The possible beneficial effects of the embodiments of this specification include, but are not limited to: (1) by setting the image processing parameter as a variable of the position in the target direction, the image quality of the image in the target direction can be flexibly controlled; (2) based on the target direction The scanning information related to the scanning of the target object in the direction determines the image processing parameters, which can reduce the image difference at different positions in the target direction, so as to obtain a relatively uniform image quality; (3) The predetermined position in the target direction can achieve the expected Image quality, for example, specific image processing parameters can be set for a specific organ region of the target object, so as to obtain a specific optimized image effect for a specific organ; for another example, for the edge layer region with large noise in the image, it can be set corresponding to the region. (4) According to the characteristic information of different patients and/or different scan-related information, different image processing parameters can be determined, so as to realize the specific image processing parameters for different patients and/or different scans. The personalized image processing parameter settings can further improve the quality of target imaging data. It should be noted that different embodiments may have different beneficial effects, and in different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。The basic concepts have been described above. Obviously, for those skilled in the art, the above detailed disclosure is merely an example, and does not constitute a limitation of the present specification. Although not explicitly described herein, various modifications, improvements, and corrections to this specification may occur to those skilled in the art. Such modifications, improvements, and corrections are suggested in this specification, so such modifications, improvements, and corrections still belong to the spirit and scope of the exemplary embodiments of this specification.
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。Meanwhile, the present specification uses specific words to describe the embodiments of the present specification. Such as "one embodiment," "an embodiment," and/or "some embodiments" means a certain feature, structure, or characteristic associated with at least one embodiment of this specification. Therefore, it should be emphasized and noted that two or more references to "an embodiment" or "one embodiment" or "an alternative embodiment" in various places in this specification are not necessarily referring to the same embodiment . Furthermore, certain features, structures or characteristics of the one or more embodiments of this specification may be combined as appropriate.
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。Furthermore, unless explicitly stated in the claims, the order of processing elements and sequences described in this specification, the use of alphanumerics, or the use of other names is not intended to limit the order of the processes and methods of this specification. While the foregoing disclosure discusses by way of various examples some embodiments of the invention that are presently believed to be useful, it is to be understood that such details are for purposes of illustration only and that the appended claims are not limited to the disclosed embodiments, but rather The requirements are intended to cover all modifications and equivalent combinations falling within the spirit and scope of the embodiments of this specification. For example, although the system components described above may be implemented by hardware devices, they may also be implemented by software-only solutions, such as installing the described systems on existing servers or mobile devices.
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。Similarly, it should be noted that, in order to simplify the expressions disclosed in this specification and thus help the understanding of one or more embodiments of the invention, in the foregoing description of the embodiments of this specification, various features may sometimes be combined into one embodiment, in the drawings or descriptions thereof. However, this method of disclosure does not imply that the subject matter of the description requires more features than are recited in the claims. Indeed, there are fewer features of an embodiment than all of the features of a single embodiment disclosed above.
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。Some examples use numbers to describe quantities of ingredients and attributes, it should be understood that such numbers used to describe the examples, in some examples, use the modifiers "about", "approximately" or "substantially" to retouch. Unless stated otherwise, "about", "approximately" or "substantially" means that a variation of ±20% is allowed for the stated number. Accordingly, in some embodiments, the numerical parameters set forth in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and use a general digit reservation method. Notwithstanding that the numerical fields and parameters used in some embodiments of this specification to confirm the breadth of their ranges are approximations, in specific embodiments such numerical values are set as precisely as practicable.
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。For each patent, patent application, patent application publication, and other material, such as article, book, specification, publication, document, etc., cited in this specification, the entire contents of which are hereby incorporated by reference into this specification are hereby incorporated by reference. Application history documents that are inconsistent with or conflict with the contents of this specification are excluded, as are documents (currently or hereafter appended to this specification) limiting the broadest scope of the claims of this specification. It should be noted that, if there is any inconsistency or conflict between the descriptions, definitions and/or use of terms in the accompanying materials of this specification and the contents of this specification, the descriptions, definitions and/or use of terms in this specification shall prevail .
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in this specification are only used to illustrate the principles of the embodiments of this specification. Other variations are also possible within the scope of this specification. Accordingly, by way of example and not limitation, alternative configurations of the embodiments of this specification may be considered consistent with the teachings of this specification. Accordingly, the embodiments of this specification are not limited to those expressly introduced and described in this specification.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210584974.3A CN114897861A (en) | 2022-05-27 | 2022-05-27 | An image processing method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210584974.3A CN114897861A (en) | 2022-05-27 | 2022-05-27 | An image processing method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114897861A true CN114897861A (en) | 2022-08-12 |
Family
ID=82725289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210584974.3A Pending CN114897861A (en) | 2022-05-27 | 2022-05-27 | An image processing method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114897861A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103366389A (en) * | 2013-04-27 | 2013-10-23 | 中国人民解放军北京军区总医院 | CT (computed tomography) image reconstruction method |
CN104992457A (en) * | 2015-06-19 | 2015-10-21 | 深圳先进技术研究院 | CT image reconstruction method and system |
CN105931280A (en) * | 2016-03-29 | 2016-09-07 | 中北大学 | GPU-based fast three-dimensional CT (computed tomography) iterative reconstruction method |
WO2018153575A1 (en) * | 2017-02-24 | 2018-08-30 | Volume Graphics Gmbh | Method and device for multiple edge detection |
CN111493909A (en) * | 2020-04-30 | 2020-08-07 | 上海联影医疗科技有限公司 | Medical image scanning method, apparatus, computer device and storage medium |
-
2022
- 2022-05-27 CN CN202210584974.3A patent/CN114897861A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103366389A (en) * | 2013-04-27 | 2013-10-23 | 中国人民解放军北京军区总医院 | CT (computed tomography) image reconstruction method |
CN104992457A (en) * | 2015-06-19 | 2015-10-21 | 深圳先进技术研究院 | CT image reconstruction method and system |
CN105931280A (en) * | 2016-03-29 | 2016-09-07 | 中北大学 | GPU-based fast three-dimensional CT (computed tomography) iterative reconstruction method |
WO2018153575A1 (en) * | 2017-02-24 | 2018-08-30 | Volume Graphics Gmbh | Method and device for multiple edge detection |
CN111493909A (en) * | 2020-04-30 | 2020-08-07 | 上海联影医疗科技有限公司 | Medical image scanning method, apparatus, computer device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7646930B2 (en) | Medical image processing device and medical image processing system | |
Tong et al. | Image reconstruction for PET/CT scanners: past achievements and future challenges | |
CN111867474B (en) | Full-dose PET image estimation from low-dose PET images using deep learning | |
RU2471204C2 (en) | Local positron emission tomography | |
CN112381741B (en) | A Tomographic Image Reconstruction Method Based on SPECT Data Sampling and Noise Characteristics | |
CN107111867B (en) | Multi-modality imaging system and method | |
US9053569B2 (en) | Generating attenuation correction maps for combined modality imaging studies and improving generated attenuation correction maps using MLAA and DCC algorithms | |
US20080095414A1 (en) | Correction of functional nuclear imaging data for motion artifacts using anatomical data | |
CN108209954B (en) | Emission type computed tomography image reconstruction method and system | |
CN106999135B (en) | Radiation emission imaging system and method | |
JP7237621B2 (en) | NUCLEAR MEDICINE DIAGNOSTIC EQUIPMENT, NUCLEAR MEDICINE IMAGE RECONSTRUCTION METHOD, AND NUCLEAR MEDICINE IMAGE RECONSTRUCTION PROGRAM | |
CN112529977B (en) | PET image reconstruction method and system | |
Hu et al. | Design and implementation of automated clinical whole body parametric PET with continuous bed motion | |
CN107348969B (en) | PET data processing method and system and PET imaging equipment | |
US11164344B2 (en) | PET image reconstruction using TOF data and neural network | |
Zhou et al. | Theoretical analysis and simulation study of a high-resolution zoom-in PET system | |
JP7055606B2 (en) | Medical image processing device, medical diagnostic imaging device and medical image processing method | |
CN115423892A (en) | Attenuation-free correction PET reconstruction method based on maximum expectation network | |
US20240358339A1 (en) | Methods and systems for imaging | |
CN114897861A (en) | An image processing method and system | |
US11663758B2 (en) | Systems and methods for motion estimation in PET imaging using AI image reconstructions | |
CN103263275B (en) | PET (positron emission tomography) physiological parameter reconstruction method based on H-infinity filtering | |
Kaur et al. | Complex diffusion regularisation-based low dose CT image reconstruction | |
CN114305468B (en) | Image processing method, device, medium and equipment | |
US8437525B2 (en) | Method and system for using a modified ordered subsets scheme for attenuation weighted reconstruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |