CN114894321A - Calibration method of infrared remote sensing instrument, electronic device and computer storage medium - Google Patents

Calibration method of infrared remote sensing instrument, electronic device and computer storage medium Download PDF

Info

Publication number
CN114894321A
CN114894321A CN202210821573.5A CN202210821573A CN114894321A CN 114894321 A CN114894321 A CN 114894321A CN 202210821573 A CN202210821573 A CN 202210821573A CN 114894321 A CN114894321 A CN 114894321A
Authority
CN
China
Prior art keywords
black body
value
star
remote sensing
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210821573.5A
Other languages
Chinese (zh)
Other versions
CN114894321B (en
Inventor
陈博洋
冯绚
郭强
魏彩英
韩昌佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Satellite Meteorological Center
Original Assignee
National Satellite Meteorological Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Satellite Meteorological Center filed Critical National Satellite Meteorological Center
Priority to CN202210821573.5A priority Critical patent/CN114894321B/en
Publication of CN114894321A publication Critical patent/CN114894321A/en
Application granted granted Critical
Publication of CN114894321B publication Critical patent/CN114894321B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/90Testing, inspecting or checking operation of radiation pyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本申请提供用于观测红外光的红外遥感仪器的定标方法、电子设备及计算机存储介质。该定标方法包括:获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值;获取利用红外遥感仪器观测星上黑体得到的黑体观测值,并利用红外遥感仪器观测宇宙空间得到的冷空观测值;将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值和冷空观测值输入预设函数进行计算,确定预设函数包含的定标参数的取值,预设函数用于表示红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值之间的对应关系。本发明能够提高红外遥感仪器定标的准确度。

Figure 202210821573

The present application provides a calibration method, an electronic device and a computer storage medium for an infrared remote sensing instrument for observing infrared light. The calibration method includes: obtaining the temperature of the black body on the star, the emissivity of the black body on the star in the observation band and the correction parameters; The black body radiation value of the black body; obtain the black body observation value obtained by observing the black body on the star with the infrared remote sensing instrument, and the cold sky observation value obtained by observing the cosmic space with the infrared remote sensing instrument; The energy value and the cold air observation value are input into the preset function for calculation, and the value of the calibration parameters included in the preset function is determined. The preset function is used to represent the radiation value of the energy of infrared light received by the infrared remote sensing instrument and the output of the infrared remote sensing instrument. Correspondence between values. The invention can improve the calibration accuracy of the infrared remote sensing instrument.

Figure 202210821573

Description

红外遥感仪器的定标方法、电子设备及计算机存储介质Calibration method, electronic equipment and computer storage medium of infrared remote sensing instrument

技术领域technical field

本申请实施例涉及测量红外光的红外遥感领域,尤其涉及一种用于观测红外光的红外遥感仪器的定标方法、电子设备及计算机存储介质。The embodiments of the present application relate to the field of infrared remote sensing for measuring infrared light, and in particular, to a calibration method for an infrared remote sensing instrument for observing infrared light, an electronic device, and a computer storage medium.

背景技术Background technique

红外遥感是工作波段限于红外波段范围之内的遥感技术。红外遥感仪器是基于红外辐射原理,通过接收物体的红外光、并对红外光进行测量的先进设备,目前在航空、航天领域已经得到了较为广泛的应用。在一种应用场景中,可以将红外遥感仪器搭载在卫星上对地球进行观测,红外遥感仪器接收物体辐射的红外光,然后输出一个输出值,以此进行红外观测。在实现上述技术方案的过程中,红外遥感仪器的输出值是根据接收到的红外光的能量大小确定的。但是,不同的红外遥感仪器的输出值和红外光的能量大小的对应关系未知且不可能相同,因此,需要对红外遥感仪器进行定标,即对红外遥感仪器输出进行标定,使得红外遥感仪器的输出值明确对应接收到的红外光的能量大小。相关技术中,将黑体作为定标源对红外遥感仪器进行定标,黑体是理想化的物体,不会有任何反射与透射。但实际定标过程中,卫星上搭载的星上黑体并不是理想化物体,具有一定的反射能力,这种定标方法降低了红外遥感仪器定标结果的准确度。Infrared remote sensing is a remote sensing technology whose working band is limited to the infrared band. Based on the principle of infrared radiation, infrared remote sensing instruments are advanced equipment that receive infrared light from objects and measure infrared light. At present, they have been widely used in the fields of aviation and aerospace. In one application scenario, an infrared remote sensing instrument can be mounted on a satellite to observe the earth. The infrared remote sensing instrument receives the infrared light radiated by the object, and then outputs an output value for infrared observation. In the process of implementing the above technical solution, the output value of the infrared remote sensing instrument is determined according to the energy of the received infrared light. However, the corresponding relationship between the output value of different infrared remote sensing instruments and the energy of infrared light is unknown and cannot be the same. Therefore, it is necessary to calibrate the infrared remote sensing instrument, that is, to calibrate the output of the infrared remote sensing instrument, so that the infrared remote sensing instrument can be calibrated. The output value clearly corresponds to the amount of energy of the received infrared light. In the related art, a black body is used as a calibration source to calibrate an infrared remote sensing instrument. A black body is an idealized object without any reflection and transmission. However, in the actual calibration process, the black body on the satellite carried on the satellite is not an ideal object, but has a certain reflection ability. This calibration method reduces the accuracy of the calibration results of infrared remote sensing instruments.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请实施例提供一种红外遥感仪器的定标方法、电子设备及计算机存储介质,以解决上述部分或全部问题。In view of this, embodiments of the present application provide a calibration method for an infrared remote sensing instrument, an electronic device, and a computer storage medium, so as to solve some or all of the above problems.

根据本申请实施例的第一方面,提供了一种红外遥感仪器的定标方法,包括:获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值;获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值;将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,预设函数用于表示红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值之间的对应关系。According to a first aspect of the embodiments of the present application, a calibration method for an infrared remote sensing instrument is provided, including: obtaining the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameters; The temperature, the emissivity of the black body on the star in the observation band, and the correction parameters calculate the black body radiation value of the black body on the star; Empty observation value; input the black body radiation value, black body observation value, infrared radiation energy in cosmic space, and cold air observation value into the preset function for calculation, and determine the values of the calibration parameters included in the preset function. The preset function is used for It represents the correspondence between the radiation value of the energy of infrared light received by the infrared remote sensing instrument and the output value of the infrared remote sensing instrument.

根据本申请实施例的第二方面,提供了一种红外遥感仪器的定标装置,包括:获取模块,用于获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;辐射值模块,用于根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值;输出值模块,用于获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值;定标模块,用于将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,预设函数用于红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值之间的对应关系。According to a second aspect of the embodiments of the present application, a calibration device for an infrared remote sensing instrument is provided, including: an acquisition module for acquiring the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameter; The radiation value module is used to calculate the black body radiation value of the black body on the star according to the temperature of the black body on the star, the emissivity of the black body on the star in the observation band and the correction parameters; the output value module is used to obtain the black body on the star observed by the infrared remote sensing instrument The obtained black body observations, and the cold air observations obtained by observing the cosmic space with infrared remote sensing instruments; the calibration module is used to input The preset function is calculated to determine the value of the calibration parameter included in the preset function, and the preset function is used for the corresponding relationship between the radiation value of the energy of the infrared light received by the infrared remote sensing instrument and the output value of the infrared remote sensing instrument.

根据本申请实施例的第三方面,提供了一种电子设备,包括:处理器、存储器、通信接口和总线,处理器、存储器和通信接口通过总线完成相互间的通信;存储器用于存放至少一可执行指令,可执行指令使处理器执行如第一方面的红外遥感仪器的定标方法对应的操作。According to a third aspect of the embodiments of the present application, an electronic device is provided, including: a processor, a memory, a communication interface, and a bus, where the processor, the memory, and the communication interface communicate with each other through the bus; the memory is used to store at least one The executable instructions can cause the processor to perform operations corresponding to the calibration method for the infrared remote sensing instrument of the first aspect.

根据本申请实施例的第四方面,提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面的红外遥感仪器的定标方法。According to a fourth aspect of the embodiments of the present application, a computer storage medium is provided on which a computer program is stored, and when the program is executed by a processor, the method for calibrating an infrared remote sensing instrument according to the first aspect is implemented.

根据本申请实施例提供的红外遥感仪器的定标方法、装置、电子设备及计算机存储介质,获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值;获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值;将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,预设函数用于表示红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值之间的对应关系。因为在定标过程中,利用修正参数修正了星上黑体的黑体辐射值,能够更加准确地表示红外遥感仪器观测星上黑体所接收到的红外光的能量,以此计算得到的定标参数的取值更符合实际情况,提高了红外遥感仪器定标的准确度。According to the calibration method, device, electronic device and computer storage medium of an infrared remote sensing instrument provided in the embodiment of the present application, the temperature of the black body on the satellite, the emissivity of the black body on the satellite in the observation band, and the correction parameters are obtained; The temperature, the emissivity of the black body on the star in the observation band, and the correction parameters calculate the black body radiation value of the black body on the star; Empty observation value; input the black body radiation value, black body observation value, infrared radiation energy value in cosmic space, and cold air observation value into the preset function for calculation, and determine the value of the calibration parameters included in the preset function. The preset function uses It represents the correspondence between the radiation value of the energy of infrared light received by the infrared remote sensing instrument and the output value of the infrared remote sensing instrument. Because in the calibration process, the black body radiation value of the black body on the star is corrected by the correction parameters, which can more accurately represent the energy of the infrared light received by the infrared remote sensing instrument to observe the black body on the star, and the calculated calibration parameters The value is more in line with the actual situation and improves the calibration accuracy of the infrared remote sensing instrument.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments described in the embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings.

图1为本申请实施例提供的一种红外遥感仪器的定标方法的步骤流程图;Fig. 1 is the step flow chart of the calibration method of a kind of infrared remote sensing instrument provided for the embodiment of the application;

图2为本申请实施例提供的一种红外遥感仪器的定标装置的结构框图;2 is a structural block diagram of a calibration device for an infrared remote sensing instrument provided by an embodiment of the application;

图3为本申请实施例提供的一种电子设备的结构示意图。FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.

具体实施方式Detailed ways

为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。In order to make those skilled in the art better understand the technical solutions in the embodiments of the present application, the following will clearly and completely describe the technical solutions in the embodiments of the present application with reference to the accompanying drawings in the embodiments of the present application. The embodiments described above are only a part of the embodiments of the present application, rather than all the embodiments. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments in the embodiments of the present application should fall within the protection scope of the embodiments of the present application.

下面结合本申请实施例附图进一步说明本申请实施例具体实现。The specific implementation of the embodiments of the present application is further described below with reference to the accompanying drawings of the embodiments of the present application.

本申请实施例提供一种红外遥感仪器的定标方法。该方法可以应用于红外遥感仪器的定标装置,即执行红外遥感仪器的定标方法的装置。本申请基于红外辐射原理对红外遥感仪器进行定标,红外光(即红外线)是电磁波的一种,红外光的产生与温度有着密切关系,自然界里的物体,当其温度高于绝对零度(即-273.15℃)时,都会向外辐射红外光。其辐射的红外光的能量大小是由物体的表面温度决定的。在利用红外遥感仪器观测时,红外遥感仪器接收物体辐射的红外光,根据红外光的能量大小得到输出值,红外遥感仪器接收的红外光的能量越大,得到的输出值越大,红外遥感仪器接收的红外光的能量越小,得到的输出值越小。The embodiment of the present application provides a calibration method for an infrared remote sensing instrument. The method can be applied to a calibration device of an infrared remote sensing instrument, that is, a device that executes a calibration method of an infrared remote sensing instrument. This application calibrates infrared remote sensing instruments based on the principle of infrared radiation. Infrared light (ie infrared) is a type of electromagnetic wave, and the generation of infrared light is closely related to temperature. -273.15℃), it will radiate infrared light outward. The amount of energy of the infrared light it radiates is determined by the surface temperature of the object. When observing with an infrared remote sensing instrument, the infrared remote sensing instrument receives the infrared light radiated by the object, and obtains the output value according to the energy of the infrared light. The greater the energy of the infrared light received by the infrared remote sensing instrument, the greater the output value. The smaller the energy of the received infrared light, the smaller the output value obtained.

参照图1,示出了本申请实施例提供的一种红外遥感仪器的定标方法的步骤流程图。本申请实施例的红外遥感仪器的定标方法包括以下步骤:Referring to FIG. 1 , a flowchart of steps of a calibration method for an infrared remote sensing instrument provided by an embodiment of the present application is shown. The calibration method of the infrared remote sensing instrument of the embodiment of the present application comprises the following steps:

步骤101、获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数。Step 101: Obtain the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameter.

需要说明的是,本申请中,星上黑体指的是搭载在卫星上作为黑体的物体,是实际物体,并不是理论上的物体。通常,黑体指的是能够吸收外来的全部电磁辐射,并且不会有任何的反射与透射的理想化的物体,星上黑体是可以作为黑体的物体,但是实际上星上黑体并不是没有任何的反射,因为受实际加工制造工艺的影响,星上黑体自身会向外发射红外光,还会反射其他物体投射到星上黑体的红外光。It should be noted that, in this application, a black body on a satellite refers to an object mounted on a satellite as a black body, which is an actual object, not a theoretical object. Usually, a black body refers to an idealized object that can absorb all external electromagnetic radiation without any reflection and transmission. A black body on a star is an object that can be used as a black body, but in fact the black body on a star is not without any Due to the influence of the actual processing and manufacturing process, the black body on the star will emit infrared light outward, and it will also reflect the infrared light projected by other objects to the black body on the star.

可选地,修正参数可以指示进行黑体定标时星上黑体反射所在环境中的红外光的能量相对于黑体的红外光的能量的比值。需要说明的是,黑体的红外光的能量乘以星上黑体在观测波段上的发射率可以表示星上黑体在观测波段上向外发射的红外光能量,即第一辐射值。此处,列举一具体示例说明如何计算修正参数。Optionally, the correction parameter may indicate a ratio of the energy of the infrared light in the environment where the blackbody on the star is reflected to the energy of the infrared light of the blackbody when the blackbody calibration is performed. It should be noted that the energy of the infrared light of the black body multiplied by the emissivity of the black body on the star in the observation band can represent the energy of the infrared light emitted by the black body on the star in the observation band, that is, the first radiation value. Here, a specific example is given to illustrate how to calculate the correction parameter.

可选地,该方法还包括:获取所述星上黑体的定标误差值,定标误差值表征星上黑体所在环境发出的红外辐射经星上黑体反射后引入的误差大小。Optionally, the method further includes: acquiring a calibration error value of the black body on the star, where the calibration error value represents the magnitude of the error introduced by the infrared radiation emitted by the environment where the black body on the star is located after being reflected by the black body on the star.

根据获取的所述星上黑体的定标误差值和预设的计算公式计算修正参数,所述的计算公式为,Calculate the correction parameter according to the obtained calibration error value of the black body on the star and a preset calculation formula, and the calculation formula is:

Figure DEST_PATH_IMAGE001
(公式一)
Figure DEST_PATH_IMAGE001
(Formula 1)

其中,S表示所述修正参数,D表示定标误差值,i表示波长,W(i)表示所述红外遥感仪器的光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率。Among them, S represents the correction parameter, D represents the calibration error value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, and Plank() represents the Planck's function, e represents the emissivity of the black body on the star in the observation band.

根据星上黑体在观测波段上的反射率与定标误差值,计算修正参数,星上黑体在观测波段上的反射率与发射率之和为1。需要说明的是,在两个介质的接触面,红外光在观测波段上的反射率、发射率和透射率之和为1,因为星上黑体在观测波段上的透射率为0,因此,星上黑体在观测波段上的发射率和反射率之和为1。According to the reflectivity and calibration error value of the black body on the star in the observation band, the correction parameter is calculated, and the sum of the reflectivity and the emissivity of the black body on the star in the observation band is 1. It should be noted that at the contact surface of the two media, the sum of the reflectivity, emissivity and transmittance of infrared light in the observation band is 1, because the transmittance of the black body on the star in the observation band is 0. Therefore, the star The sum of the emissivity and reflectivity of the upper black body in the observation band is 1.

还需要说明的是,定标误差值表征Robs与Rref的差值,其中,Robs指通过红外遥感仪器对某个目标进行观测得到的辐射值,即观测的“数字”通过定标方程得到的物理辐射值,Rref是该目标的真实辐射值,一个Robs及其对应的Rref形成一个定标检验样本对。可以使用交叉定标检验方法(即使用一台高精度红外遥感仪器和一台低精度红外遥感仪器观测同一个目标)等得到多个定标校验样本对,每个定标校验样本对包括一个Robs及其对应的Rref。可以将定标检验样本对用于已有的定标精度检验方法(例如反射比法、辐照度法、辐亮度法)得到定标误差值。It should also be noted that the calibration error value represents the difference between R obs and R ref , where R obs refers to the radiation value obtained by observing a target with an infrared remote sensing instrument, that is, the observed "number" is passed through the calibration equation. The obtained physical radiation value, R ref is the real radiation value of the target, and a R obs and its corresponding R ref form a calibration test sample pair. Multiple calibration and calibration sample pairs can be obtained by using the cross-calibration test method (that is, using a high-precision infrared remote sensing instrument and a low-precision infrared remote sensing instrument to observe the same target), and each calibration and calibration sample pair includes A R obs and its corresponding R ref . The calibration test sample pair can be used for the existing calibration accuracy test methods (such as reflectance method, irradiance method, radiance method) to obtain the calibration error value.

步骤102、根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值。Step 102: Calculate the blackbody radiation value of the onboard blackbody according to the temperature of the onboard blackbody, the emissivity of the onboard blackbody in the observation band, and the correction parameter.

可选地,在一种实施例中,根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值,包括:根据星上黑体的温度以及星上黑体在观测波段上的发射率计算第一辐射值,第一辐射值指示星上黑体在观测波段上向外发射的红外光能量;根据星上黑体的温度以及修正参数计算第二辐射值,第二辐射值指示星上黑体反射的所在环境的红外辐射能量;将第一辐射值和第二辐射值求和得到黑体辐射值。结合对于星上黑体的说明,因为星上黑体并不是理想化的黑体,因此,基于星上黑体的修正参数计算的黑体辐射值,可以更准确地表示星上黑体自身向外发射红外光的能量以及星上黑体反射的所在环境的红外辐射能量。本申请中,第一辐射值表示星上黑体在观测波段上向外发射的红外光能量的,并不包含星上黑体所反射的所在环境的红外辐射能量。示例性地,第一辐射值可以指示通过计算预估得到的星上黑体在观测波段上向外发射的红外光能量,即指示通过计算预估的红外遥感仪器观测星上黑体时接收到的星上黑体自身向外发射的红外光的能量。第二辐射值表示星上黑体反射其他物体投射的红外光的能量的大小。示例性地,第二辐射值可以指示通过计算预估得到的星上黑体反射所在环境中的红外光的能量,即指示通过计算预估的红外遥感仪器观测星上黑体时接收到的星上黑体反射所在环境中的红外光的能量。需要说明的是,第二辐射值所表示的星上黑体反射的所在环境中的红外光,可以包括投射到星上黑体且被星上黑体反射的所有来源的红外光或者部分红外光。Optionally, in an embodiment, calculating the black body radiation value of the on-star black body according to the temperature of the on-star black body, the emissivity of the on-star black body in the observation band, and the correction parameter, including: according to the temperature of the on-star black body and the star The first radiation value is calculated from the emissivity of the upper black body in the observation band, and the first radiation value indicates the infrared light energy emitted by the black body on the star in the observation band; the second radiation value is calculated according to the temperature of the black body on the star and the correction parameters, The second radiation value indicates the infrared radiation energy of the environment where the black body on the star is reflected; the black body radiation value is obtained by summing the first radiation value and the second radiation value. Combined with the description of the black body on the star, because the black body on the star is not an idealized black body, the black body radiation value calculated based on the correction parameters of the black body on the star can more accurately represent the energy of the black body on the star emitting infrared light. And the infrared radiation energy of the environment where the black body on the star reflects. In this application, the first radiation value represents the infrared light energy emitted by the black body on the star in the observation band, and does not include the infrared radiation energy of the environment where the black body on the star is reflected. Exemplarily, the first radiation value may indicate the infrared light energy emitted by the black body on the star in the observation band estimated by the calculation, that is, indicating the star received when the black body on the star is observed by the infrared remote sensing instrument estimated by the calculation. The energy of infrared light emitted by the upper black body itself. The second radiation value represents the amount of energy that the black body on the star reflects from the infrared light projected by other objects. Exemplarily, the second radiation value may indicate the energy of the infrared light in the environment where the black body on the star is reflected by the calculation and estimated, that is, indicates the black body on the star received when the black body on the star is observed by the infrared remote sensing instrument estimated by the calculation. Reflects the energy of infrared light in its environment. It should be noted that the infrared light in the environment where the black body on the star is reflected by the second radiation value may include all sources of infrared light or part of the infrared light projected on the black body on the star and reflected by the black body on the star.

可选地,在另一种实施例中,根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值,包括:根据预设的能量计算公式(公式二)计算黑体辐射值,能量计算公式如下,Optionally, in another embodiment, calculating the blackbody radiation value of the onboard blackbody according to the temperature of the onboard blackbody, the emissivity of the onboard blackbody in the observation band, and the correction parameter includes: according to a preset energy calculation formula. (Formula 2) To calculate the black body radiation value, the energy calculation formula is as follows,

Figure 815379DEST_PATH_IMAGE002
(公式二)
Figure 815379DEST_PATH_IMAGE002
(Formula 2)

其中,RH表示黑体辐射值,i表示波长,W(i)表示所述红外遥感仪器光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率,S表示所述修正参数。Among them, RH represents the black body radiation value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, Plank() represents the Planck function, and e represents the The emissivity of the black body on the above-mentioned star in the observation band, S represents the correction parameter.

结合步骤102中的说明,因为星上黑体并不是理想化的黑体,因此,会反射投射到星上黑体的红外光,因此,通过修正参数计算得到的黑体辐射值更加准确。Combined with the description in step 102, because the black body on the star is not an idealized black body, it will reflect the infrared light projected to the black body on the star, so the black body radiation value calculated by the correction parameters is more accurate.

需要说明的是,黑体辐射值可以表示星上黑体向外辐射红外光的能量,包括星上黑体自身发射的红外光的能量以及星上黑体反射所在环境的红外光的能量,黑体辐射值可以是通过计算预估的红外遥感仪器观测星上黑体时所接收到的星上黑体向外辐射的红外光的能量大小。It should be noted that the black body radiation value can represent the energy of infrared light radiated by the black body on the star, including the energy of the infrared light emitted by the black body on the star itself and the energy of the infrared light reflected by the black body on the star. The black body radiation value can be By calculating the estimated energy of the infrared light radiated from the black body on the star received by the infrared remote sensing instrument when observing the black body on the star.

步骤103、获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值。Step 103: Obtain the black body observation value obtained by observing the black body on the star with an infrared remote sensing instrument, and the cold sky observation value obtained by observing the cosmic space with the infrared remote sensing instrument.

需要说明的是,黑体观测值和黑体辐射值对应,是利用红外遥感仪器观测星上黑体得到或者说产生的输出值,即接收星上黑体辐射的红外光(包括星上黑体自身发射的红外光和反射的红外遥感仪器所在环境的红外光)得到的输出值。冷空观测值和冷空辐射值对应,参考对象可以是冷空,即宇宙空间,因为宇宙空间自身并不能辐射红外光,因此,冷空辐射值为0,这样大大减小了运算复杂度和运算量。It should be noted that the black body observation value corresponds to the black body radiation value, which is the output value obtained or produced by observing the black body on the star with infrared remote sensing instruments, that is, the infrared light radiated by the black body on the star (including the infrared light emitted by the black body on the star itself). and the reflected infrared light from the environment where the infrared remote sensing instrument is located). The cold air observation value corresponds to the cold air radiation value, and the reference object can be the cold air, that is, the cosmic space, because the cosmic space itself cannot radiate infrared light, therefore, the cold air radiation value is 0, which greatly reduces the computational complexity and Computation.

还需要说明的是,如果红外遥感仪器的定标装置包括红外遥感仪器,则利用红外遥感仪器观测星上黑体得到黑体观测值,利用红外遥感仪器观测宇宙空间得到冷空观测值;如果红外遥感仪器的定标装置不包括红外遥感仪器,是独立于红外遥感仪器的装置,则获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值,包括:接收红外遥感仪器发送的黑体观测值和冷空观测值,黑体观测值可以通过利用红外遥感仪器观测星上黑体直接得到,冷空观测值可以利用红外遥感仪器观测宇宙空间得到。It should also be noted that, if the calibration device of the infrared remote sensing instrument includes an infrared remote sensing instrument, the black body observation value is obtained by observing the black body on the star with the infrared remote sensing instrument, and the cold sky observation value is obtained by observing the cosmic space with the infrared remote sensing instrument; The calibration device does not include infrared remote sensing instruments, and is a device independent of infrared remote sensing instruments. It obtains black body observations obtained by using infrared remote sensing instruments to observe black bodies on stars, and cold air observations obtained by using infrared remote sensing instruments to observe cosmic space. Including: receiving black body observations and cold sky observations sent by infrared remote sensing instruments, black body observations can be obtained directly by using infrared remote sensing instruments to observe black bodies on stars, and cold sky observations can be obtained by using infrared remote sensing instruments to observe the universe.

步骤104、将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值。Step 104 , input the black body radiation value, black body observation value, infrared radiation energy value in cosmic space, and cold space observation value into a preset function for calculation, and determine the value of the calibration parameter included in the preset function.

其中,预设函数用于表示红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值DN之间的对应关系。定标参数的数量可以是至少一个,通过步骤104的计算,可以确定每一个定标参数的取值。The preset function is used to represent the corresponding relationship between the radiation value of the energy of the infrared light received by the infrared remote sensing instrument and the output value DN of the infrared remote sensing instrument. The number of scaling parameters may be at least one, and through the calculation in step 104, the value of each scaling parameter may be determined.

需要说明的是,预设函数可以表示为R=f(DN),其中,R表示辐射值,DN表示红外遥感仪器的输出值。可选地,在一种实施例中,预设函数可以是线性函数,预设函数可以表示为R=k´DN+b,其中,k为斜率参数,b为偏移量参数,k和b均属于定标参数。此处,列举两个具体示例分别说明计算斜率参数和偏移量参数的方式。It should be noted that the preset function can be expressed as R=f(DN), where R represents the radiation value, and DN represents the output value of the infrared remote sensing instrument. Optionally, in an embodiment, the preset function may be a linear function, and the preset function may be expressed as R=k´DN+b, where k is a slope parameter, b is an offset parameter, k and b are all calibration parameters. Here, two specific examples are given to illustrate the way of calculating the slope parameter and the offset parameter, respectively.

可选地,在第一个示例中,说明如何计算斜率参数k,将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,包括:Optionally, in the first example, how to calculate the slope parameter k, input the preset function to calculate the black body radiation value, the black body observation value, the infrared radiation energy value of the cosmic space, and the cold space observation value, and determine the preset value. The values of the scaling parameters included in the function, including:

根据预设函数计算黑体辐射值与冷空辐射值的差值作为第一差值,计算黑体观测值与冷空观测值作为第二差值,计算第一差值与第二差值之比,作为斜率参数的取值;其中,冷空辐射值为0,定标参数包含斜率参数。According to the preset function, the difference between the black body radiation value and the cold air radiation value is calculated as the first difference value, the black body observation value and the cold air observation value are calculated as the second difference value, and the ratio between the first difference value and the second difference value is calculated, As the value of the slope parameter; among them, the cold air radiation value is 0, and the calibration parameter includes the slope parameter.

具体地,可以通过公式三进行计算:Specifically, it can be calculated by formula 3:

Figure 14279DEST_PATH_IMAGE003
(公式三)
Figure 14279DEST_PATH_IMAGE003
(Formula 3)

其中,RH表示黑体辐射值,RL表示冷空辐射值,DH表示黑体观测值,DL表示冷空观测值,RL为0。Among them, RH represents the black body radiation value, RL represents the cold air radiation value, DH represents the black body observation value, DL represents the cold air observation value, and RL is 0.

可选地,在第二个示例中,说明如何计算偏移量参数b,将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,包括:Optionally, in the second example, it is explained how to calculate the offset parameter b, input the preset function to calculate, determine The values of the scaling parameters included in the preset function, including:

计算斜率参数与冷空观测值的乘积的相反数,作为偏移量参数的取值,定标参数包含偏移量参数。Calculate the inverse of the product of the slope parameter and the cold air observation value as the value of the offset parameter. The scaling parameter includes the offset parameter.

可以通过公式四进行计算:It can be calculated by formula four:

Figure 683158DEST_PATH_IMAGE004
(公式四)
Figure 683158DEST_PATH_IMAGE004
(Formula 4)

其中,b表示偏移量参数,k表示斜率参数,DL表示冷空观测值。where b is the offset parameter, k is the slope parameter, and DL is the cold air observation.

本申请实施例提供的红外遥感仪器的定标方法还可以使用下述定标公式计算与红外遥感一起观测一个观测目标的输出值对应的入瞳辐射量(入瞳辐射量即为红外遥感仪器接收到的红外光的能量的辐射值)。定标公式如下:The calibration method of the infrared remote sensing instrument provided by the embodiment of the present application can also use the following calibration formula to calculate the entrance pupil radiation amount corresponding to the output value of an observation target observed together with infrared remote sensing (the entrance pupil radiation amount is the amount received by the infrared remote sensing instrument the radiance value of the energy of the infrared light received). The calibration formula is as follows:

Robs=k*DN+b(公式五)R obs =k*DN+b (Formula 5)

在定标公式五中,DN表示所述红外遥感仪器观测一个观测目标时的输出值,k表示斜率参数,b表示偏移量参数,Robs表示与上述输出值对应的入瞳辐射量。In the calibration formula 5, DN represents the output value of the infrared remote sensing instrument when observing an observation target, k represents the slope parameter, b represents the offset parameter, and R obs represents the entrance pupil radiation corresponding to the above output value.

本申请实施例提供的红外遥感仪器的定标方法,因为在定标过程中,不仅考虑了星上黑体自身向外发射的红外光的第一辐射值,还考虑了星上黑体反射环境中的红外光的第二辐射值,第一辐射值和第二辐射值之和就可以更加准确地表示红外遥感仪器观测星上黑体所接收到的红外光的能量,以此计算得到的定标参数的取值更符合实际情况,提高了红外遥感仪器定标的准确度。In the calibration method of the infrared remote sensing instrument provided by the embodiment of the present application, in the calibration process, not only the first radiation value of the infrared light emitted by the black body on the star itself, but also the reflection environment of the black body on the star is considered. The second radiation value of the infrared light, the sum of the first radiation value and the second radiation value can more accurately represent the energy of the infrared light received by the infrared remote sensing instrument to observe the black body on the star, and the calculated calibration parameters The value is more in line with the actual situation and improves the calibration accuracy of the infrared remote sensing instrument.

基于上述图1对应的实施例所描述的红外遥感仪器的定标方法,本申请实施例提供一种红外遥感仪器的定标装置,用于执行本申请实施例提供的红外遥感仪器的定标方法。参照图2,示出了本申请实施例提供的一种红外遥感仪器的定标装置的结构框图。该红外遥感仪器的定标装置20,包括:Based on the method for calibrating an infrared remote sensing instrument described in the embodiment corresponding to FIG. 1 , an embodiment of the present application provides a calibration device for an infrared remote sensing instrument, which is used to execute the method for calibrating an infrared remote sensing instrument provided by the embodiment of the present application. . Referring to FIG. 2 , a structural block diagram of a calibration device for an infrared remote sensing instrument provided by an embodiment of the present application is shown. The calibration device 20 of the infrared remote sensing instrument includes:

获取模块201,用于获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;an acquisition module 201, configured to acquire the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameter;

辐射值模块202,用于根据星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数计算星上黑体的黑体辐射值;The radiation value module 202 is used to calculate the black body radiation value of the black body on the star according to the temperature of the black body on the star, the emissivity of the black body on the star in the observation band and the correction parameter;

输出值模块203,用于获取利用红外遥感仪器观测星上黑体得到的黑体观测值,以及利用红外遥感仪器观测宇宙空间得到的冷空观测值;The output value module 203 is used to obtain the black body observation value obtained by observing the black body on the star with the infrared remote sensing instrument, and the cold sky observation value obtained by observing the cosmic space with the infrared remote sensing instrument;

定标模块204,用于将黑体辐射值、黑体观测值、宇宙空间的红外辐射能量值以及冷空观测值,输入预设函数进行计算,确定预设函数包含的定标参数的取值,预设函数用于表示红外遥感仪器接收红外光的能量的辐射值和红外遥感仪器的输出值之间的对应关系。The calibration module 204 is configured to input the blackbody radiation value, the blackbody observation value, the infrared radiation energy value of the cosmic space, and the cold space observation value into a preset function for calculation, and determine the value of the calibration parameter included in the preset function. The function is used to represent the correspondence between the radiation value of the infrared light energy received by the infrared remote sensing instrument and the output value of the infrared remote sensing instrument.

可选地,在一种示例中,辐射值模块202,用于根据星上黑体的温度以及星上黑体在观测波段上的发射率计算第一辐射值,第一辐射值指示星上黑体向外发射红外光的能量;根据星上黑体的温度以及修正参数计算第二辐射值,第二辐射值指示星上黑体反射所在环境中的红外光的能量;将第一辐射值和第二辐射值求和得到黑体辐射值。Optionally, in an example, the radiation value module 202 is configured to calculate a first radiation value according to the temperature of the black body on the star and the emissivity of the black body on the star in the observation band, and the first radiation value indicates that the black body on the star is outward. The energy of emitting infrared light; calculate the second radiation value according to the temperature of the black body on the star and the correction parameter, the second radiation value indicates the energy of the infrared light in the environment where the black body on the star reflects; calculate the first radiation value and the second radiation value and get the black body radiation value.

可选地,在一种示例中,辐射值模块202,用于根据预设的能量计算公式计算黑体辐射值,能量计算公式如下,Optionally, in an example, the radiation value module 202 is configured to calculate the black body radiation value according to a preset energy calculation formula, and the energy calculation formula is as follows:

Figure 676521DEST_PATH_IMAGE005
Figure 676521DEST_PATH_IMAGE005
;

其中,RH表示黑体辐射值,i表示波长,W(i)表示所述红外遥感仪器的光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率,S表示所述修正参数。Among them, RH represents the black body radiation value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, Plank() represents the Planck function, and e represents the The emissivity of the black body on the star in the observation band, S represents the correction parameter.

可选地,在一种示例中,红外遥感仪器的定标装置20还包括修正模块205,用于获取星上黑体的定标误差值;根据星上黑体的反射率与定标误差值,计算修正参数,星上黑体在观测波段上的反射率与发射率之和为1。Optionally, in an example, the calibration device 20 of the infrared remote sensing instrument further includes a correction module 205 for acquiring the calibration error value of the black body on the star; Correction parameters, the sum of the reflectivity and emissivity of the black body on the star in the observation band is 1.

可选地,在一种示例中,修正模块205,用于根据预设的参数计算公式计算修正参数,参数计算公式如下,Optionally, in an example, the correction module 205 is configured to calculate the correction parameter according to a preset parameter calculation formula, and the parameter calculation formula is as follows:

Figure 962009DEST_PATH_IMAGE006
Figure 962009DEST_PATH_IMAGE006
;

其中,S表示所述修正参数,D表示定标误差值,i表示波长,W(i)表示所述红外遥感仪器的光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率。Among them, S represents the correction parameter, D represents the calibration error value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, and Plank() represents the Planck's function, e represents the emissivity of the black body on the star in the observation band.

可选地,在一种示例中,修正模块205,用于获取星上黑体所在环境发出的红外光所引起的定标误差值。Optionally, in an example, the correction module 205 is configured to acquire the calibration error value caused by the infrared light emitted by the environment where the black body on the star is located.

可选地,在一种示例中,定标模块204,用于根据预设函数计算黑体辐射值与冷空辐射值的差值作为第一差值,计算黑体观测值与冷空观测值作为第二差值,计算第一差值与第二差值之比,作为斜率参数的取值;其中,冷空辐射值为0,定标参数包含斜率参数。Optionally, in an example, the calibration module 204 is configured to calculate the difference between the black body radiation value and the cold air radiation value as the first difference according to the preset function, and calculate the black body observation value and the cold air observation value as the first difference. Two difference values, calculate the ratio of the first difference value and the second difference value, as the value of the slope parameter; wherein, the cold air radiation value is 0, and the calibration parameter includes the slope parameter.

可选地,在一种示例中,定标模块204,用于计算斜率参数与冷空观测值的乘积的相反数,作为偏移量参数的取值,定标参数包含偏移量参数。Optionally, in an example, the calibration module 204 is configured to calculate the inverse of the product of the slope parameter and the cold air observation value as a value of the offset parameter, and the calibration parameter includes the offset parameter.

本申请实施例提供的红外遥感仪器的定标装置,因为在定标过程中,利用修正参数修正了星上黑体的黑体辐射值,能够更加准确地表示红外遥感仪器观测星上黑体所接收到的红外光的能量,以此计算得到的定标参数的取值更符合实际情况,提高了红外遥感仪器定标的准确度。The calibration device of the infrared remote sensing instrument provided by the embodiment of the present application, because in the calibration process, the black body radiation value of the black body on the star is corrected by the correction parameter, which can more accurately represent the infrared remote sensing instrument that observes the black body on the star. The energy of infrared light, the value of the calibration parameter calculated by this is more in line with the actual situation, and the accuracy of the calibration of the infrared remote sensing instrument is improved.

基于上述图1和图2对应的实施例,本申请实施例提供一种电子设备,用于执行上述图1对应的实施例所描述的红外遥感仪器的定标方法,参照图3所示,图3为本申请实施例提供地一种电子设备的结构示意图,本申请具体实施例并不对电子设备的具体实现做限定,示例性地,电子设备可以是包含红外遥感仪器的设备,也可以是独立于红外遥感仪器的设备。Based on the embodiments corresponding to FIG. 1 and FIG. 2, the embodiment of the present application provides an electronic device for executing the calibration method of the infrared remote sensing instrument described in the embodiment corresponding to FIG. 1. Referring to FIG. 3, FIG. 3. A schematic structural diagram of an electronic device provided in the embodiments of the present application. The specific embodiments of the present application do not limit the specific implementation of the electronic device. Exemplarily, the electronic device may be a device including an infrared remote sensing instrument, or an independent device. equipment for infrared remote sensing instruments.

如图3所示,该电子设备可以包括:处理器(processor)302、通信接口(Communications Interface)304、存储器(memory)306、以及总线308。其中:处理器302、通信接口304、以及存储器306通过总线308完成相互间的通信。通信接口304,用于与其它电子设备如终端设备或服务器进行通信。处理器302,用于执行程序310,具体可以执行上述红外遥感仪器的定标方法实施例中的相关步骤。具体地,程序310可以包括程序代码,该程序代码包括计算机操作指令。As shown in FIG. 3 , the electronic device may include: a processor (processor) 302 , a communications interface (Communications Interface) 304 , a memory (memory) 306 , and a bus 308 . The processor 302 , the communication interface 304 , and the memory 306 communicate with each other through the bus 308 . The communication interface 304 is used to communicate with other electronic devices such as terminal devices or servers. The processor 302 is configured to execute the program 310, and specifically may execute the relevant steps in the above-mentioned embodiments of the calibration method for an infrared remote sensing instrument. Specifically, the program 310 may include program code including computer operation instructions.

处理器302可以是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本申请实施例的一个或多个集成电路。电子设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 302 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application. The one or more processors included in the electronic device may be the same type of processors, such as one or more CPUs; or may be different types of processors, such as one or more CPUs and one or more ASICs.

存储器306,用于存放程序310。存储器306可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),包括至少一个磁盘存储器。The memory 306 is used to store the program 310 . The memory 306 may include high-speed RAM memory, and may also include non-volatile memory, including at least one disk memory.

程序310具体可以用于使得处理器302执行前述实施例一中任一红外遥感仪器的定标方法。The program 310 may specifically be used to cause the processor 302 to execute any calibration method for an infrared remote sensing instrument in the foregoing first embodiment.

程序310中各步骤的具体实现可以参见上述红外遥感仪器的定标方法实施例中的相应步骤和单元中对应的描述,在此不赘述。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备和模块的具体工作过程,可以参考前述方法实施例中的对应过程描述,在此不再赘述。For the specific implementation of the steps in the program 310, reference may be made to the corresponding descriptions in the corresponding steps and units in the above-mentioned embodiments of the calibration method for an infrared remote sensing instrument, which will not be repeated here. Those skilled in the art can clearly understand that, for the convenience and brevity of description, for the specific working process of the above-described devices and modules, reference may be made to the corresponding process descriptions in the foregoing method embodiments, which will not be repeated here.

本申请实施例提供的电子设备,因为在定标过程中,利用修正参数修正了星上黑体的黑体辐射值,能够更加准确地表示红外遥感仪器观测星上黑体所接收到的红外光的能量,以此计算得到的定标参数的取值更符合实际情况,提高了红外遥感仪器定标的准确度。The electronic device provided by the embodiment of the present application can more accurately represent the energy of the infrared light received by the infrared remote sensing instrument to observe the black body on the star because the correction parameter is used to correct the black body radiation value of the black body on the star during the calibration process. The value of the calibration parameters calculated by this is more in line with the actual situation, and the accuracy of the calibration of the infrared remote sensing instrument is improved.

需要指出,根据实施的需要,可将本申请实施例中描述的各个部件/步骤拆分为更多部件/步骤,也可将两个或多个部件/步骤或者部件/步骤的部分操作组合成新的部件/步骤,以实现本申请实施例的目的。It should be pointed out that, according to the needs of implementation, each component/step described in the embodiments of the present application may be split into more components/steps, or two or more components/steps or part of operations of components/steps may be combined into New components/steps to achieve the purpose of the embodiments of the present application.

上述根据本申请实施例的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当所述软件或计算机代码被计算机、处理器或硬件访问且执行时,实现在此描述的红外遥感仪器的定标方法。此外,当通用计算机访问用于实现在此示出的红外遥感仪器的定标方法的代码时,代码的执行将通用计算机转换为用于执行在此示出的红外遥感仪器的定标方法的专用计算机。The above-described methods according to the embodiments of the present application may be implemented in hardware, firmware, or as software or computer codes that may be stored in a recording medium (such as CD ROM, RAM, floppy disk, hard disk, or magneto-optical disk), or implemented by Network downloaded computer code originally stored in a remote recording medium or non-transitory machine-readable medium and will be stored in a local recording medium so that the methods described herein can be stored on a computer using a general purpose computer, special purpose processor or programmable or such software processing on a recording medium of dedicated hardware such as ASIC or FPGA. It will be understood that a computer, processor, microprocessor controller or programmable hardware includes storage components (eg, RAM, ROM, flash memory, etc.) that can store or receive software or computer code, when the software or computer code is executed by a computer, When accessed and executed by a processor or hardware, the method of calibration of an infrared remote sensing instrument described herein is implemented. Furthermore, when a general-purpose computer accesses code for implementing the calibration method for an infrared remote sensing instrument shown herein, execution of the code converts the general-purpose computer into a special-purpose computer for implementing the calibration method for an infrared remote sensing instrument shown herein. computer.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。Those of ordinary skill in the art can realize that the units and method steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.

以上实施方式仅用于说明本申请实施例,而并非对本申请实施例的限制,有关技术领域的普通技术人员,在不脱离本申请实施例的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本申请实施例的范畴,本申请实施例的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the embodiments of the present application, but are not intended to limit the embodiments of the present application. Those of ordinary skill in the relevant technical field can also make various Therefore, all equivalent technical solutions also belong to the scope of the embodiments of the present application, and the patent protection scope of the embodiments of the present application should be defined by the claims.

Claims (9)

1.一种红外遥感仪器的定标方法,其特征在于,包括:1. a calibration method of infrared remote sensing instrument, is characterized in that, comprises: 获取星上黑体的温度、星上黑体在观测波段上的发射率以及修正参数;Obtain the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameters; 根据所述星上黑体的温度、所述星上黑体在观测波段上的发射率以及所述修正参数计算所述星上黑体的黑体辐射值;Calculate the black body radiation value of the black body on the star according to the temperature of the black body on the star, the emissivity of the black body on the star in the observation band and the correction parameter; 获取利用所述红外遥感仪器观测所述星上黑体得到的黑体观测值,以及利用所述红外遥感仪器观测宇宙空间得到的冷空观测值;Obtain black body observations obtained by using the infrared remote sensing instrument to observe the black body on the star, and cold sky observations obtained by using the infrared remote sensing instrument to observe the cosmic space; 将所述黑体辐射值、所述黑体观测值、所述宇宙空间的红外辐射能量值以及所述冷空观测值,输入预设函数进行计算,确定所述预设函数包含的定标参数的取值,所述预设函数用于表示所述红外遥感仪器接收红外辐射的能量值和所述红外遥感仪器的输出值之间的对应关系。Input the black body radiation value, the black body observation value, the infrared radiation energy value of the cosmic space, and the cold space observation value into a preset function for calculation, and determine the value of the calibration parameter included in the preset function. The preset function is used to represent the corresponding relationship between the energy value of the infrared radiation received by the infrared remote sensing instrument and the output value of the infrared remote sensing instrument. 2.根据权利要求1所述的方法,其特征在于,所述根据所述星上黑体的温度、所述星上黑体在观测波段上的发射率以及所述修正参数计算所述星上黑体的黑体辐射值,包括:2 . The method according to claim 1 , wherein calculating the temperature of the black body on the star, the emissivity of the black body on the star in the observation band and the correction parameter, the temperature of the black body on the star is calculated. 3 . Blackbody radiation values, including: 根据所述星上黑体的温度以及所述星上黑体在观测波段上的发射率计算第一辐射值,所述第一辐射值指示所述星上黑体在观测波段上向外发射的红外光能量;A first radiation value is calculated according to the temperature of the black body on the star and the emissivity of the black body on the star in the observation band, and the first radiation value indicates the infrared light energy emitted by the black body on the star in the observation band ; 根据所述星上黑体的温度以及所述修正参数计算第二辐射值,所述第二辐射值指示所述星上黑体反射的所在环境的红外辐射能量;将所述第一辐射值和所述第二辐射值求和得到所述黑体辐射值。A second radiation value is calculated according to the temperature of the black body on the star and the correction parameter, the second radiation value indicates the infrared radiation energy of the environment where the black body on the star is reflected; the first radiation value and the The second radiation values are summed to obtain the black body radiation value. 3.根据权利要求1所述的方法,其特征在于,根据所述星上黑体的温度、所述星上黑体在观测波段上的发射率以及所述修正参数计算所述星上黑体的黑体辐射值,包括:3 . The method according to claim 1 , wherein the black body radiation of the black body on the star is calculated according to the temperature of the black body on the star, the emissivity of the black body on the star in the observation band, and the correction parameter. 4 . values, including: 根据预设的能量计算公式计算所述黑体辐射值,所述能量计算公式如下,The blackbody radiation value is calculated according to a preset energy calculation formula, and the energy calculation formula is as follows:
Figure 854240DEST_PATH_IMAGE001
Figure 854240DEST_PATH_IMAGE001
;
其中,RH表示黑体辐射值,i表示波长,W(i)表示所述红外遥感仪器的光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率,S表示所述修正参数。Among them, RH represents the black body radiation value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, Plank() represents the Planck function, and e represents the The emissivity of the black body on the star in the observation band, S represents the correction parameter.
4.根据权利要求1所述的方法,其特征在于,所述方法还包括:4. The method according to claim 1, wherein the method further comprises: 获取所述星上黑体的定标误差值,所述定标误差值表征所述星上黑体所在环境发出的红外辐射经所述星上黑体反射后引入的误差大小;Obtaining the calibration error value of the black body on the star, the calibration error value representing the size of the error introduced by the infrared radiation emitted by the environment where the black body on the star is located after being reflected by the black body on the star; 根据获取的所述星上黑体的定标误差值和预设的计算公式计算所述修正参数,所述的计算公式如下,Calculate the correction parameter according to the obtained calibration error value of the black body on the star and a preset calculation formula, and the calculation formula is as follows:
Figure 676702DEST_PATH_IMAGE002
Figure 676702DEST_PATH_IMAGE002
;
其中,S表示所述修正参数,D表示定标误差值,i表示波长,W(i)表示所述红外遥感仪器的光谱响应函数,TH表示所述星上黑体的温度,Plank()表示普朗克函数,e表示所述星上黑体在观测波段上的发射率。Among them, S represents the correction parameter, D represents the calibration error value, i represents the wavelength, W(i) represents the spectral response function of the infrared remote sensing instrument, TH represents the temperature of the black body on the star, and Plank() represents the Planck's function, e represents the emissivity of the black body on the star in the observation band.
5.根据权利要求1所述的方法,其特征在于,所述将所述黑体辐射值、所述黑体观测值、所述宇宙空间的红外辐射能量值以及所述冷空观测值,输入预设函数进行计算,确定所述预设函数包含的定标参数的取值,包括:5 . The method according to claim 1 , wherein the black body radiation value, the black body observation value, the infrared radiation energy value of the cosmic space, and the cold space observation value are input into a preset value. 6 . The function is calculated to determine the value of the calibration parameter included in the preset function, including: 根据所述预设函数计算所述黑体辐射值与冷空辐射值的差值作为第一差值,计算所述黑体观测值与所述冷空观测值作为第二差值,计算所述第一差值与所述第二差值之比,作为斜率参数的取值;According to the preset function, the difference between the black body radiation value and the cold air radiation value is calculated as a first difference value, the black body observation value and the cold air observation value are calculated as a second difference value, and the first difference value is calculated. the ratio of the difference to the second difference, as the value of the slope parameter; 其中,所述冷空辐射值为0,所述定标参数包含所述斜率参数。Wherein, the cold air radiation value is 0, and the calibration parameter includes the slope parameter. 6.根据权利要求5所述的方法,其特征在于,所述将所述黑体辐射值、所述黑体观测值、所述宇宙空间的红外辐射能量值以及所述冷空观测值,输入预设函数进行计算,确定所述预设函数包含的定标参数的取值,包括:6 . The method according to claim 5 , wherein the black body radiation value, the black body observation value, the infrared radiation energy value of the cosmic space and the cold space observation value are input into a preset value. 7 . The function is calculated to determine the value of the calibration parameter included in the preset function, including: 计算所述斜率参数与所述冷空观测值的乘积的相反数,作为偏移量参数的取值,所述定标参数包含所述偏移量参数。The inverse number of the product of the slope parameter and the cold air observation value is calculated as the value of the offset parameter, and the scaling parameter includes the offset parameter. 7.根据权利要求6所述的方法,其特征在于,所述方法还包括:7. The method according to claim 6, wherein the method further comprises: 根据所述红外遥感仪器观测一个观测目标产生的输出值,并使用预定的定标公式计算与所述观测目标的输出值对应的入瞳辐射量,所述定标公式如下,Observing the output value generated by an observation target according to the infrared remote sensing instrument, and using a predetermined calibration formula to calculate the entrance pupil radiation amount corresponding to the output value of the observation target, the calibration formula is as follows, Robs=k*DN+b;R obs =k*DN+b; 其中,DN表示所述红外遥感仪器观测一个观测目标时的输出值,k表示所述斜率参数,b表示所述偏移量参数,Robs表示与所述红外遥感仪器观测一个观测目标时的输出值对应的入瞳辐射量。Wherein, DN represents the output value when the infrared remote sensing instrument observes an observation target, k represents the slope parameter, b represents the offset parameter, and R obs represents the output value when the infrared remote sensing instrument observes an observation target The value corresponds to the amount of radiation at the entrance pupil. 8.一种电子设备,包括:处理器、存储器、通信接口和总线,所述处理器、所述存储器和所述通信接口通过所述总线相互通信;8. An electronic device comprising: a processor, a memory, a communication interface and a bus, the processor, the memory and the communication interface communicate with each other through the bus; 所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-7中任一项所述的红外遥感仪器的定标方法对应的操作。The memory is used for storing at least one executable instruction, and the executable instruction causes the processor to perform an operation corresponding to the calibration method for an infrared remote sensing instrument according to any one of claims 1-7. 9.一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-7中任一所述的红外遥感仪器的定标方法。9. A computer storage medium on which a computer program is stored, and when the program is executed by a processor, the calibration method for an infrared remote sensing instrument according to any one of claims 1-7 is implemented.
CN202210821573.5A 2022-07-13 2022-07-13 Calibration method of infrared remote sensing instrument, electronic device and computer storage medium Active CN114894321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210821573.5A CN114894321B (en) 2022-07-13 2022-07-13 Calibration method of infrared remote sensing instrument, electronic device and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210821573.5A CN114894321B (en) 2022-07-13 2022-07-13 Calibration method of infrared remote sensing instrument, electronic device and computer storage medium

Publications (2)

Publication Number Publication Date
CN114894321A true CN114894321A (en) 2022-08-12
CN114894321B CN114894321B (en) 2022-10-21

Family

ID=82729473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210821573.5A Active CN114894321B (en) 2022-07-13 2022-07-13 Calibration method of infrared remote sensing instrument, electronic device and computer storage medium

Country Status (1)

Country Link
CN (1) CN114894321B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602389A (en) * 1995-07-13 1997-02-11 Kabushiki Kaisha Toshiba Infrared sensor calibration apparatus using a blackbody
CA2411995A1 (en) * 1996-12-03 1998-06-25 Raytheon Company Radiometer system and method of calibrating radiometer receiver
US20160349113A1 (en) * 2015-05-28 2016-12-01 Raytheon Company Characterization of absolute spectral radiance of an unknown ir source
CN107389198A (en) * 2017-05-23 2017-11-24 三亚中科遥感研究所 It is a kind of that window Surface Temperature Retrieval method is split based on radiance
CN109521405A (en) * 2018-12-05 2019-03-26 国家卫星气象中心 A kind of unified calibrating method suitable for spaceborne large aperture antenna microwave radiometer
CN109813438A (en) * 2019-01-30 2019-05-28 上海卫星工程研究所 The in-orbit radiation nonlinear calibration method of Fourier Transform Infrared Spectrometer
CN110132416A (en) * 2019-05-31 2019-08-16 国家卫星气象中心(国家空间天气监测预警中心) Method and device for on-orbit spectral calibration of broadband remote sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602389A (en) * 1995-07-13 1997-02-11 Kabushiki Kaisha Toshiba Infrared sensor calibration apparatus using a blackbody
CA2411995A1 (en) * 1996-12-03 1998-06-25 Raytheon Company Radiometer system and method of calibrating radiometer receiver
US20160349113A1 (en) * 2015-05-28 2016-12-01 Raytheon Company Characterization of absolute spectral radiance of an unknown ir source
CN107389198A (en) * 2017-05-23 2017-11-24 三亚中科遥感研究所 It is a kind of that window Surface Temperature Retrieval method is split based on radiance
CN109521405A (en) * 2018-12-05 2019-03-26 国家卫星气象中心 A kind of unified calibrating method suitable for spaceborne large aperture antenna microwave radiometer
CN109813438A (en) * 2019-01-30 2019-05-28 上海卫星工程研究所 The in-orbit radiation nonlinear calibration method of Fourier Transform Infrared Spectrometer
CN110132416A (en) * 2019-05-31 2019-08-16 国家卫星气象中心(国家空间天气监测预警中心) Method and device for on-orbit spectral calibration of broadband remote sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯绚: "红外傅里叶光谱仪在轨光谱定标算法研究", 《光学学报》 *

Also Published As

Publication number Publication date
CN114894321B (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP3669502B2 (en) Calibration method of total power microwave radiometer for artificial satellite
US11359967B2 (en) Method for measuring actual temperature of flame by using all information of radiation spectrum and measurement system thereof
CN107807366B (en) Atmospheric visibility calculation method, device, radar and system
CN106017680B (en) A kind of halogen tungsten lamp light source and imaging spectrometer onboard process method
CN107219497A (en) Cross-radiometric calibration method and system for grand sight angular measurement sensor
CN105092055A (en) Cold cloud target-based weather satellite solar reflection band radiometric calibration method
CN114216559B (en) A partial aperture factor measurement method and device for on-board calibration mechanism
CN111595462A (en) Infrared imaging temperature measurement system calibration method and device, computing equipment and storage medium
CN112683338A (en) Multi-parameter synchronous measurement method, device and system
Duivenvoorden et al. Full-sky beam convolution for cosmic microwave background applications
US20090107214A1 (en) Terahertz sensor to measure humidity and water vapor
CN104914424B (en) The method of the in-orbit EO-1 hyperion sensor radiation of Simultaneous Inversion and spectral calibration parameter
CN114894321B (en) Calibration method of infrared remote sensing instrument, electronic device and computer storage medium
CN110132416A (en) Method and device for on-orbit spectral calibration of broadband remote sensor
CN105737980A (en) Radiometric calibration method and device
CN115219816B (en) A waveguide port S parameter calibration method and device based on circumscribed circle center
CN117436286A (en) Aerosol and water vapor inversion and aerial remote sensing image correction method, device and equipment
CN105509895A (en) Radiation calibration method of spectral temperature measurer with telescopic optical system
Lei et al. A Maximum Likelihood approach to determine sensor radiometric response coefficients for NPP VIIRS reflective solar bands
CN115524016B (en) Correction method for relative calibration to absolute calibration of black body on satellite of satellite remote sensor
Hobbs et al. Determining PPN γ with Gaia's astrometric core solution
CN118583459B (en) On-board radiation calibration method, system, device and computer equipment for space remote sensor
CN117949015B (en) Star sensor measurement error correction method and device
KR102100545B1 (en) Spectral CALIBRATION METHOD AND APPARATUS
WO2019077557A1 (en) Methods and related system for measuring thermo-elastic deformations of an object

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant