CN114882026A - 基于人工智能的传感器外壳缺陷检测方法 - Google Patents

基于人工智能的传感器外壳缺陷检测方法 Download PDF

Info

Publication number
CN114882026A
CN114882026A CN202210796839.5A CN202210796839A CN114882026A CN 114882026 A CN114882026 A CN 114882026A CN 202210796839 A CN202210796839 A CN 202210796839A CN 114882026 A CN114882026 A CN 114882026A
Authority
CN
China
Prior art keywords
defect
edge
pixel point
region
complexity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210796839.5A
Other languages
English (en)
Other versions
CN114882026B (zh
Inventor
周航
王泓晴
孙金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Keoll Self Service Instrument Co ltd
Original Assignee
Shandong Keoll Self Service Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Keoll Self Service Instrument Co ltd filed Critical Shandong Keoll Self Service Instrument Co ltd
Priority to CN202210796839.5A priority Critical patent/CN114882026B/zh
Publication of CN114882026A publication Critical patent/CN114882026A/zh
Application granted granted Critical
Publication of CN114882026B publication Critical patent/CN114882026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]

Abstract

本发明涉及基于人工智能的传感器外壳缺陷检测方法,属于利用计算机视觉技术识别外壳缺陷的技术领域,该方法步骤包括:获取待检测传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域;当感兴趣区域的长宽比大于预设阈值时判定图像中存在划痕缺陷;当感兴趣区域的长宽比小于预设阈值时,将感兴趣区域分为中心区域和缺陷边缘区域;利用缺陷边缘区域的灰度复杂度、纹理复杂度以及边缘复杂度计算出该张待检测传感器外壳图像中缺陷边缘区域的总复杂度;根据总复杂度对缺陷区域的缺陷类型进行判断;本发明只需要小样本数据就能对传感器外壳中存在的缺陷进行较为准确快速的分类,提高了传感器外壳缺陷检测速度。

Description

基于人工智能的传感器外壳缺陷检测方法
技术领域
本发明属于利用计算机视觉技术识别外壳缺陷的技术领域,具体涉及基于人工智能的传感器外壳缺陷检测方法。
背景技术
塑料由于重量轻、密度小、耐磨性好、绝缘性好、化学性质稳定等众多优点常常被用作传感器外壳。而传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出。传感器一般由敏感元件、转换元件、变换电路和辅助电源四部分组成,敏感元件直接感受被测量,并输出与被测量有确定关系的物理量信号,而转换元件、变换电路和辅助电源四部分一般位于传感器外壳内部。一旦传感器外壳存在缺陷不仅影响传感器的美观性,还会影响传感器的性能和安全性。目前对于传感器外壳的检测主要采用人工检测的方法,但是人工检测效率和精度较低,同时传感器又属于对生产精度和合格率要求更高的产品,因此需要提出一种高精度高效率的基于人工智能的对传感器外壳缺陷检测方法。
发明内容
本发明提供的基于人工智能的传感器外壳缺陷检测方法,能对传感器外壳中存在的缺陷进行较为准确快速的分类,提高了传感器外壳缺陷检测速度。
本发明的基于人工智能的传感器外壳缺陷检测方法采用如下技术方案:该方法包括:
获取待检测传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域;
计算出感兴趣区域的长宽比,当感兴趣区域的长宽比大于预设阈值时判定该张待检测传感器外壳图像中存在划痕缺陷;
当感兴趣区域的长宽比小于预设阈值时,根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域;
根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度;
提取缺陷边缘区域内每个像素点的八位
Figure 968981DEST_PATH_IMAGE001
码,计算每个像素点与周围全部邻域像素点
Figure 256628DEST_PATH_IMAGE001
码之间的最终汉明距离,根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度;
获取传感器外壳图像中缺陷区域的多条边缘线,根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度;
利用缺陷边缘区域的灰度复杂度、纹理复杂度以及边缘复杂度计算出该张待检测传感器外壳图像中缺陷边缘区域的总复杂度;
根据待检测传感器外壳图像中缺陷边缘区域的总复杂度,对缺陷区域的缺陷类型进行判断。
进一步地,所述获取传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域,包括:
利用canny算子提取传感器外壳图像中边缘像素点;
对提取出的传感器外壳图像中边缘像素点求取包围全部边缘像素点的最小外接矩形,将最小外接矩形包围的区域作为缺陷区域;
将缺陷区域按预设比例扩大后作为感兴趣区域。
进一步地,所述根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域,包括:
对感兴趣区域内各像素点的灰度值进行阈值分割得到最优灰度值阈值;
将感兴趣区域内各像素点的灰度值小于最优灰度值阈值的像素点提取出来,作为中心区域;
对感兴趣区域求中心区域的补集得到缺陷边缘区域。
进一步地,所述根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度,包括:
以缺陷边缘区域内任一像素点为中心像素点,求该像素点周围八邻域内每个像素点与中心像素点灰度值的差值,由获得的全部差值作为多个元素值构建该像素点的空间灰度向量,同理得到缺陷边缘区域内每个像素点对应的空间灰度向量;
当缺陷边缘区域内任一像素点的空间灰度向量中存在一个元素值大于预设元素值阈值时,将该像素点标记为突变像素点,同理得到缺陷边缘区域内全部突变像素点;
获取全部突变像素点对应的空间灰度向量中包含的所有大于预设元素值阈值的元素值,并将获取的全部元素值的均值作为缺陷边缘区域的灰度突变程度;
根据缺陷边缘区域内全部像素点的灰度值均值、包含的灰度级数目、每个灰度级对应的灰度值、以及缺陷边缘区域的灰度突变程度计算出缺陷边缘区域的灰度复杂度。
进一步地,所述缺陷边缘区域的灰度复杂度的计算公式如下式所示:
Figure 242777DEST_PATH_IMAGE002
其中,
Figure 272613DEST_PATH_IMAGE003
表示缺陷边缘区域内包含的灰度级数目;
Figure 67656DEST_PATH_IMAGE004
表示缺陷边缘区域内第i个灰度级对应的灰度值;
Figure 436189DEST_PATH_IMAGE005
表示缺陷边缘区域内全部像素点的灰度值均值;
Figure 297966DEST_PATH_IMAGE006
表示根据缺陷边缘区域的灰度突变程度计算出的空间灰度信息量;
Figure 384739DEST_PATH_IMAGE007
表示空间灰度调节参数,根据经验设置
Figure 888533DEST_PATH_IMAGE008
Figure 397660DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
所述空间灰度信息量的计算公式如下式所示:
Figure 430338DEST_PATH_IMAGE010
其中,
Figure 100002_DEST_PATH_IMAGE011
表示缺陷边缘区域内全部突变像素点占据缺陷边缘区域内总像素点的比值;
Figure 535566DEST_PATH_IMAGE012
表示缺陷边缘区域的灰度突变程度;
Figure 843051DEST_PATH_IMAGE006
表示空间灰度信息量。
进一步地,所述提取缺陷边缘区域内每个像素点的八位
Figure 655018DEST_PATH_IMAGE001
码,计算每个像素点与周围全部邻域像素点
Figure 655335DEST_PATH_IMAGE001
码之间的最终汉明距离,包括:
利用
Figure 185542DEST_PATH_IMAGE013
算子提取缺陷边缘区域内每个像素点周围八邻域的八位
Figure 31138DEST_PATH_IMAGE001
码;
计算任一像素点与周围每一邻域像素点
Figure 231700DEST_PATH_IMAGE001
码之间的汉明距离,并将该汉明距离作为该像素点与该邻域像素点
Figure 996394DEST_PATH_IMAGE001
码之间的单点汉明距离,由获得的全部单点汉明距离的均值作为该像素点对应的空间汉明距离;
根据每个像素点与任一邻域像素点
Figure 764630DEST_PATH_IMAGE001
码之间的单点汉明距离和该像素点对应的空间汉明距离,计算出每个像素点与任一邻域像素点
Figure 397605DEST_PATH_IMAGE001
码之间的降噪后汉明距离;
获取每个像素点与周围四邻域像素点
Figure 200476DEST_PATH_IMAGE001
码之间的降噪后汉明距离,将获取的四个降噪后汉明距离的均值作为该像素点对应的最终汉明距离。
进一步地,所述根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度,包括:
得到缺陷边缘区域内每个像素点对应的最终汉明距离;
统计出缺陷边缘区域内每个像素点对应的最终汉明距离在多个预设距离区间内出现的频数,将频数最大的区间号的倒数作为缺陷边缘区域的纹理复杂度。
进一步地,所述根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度,包括:
根据每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标,利用皮尔逊相关系数计算出每条边缘线上边缘像素点的相关性;
利用边缘线的条数和每条边缘线上边缘像素点的相关性,计算出缺陷边缘区域的边缘复杂度;
所述缺陷边缘区域的边缘复杂度的计算公式如下式所示:
Figure 260705DEST_PATH_IMAGE014
其中,
Figure 640871DEST_PATH_IMAGE015
表示缺陷区域包含的边缘线的条数;
Figure 562690DEST_PATH_IMAGE016
表示缺陷区域包含的第i条边缘线上边缘像素点的相关性;
Figure 734914DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度。
进一步地,所述缺陷边缘区域的总复杂度的计算公式如下式所示:
Figure 716777DEST_PATH_IMAGE018
其中,
Figure 705943DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
Figure 556087DEST_PATH_IMAGE019
表示缺陷边缘区域的纹理复杂度;
Figure 67971DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度;
Figure 470003DEST_PATH_IMAGE020
表示缺陷边缘区域的总复杂度。
进一步地,所述对缺陷区域的缺陷类型进行判断的步骤如下:
所述缺陷类型包括坏点缺陷、通孔缺陷以及凹坑缺陷,该三种缺陷类型分别对应预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间;
将待检测传感器外壳图像中缺陷边缘区域的总复杂度分别与预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间进行匹配,确定待检测传感器外壳图像中是否存在坏点缺陷、通孔缺陷以及凹坑缺陷。
本发明的有益效果是:
本发明提出的基于人工智能的传感器外壳缺陷检测方法,与传统的神经网络方法需要大量训练集数据和计算量不同,本发明基于基于人工智能提出一种传感器外壳缺陷的快速检测方法,只需要小样本数据就能对传感器外壳中存在的缺陷进行较为准确快速的分类,而且整体的计算量比较低,并且能对缺陷进行较为准确快速的分类。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的基于人工智能的传感器外壳缺陷检测方法的实施例总体步骤的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的基于人工智能的传感器外壳缺陷检测方法的实施例,如图1所示,该方法包括:
S1、获取待检测传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域。
其中,所述获取传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域,包括:利用canny算子提取传感器外壳图像中边缘像素点;对提取出的传感器外壳图像中边缘像素点求取包围全部边缘像素点的最小外接矩形,将最小外接矩形包围的区域作为缺陷区域;将缺陷区域按预设比例扩大后作为感兴趣区域。
在塑料传感器外壳中,常常会出现坏点、通孔、凹坑和划痕等缺陷。坏点是黑色的突起粒状斑点,通孔是孔状结构,凹坑是中间凹下两边凸起,划痕是长条状的凹陷的条痕及沟痕。在上述分析的四种缺陷坏点、通孔、凹坑和划痕中,缺陷区域相对于较为平滑的正常传感器外壳表面具有较明显的灰度差别,即较大的灰度梯度值。
本发明首先获取待检测传感器外壳图像,对待检测传感器外壳图像(大小为
Figure DEST_PATH_IMAGE021
)进行预处理,将其从彩色
Figure 621498DEST_PATH_IMAGE022
图像转化为灰度图像,采用均值滤波器对待检测传感器外壳图像进行噪声过滤,并采用伽玛变换对待检测传感器外壳灰度图像进行灰度调整,避免图像过亮或过暗。
在获取传感器外壳灰度图像后,采用canny算子提取传感器外壳图像中边缘像素点,对提取出的传感器外壳图像中边缘像素点求取包围全部边缘像素点的最小外接矩形,将最小外接矩形包围的区域作为缺陷区域。固定缺陷区域的中心点,将最小外接矩形的长和宽扩大为原来的
Figure 681858DEST_PATH_IMAGE023
,将扩大后的最小外接矩形区域作为感兴趣区域ROI。
S2、计算出感兴趣区域的长宽比,当感兴趣区域的长宽比大于预设阈值时判定该张待检测传感器外壳图像中存在划痕缺陷。
对待检测传感器外壳图像中感兴趣区域ROI进行缺陷检测。根据上述分析,划痕缺陷为长条状,可基于缺陷的形状将其与坏点、通孔和凹坑区分开。而坏点、通孔和凹坑具有相似的特征,即中间是黑色的圆形区域,给这三类缺陷的区分带来了困难。此时我们考虑缺陷黑色的圆形区域的周围区域有形态结构的不同,可以作为这三类缺陷的特征将其进行区分。坏点是突起粒状斑点,其周围伴随着长条形的传感器外壳鼓起的区域,通孔是孔状结构,其周围有一些压褶痕迹,凹坑是中间凹下两边凸起的结构,相对于孔状的通孔来说,黑色的圆形区域占据比例很小而其周围是坡面结构。基于传感器外壳缺陷的不同形态结构,对传感器外壳缺陷进行区分。
本发明首先对感兴趣区域ROI进行形状检测,将长条形结构的划痕缺陷与坏点、通孔和凹坑三种缺陷分开。根据感兴趣区域ROI的长度
Figure 563095DEST_PATH_IMAGE024
和宽度
Figure 886760DEST_PATH_IMAGE025
,计算出感兴趣区域的长宽比,如果感兴趣区域ROI的长宽比
Figure 728814DEST_PATH_IMAGE026
,我们则认为感兴趣区域ROI为长条形,判定该张待检测传感器外壳图像中存在划痕缺陷。
S3、当感兴趣区域的长宽比小于预设阈值时,根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域。
其中,所述根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域,包括:对感兴趣区域内各像素点的灰度值进行阈值分割得到最优灰度值阈值;将感兴趣区域内各像素点的灰度值小于最优灰度值阈值的像素点提取出来,作为中心区域;对感兴趣区域求中心区域的补集得到缺陷边缘区域。
本发明中当感兴趣区域的长宽比小于预设阈值时,获取感兴趣区域内各像素点的灰度值,采用Otsu大津法对感兴趣区域ROI进行基于灰度值的阈值分割,得到最优灰度值阈值
Figure 48325DEST_PATH_IMAGE027
,将灰度值小于最优灰度值阈值
Figure 534801DEST_PATH_IMAGE027
的像素点提取出来,作为中心区域,同时还获取包围中心区域的中心区域线。对感兴趣区域求中心区域的补集得到缺陷边缘区域。
S4、根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度。
其中,所述根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度,包括:以缺陷边缘区域内任一像素点为中心像素点,求该像素点周围八邻域内每个像素点与中心像素点灰度值的差值,由获得的全部差值作为多个元素值构建该像素点的空间灰度向量,同理得到缺陷边缘区域内每个像素点对应的空间灰度向量;当缺陷边缘区域内任一像素点的空间灰度向量中存在一个元素值大于预设元素值阈值时,将该像素点标记为突变像素点,同理得到缺陷边缘区域内全部突变像素点;获取全部突变像素点对应的空间灰度向量中包含的所有大于预设元素值阈值的元素值,并将获取的全部元素值的均值作为缺陷边缘区域的灰度突变程度;根据缺陷边缘区域内全部像素点的灰度值均值、包含的灰度级数目、每个灰度级对应的灰度值、以及缺陷边缘区域的灰度突变程度计算出缺陷边缘区域的灰度复杂度。
基于灰度的统计特征来说,当缺陷边缘区域包含的灰度级数目越多,且灰度级之间的散度越大时,灰度复杂度越高。考虑到灰度分布的空间特征,如果灰度分布在空间上分布越杂乱,灰度复杂度越高。例如通孔缺陷的周围边缘会出现压褶区,在压褶区中间的灰度发生变化的边界处,以及压褶区与正常塑料传感器外壳表面直接的交界处,这些边界的长度和边界两侧灰度发生强烈变化的程度,都表征灰度分布在空间上的杂乱程度,由此我们构建缺陷边缘区域内每个像素点对应的空间灰度向量
Figure 544214DEST_PATH_IMAGE028
空间灰度向量
Figure 748931DEST_PATH_IMAGE028
表征的是以缺陷边缘区域内任一像素点为中心像素点,求该像素点周围八邻域内每个像素点与中心像素点灰度值的差值。空间灰度向量
Figure 134781DEST_PATH_IMAGE028
的维度是
Figure 210185DEST_PATH_IMAGE029
,假设中心像素点坐标为
Figure 265865DEST_PATH_IMAGE030
,空间灰度向量
Figure 941566DEST_PATH_IMAGE028
的每个元素分别代表坐标为
Figure 616261DEST_PATH_IMAGE031
Figure 58088DEST_PATH_IMAGE032
Figure 160036DEST_PATH_IMAGE033
Figure 323033DEST_PATH_IMAGE034
Figure 660474DEST_PATH_IMAGE035
Figure 976049DEST_PATH_IMAGE036
Figure 498166DEST_PATH_IMAGE037
Figure 164770DEST_PATH_IMAGE038
的像素与中心像素点灰度值差值的绝对值。对于缺陷边缘区域内每个像素点求取对应的空间灰度向量
Figure 164956DEST_PATH_IMAGE028
。设置元素值阈值
Figure 335038DEST_PATH_IMAGE039
,当缺陷边缘区域内任一像素点的空间灰度向量中存在一个元素值大于预设元素值阈值
Figure 637843DEST_PATH_IMAGE039
时,则将该像素点标记为突变像素点。
所述缺陷边缘区域的灰度复杂度的计算公式如下式所示:
Figure 43941DEST_PATH_IMAGE040
其中,
Figure 864130DEST_PATH_IMAGE003
表示缺陷边缘区域内包含的灰度级数目;
Figure 137985DEST_PATH_IMAGE004
表示缺陷边缘区域内第i个灰度级对应的灰度值;
Figure 18216DEST_PATH_IMAGE005
表示缺陷边缘区域内全部像素点的灰度值均值;
Figure 643102DEST_PATH_IMAGE006
表示根据缺陷边缘区域的灰度突变程度计算出的空间灰度信息量;
Figure 1402DEST_PATH_IMAGE007
表示空间灰度调节参数,根据经验设置
Figure 395343DEST_PATH_IMAGE008
Figure 180896DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
所述空间灰度信息量的计算公式如下式所示:
Figure 290148DEST_PATH_IMAGE041
其中,
Figure 186560DEST_PATH_IMAGE011
表示缺陷边缘区域内全部突变像素点占据缺陷边缘区域内总像素点的比值;
Figure 310373DEST_PATH_IMAGE012
表示缺陷边缘区域的灰度突变程度;
Figure 781675DEST_PATH_IMAGE006
表示空间灰度信息量。
Figure 131885DEST_PATH_IMAGE012
代表所有突变像素点的空间灰度向量
Figure 487780DEST_PATH_IMAGE028
中包括的大于灰度差阈值
Figure 590734DEST_PATH_IMAGE042
的元素均值,反应了灰度在空间上变化的剧烈程度。当缺陷边缘区域
Figure 983669DEST_PATH_IMAGE043
包含的灰度级数目越多,灰度级分布越分散,突变像素点占据缺陷边缘区域像素的比值越大,灰度在空间上变化程度越剧烈,灰度复杂度
Figure 680230DEST_PATH_IMAGE009
越大。
S5、提取缺陷边缘区域内每个像素点的八位
Figure 170641DEST_PATH_IMAGE001
码,计算每个像素点与周围全部邻域像素点
Figure 144414DEST_PATH_IMAGE001
码之间的最终汉明距离,根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度。
其中,所述提取缺陷边缘区域内每个像素点的八位
Figure 957518DEST_PATH_IMAGE001
码,计算每个像素点与周围邻域像素点
Figure 282320DEST_PATH_IMAGE001
码之间的最终汉明距离,包括:利用
Figure 307914DEST_PATH_IMAGE013
算子提取缺陷边缘区域内每个像素点周围八邻域的八位
Figure 136192DEST_PATH_IMAGE001
码;计算任一像素点与周围每一邻域像素点
Figure 120198DEST_PATH_IMAGE001
码之间的汉明距离,并将该汉明距离作为该像素点与该邻域像素点
Figure 525771DEST_PATH_IMAGE001
码之间的单点汉明距离,由获得的全部单点汉明距离的均值作为该像素点对应的空间汉明距离;根据每个像素点与任一邻域像素点
Figure 636947DEST_PATH_IMAGE001
码之间的单点汉明距离和该像素点对应的空间汉明距离,计算出每个像素点与任一邻域像素点
Figure 855087DEST_PATH_IMAGE001
码之间的降噪后汉明距离;获取每个像素点与周围四邻域像素点
Figure 495146DEST_PATH_IMAGE001
码之间的降噪后汉明距离,将获取的四个降噪后汉明距离的均值作为该像素点对应的最终汉明距离。
其中,所述根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度,包括:得到缺陷边缘区域内每个像素点对应的最终汉明距离;统计出缺陷边缘区域内每个像素点对应的最终汉明距离在多个预设距离区间内出现的频数,将频数最大的区间号的倒数作为缺陷边缘区域的纹理复杂度。
本发明中采用
Figure 778229DEST_PATH_IMAGE013
算子提取缺陷边缘区域
Figure 896358DEST_PATH_IMAGE043
中每个像素的纹理信息,利用
Figure 214076DEST_PATH_IMAGE013
算子提取缺陷边缘区域内每个像素点周围八邻域的八位
Figure 290616DEST_PATH_IMAGE001
码。计算任一像素点与周围每一邻域像素点
Figure 60995DEST_PATH_IMAGE001
码之间的汉明距离
Figure 982814DEST_PATH_IMAGE044
,考虑到缺陷边缘区域可能会出现噪声点,而
Figure 157968DEST_PATH_IMAGE013
码求取方式是将周围邻域像素点与中心像素点灰度值比较,当周围任一邻域像素点的灰度值大于等于中心像素点灰度值时得到该邻域的
Figure 264464DEST_PATH_IMAGE001
码标记为1,否则将该邻域的
Figure 272872DEST_PATH_IMAGE001
码标记为0。但是由于噪声点的出现会得到八位全为0的
Figure 247650DEST_PATH_IMAGE013
码,这会使得在计算任一像素点与周围每一邻域像素点
Figure 25113DEST_PATH_IMAGE001
码之间的单点汉明距离时引入误差,所以我们引入图像空间信息,得到缺陷边缘区域内每个像素点对应的空间汉明距离。计算任一像素点与周围八邻域像素点
Figure 427144DEST_PATH_IMAGE001
码之间的八个单点汉明距离,将获得的八个单点汉明距离的均值作为该像素点对应的空间汉明距离
Figure 391689DEST_PATH_IMAGE045
根据每个像素点与任一邻域像素点
Figure 435738DEST_PATH_IMAGE001
码之间的单点汉明距离和该像素点对应的空间汉明距离,计算出每个像素点与任一邻域像素点
Figure 926762DEST_PATH_IMAGE001
码之间的降噪后汉明距离,降噪后汉明距离的计算公式如下式所示:
Figure 250427DEST_PATH_IMAGE046
其中,
Figure 479764DEST_PATH_IMAGE047
Figure 812657DEST_PATH_IMAGE048
表示当前像素点与周围第
Figure 282821DEST_PATH_IMAGE049
个邻域像素点
Figure 557814DEST_PATH_IMAGE001
码之间的单点汉明距离;
Figure 749148DEST_PATH_IMAGE045
表示空间汉明距离;
Figure 620152DEST_PATH_IMAGE050
Figure 85768DEST_PATH_IMAGE051
为调节参数,根据经验设置
Figure 266083DEST_PATH_IMAGE052
Figure 426937DEST_PATH_IMAGE053
Figure 350899DEST_PATH_IMAGE044
表示当前像素点与周围第
Figure 671022DEST_PATH_IMAGE049
个邻域像素点
Figure 772971DEST_PATH_IMAGE001
码之间的降噪后汉明距离。
在计算缺陷边缘区域
Figure 201547DEST_PATH_IMAGE043
中的像素点
Figure 863954DEST_PATH_IMAGE054
对应的最终汉明距离时,需要计算像素点
Figure 179528DEST_PATH_IMAGE054
与周围四邻域像素点
Figure 701645DEST_PATH_IMAGE055
对应的
Figure 837092DEST_PATH_IMAGE001
码之间的降噪后汉明距离,
Figure 634015DEST_PATH_IMAGE056
Figure 69676DEST_PATH_IMAGE057
分别取
Figure 497115DEST_PATH_IMAGE058
Figure 385437DEST_PATH_IMAGE059
Figure 457822DEST_PATH_IMAGE059
Figure 872623DEST_PATH_IMAGE058
Figure 736543DEST_PATH_IMAGE060
Figure 971215DEST_PATH_IMAGE059
Figure 329515DEST_PATH_IMAGE059
Figure 723456DEST_PATH_IMAGE060
。获取每个像素点与周围四邻域像素点
Figure 509010DEST_PATH_IMAGE001
码之间的四个降噪后汉明距离,并将四个降噪后汉明距离的均值作为像素点
Figure 618261DEST_PATH_IMAGE054
对应的最终汉明距离,同理得到缺陷边缘区域内每个像素点对应的最终汉明距离。
对缺陷边缘区域内每个像素点对应的最终汉明距离进行直方图统计,求取全部最终汉明距离在八个预设距离区间中出现的频数,八个预设距离区间分别为
Figure 514673DEST_PATH_IMAGE061
Figure 28700DEST_PATH_IMAGE062
Figure 250734DEST_PATH_IMAGE063
Figure 584632DEST_PATH_IMAGE064
Figure 815893DEST_PATH_IMAGE065
Figure 918848DEST_PATH_IMAGE066
Figure 170837DEST_PATH_IMAGE067
Figure 8343DEST_PATH_IMAGE068
。其中,预设距离区间
Figure 498755DEST_PATH_IMAGE061
的区间号为1,依次类推,八个预设距离区间的区间号分别为1、2、3、4、5、6、7、8,若全部最终汉明距离在第5个预设距离区间中出现的频数最大,则将频数最大的区间号5的倒数作为缺陷边缘区域的纹理复杂度。
在八个区间中选取频数最大的区间号作为缺陷边缘区域
Figure 472527DEST_PATH_IMAGE043
的整体像素
Figure 20052DEST_PATH_IMAGE013
码之间的最终汉明距离,表征了缺陷边缘区域
Figure 79275DEST_PATH_IMAGE043
的纹理复杂度,当缺陷边缘区域
Figure 370448DEST_PATH_IMAGE043
的整体像素
Figure 464306DEST_PATH_IMAGE013
码之间的最终汉明距离越大,说明缺陷边缘区域
Figure 713890DEST_PATH_IMAGE043
的像素的纹理特征在局部变化的越大,纹理复杂度越高,由此将缺陷边缘区域
Figure 260409DEST_PATH_IMAGE043
内每个像素点对应的最终汉明距离在多个预设距离区间内出现的频数,将频数最大的区间号的倒数作为缺陷边缘区域的纹理复杂度
Figure 641360DEST_PATH_IMAGE019
S6、获取传感器外壳图像中缺陷区域的多条边缘线,根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度。
其中,根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度,包括:根据每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标,利用皮尔逊相关系数计算出每条边缘线上边缘像素点的相关性;利用边缘线的条数和每条边缘线上边缘像素点的相关性,计算出缺陷边缘区域的边缘复杂度。
所述缺陷边缘区域的边缘复杂度的计算公式如下式所示:
Figure 950244DEST_PATH_IMAGE014
其中,
Figure 839572DEST_PATH_IMAGE015
表示缺陷区域包含的边缘线的条数;
Figure 732441DEST_PATH_IMAGE016
表示缺陷区域包含的第i条边缘线上边缘像素点的相关性;
Figure 381728DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度。
本发明中已经采用canny算子提取感兴趣区域ROI的边缘像素点,在缺陷边缘区域
Figure 433867DEST_PATH_IMAGE043
中将边缘像素点标记出来。采用DBSCAN算法,设置邻域半径
Figure 244828DEST_PATH_IMAGE069
和数目阈值
Figure 746698DEST_PATH_IMAGE070
,将缺陷边缘区域
Figure 934097DEST_PATH_IMAGE043
中的边缘像素点分为独立的条边缘线
Figure 716108DEST_PATH_IMAGE071
,当缺陷边缘区域
Figure 212817DEST_PATH_IMAGE043
的边缘线条数越多,边缘线的形态结构越复杂(边缘线近似为直线的要比曲线的形态结构简单),边缘复杂度
Figure 598056DEST_PATH_IMAGE017
越高。采用皮尔逊积矩相关系数
Figure 589145DEST_PATH_IMAGE072
(取值范围是
Figure 225663DEST_PATH_IMAGE073
)计算边缘线
Figure 627694DEST_PATH_IMAGE071
上边缘像素点的相关性,如果边缘线越接近直线,皮尔逊积矩相关系数
Figure 123398DEST_PATH_IMAGE072
越接近
Figure 636288DEST_PATH_IMAGE074
,边缘复杂度越低,相反皮尔逊积矩相关系数
Figure 268257DEST_PATH_IMAGE072
越接近于0,边缘复杂度越高,由此计算出边缘复杂度
Figure 106769DEST_PATH_IMAGE017
S7、利用缺陷边缘区域的灰度复杂度、纹理复杂度以及边缘复杂度计算出该张待检测传感器外壳图像中缺陷边缘区域的总复杂度。
所述缺陷边缘区域的总复杂度的计算公式如下式所示:
Figure 683244DEST_PATH_IMAGE075
其中,
Figure 750557DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
Figure 483371DEST_PATH_IMAGE019
表示缺陷边缘区域的纹理复杂度;
Figure 977938DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度;
Figure 41709DEST_PATH_IMAGE020
表示缺陷边缘区域的总复杂度。
S8、根据待检测传感器外壳图像中缺陷边缘区域的总复杂度,对缺陷区域的缺陷类型进行判断。
其中,对缺陷区域的缺陷类型进行判断的步骤如下:
所述缺陷类型包括坏点缺陷、通孔缺陷以及凹坑缺陷,该三种缺陷类型分别对应预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间;
将待检测传感器外壳图像中缺陷边缘区域的总复杂度分别与预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间进行匹配,确定待检测传感器外壳图像中是否存在坏点缺陷、通孔缺陷以及凹坑缺陷。
本发明中预设坏点缺陷对应的总复杂度区间的计算过程如下:
获取多张存在坏点缺陷的传感器外壳图像,按照待检测传感器外壳图像中缺陷边缘区域的总复杂度的计算方法,计算出每张存在坏点缺陷的传感器外壳图像中缺陷边缘区域的总复杂度,由计算出的全部总复杂度值的最大值和最小值确定预设坏点缺陷对应的总复杂度区间;
获取存在坏点缺陷的传感器外壳图像100张,并对这些图像求取缺陷边缘区域复杂度
Figure 427559DEST_PATH_IMAGE020
。将坏点缺陷图像作为第一类,求取该类的缺陷边缘区域复杂度区间
Figure 34121DEST_PATH_IMAGE076
,其中
Figure 948856DEST_PATH_IMAGE077
Figure 499924DEST_PATH_IMAGE078
代表第一类图像中最小和最大的缺陷边缘区域复杂度。
本发明中预设通孔缺陷对应的总复杂度区间的计算过程如下:
获取多张存在通孔缺陷的传感器外壳图像,按照待检测传感器外壳图像中缺陷边缘区域的总复杂度的计算方法,计算出每张存在通孔缺陷的传感器外壳图像中缺陷边缘区域的总复杂度,由计算出的全部总复杂度值的最大值和最小值确定预设通孔缺陷对应的总复杂度区间;
获取存在通孔缺陷的传感器外壳图像100张,并对这些图像求取缺陷边缘区域复杂度
Figure 223553DEST_PATH_IMAGE020
。将通孔缺陷图像作为第一类,求取该类的缺陷边缘区域复杂度区间
Figure 39282DEST_PATH_IMAGE079
,其中,
Figure 390498DEST_PATH_IMAGE080
Figure 569806DEST_PATH_IMAGE081
代表第二类图像中最小和最大的缺陷边缘区域复杂度。
本发明中预设凹坑缺陷对应的总复杂度区间的计算过程如下:
获取多张存在凹坑缺陷的传感器外壳图像,按照待检测传感器外壳图像中缺陷边缘区域的总复杂度的计算方法,计算出每张存在凹坑缺陷的传感器外壳图像中缺陷边缘区域的总复杂度,由计算出的全部总复杂度值的最大值和最小值确定预设凹坑缺陷对应的总复杂度区间。
获取存在凹坑缺陷的传感器外壳图像100张,并对这些图像求取缺陷边缘区域复杂度
Figure 31880DEST_PATH_IMAGE020
。将凹坑缺陷图像作为第一类,求取该类的缺陷边缘区域复杂度区间
Figure 347455DEST_PATH_IMAGE082
,其中,
Figure 138081DEST_PATH_IMAGE083
Figure 539107DEST_PATH_IMAGE084
代表第三类图像中最小和最大的缺陷边缘区域复杂度。
正常情况下坏点缺陷、通孔缺陷以及凹坑缺陷对应的总复杂度区间相距较大不会有交集。若计算出的任意两个总复杂度区间有交集,则将交集区间的中点处对应的总复杂度作为这两个相邻两个总复杂度区间的分界端点。因此,最终确定的预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间并不会有交集。
确定待检测传感器外壳图像中缺陷类型的过程如下:
将该张待检测传感器外壳图像中缺陷边缘区域的总复杂度与预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间进行匹配;
当该张待检测传感器外壳图像中缺陷边缘区域的总复杂度位于预设坏点缺陷对应的总复杂度区间时,判定该张待检测传感器外壳图像中存在坏点缺陷;
当该张待检测传感器外壳图像中缺陷边缘区域的总复杂度位于预设通孔缺陷对应的总复杂度区间时,判定该张待检测传感器外壳图像中存在通孔缺陷;
当该张待检测传感器外壳图像中缺陷边缘区域的总复杂度位于预设凹坑缺陷对应的总复杂度区间时,判定该张待检测传感器外壳图像中存在凹坑缺陷。
综上所述,本发明提供基于人工智能的传感器外壳缺陷检测方法,只需要小样本数据就能对传感器外壳中存在的缺陷进行较为准确快速的分类,提高了传感器外壳缺陷检测速度。

Claims (10)

1.基于人工智能的传感器外壳缺陷检测方法,其特征在于,该方法包括:
获取待检测传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域;
计算出感兴趣区域的长宽比,当感兴趣区域的长宽比大于预设阈值时判定该张待检测传感器外壳图像中存在划痕缺陷;
当感兴趣区域的长宽比小于预设阈值时,根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域;
根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度;
提取缺陷边缘区域内每个像素点的八位
Figure 809231DEST_PATH_IMAGE001
码,计算每个像素点与周围全部邻域像素点
Figure 851005DEST_PATH_IMAGE001
码之间的最终汉明距离,根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度;
获取传感器外壳图像中缺陷区域的多条边缘线,根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度;
利用缺陷边缘区域的灰度复杂度、纹理复杂度以及边缘复杂度计算出该张待检测传感器外壳图像中缺陷边缘区域的总复杂度;
根据待检测传感器外壳图像中缺陷边缘区域的总复杂度,对缺陷区域的缺陷类型进行判断。
2.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述获取传感器外壳图像并提取其中缺陷区域,根据缺陷区域得到感兴趣区域,包括:
利用canny算子提取传感器外壳图像中边缘像素点;
对提取出的传感器外壳图像中边缘像素点求取包围全部边缘像素点的最小外接矩形,将最小外接矩形包围的区域作为缺陷区域;
将缺陷区域按预设比例扩大后作为感兴趣区域。
3.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述根据感兴趣区域内各像素点的灰度值将感兴趣区域分为中心区域和缺陷边缘区域,包括:
对感兴趣区域内各像素点的灰度值进行阈值分割得到最优灰度值阈值;
将感兴趣区域内各像素点的灰度值小于最优灰度值阈值的像素点提取出来,作为中心区域;
对感兴趣区域求中心区域的补集得到缺陷边缘区域。
4.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述根据缺陷边缘区域内每个像素点的灰度值计算出缺陷边缘区域的灰度复杂度,包括:
以缺陷边缘区域内任一像素点为中心像素点,求该像素点周围八邻域内每个像素点与中心像素点灰度值的差值,由获得的全部差值作为多个元素值构建该像素点的空间灰度向量,同理得到缺陷边缘区域内每个像素点对应的空间灰度向量;
当缺陷边缘区域内任一像素点的空间灰度向量中存在一个元素值大于预设元素值阈值时,将该像素点标记为突变像素点,同理得到缺陷边缘区域内全部突变像素点;
获取全部突变像素点对应的空间灰度向量中包含的所有大于预设元素值阈值的元素值,并将获取的全部元素值的均值作为缺陷边缘区域的灰度突变程度;
根据缺陷边缘区域内全部像素点的灰度值均值、包含的灰度级数目、每个灰度级对应的灰度值、以及缺陷边缘区域的灰度突变程度计算出缺陷边缘区域的灰度复杂度。
5.根据权利要求4所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述缺陷边缘区域的灰度复杂度的计算公式如下式所示:
Figure 755376DEST_PATH_IMAGE002
其中,
Figure 478482DEST_PATH_IMAGE003
表示缺陷边缘区域内包含的灰度级数目;
Figure 761695DEST_PATH_IMAGE004
表示缺陷边缘区域内第i个灰度级对应的灰度值;
Figure 774038DEST_PATH_IMAGE005
表示缺陷边缘区域内全部像素点的灰度值均值;
Figure 244334DEST_PATH_IMAGE006
表示根据缺陷边缘区域的灰度突变程度计算出的空间灰度信息量;
Figure 771130DEST_PATH_IMAGE007
表示空间灰度调节参数,根据经验设置
Figure 423697DEST_PATH_IMAGE008
Figure 354744DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
所述空间灰度信息量的计算公式如下式所示:
Figure 436970DEST_PATH_IMAGE010
其中,
Figure DEST_PATH_IMAGE011
表示缺陷边缘区域内全部突变像素点占据缺陷边缘区域内总像素点的比值;
Figure 826844DEST_PATH_IMAGE012
表示缺陷边缘区域的灰度突变程度;
Figure 537180DEST_PATH_IMAGE006
表示空间灰度信息量。
6.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述提取缺陷边缘区域内每个像素点的八位
Figure 826079DEST_PATH_IMAGE001
码,计算每个像素点与周围全部邻域像素点
Figure 270967DEST_PATH_IMAGE001
码之间的最终汉明距离,包括:
利用
Figure 733041DEST_PATH_IMAGE013
算子提取缺陷边缘区域内每个像素点周围八邻域的八位
Figure 504075DEST_PATH_IMAGE001
码;
计算任一像素点与周围每一邻域像素点
Figure 229455DEST_PATH_IMAGE001
码之间的汉明距离,并将该汉明距离作为该像素点与该邻域像素点
Figure 755114DEST_PATH_IMAGE001
码之间的单点汉明距离,由获得的全部单点汉明距离的均值作为该像素点对应的空间汉明距离;
根据每个像素点与任一邻域像素点
Figure 877004DEST_PATH_IMAGE001
码之间的单点汉明距离和该像素点对应的空间汉明距离,计算出每个像素点与任一邻域像素点
Figure 702877DEST_PATH_IMAGE001
码之间的降噪后汉明距离;
获取每个像素点与周围四邻域像素点
Figure 864737DEST_PATH_IMAGE001
码之间的降噪后汉明距离,将获取的四个降噪后汉明距离的均值作为该像素点对应的最终汉明距离。
7.根据权利要求6所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述根据缺陷边缘区域内全部像素点对应的最终汉明距离确定缺陷边缘区域的纹理复杂度,包括:
得到缺陷边缘区域内每个像素点对应的最终汉明距离;
统计出缺陷边缘区域内每个像素点对应的最终汉明距离在多个预设距离区间内出现的频数,将频数最大的区间号的倒数作为缺陷边缘区域的纹理复杂度。
8.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述根据边缘线的条数和每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标计算出缺陷边缘区域的边缘复杂度,包括:
根据每条边缘线上边缘像素点在传感器外壳图像中的横坐标和纵坐标,利用皮尔逊相关系数计算出每条边缘线上边缘像素点的相关性;
利用边缘线的条数和每条边缘线上边缘像素点的相关性,计算出缺陷边缘区域的边缘复杂度;
所述缺陷边缘区域的边缘复杂度的计算公式如下式所示:
Figure 2327DEST_PATH_IMAGE014
其中,
Figure 215658DEST_PATH_IMAGE015
表示缺陷区域包含的边缘线的条数;
Figure 505825DEST_PATH_IMAGE016
表示缺陷区域包含的第i条边缘线上边缘像素点的相关性;
Figure 635324DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度。
9.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述缺陷边缘区域的总复杂度的计算公式如下式所示:
Figure 10941DEST_PATH_IMAGE018
其中,
Figure 618509DEST_PATH_IMAGE009
表示缺陷边缘区域的灰度复杂度;
Figure 28762DEST_PATH_IMAGE019
表示缺陷边缘区域的纹理复杂度;
Figure 841079DEST_PATH_IMAGE017
表示缺陷边缘区域的边缘复杂度;
Figure 969572DEST_PATH_IMAGE020
表示缺陷边缘区域的总复杂度。
10.根据权利要求1所述的基于人工智能的传感器外壳缺陷检测方法,其特征在于,所述对缺陷区域的缺陷类型进行判断的步骤如下:
所述缺陷类型包括坏点缺陷、通孔缺陷以及凹坑缺陷,该三种缺陷类型分别对应预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间;
将待检测传感器外壳图像中缺陷边缘区域的总复杂度分别与预设坏点缺陷对应的总复杂度区间、预设通孔缺陷对应的总复杂度区间以及预设凹坑缺陷对应的总复杂度区间进行匹配,确定待检测传感器外壳图像中是否存在坏点缺陷、通孔缺陷以及凹坑缺陷。
CN202210796839.5A 2022-07-08 2022-07-08 基于人工智能的传感器外壳缺陷检测方法 Active CN114882026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210796839.5A CN114882026B (zh) 2022-07-08 2022-07-08 基于人工智能的传感器外壳缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210796839.5A CN114882026B (zh) 2022-07-08 2022-07-08 基于人工智能的传感器外壳缺陷检测方法

Publications (2)

Publication Number Publication Date
CN114882026A true CN114882026A (zh) 2022-08-09
CN114882026B CN114882026B (zh) 2022-09-02

Family

ID=82683603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210796839.5A Active CN114882026B (zh) 2022-07-08 2022-07-08 基于人工智能的传感器外壳缺陷检测方法

Country Status (1)

Country Link
CN (1) CN114882026B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115035120A (zh) * 2022-08-12 2022-09-09 山东迪格重工机械有限公司 基于物联网的机床控制方法及系统
CN116485874A (zh) * 2023-06-25 2023-07-25 深圳市众翔奕精密科技有限公司 一种模切辅料切割间距智能检测方法及系统
CN116958125A (zh) * 2023-09-18 2023-10-27 惠州市鑫晖源科技有限公司 基于图像处理的电竞主机电源元件缺陷视觉检测方法
CN117197140A (zh) * 2023-11-07 2023-12-08 东莞市恒兴隆实业有限公司 基于机器视觉的不规则金属扣成型检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373123A (zh) * 2016-09-21 2017-02-01 哈尔滨工业大学 基于k_tSL中心聚类算法的工业元件表面缺陷检测方法
CN108346141A (zh) * 2018-01-11 2018-07-31 浙江理工大学 单边侧入光式导光板缺陷提取方法
CN113077467A (zh) * 2021-06-08 2021-07-06 深圳市华汉伟业科技有限公司 一种目标物体的边缘缺陷检测方法及装置、存储介质
US20220076021A1 (en) * 2020-09-09 2022-03-10 Rajesh Krishnaswamy Iyengar System and method for automatic visual inspection with deep learning
CN114494259A (zh) * 2022-04-18 2022-05-13 南通东德纺织科技有限公司 一种基于人工智能的布匹缺陷检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373123A (zh) * 2016-09-21 2017-02-01 哈尔滨工业大学 基于k_tSL中心聚类算法的工业元件表面缺陷检测方法
CN108346141A (zh) * 2018-01-11 2018-07-31 浙江理工大学 单边侧入光式导光板缺陷提取方法
US20220076021A1 (en) * 2020-09-09 2022-03-10 Rajesh Krishnaswamy Iyengar System and method for automatic visual inspection with deep learning
CN113077467A (zh) * 2021-06-08 2021-07-06 深圳市华汉伟业科技有限公司 一种目标物体的边缘缺陷检测方法及装置、存储介质
CN114494259A (zh) * 2022-04-18 2022-05-13 南通东德纺织科技有限公司 一种基于人工智能的布匹缺陷检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张烨 等: ""基于圆形感兴趣区域的图像检索算法"", 《现代电子技术》 *
甘胜丰等: "钢材表面缺陷图像感兴趣区域提取方法", 《机械设计与制造》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115035120A (zh) * 2022-08-12 2022-09-09 山东迪格重工机械有限公司 基于物联网的机床控制方法及系统
CN115035120B (zh) * 2022-08-12 2022-11-04 山东迪格重工机械有限公司 基于物联网的机床控制方法及系统
CN116485874A (zh) * 2023-06-25 2023-07-25 深圳市众翔奕精密科技有限公司 一种模切辅料切割间距智能检测方法及系统
CN116485874B (zh) * 2023-06-25 2023-08-29 深圳市众翔奕精密科技有限公司 一种模切辅料切割间距智能检测方法及系统
CN116958125A (zh) * 2023-09-18 2023-10-27 惠州市鑫晖源科技有限公司 基于图像处理的电竞主机电源元件缺陷视觉检测方法
CN116958125B (zh) * 2023-09-18 2023-12-26 惠州市鑫晖源科技有限公司 基于图像处理的电竞主机电源元件缺陷视觉检测方法
CN117197140A (zh) * 2023-11-07 2023-12-08 东莞市恒兴隆实业有限公司 基于机器视觉的不规则金属扣成型检测方法
CN117197140B (zh) * 2023-11-07 2024-02-20 东莞市恒兴隆实业有限公司 基于机器视觉的不规则金属扣成型检测方法

Also Published As

Publication number Publication date
CN114882026B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN114882026B (zh) 基于人工智能的传感器外壳缺陷检测方法
CN115082467B (zh) 基于计算机视觉的建材焊接表面缺陷检测方法
CN109242848B (zh) 基于otsu和ga-bp神经网络墙纸缺陷检测与识别方法
CN109444169B (zh) 一种轴承缺陷检测方法及系统
CN115018828A (zh) 一种电子元器件的缺陷检测方法
US20060029257A1 (en) Apparatus for determining a surface condition of an object
CN115082683A (zh) 一种基于图像处理的注塑缺陷检测方法
CN113160192A (zh) 复杂背景下基于视觉的压雪车外观缺陷检测方法及装置
CN109840483B (zh) 一种滑坡裂缝检测与识别的方法及装置
CN109376740A (zh) 一种基于视频的水尺读数检测方法
CN115147414A (zh) 一种双极型功率晶体管表面击穿缺陷检测方法
CN111652213A (zh) 一种基于深度学习的船舶水尺读数识别方法
CN114820625B (zh) 一种汽车顶块缺陷检测方法
CN114972356B (zh) 塑料制品表面缺陷检测识别方法及系统
CN115294140A (zh) 一种五金零件缺陷检测方法及系统
Zhang et al. An accurate fuzzy measure-based detection method for various types of defects on strip steel surfaces
CN114494179A (zh) 一种基于图像识别的手机背部破损点检测方法及系统
CN116735612B (zh) 一种精密电子元器件焊接缺陷检测方法
CN113221881B (zh) 一种多层级的智能手机屏幕缺陷检测方法
CN114926410A (zh) 制动盘外观缺陷检测方法
CN112508913A (zh) 基于图像检测的电缆截面边沿检测方法
CN115272350A (zh) 一种计算机pcb主板生产质量检测方法
CN117253024B (zh) 一种基于机器视觉的工业盐质检管控方法及系统
CN116883408B (zh) 基于人工智能的积算仪壳体缺陷检测方法
KR101151739B1 (ko) 텐서 보팅에 기반을 둔 컬러 클러스터링 시스템 및 그 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant