CN114887495A - 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用 - Google Patents

以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用 Download PDF

Info

Publication number
CN114887495A
CN114887495A CN202210457578.4A CN202210457578A CN114887495A CN 114887495 A CN114887495 A CN 114887495A CN 202210457578 A CN202210457578 A CN 202210457578A CN 114887495 A CN114887495 A CN 114887495A
Authority
CN
China
Prior art keywords
molybdenum disulfide
starch
composite
composite molybdenum
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210457578.4A
Other languages
English (en)
Other versions
CN114887495B (zh
Inventor
刘培
潘欣
张黄琴
张晔钧
曹雨
钱大玮
段金廒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Chinese Medicine
Original Assignee
Nanjing University of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Chinese Medicine filed Critical Nanjing University of Chinese Medicine
Priority to CN202210457578.4A priority Critical patent/CN114887495B/zh
Publication of CN114887495A publication Critical patent/CN114887495A/zh
Application granted granted Critical
Publication of CN114887495B publication Critical patent/CN114887495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3679Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜及其制备方法,本发明以钼酸铵,硫脲,四氧化三铁为原料制备二硫化钼复合物,进而对其进行烷基化修饰制备得到烷基化复合二硫化钼;然后以栝楼果瓤淀粉为原料,通过DMSO处理,制备淀粉增稠剂,将烷基化复合二硫化钼膜改性剂通过栝楼果瓤淀粉增稠剂涂覆到聚醚砜膜的表面,该改性透析膜可在不改变原聚醚砜膜血液相容性和小分子毒素清除率的同时,有效提升对血液中中分子蛋白的清除能力,提升透析效果。

Description

以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠 剂的改性透析膜制备方法与应用
技术领域
本发明涉及一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法及应用。
背景技术
对于尿毒症患者,常见的治疗手段为肾移植及血液净化。肾移植是尿毒症最有效的治疗手段,通过肾移植,可以有效缓解尿毒症早期的β2-MG蛋白引起的淀粉样变性,且迅速改善现有的病变症状。但目前肾脏来源有限,移植后可能会有一系列排异反应等出现,严重影响患者的健康和生活质量。
血液净化有多种不同的方法,如血液透析、血液滤过、血液透析滤过、血液灌流等,血液透析仍是最主要的治疗方式。目前血液透析对血液中的中大分子蛋白清除能力不足,而Lixelle吸附柱可以有效吸附中大分子蛋白,其吸附剂主要为长链烷烃修饰的多孔纤维素珠。基于此,将长链烷烃修饰在有良好蛋白吸附性能的复合二硫化钼上,随后将其固定于透析膜表面,增强透析膜性能。但烷基化后的二硫化钼,涂覆过程较难,透析膜对中分子蛋白的清除能力较弱。
发明内容
发明目的:本发明的目的是提供一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,及其在血液透析中的应用。
技术方案:为实现以上目的,本发明采取的技术方案为:
一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜,它是由烷基化复合二硫化钼膜改性剂通过栝楼果瓤淀粉增稠剂涂覆到聚醚砜膜的表面制备得到。本发明制备得到的改性透析膜,在不改变原聚醚砜膜血液相容性和小分子毒素清除率的同时,可有效提升对血液中中分子蛋白的清除能力,提升透析效果。
一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,包括以下步骤:
a.取四水合钼酸铵、硫脲和四氧化三铁,加入纯水,超声分散至溶解完全;
b.将步骤a得到的混悬液,转移至水热反应釜,反应一定时间,反应结束后,自然冷却至室温;
c.将步骤b得到的产物,用纯水分散,离心,取沉淀;
d.将步骤c得到的沉淀物,用纯水超声分散,离心,取上层液体,透析后,真空干燥,得纳米级复合二硫化钼;
e.将步骤d得到的纳米级复合二硫化钼,用DMSO配置成混悬液;
f.取步骤e得到的混悬液,加入正十二烷基硫醇,超声反应,至有大批沉淀物出现为止;离心取沉淀,用DMSO分散洗涤,真空干燥后,制得烷基改性复合二硫化钼混悬液;
g.取栝楼果瓤淀粉,加入DMSO水溶液,搅拌后,超声,得到淀粉增稠剂;
h.将步骤f的烷基改性复合二硫化钼混悬液加入到步骤g的淀粉增稠剂中,超声分散均匀后,将分散液滴加到纯水浸泡后的聚醚砜薄膜表面,在涂膜机上用闸刀在设定好的厚度,将分散液均匀涂抹在聚醚砜薄膜表面,用水洗去未涂覆好的淀粉增稠剂,置于烘箱中干燥,将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,纯水浸泡,干燥即得。
作为优选方案,以上所述的一种烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其包括以下步骤:
a.取四水合钼酸铵、硫脲、四氧化三铁,加入纯水,超声分散至溶解完全;
b.将步骤a得到的混悬液,转移至水热反应釜,200~220℃反应14~18小时,反应结束后,自然冷却至室温;
c.将步骤b得到的产物,用纯水分散,8000rpm离心40min,取沉淀,得沉淀物;
d.将步骤c得到的沉淀物,用纯水超声分散,4000rpm离心10min,取上层液体,透析后,真空干燥,制得纳米级复合二硫化钼;
e.将步骤d制得的纳米级复合二硫化钼,用DMSO配置成0.2~0.4mg/mL的混悬液;
f.将步骤e得到的混悬液,加入正十二烷基硫醇溶液,超声反应,至有大批沉淀物出现为止;离心,取沉淀;用DMSO分散洗涤,重复洗涤,真空干燥后,制得烷基改性复合二硫化钼;
g.取栝楼果瓤淀粉10~20g,加入100~200mL的70~90%DMSO,搅拌后,超声0.5~1h;得到淀粉增稠剂;
h.将步骤f制得的烷基改性复合二硫化钼40~80mg,加入到步骤g的淀粉增稠剂中,超声分散均匀后,将分散液滴加到纯水浸泡后的聚醚砜薄膜表面,在涂膜机上用闸刀将分散液均匀涂抹在聚醚砜薄膜表面,清水洗去未涂覆好的淀粉增稠剂,置于烘箱中干燥;将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,纯水浸泡,干燥即得。
作为优选方案,一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法,包括以下步骤:
a.取四水合钼酸铵,硫脲,四氧化三铁,加入纯水,得到的混悬液,400W超声分散30min,至溶解完全;
b.将步骤a得到的混悬液,转移至50mL水热反应釜,220℃反应14~18小时,反应结束后,自然冷却至室温;
c.将步骤b得到的产物,用纯水分散,8000~9000rpm离心20~60min,取沉淀;
d.将步骤c得到的沉淀产物,用纯水超声分散,4000rpm离心10min,取上层液体,透析3天后,真空干燥,制得纳米级复合二硫化钼;
e.将步骤e得到的纳米级复合二硫化钼,用DMSO配置成0.2mg/mL的混悬液;
f.将步骤e得到的混悬液,加入正十二烷基硫醇,400W超声反应,至有大批沉淀物出现为止;用9000rpm离心40min取沉淀,用DMSO分散洗涤,重复洗涤3次,真空干燥后,即可得烷基改性复合二硫化钼;
g.取栝楼果瓤淀粉10g,加入100mL的80%DMSO,搅拌10min后,超声1h,得到淀粉增稠剂。
h.将步骤f的烷基改性复合二硫化钼40mg加入到步骤g的淀粉增稠剂中,超声60min分散均匀后将分散液滴加到纯水浸泡后的聚醚砜薄膜表面,在涂膜机上用闸刀在300μm厚度将分散液均匀涂抹在聚醚砜薄膜表面,清水洗去未涂覆好的淀粉增稠剂,置于50℃烘箱中干燥120min。将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,纯水浸泡3天,干燥即得。
作为优选方案,以上所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,所述的栝楼果瓤淀粉的制备方法为取新鲜栝楼的果瓤,按1:4~1:10的重量比例加盐酸或磷酸至pH 2-5,搅拌混匀,浸泡2~8h后,将浸泡液通过离心或抽滤方式进行固液分离,收集固体部分。将固体部分用3-8倍水洗至中性,采用2-5倍乙醇洗涤,过40-100目筛,滤过液用离心或抽滤方式进行固液分离,沉淀用热风鼓风机干燥或冷冻干燥,即得栝楼果瓤淀粉。
取栝楼果瓤淀粉10-20g,加入100-200mL的70-90%DMSO,搅拌10min后,超声1h,作为涂膜增稠剂使用。
作为优选方案,以上所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于:步骤a中四水合钼酸铵、硫脲、四氧化三铁的用量比范围为11:22:1~11:22:5。通过控制不同四氧化三铁投量比和反应时间,可以获取多种复合二硫化钼,那么四水合钼酸铵、硫脲、四氧化三铁最佳的用量比为11:22:1。
作为优选方案,以上所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,步骤f中,将步骤e得到的混悬液,加入正十二烷基硫醇溶液。
作为优选方案,以上所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法,步骤g通过控制不同投料比和DMSO和水比例,可以获取多种不同粘度的淀粉增稠剂,步骤g栝楼果瓤淀粉投入量为淀粉10~20g,DMSO的浓度为70-90%。
有益效果:与现有技术相比,本发明具有以下优点:
(1)本发明提供的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜,溶菌酶清除率为90%。
(2)本发明提供的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜不存在血液相容性问题。
(3)本发明提供的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜,对尿素、肌酐的清除效率可达70%以上。
附图说明
图1为不同工艺复合二硫化钼的扫描电镜图谱。
图2为不同工艺复合二硫化钼的XRD图谱
图3为不同工艺复合二硫化钼的蛋白清除能力图谱
图4为烷基化二硫化钼的扫描电镜和XRD图谱
图5为改性膜E和未改性膜F的扫描电镜图谱
图6为改性膜E和未改性膜F的溶血性能图谱
图7为改性膜E和未改性膜F的血小板吸附图谱
图8为改性膜E和未改性膜F的蛋白吸附图。
图9为改性膜E和未改性膜F的尿毒症毒素清除曲线。
具体实施方案
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的制备工艺及功能评价仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1、复合二硫化钼的制备工艺,它是通过以下方法制备得到:
取四水合钼酸铵1.1g,硫脲2.2g,四氧化三铁(0g,0.1g,0.25g,0.5g),加入35mL纯水,400W超声分散30min使溶解完全。所得溶液转移至50mL水热反应釜,220℃反应,分别反应14h(A),16h(B),18h(C)。反应结束后,自然冷却至室温。将产物用水分散,在8000rpm离心40min,取沉淀,随后继续加入纯水分散,用DMSO重复洗涤3次后;将所得的产物用水重新超声分散,4000rpm离心10min,取上清液,透析3天后,真空干燥,制得四氧化三铁复合的二硫化钼,SEM见图1,XRD如图2,水接触角,比表面积,孔径如表1所示。
表1各复合二硫化钼水接触角,比表面积和孔径
Figure BDA0003619333640000051
Figure BDA0003619333640000061
实施例2、复合二硫化钼蛋白吸附性能测定
按试剂盒方法建立BCA法蛋白的标准曲线。取本发明实施例1制备的四氧化三铁复合的二硫化钼样材(A1~A4,B1~B4和C1~C4)各5mg,分别加入24孔培养板,配置200μg/L的蛋白原稀释液,配置BCA工作液,向各样材孔种分别加入1.5mL蛋白原稀释液,将样材完全浸没,放入恒温水浴箱中,37℃孵育1h,取100μL待测蛋白液,加入1mL BCA工作液,迅速混匀,60℃恒温孵育30min,利用紫外分光光度计于562nm处测定孵育后混合液的Abs值,根据标准曲线,计算反应前后蛋白浓度差值,分别得到溶菌酶,人血清白蛋白吸附值,具体结果见图3。结果表明,A2有较好的溶菌酶清除率,为61.25%,人血清白蛋白清除率小于2%。
实施例3、栝楼淀粉增稠剂的制备
1、栝楼果瓤淀粉的制备方法为:取新鲜栝楼的果瓤,按1:4~1:10的重量比例加盐酸或磷酸至pH 2-5,搅拌混匀,浸泡2~8h后,将浸泡液通过离心或抽滤方式进行固液分离,收集固体部分。将固体部分用3-8倍水洗至中性,采用2-5倍乙醇洗涤,过40-100目筛,滤过液用离心或抽滤方式进行固液分离,沉淀用热风鼓风机干燥或冷冻干燥,即得栝楼果瓤淀粉。
2、取栝楼果瓤淀粉,取栝楼果瓤淀粉10~20g,加入100mL的80%DMSO,搅拌后,超声1h搅拌后,超声1h;得到淀粉增稠剂。粘度值见表2。
表2不同淀粉增稠剂的粘度值
Figure BDA0003619333640000062
Figure BDA0003619333640000071
由以上筛选结果表明,以上方案8,即取栝楼果瓤淀粉20g,加入100mL的80%DMSO,搅拌后,超声1h,得到淀粉增稠剂最好。
实施例4、二硫化钼改性透析膜的制备
(1)取实施例1的四氧化三铁复合的二硫化钼A2,用DMSO配置成0.2mg/mL的混悬液200mL,加入正十二烷基硫醇1mg,400W超声反应,至有大批沉淀物出现为止,9000rpm离心40min取沉淀,所得产物继续用DMSO分散洗涤,重复洗涤3次。真空干燥后,制得烷基改性复合二硫化钼(D)。SEM见图4,XRD如图5,水接触角,比表面积,孔径如表3所示。
(2)将聚醚砜薄膜于蒸馏水中淹没浸泡5min后,拿出。将步骤(1)制备得到的烷基改性复合二硫化钼40mg和实施例3制备的方案8淀粉增稠剂混合均匀分散液后,将分散液滴加到聚醚砜薄膜表面,在涂膜机上用闸刀在设定好的厚度300μm,将混合均匀的分散液涂抹在聚醚砜薄膜表面,随后清水洗去未涂覆好的淀粉增稠剂,置于50℃烘箱中干燥120min。将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,最后纯水浸泡3天,干燥后得改性透析膜(E)。SEM见图5,水接触角如表3所示。结果表明,改性膜相较于未改性膜,其疏水性上升。
表3各材料水接触角,比表面积和孔径
类别 水接触度角(°) 比表面积(m<sup>2</sup>/g) 孔径(nm)
烷基改性复合二硫化钼(D) 124.74±1.07 100.34 2.102
改性透析膜(E) 72.01±5.64 / /
未改性透析膜(F) 60.00±2.15 / /
实施例5、透析膜材料涂层表面血液凝固时间测定
实施例4制备得到的二硫化钼改性透析膜(E)以及未改性的聚醚砜膜材料(F)的样材,分别剪成约2cm2的碎片分置于24孔培养板中;取健康志愿者全血20mL,3500r/min条件下离心10min,得到贫血小板血浆,在每个样材孔中分别加入贫血小板血浆700μL,37℃恒温水浴箱内孵育2h,抽取孵育后的血浆,测定活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和凝血酶时间(TT)。具体测定结果见表4。以上结果说明本发明制备得到的改性透析膜抗凝血性较好,没有明显的促凝作用。
表4各透析膜材料涂层表面血液凝固时间
Figure BDA0003619333640000081
实施例6、透析膜材料涂层表面血液溶血性测定
实施例4制备得到的二硫化钼改性透析膜(E)以及未改性的聚醚砜膜材料(F)的样材,分别剪成约2cm2的碎片,加入7mLpH 7.4的PBS溶液,37℃孵育24h,每管分别加入1mL兔血,继续在37℃孵化1h。随后每组都轻微倒置三次,保证血液与改性膜充分接触。在3000rpm离心15分钟后,测定溶血率,结果见图6。结果表明,改性膜相和未改性膜,溶血性均低于5%。
实施例7、透析膜材料涂层表面血小板吸附性测定
实施例4制备得到的二硫化钼改性透析膜(E)以及未改性的聚醚砜膜材料(F)的样材,分别剪成约2cm2的碎片,分置于24孔培养板中;取健康志愿者全血20mL,1000rpm离心10min获得富血小板血浆(PRP),研究膜对血小板粘附情况。在每个样材孔中分别加入100μLPRP,37℃浸泡1h,随后在膜表面加入4%的戊二醛,静置12h,固定吸附于膜表面的血小板,将戊二醛吸出后,加入PBS,洗去膜表面未吸附血小板,随后加入系列梯度的乙醇/水溶液50%,75%,85%,95%,100%(v/v),对膜进行脱水,最后用扫描电镜观察血小板在改性膜上的粘附情况。测定结果见图7。结果表明,改性膜和未改性膜,未发现明显血小板吸附现象。
实施例8、透析膜材料涂层表面亲水蛋白吸附测定
按试剂盒方法建立BCA法蛋白的标准曲线。实施例4制备得到的二硫化钼改性透析膜(E)以及未改性的聚醚砜膜材料(F)的样材,分别剪成约2cm2的碎片,加入24孔培养板,配置200μg/L的蛋白原稀释液,配置BCA工作液,向各样材孔种分别加入1.5mL蛋白原稀释液,将样材完全浸没,放入恒温水浴箱中,37℃孵育1h,取100μL待测蛋白液,加入1mL BCA工作液,迅速混匀,60℃恒温孵育30min,利用紫外分光光度计于562nm处测定孵育后混合液的Abs值,根据标准曲线,计算反应前后蛋白浓度差值,分别得到细胞色素C,胃蛋白酶,鸡蛋清蛋白,α-糜蛋白酶吸附值,结果见图8。结果表明,改性膜对于亲水蛋白吸附性能明显下降,有较好的抗蛋白污染能力。
实施例9、透析膜透析性能测定
模拟透析环境,透析液测为PBS缓冲液,含尿素浓度为1.5g/L,肌酐浓度为1g/L,中分子量毒素溶菌酶浓度为40mg/L,另一侧透析液为去离子水。一般透析液侧的流速为模拟侧流速的2~2.5倍。选用200mL/min的模拟血液流速和500mL/min透析液流速。同时透析液的液体体积为模拟液的4倍。用于透析的复合膜面积为8cm2,考察实施例4制备得到的二硫化钼改性透析膜(E)以及未涂层的聚醚砜膜材料(F)吸附小分子毒素的清除能力。透析时间参考临床条件设置为4h,每隔一小时对透析液取样,用紫外-可见分光光度计测定取得的透析液中各组分的含量变化,并对中小分子毒素的清除率进行计算,结果见图9。结果表明,改性膜对于小分子清除能力较好,且可以同时清除90%以上的溶菌酶,有较好的疏水蛋白清除能力。

Claims (7)

1.一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜,其特征在于,它是由烷基化复合二硫化钼膜改性剂通过栝楼果瓤淀粉增稠剂涂覆到聚醚砜膜的表面制备得到。
2.权利要求1所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于,包括以下步骤:
a.取四水合钼酸铵、硫脲和四氧化三铁,加入纯水,超声分散至溶解完全;
b.将步骤a得到的混悬液,转移至水热反应釜,反应一定时间,反应结束后,自然冷却至室温;
c.将步骤b得到的产物,用纯水分散,离心,取沉淀;
d.将步骤c得到的沉淀物,用纯水超声分散,离心,取上层液体,透析后,真空干燥,得纳米级复合二硫化钼;
e.将步骤d得到的纳米级复合二硫化钼,用DMSO配置成混悬液;
f.取步骤e得到的混悬液,加入正十二烷基硫醇,超声反应,至有大批沉淀物出现为止;离心取沉淀,用DMSO分散洗涤,真空干燥后,制得烷基改性复合二硫化钼混悬液;
g.取栝楼果瓤淀粉,加入DMSO水溶液,搅拌后,超声,得到淀粉增稠剂;
h.将步骤f的烷基改性复合二硫化钼混悬液加入到步骤g的淀粉增稠剂中,超声分散均匀后,将分散液滴加到纯水浸泡后的聚醚砜薄膜表面,在涂膜机上用闸刀在设定好的厚度,将分散液均匀涂抹在聚醚砜薄膜表面,用水洗去未涂覆好的淀粉增稠剂,置于烘箱中干燥,将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,纯水浸泡,干燥即得。
3.根据权利要求2所述的一种烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于,包括以下步骤:
a.取四水合钼酸铵、硫脲、四氧化三铁,加入纯水,超声分散至溶解完全;
b.将步骤a得到的混悬液,转移至水热反应釜,200~220℃反应14~18小时,反应结束后,自然冷却至室温;
c.将步骤b得到的产物,用纯水分散,8000~9000rpm离心20~60min,取沉淀,得沉淀物;
d.将步骤c得到的沉淀物,用纯水超声分散,4000rpm离心10min,取上层液体,透析后,真空干燥,制得纳米级复合二硫化钼;
e.将步骤d制得的纳米级复合二硫化钼,用DMSO配置成0.2~0.4mg/mL的混悬液;
f.取步骤e得到的混悬液,加入正十二烷基硫醇溶液,超声反应,至有大批沉淀物出现为止;离心,取沉淀;用DMSO分散洗涤,重复洗涤,真空干燥后,制得烷基改性复合二硫化钼;
g.取栝楼果瓤淀粉10~20g,加入100~200mL的70~90%DMSO,搅拌后,超声0.5~1h;得到淀粉增稠剂;
h.将步骤f制得的烷基改性复合二硫化钼40~80mg,加入到步骤g的淀粉增稠剂中,超声分散均匀后,将分散液滴加到纯水浸泡后的聚醚砜薄膜表面,在涂膜机上用闸刀将分散液均匀涂抹在聚醚砜薄膜表面,清水洗去未涂覆好的淀粉增稠剂,置于烘箱中干燥;将干燥后的复合薄膜用纯水反复冲洗,除去未粘附的烷基改性复合二硫化钼薄层,纯水浸泡,干燥即得。
4.根据权利要求2或3所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于:栝楼果瓤淀粉的制备方法为:取新鲜栝楼的果瓤,按1:4~1:10的重量比例加盐酸或磷酸至pH2-5,搅拌混匀,浸泡2~8h后,将浸泡液通过离心或抽滤方式进行固液分离,收集固体部分;将固体部分用3-8倍水洗至中性,采用2-5倍乙醇洗涤,过40-100目筛,收集滤过液,滤过液用离心或抽滤方式进行固液分离,沉淀用热风鼓风机干燥或冷冻干燥,即得栝楼果瓤淀粉。
5.根据权利要求2或3所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于:步骤a中四水合钼酸铵、硫脲、四氧化三铁的用量比为11~20:21~30:1~5。
6.根据权利要求5所述的一种以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜的制备方法,其特征在于:步骤a中四水合钼酸铵、硫脲、四氧化三铁的用量比为11:22:1。
7.权利要求1所述的改性透析膜在制备血液透析系统或腹膜透析系统中的应用。
CN202210457578.4A 2022-04-27 2022-04-27 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用 Active CN114887495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210457578.4A CN114887495B (zh) 2022-04-27 2022-04-27 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210457578.4A CN114887495B (zh) 2022-04-27 2022-04-27 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用

Publications (2)

Publication Number Publication Date
CN114887495A true CN114887495A (zh) 2022-08-12
CN114887495B CN114887495B (zh) 2024-05-07

Family

ID=82720013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210457578.4A Active CN114887495B (zh) 2022-04-27 2022-04-27 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用

Country Status (1)

Country Link
CN (1) CN114887495B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115554975A (zh) * 2022-10-13 2023-01-03 中南大学 一种吸附材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160058932A1 (en) * 2014-09-02 2016-03-03 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
CN108097059A (zh) * 2018-01-15 2018-06-01 哈尔滨工业大学 一种利用二硫化钼建立水通道增强聚酰胺反渗透膜水通量的改性方法
CN109265568A (zh) * 2018-09-10 2019-01-25 南京中医药大学 一种栝楼果瓤b型淀粉的制备方法
CN113621142A (zh) * 2021-08-02 2021-11-09 南京中医药大学 一种具有高效吸附尿素功能的特定形貌纳米淀粉及其制备方法与应用
KR20220000051A (ko) * 2020-06-25 2022-01-03 경희대학교 산학협력단 이황화몰리브덴을 포함하는 유기용매 나노여과 분리막 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160058932A1 (en) * 2014-09-02 2016-03-03 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
CN108097059A (zh) * 2018-01-15 2018-06-01 哈尔滨工业大学 一种利用二硫化钼建立水通道增强聚酰胺反渗透膜水通量的改性方法
CN109265568A (zh) * 2018-09-10 2019-01-25 南京中医药大学 一种栝楼果瓤b型淀粉的制备方法
KR20220000051A (ko) * 2020-06-25 2022-01-03 경희대학교 산학협력단 이황화몰리브덴을 포함하는 유기용매 나노여과 분리막 및 그 제조방법
CN113621142A (zh) * 2021-08-02 2021-11-09 南京中医药大学 一种具有高效吸附尿素功能的特定形貌纳米淀粉及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张黄琴等: "栝楼植物不同部位资源化利用策略与途径", 《中国现代中药》, vol. 21, no. 1, 16 January 2019 (2019-01-16), pages 45 - 53 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115554975A (zh) * 2022-10-13 2023-01-03 中南大学 一种吸附材料及其制备方法和应用
CN115554975B (zh) * 2022-10-13 2023-07-21 中南大学 一种吸附材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114887495B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
Liu et al. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane
CN109224889B (zh) 一种具有抗凝性能的血液净化膜及其制备方法
CN114887495B (zh) 以烷基化复合二硫化钼为改性剂和栝楼果瓤淀粉为涂膜增稠剂的改性透析膜制备方法与应用
JP2013534438A (ja) エンドトキシン用の新しい吸着剤
Irfan et al. Fabrication and evaluation of polymeric membranes for blood dialysis treatments using functionalized MWCNT based nanocomposite and sulphonated-PES
FR2480606A1 (zh)
Tu et al. Surface hemocompatible modification of polysulfone membrane via covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan
Meghnani et al. Synthesis of ceramic membrane using inexpensive precursors and evaluation of its biocompatibility for hemofiltration application
Ruckenstein et al. Crosslinked mercerized cellulose membranes and their application to membrane affinity chromatography
Salimi et al. β-Cyclodextrin modified PES hollow fiber membrane, a new strategy for bilirubin separation
Gemeiner et al. Cellulose as a (bio) affinity carrier: properties, design and applications
Chiang et al. Nonsolvent-induced phase separation preparation of porous TOPO-mixed polyethersulfone membranes for selective clearance of p-cresol from simulated serum
Zeng et al. Adsorptive removal of uremic toxins using Zr-based MOFs for potential hemodialysis membranes
Liu et al. Heparin/polyethyleneimine dual-sided functional polyvinylidene fluoride plasma separation membrane for bilirubin removal
Liu et al. Designing adsorptive membranes for removing protein-bound uremic toxins via π-π and cation-π interaction
CN113244901A (zh) 一种吸附树脂-聚合物多孔膜及其制备方法和应用
Huang et al. Fast Blood Oxygenation through Hemocompatible Asymmetric Polymer of Intrinsic Microporosity Membranes
JP5546554B2 (ja) タンパク質結合物質を除去するための収着剤
EP3492166A1 (en) Adsorbent for calciprotein particles, adsorption removal system, and method of using same
VB et al. Synergic effect of PVP and PEG hydrophilic additives on porous polyethersulfone (PES) membranes: preparation, characterization and biocompatibility
Roshni et al. Synthesis of ceramic tubular membrane from low‐cost clay precursors for blood purification application as substitute of commercial dialysis membrane
CN111019143B (zh) 一种磺化柠檬酸壳聚糖改性聚砜及其制备方法
CN112915642B (zh) 一种带有去脂材料的采血装置
Mahlicli et al. The effects of urease immobilization on the transport characteristics and protein adsorption capacity of cellulose acetate based hemodialysis membranes
Ran et al. A silica/polyvinyl alcohol membrane suitable for separating proteins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant