CN114879501A - A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty - Google Patents

A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty Download PDF

Info

Publication number
CN114879501A
CN114879501A CN202210538766.XA CN202210538766A CN114879501A CN 114879501 A CN114879501 A CN 114879501A CN 202210538766 A CN202210538766 A CN 202210538766A CN 114879501 A CN114879501 A CN 114879501A
Authority
CN
China
Prior art keywords
electro
servo valve
proportional servo
equation
hydraulic proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210538766.XA
Other languages
Chinese (zh)
Inventor
姚建勇
杨晓伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210538766.XA priority Critical patent/CN114879501A/en
Publication of CN114879501A publication Critical patent/CN114879501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种考虑时变参数不确定性的电液比例伺服阀轴控系统自适应动态面控制方法,该控制方法是将时变参数自适应控制与动态面控制相融合,并通过模型前馈相消得到的。针对考虑时变参数不确定性的电液比例伺服阀轴控问题,本发明既能保证对系统时变参数不确定性的主动消除,提高系统抗参数不确定性的能力,又能避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能。

Figure 202210538766

The invention discloses an adaptive dynamic surface control method for an electro-hydraulic proportional servo valve shaft control system considering the uncertainty of time-varying parameters. Feedforward cancellation is obtained. Aiming at the shaft control problem of the electro-hydraulic proportional servo valve considering the uncertainty of time-varying parameters, the invention can not only ensure the active elimination of the uncertainty of the time-varying parameters of the system, improve the ability of the system to resist the uncertainty of the parameters, but also avoid the electro-hydraulic The differential explosion problem in the traditional backstepping control of the system reduces the influence of measurement noise on the control accuracy and achieves high-precision tracking performance.

Figure 202210538766

Description

一种考虑时变参数不确定性的电液比例伺服阀轴控方法A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty

技术领域technical field

本发明涉及机电伺服控制技术领域,具体涉及一种考虑时变参数不确定性的电液比例伺服阀轴控方法(ADSC)。The invention relates to the technical field of electromechanical servo control, in particular to an electro-hydraulic proportional servo valve shaft control method (ADSC) considering the uncertainty of time-varying parameters.

背景技术Background technique

电液比例伺服阀轴控系统凭借其功率密度大、力/转矩输出大、动态响应快等特性,在机器人、重型机械、高性能加载测试设备等领域有着举足轻重的地位。电液比例伺服阀轴控系统是一个典型的非线性系统,包含许多非线性特性和建模不确定性。非线性特性包含有磁滞、饱和等输入非线性、比例伺服阀流量压力非线性,摩擦非线性等,建模不确定性包括参数不确定性和不确定性非线性,其中参数不确定性主要有负载质量、执行器的粘性摩擦系数、泄漏系数、伺服阀流量增益、液压油弹性模量等,不确定性非线性主要有未建模的摩擦动态、系统高阶动态、外干扰及未建模泄漏等。电液比例伺服阀轴控系统向高精度、高频响发展时,系统呈现的非线性特性对系统性能的影响越显著,而且建模不确定性的存在会使以系统名义模型设计的控制器不稳定或降阶,因此电液比例伺服阀轴控系统非线性特性和建模不确定性是限制系统性能提升的重要因素。随着工业及国防领域技术水平的不断进步,以往基于传统线性理论设计的控制器已逐渐不能满足系统的高性能需求,因此必须针对电液比例伺服阀轴控系统中的非线性特性研究更加先进的非线性控制策略。The electro-hydraulic proportional servo valve axis control system plays an important role in the fields of robots, heavy machinery, high-performance loading test equipment and other fields due to its high power density, large force/torque output, and fast dynamic response. The electro-hydraulic proportional servo valve shaft control system is a typical nonlinear system, which contains many nonlinear characteristics and modeling uncertainties. The nonlinear characteristics include input nonlinearity such as hysteresis and saturation, proportional servo valve flow and pressure nonlinearity, friction nonlinearity, etc. The modeling uncertainty includes parameter uncertainty and uncertainty nonlinearity, among which the parameter uncertainty is mainly There are load mass, viscous friction coefficient of actuator, leakage coefficient, flow gain of servo valve, elastic modulus of hydraulic oil, etc. Uncertain nonlinearity mainly includes unmodeled friction dynamics, high-order system dynamics, external disturbances and unmodeled dynamics. Mold leakage, etc. When the electro-hydraulic proportional servo valve shaft control system develops towards high precision and high response, the nonlinear characteristics of the system will have a more significant impact on the system performance, and the existence of modeling uncertainty will make the controller designed with the system nominal model. Therefore, the nonlinear characteristics and modeling uncertainty of the electro-hydraulic proportional servo valve shaft control system are important factors that limit the performance improvement of the system. With the continuous advancement of technology in the field of industry and national defense, the controllers designed based on traditional linear theory have gradually been unable to meet the high-performance requirements of the system. Therefore, it is necessary to study more advanced nonlinear characteristics in electro-hydraulic proportional servo valve shaft control systems. nonlinear control strategy.

针对电液比例伺服阀轴控系统的非线性控制问题,许多方法相继被提出。其中自适应控制方法对于处理参数不确定性问题是非常有效的方法,能够获得渐近跟踪的稳态性能,但是对于外负载干扰等不确定性非线性却显得力不从心,当不确定性非线性过大时可能会使系统失稳,而实际的电液比例伺服阀轴控系统都存在不确定性非线性,因此自适应控制方法在实际应用中并不能获得高精度的控制性能;作为一种鲁棒控制方法,经典滑模控制可以有效地处理任何有界的建模不确定性,并获得渐近跟踪的稳态性能,但是经典滑模控制所设计的不连续的控制器容易引起滑模面的颤振问题,从而恶化系统的跟踪性能;为了同时解决参数不确定性和不确定性非线性的问题,自适应鲁棒控制方法被提出,该控制方法在两种建模不确定性同时存在的情况下可以使系统获得确定的暂态和稳态性能,如要获得高精度跟踪性能则必须通过提高反馈增益以减小跟踪误差,由于测量噪声的存在,该增益取得过大往往会导致高增益反馈从而造成控制输入的抖振,进而恶化控制性能,甚至引起系统失稳。For the nonlinear control of electro-hydraulic proportional servo valve shaft control system, many methods have been proposed one after another. Among them, the adaptive control method is a very effective method for dealing with parameter uncertainty, and can obtain steady-state performance of asymptotic tracking, but it is not enough for uncertain nonlinearity such as external load disturbance. When it is large, it may cause the system to become unstable, and the actual electro-hydraulic proportional servo valve shaft control system has uncertainty and nonlinearity, so the adaptive control method cannot obtain high-precision control performance in practical applications; Rod control method, classical sliding mode control can effectively deal with any bounded modeling uncertainty and obtain steady-state performance of asymptotic tracking, but the discontinuous controller designed by classical sliding mode control is easy to cause sliding mode surface In order to solve the problem of parameter uncertainty and uncertainty nonlinearity at the same time, an adaptive robust control method is proposed, which is in the presence of two modeling uncertainties at the same time. Under the circumstance, the system can obtain certain transient and steady-state performance. To obtain high-precision tracking performance, it is necessary to increase the feedback gain to reduce the tracking error. Due to the existence of measurement noise, if the gain is too large, it often leads to high The gain feedback causes chattering of the control input, which deteriorates the control performance and even causes system instability.

发明内容SUMMARY OF THE INVENTION

本发明提出一种考虑时变参数不确定性的电液比例伺服阀轴控方法,既能保证对系统时变参数不确定性的主动消除,提高系统抗参数不确定性的能力,又能避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能。The invention proposes an electro-hydraulic proportional servo valve shaft control method considering the uncertainty of time-varying parameters, which can not only ensure the active elimination of the uncertainty of the time-varying parameters of the system, improve the ability of the system to resist the uncertainty of the parameters, but also avoid the The differential explosion problem in the traditional backstepping control of the electro-hydraulic system reduces the influence of measurement noise on the control accuracy and achieves high-precision tracking performance.

实现本发明目的的技术解决方案为:一种考虑时变参数不确定性的电液比例伺服阀轴控方法,包括以下步骤:The technical solution for realizing the purpose of the present invention is: an electro-hydraulic proportional servo valve shaft control method considering the uncertainty of time-varying parameters, comprising the following steps:

步骤1、建立电液比例伺服阀位置轴控系统的数学模型,转入步骤2;Step 1. Establish the mathematical model of the electro-hydraulic proportional servo valve position axis control system, and go to step 2;

步骤2、基于电液比例伺服阀位置轴控系统的数学模型,设计考虑时变参数不确定性的自适应动态面控制器,转入步骤3;Step 2, based on the mathematical model of the electro-hydraulic proportional servo valve position axis control system, design an adaptive dynamic surface controller considering the uncertainty of time-varying parameters, and go to step 3;

步骤3、运用李雅普诺夫稳定性理论进行考虑时变参数不确定性的自适应动态面控制器稳定性证明,得到系统跟踪误差渐近稳定的结果。Step 3. Use the Lyapunov stability theory to prove the stability of the adaptive dynamic surface controller considering the uncertainty of time-varying parameters, and obtain the result that the system tracking error is asymptotically stable.

本发明与现有技术相比,其显著优点是:(1)实现系统时变参数不确定性以及未知扰动的主动补偿,抗干扰能力强;(2)避免电液系统传统反步控制中微分爆炸问题,降低测量噪声对控制精度的影响,实现高精度跟踪性能,仿真结果验证了其有效性。Compared with the prior art, the present invention has the following significant advantages: (1) to realize active compensation of system time-varying parameter uncertainty and unknown disturbance, and to have strong anti-interference ability; (2) to avoid differential in traditional backstep control of electro-hydraulic system Explosion problem, reduce the impact of measurement noise on control accuracy, and achieve high-precision tracking performance. The simulation results verify its effectiveness.

附图说明Description of drawings

图1是本发明考虑时变参数不确定性的电液比例伺服阀轴控方法原理示意图。1 is a schematic diagram of the principle of the electro-hydraulic proportional servo valve shaft control method considering the uncertainty of time-varying parameters according to the present invention.

图2是本发明电液比例伺服阀轴控系统原理简图。Figure 2 is a schematic diagram of the principle of the electro-hydraulic proportional servo valve shaft control system of the present invention.

图3是本发明所设计的ADSC控制器作用下系统输出对期望指令的跟踪过程曲线图。FIG. 3 is a curve diagram of the tracking process of the system output to the desired command under the action of the ADSC controller designed by the present invention.

图4是本发明所设计的ADSC控制器作用下系统的跟踪误差随时间变化的曲线图。FIG. 4 is a graph showing the variation of the tracking error of the system with time under the action of the ADSC controller designed by the present invention.

图5是本发明所设计的ADSC控制器和传统PID控制器作用下系统的跟踪误差对比曲线图。FIG. 5 is a comparative curve diagram of the tracking error of the system under the action of the ADSC controller designed by the present invention and the traditional PID controller.

图6是本发明所设计的ADSC控制器作用下系统的控制输入曲线图。6 is a control input curve diagram of the system under the action of the ADSC controller designed by the present invention.

具体实施方式Detailed ways

下面结合附图及具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.

结合图1和图2,本发明考虑时变参数不确定性的电液比例伺服阀轴控方法,包括以下步骤:1 and 2, the present invention considers the time-varying parameter uncertainty of the electro-hydraulic proportional servo valve shaft control method, including the following steps:

步骤1,建立电液比例伺服阀位置轴控系统的数学模型。Step 1, establish the mathematical model of the position axis control system of the electro-hydraulic proportional servo valve.

步骤1-1、所述电液比例伺服阀位置轴控系统应用于大型工业重载机械设备直线运动,其中负载与液压油缸上活塞杆固连,电液比例伺服阀控制液压油缸上活塞杆运动,从而驱使负载运动。Step 1-1. The electro-hydraulic proportional servo valve position axis control system is applied to the linear motion of large industrial heavy-duty mechanical equipment, wherein the load is fixedly connected with the piston rod on the hydraulic cylinder, and the electro-hydraulic proportional servo valve controls the movement of the piston rod on the hydraulic cylinder , thereby driving the load to move.

根据牛顿第二定律,电液比例伺服阀位置轴控系统的力平衡方程为:According to Newton's second law, the force balance equation of the electro-hydraulic proportional servo valve position axis control system is:

Figure BDA0003649426410000031
Figure BDA0003649426410000031

式(1),m表示负载的质量,y表示液压油缸活塞杆的位移,

Figure BDA0003649426410000032
表示液压油缸活塞杆的速度,
Figure BDA0003649426410000033
表示液压油缸活塞杆的加速度,A表示液压油缸活塞的有效作用面积,P1表示液压油缸进油腔油压,P2表示液压油缸出油腔油压,B表示液压缸的粘性阻尼系数,Af表示液压缸库仑摩擦幅值,
Figure BDA0003649426410000034
表示液压缸库仑摩擦近似形状函数,d1(t)表示系统机械未建模干扰,t表示时间。Formula (1), m represents the mass of the load, y represents the displacement of the piston rod of the hydraulic cylinder,
Figure BDA0003649426410000032
represents the speed of the hydraulic cylinder piston rod,
Figure BDA0003649426410000033
Represents the acceleration of the piston rod of the hydraulic cylinder, A represents the effective action area of the hydraulic cylinder piston, P 1 represents the oil pressure of the hydraulic cylinder inlet chamber, P 2 represents the oil pressure of the hydraulic cylinder outlet chamber, B represents the viscous damping coefficient of the hydraulic cylinder, A f represents the Coulomb friction amplitude of the hydraulic cylinder,
Figure BDA0003649426410000034
represents the approximate shape function of the Coulomb friction of the hydraulic cylinder, d 1 (t) represents the mechanical unmodeled disturbance of the system, and t represents the time.

则式(1)改写为:The formula (1) can be rewritten as:

Figure BDA0003649426410000035
Figure BDA0003649426410000035

电液比例伺服阀位置轴控系统中,忽略油缸油液外泄漏,则压力动态方程为:In the electro-hydraulic proportional servo valve position axis control system, ignoring the external leakage of oil in the cylinder, the pressure dynamic equation is:

Figure BDA0003649426410000036
Figure BDA0003649426410000036

式(3)中,βe表示油液有效弹性模量,Ct表示液压缸内泄漏系数,油缸两侧进出油腔油压压差PL=P1-P2,进油腔的控制体积V1=V01+Ay,出油腔的控制体积V2=V02-Ay,V01表示进油腔的初始体积,V02表示出油腔的初始体积,Q1表示进油腔的流量,Q2表示出油腔的流量,q1表示P1的未建模干扰,q2表示P2的未建模干扰,

Figure BDA0003649426410000041
表示P1的一阶导数,
Figure BDA0003649426410000042
表示P2的一阶导数。In formula (3), β e represents the effective elastic modulus of the oil, C t represents the leakage coefficient in the hydraulic cylinder, the oil pressure difference P L =P 1 -P 2 between the inlet and outlet of the oil chamber on both sides of the oil cylinder, the control volume of the oil inlet chamber V 1 =V 01 +Ay, the control volume of the oil outlet chamber V 2 =V 02 -Ay, V 01 represents the initial volume of the oil inlet chamber, V 02 represents the initial volume of the oil outlet chamber, and Q 1 represents the flow rate of the oil inlet chamber , Q2 represents the flow rate out of the oil chamber, q1 represents the unmodeled disturbance of P1, q2 represents the unmodeled disturbance of P2,
Figure BDA0003649426410000041
represents the first derivative of P 1 ,
Figure BDA0003649426410000042
represents the first derivative of P2 .

Q1、Q2分别与电液比例伺服阀阀芯位移xv有如下关系:Q 1 and Q 2 are respectively related to the displacement x v of the electro-hydraulic proportional servo valve spool as follows:

Figure BDA0003649426410000043
Figure BDA0003649426410000043

其中,电液比例伺服阀阀系数

Figure BDA0003649426410000044
Cd表示电液比例伺服阀的流量系数,w0表示电液比例伺服阀的阀芯面积梯度,ρ表示油液密度,Ps表示供油压力,Pr表示回油压力,s(·)表示中间变量·的函数,被定义为:Among them, the valve coefficient of electro-hydraulic proportional servo valve
Figure BDA0003649426410000044
C d represents the flow coefficient of the electro-hydraulic proportional servo valve, w 0 represents the spool area gradient of the electro-hydraulic proportional servo valve, ρ represents the oil density, P s represents the oil supply pressure, P r represents the oil return pressure, s( ) The function representing the intermediate variable · is defined as:

Figure BDA0003649426410000045
Figure BDA0003649426410000045

忽略电液比例伺服阀阀芯动态,假设作用于阀芯的控制输入u和阀芯位移xv成比例关系,即满足xv=kiu,其中,ki表示电压-阀芯位移增益系数,因此式(4)被改写成:Ignoring the spool dynamics of the electro-hydraulic proportional servo valve, it is assumed that the control input u acting on the spool is proportional to the spool displacement x v , that is, x v = ki u, where ki represents the voltage-spool displacement gain coefficient , so equation (4) is rewritten as:

Figure BDA0003649426410000046
Figure BDA0003649426410000046

式(6),中间变量ku=kqki,中间变量

Figure BDA0003649426410000047
中间变量
Figure BDA0003649426410000048
Equation (6), the intermediate variable ku = k q k i , the intermediate variable
Figure BDA0003649426410000047
Intermediate variables
Figure BDA0003649426410000048

步骤1-2、定义状态变量:

Figure BDA0003649426410000049
其中,中间变量x1=y,中间变量
Figure BDA00036494264100000410
中间变量x3=(AP1-AP2)/m,系统未知时变参数Θ1=[θ123]T=[B,Af,D1]T,其中,中间变量θ1=B,中间变量θ2=Af,中间变量θ3=D1,系统未知时变参数Θ2=D2,则将式(2)转化为状态方程:Step 1-2, define state variables:
Figure BDA0003649426410000049
Among them, the intermediate variable x 1 =y, the intermediate variable
Figure BDA00036494264100000410
Intermediate variable x 3 =(AP 1 -AP 2 )/m, system unknown time-varying parameter Θ 1 =[θ 123 ] T =[B,A f ,D 1 ] T , where the intermediate variable θ 1 =B, the intermediate variable θ 2 =A f , the intermediate variable θ 3 =D 1 , and the unknown time-varying parameter θ 2 =D 2 of the system, then formula (2) is transformed into the state equation:

Figure BDA00036494264100000411
Figure BDA00036494264100000411

式(7),

Figure BDA00036494264100000412
表示x1的一阶导数,
Figure BDA00036494264100000413
表示x2的一阶导数,
Figure BDA00036494264100000414
表示x3的一阶导数,中间变量
Figure BDA00036494264100000415
中间变量
Figure BDA00036494264100000416
中间变量D1=d1(t)/m,中间变量
Figure BDA0003649426410000051
中间变量
Figure BDA0003649426410000052
中间变量
Figure BDA0003649426410000053
中间变量
Figure BDA0003649426410000054
Formula (7),
Figure BDA00036494264100000412
represents the first derivative of x 1 ,
Figure BDA00036494264100000413
represents the first derivative of x2 ,
Figure BDA00036494264100000414
represents the first derivative of x 3 , the intermediate variable
Figure BDA00036494264100000415
Intermediate variables
Figure BDA00036494264100000416
Intermediate variable D 1 =d 1 (t)/m, intermediate variable
Figure BDA0003649426410000051
Intermediate variables
Figure BDA0003649426410000052
Intermediate variables
Figure BDA0003649426410000053
Intermediate variables
Figure BDA0003649426410000054

为便于设计控制器与未知动态观测器,作如下假设:To facilitate the design of controllers and unknown dynamic observers, the following assumptions are made:

假设1:系统期望跟踪位置指令xd是二阶连续的,且系统期望位置指令、速度指令及加速度指令都是有界的。Assumption 1: The system expects the tracking position command x d to be second-order continuous, and the system expects that the position command, velocity command and acceleration command are all bounded.

假设2:系统未知时变参数Θ1与Θ2满足:Assumption 2: The unknown time-varying parameters Θ 1 and Θ 2 of the system satisfy:

||Θ1||≤δ1,||Θ2||≤δ2 (8)||Θ 1 ||≤δ 1 ,||Θ 2 ||≤δ 2 (8)

式(8),δ1和δ2均为未知的正的常数。In formula (8), δ 1 and δ 2 are both unknown positive constants.

转入步骤2。Go to step 2.

步骤2,基于电液比例伺服阀位置轴控系统的数学模型,设计考虑时变参数不确定性的自适应动态面控制器,具体步骤如下:Step 2: Based on the mathematical model of the electro-hydraulic proportional servo valve position axis control system, an adaptive dynamic surface controller considering the uncertainty of time-varying parameters is designed. The specific steps are as follows:

步骤2-1、为便于设计控制器,定义系统的跟踪误差z1=x1-xd,xd是系统期望跟踪位置指令,设计如下非线性滤波器:Step 2-1. In order to facilitate the design of the controller, define the tracking error of the system z 1 =x 1 -x d , where x d is the desired tracking position command of the system, and design the following nonlinear filter:

Figure BDA0003649426410000055
Figure BDA0003649426410000055

式(9),滤波增益τ1>0,α1表示x2的虚拟控制,α1f表示α1的滤波信号,α1f与x2的误差z2=x21f,α1滤波误差ε1=α1f1,增益l1>0表示

Figure BDA0003649426410000056
的上界,σ1(t)表示恒为正的函数,且满足
Figure BDA0003649426410000057
其中,ν表示积分变量,
Figure BDA0003649426410000058
表示恒正的常数,
Figure BDA0003649426410000059
表示α1的一阶导数,
Figure BDA00036494264100000510
表示α1f的一阶导数。Equation (9), the filter gain τ 1 >0, α 1 represents the virtual control of x 2 , α 1f represents the filtered signal of α 1 , the error between α 1f and x 2 z 2 =x 21f , the filter error of α 1 ε 11f1 , the gain l 1 >0 means
Figure BDA0003649426410000056
The upper bound of , σ 1 (t) represents a function that is always positive and satisfies
Figure BDA0003649426410000057
where ν represents the integral variable,
Figure BDA0003649426410000058
represents a constant positive constant,
Figure BDA0003649426410000059
represents the first derivative of α 1 ,
Figure BDA00036494264100000510
represents the first derivative of α 1f .

对z1求导,得:Derivative with respect to z 1 , we get:

Figure BDA00036494264100000511
Figure BDA00036494264100000511

设计虚拟控制α1为:The virtual control α 1 is designed as:

Figure BDA00036494264100000512
Figure BDA00036494264100000512

其中,

Figure BDA0003649426410000061
表示xd的一阶导数,增益k1>0,则in,
Figure BDA0003649426410000061
represents the first derivative of x d , and the gain k 1 > 0, then

Figure BDA0003649426410000062
Figure BDA0003649426410000062

步骤2-2、对z2求导得:Step 2-2. Derive z 2 to get:

Figure BDA0003649426410000063
Figure BDA0003649426410000063

设计如下非线性滤波器:Design the following nonlinear filter:

Figure BDA0003649426410000064
Figure BDA0003649426410000064

式(14),滤波增益τ2>0,α2表示x3的虚拟控制,α2f表示α2的滤波信号,α2f与x3的误差z3=x32f,α2滤波误差ε2=α2f2,增益l2>0表示

Figure BDA0003649426410000065
的上界,σ2(t)表示恒为正的函数,且满足
Figure BDA0003649426410000066
其中,ν表示积分变量,
Figure BDA0003649426410000067
表示恒正的常数,
Figure BDA0003649426410000068
表示α2的一阶导数,
Figure BDA0003649426410000069
表示α2f的一阶导数。Equation (14), the filter gain τ 2 >0, α 2 represents the virtual control of x 3 , α 2f represents the filtered signal of α 2 , the error between α 2f and x 3 z 3 =x 32f , the filter error of α 2 ε 22f2 , the gain l 2 >0 indicates that
Figure BDA0003649426410000065
The upper bound of , σ 2 (t) represents a function that is always positive and satisfies
Figure BDA0003649426410000066
where ν represents the integral variable,
Figure BDA0003649426410000067
represents a constant positive constant,
Figure BDA0003649426410000068
represents the first derivative of α2 ,
Figure BDA0003649426410000069
represents the first derivative of α 2f .

定义中间变量

Figure BDA00036494264100000618
设计虚拟控制α2为:define intermediate variables
Figure BDA00036494264100000618
Design virtual control α 2 as:

Figure BDA00036494264100000610
Figure BDA00036494264100000610

式(15),χ1表示中间变量,

Figure BDA00036494264100000611
表示
Figure BDA00036494264100000619
的估计值,增益k2>0,中间变量
Figure BDA00036494264100000612
Figure BDA00036494264100000613
的更新律
Figure BDA00036494264100000614
为Equation (15), χ 1 represents the intermediate variable,
Figure BDA00036494264100000611
express
Figure BDA00036494264100000619
The estimated value of , the gain k 2 > 0, the intermediate variable
Figure BDA00036494264100000612
Figure BDA00036494264100000613
The renewal law of
Figure BDA00036494264100000614
for

Figure BDA00036494264100000615
Figure BDA00036494264100000615

式(16),增益μ1>0。Equation (16), gain μ 1 >0.

将式(15)代入式(13),得:Substituting equation (15) into equation (13), we get:

Figure BDA00036494264100000616
Figure BDA00036494264100000616

步骤2-3、对z3求导得:Step 2-3, take the derivative of z 3 to get:

Figure BDA00036494264100000617
Figure BDA00036494264100000617

定义中间变量

Figure BDA00036494264100000711
根据式(18),则阀芯的控制输入,即设计考虑时变参数不确定性的自适应动态面控制器u为:define intermediate variables
Figure BDA00036494264100000711
According to equation (18), the control input of the spool, that is, the adaptive dynamic surface controller u designed to consider the uncertainty of time-varying parameters is:

Figure BDA0003649426410000071
Figure BDA0003649426410000071

式(19),增益k3>0,中间变量

Figure BDA0003649426410000072
χ2表示中间变量,
Figure BDA0003649426410000073
表示
Figure BDA00036494264100000712
的估计值,
Figure BDA0003649426410000074
更新律
Figure BDA0003649426410000075
为Equation (19), gain k 3 >0, intermediate variable
Figure BDA0003649426410000072
χ 2 represents the intermediate variable,
Figure BDA0003649426410000073
express
Figure BDA00036494264100000712
the estimated value of ,
Figure BDA0003649426410000074
Renewal law
Figure BDA0003649426410000075
for

Figure BDA0003649426410000076
Figure BDA0003649426410000076

式(20),增益μ2>0。Equation (20), gain μ 2 >0.

将式(19)代入式(18)中得:Substitute equation (19) into equation (18) to get:

Figure BDA0003649426410000077
Figure BDA0003649426410000077

转入步骤3。Go to step 3.

步骤3,运用李雅普诺夫稳定性理论进行考虑时变参数不确定性的自适应动态面控制器稳定性证明,得到系统跟踪误差渐近稳定的结果,具体如下:Step 3: Use Lyapunov stability theory to prove the stability of the adaptive dynamic surface controller considering the uncertainty of time-varying parameters, and obtain the result that the system tracking error is asymptotically stable, as follows:

定义李雅普诺夫函数如下:The Lyapunov function is defined as follows:

Figure BDA0003649426410000078
Figure BDA0003649426410000078

其中,中间变量

Figure BDA0003649426410000079
中间变量
Figure BDA00036494264100000710
Among them, the intermediate variable
Figure BDA0003649426410000079
Intermediate variables
Figure BDA00036494264100000710

对式(22)求导并将式(9)、(12)、(14)、(16)、(17)、(20)和(21)代入可得:Derivating equation (22) and substituting equations (9), (12), (14), (16), (17), (20) and (21) into equations (22), we get:

Figure BDA0003649426410000081
Figure BDA0003649426410000081

考虑到

Figure BDA0003649426410000082
Figure BDA0003649426410000083
可得表达式:considering
Figure BDA0003649426410000082
and
Figure BDA0003649426410000083
Available expressions:

Figure BDA0003649426410000084
Figure BDA0003649426410000084

注意到notice

Figure BDA0003649426410000085
Figure BDA0003649426410000085

可得Available

Figure BDA0003649426410000086
Figure BDA0003649426410000086

将式(25)和式(26)代入式(24),可得Substituting equations (25) and (26) into equation (24), we can get

Figure BDA0003649426410000087
Figure BDA0003649426410000087

定义中间变量z和Λ分别为:The intermediate variables z and Λ are defined as:

z=[z1;z2;z3;ε1;ε2] (28)z=[z 1 ; z 2 ; z 3 ; ε 1 ; ε 2 ] (28)

Figure BDA0003649426410000091
Figure BDA0003649426410000091

式(29),中间变量Λ1和Λ2分别为Equation (29), the intermediate variables Λ 1 and Λ 2 are respectively

Figure BDA0003649426410000092
Figure BDA0003649426410000092

通过调整增益k1、k2、k3和滤波增益τ1、τ2,可使对称矩阵Λ为正定矩阵,则可得:By adjusting the gains k 1 , k 2 , k 3 and the filter gains τ 1 , τ 2 , the symmetric matrix Λ can be made a positive definite matrix, then:

Figure BDA0003649426410000093
Figure BDA0003649426410000093

式(31),中间变量Φ=zTΛz。Equation (31), the intermediate variable Φ=z T Λz.

对式(31)两侧分别积分,可得:Integrating both sides of equation (31) separately, we can get:

Figure BDA0003649426410000094
Figure BDA0003649426410000094

由式(32)可知V是有界的,Φ是积分有界的。进而可以得出系统所有信号都是有界的。因此,Φ是一致连续的。根据Barbalat引理可得,当时间趋向于正无穷的时候,跟踪误差z1趋向于0。From equation (32), it can be known that V is bounded and Φ is integrally bounded. Then it can be concluded that all signals of the system are bounded. Therefore, Φ is uniformly continuous. According to Barbalat's lemma, when time tends to positive infinity, the tracking error z 1 tends to 0.

因此有结论:通过调整增益k1、k2、k3和滤波增益τ1、τ2,针对电液比例伺服阀位置轴控系统设计的考虑时变参数不确定性的自适应动态面控制器可以使系统获得跟踪误差渐进收敛到0的结果,考虑时变参数不确定性的电液比例伺服阀位置轴控系统自适应动态面控制器原理示意图如图1所示。Therefore, there is a conclusion: by adjusting the gains k 1 , k 2 , k 3 and the filter gains τ 1 , τ 2 , an adaptive dynamic surface controller considering the uncertainty of time-varying parameters is designed for the electro-hydraulic proportional servo valve position axis control system. The system can obtain the result that the tracking error gradually converges to 0. The schematic diagram of the adaptive dynamic surface controller of the electro-hydraulic proportional servo valve position axis control system considering the uncertainty of the time-varying parameters is shown in Figure 1.

实施例Example

为考核所设计的控制器性能,在仿真中电液比例伺服阀位置轴控系统物理参数如表1所示:In order to evaluate the performance of the designed controller, the physical parameters of the electro-hydraulic proportional servo valve position axis control system in the simulation are shown in Table 1:

表1系统物理参数Table 1 System physical parameters

物理参数physical parameters 数值Numerical value 物理参数physical parameters 数值Numerical value A(m<sup>2</sup>)A(m<sup>2</sup>) 2×10<sup>-4</sup>2×10<sup>-4</sup> β<sub>e</sub>(Pa)β<sub>e</sub>(Pa) 2×10<sup>8</sup>2×10<sup>8</sup> m(kg)m(kg) 4040 B(N·s/m)B(N·s/m) 8080 C<sub>t</sub>(m<sup>5</sup>/(N·s))C<sub>t</sub>(m<sup>5</sup>/(N s)) 7×10<sup>-12</sup>7×10<sup>-12</sup> k<sub>u</sub>(m/V)k<sub>u</sub>(m/V) 4×10<sup>-8</sup>4×10<sup>-8</sup> V<sub>01</sub>(m<sup>3</sup>)V<sub>01</sub>(m<sup>3</sup>) 1×10<sup>-3</sup>1×10<sup>-3</sup> V<sub>02</sub>(m<sup>3</sup>)V<sub>02</sub>(m<sup>3</sup>) 1×10<sup>-3</sup>1×10<sup>-3</sup> P<sub>s</sub>(MPa)P<sub>s</sub>(MPa) 77 P<sub>r</sub>(MPa)P<sub>r</sub>(MPa) 00 A<sub>f</sub>(N·s/m)A<sub>f</sub>(N s/m) 1010

给定系统的期望指令为

Figure BDA0003649426410000101
库仑摩擦形状函数为Sf(x2)=2arctan(1000x2)/π。The expected instructions for a given system are
Figure BDA0003649426410000101
The Coulomb friction shape function is S f (x 2 )=2arctan(1000x 2 )/π.

仿真中取如下的控制器作对比:In the simulation, the following controllers are used for comparison:

考虑系统未知动态补偿的电液比例伺服阀位置轴控控制器(UDORC):取增益k1=10,k2=1,k3=1,μ1=20,μ2=20,τ1=100,τ2=1000,l1=l2=1。The electro-hydraulic proportional servo valve position axis control controller (UDORC) considering the unknown dynamic compensation of the system: take the gain k 1 =10, k 2 =1, k 3 =1, μ 1 =20, μ 2 =20, τ 1 = 100, τ 2 =1000, l 1 =l 2 =1.

PID控制器:PID控制器参数的选取步骤是:首先在忽略电液比例伺服阀轴控系统非线性动态的情况下,通过Matlab中的PID参数自整定功能获得一组控制器参数,然后在将系统的非线性动态加上后对已获得的自整定参数进行微调使系统获得最佳的跟踪性能。选取的控制器参数为kP=10,kI=1,kD=1。PID controller: The selection steps of the PID controller parameters are as follows: first, while ignoring the nonlinear dynamics of the electro-hydraulic proportional servo valve shaft control system, a set of controller parameters is obtained through the PID parameter self-tuning function in Matlab, and then the After the nonlinear dynamics of the system are added, the obtained self-tuning parameters are fine-tuned to make the system obtain the best tracking performance. The selected controller parameters are k P =10, k I =1, and k D =1.

系统的期望指令、ADSC控制器跟踪误差、ADSC控制器与PID控制器的跟踪误差对比分别如图3、图4和图5所示。由图4可知,在ADSC控制器作用下,比例伺服阀轴控系统的位置输出对指令的跟踪精度很高,稳态跟踪误差的幅值约为5×10-4m。从图5中两种控制器的跟踪误差对比可以看出本发明所提出的ADSC控制器的跟踪误差相较于PID控制器要小很多,跟踪性能更加优越。The expected command of the system, the tracking error of the ADSC controller, and the comparison of the tracking error between the ADSC controller and the PID controller are shown in Figure 3, Figure 4, and Figure 5, respectively. It can be seen from Figure 4 that under the action of the ADSC controller, the position output of the proportional servo valve shaft control system has a high tracking accuracy to the command, and the steady-state tracking error amplitude is about 5×10 -4 m. It can be seen from the comparison of the tracking errors of the two controllers in FIG. 5 that the tracking error of the ADSC controller proposed by the present invention is much smaller than that of the PID controller, and the tracking performance is more superior.

图6是ADSC控制器作用下电液比例伺服阀轴控系统控制输入随时间变化的曲线图,从图中可以看出,所获得的控制输入是连续的信号,更利于在实际应用中执行。Figure 6 is a graph showing the change of the control input of the electro-hydraulic proportional servo valve shaft control system with time under the action of the ADSC controller. It can be seen from the figure that the obtained control input is a continuous signal, which is more conducive to implementation in practical applications.

Claims (4)

1.一种考虑时变参数不确定性的电液比例伺服阀轴控方法,其特征在于,包括以下步骤:1. an electro-hydraulic proportional servo valve shaft control method considering the uncertainty of time-varying parameters, is characterized in that, comprises the following steps: 步骤1、建立电液比例伺服阀位置轴控系统的数学模型,转入步骤2;Step 1. Establish the mathematical model of the electro-hydraulic proportional servo valve position axis control system, and go to step 2; 步骤2、基于电液比例伺服阀位置轴控系统的数学模型,设计考虑时变参数不确定性的自适应动态面控制器,转入步骤3;Step 2, based on the mathematical model of the electro-hydraulic proportional servo valve position axis control system, design an adaptive dynamic surface controller considering the uncertainty of time-varying parameters, and go to step 3; 步骤3、运用李雅普诺夫稳定性理论进行考虑时变参数不确定性的自适应动态面控制器稳定性证明,得到系统跟踪误差渐近稳定的结果。Step 3. Use the Lyapunov stability theory to prove the stability of the adaptive dynamic surface controller considering the uncertainty of time-varying parameters, and obtain the result that the system tracking error is asymptotically stable. 2.根据权利要求1所述的考虑时变参数不确定性的电液比例伺服阀轴控方法,其特征在于,步骤1中,建立电液比例伺服阀位置轴控系统的数学模型,具体如下:2. The electro-hydraulic proportional servo valve shaft control method considering time-varying parameter uncertainty according to claim 1 is characterized in that, in step 1, a mathematical model of the electro-hydraulic proportional servo valve position shaft control system is established, and the details are as follows : 步骤1-1、所述电液比例伺服阀位置轴控系统应用于大型工业重载机械设备直线运动,其中负载与液压油缸上活塞杆固连,电液比例伺服阀控制液压油缸上活塞杆运动,从而驱使负载运动;Step 1-1. The electro-hydraulic proportional servo valve position axis control system is applied to the linear motion of large industrial heavy-duty mechanical equipment, wherein the load is fixedly connected with the piston rod on the hydraulic cylinder, and the electro-hydraulic proportional servo valve controls the movement of the piston rod on the hydraulic cylinder , thereby driving the load to move; 根据牛顿第二定律,电液比例伺服阀位置轴控系统的力平衡方程为:According to Newton's second law, the force balance equation of the electro-hydraulic proportional servo valve position axis control system is:
Figure FDA0003649426400000011
Figure FDA0003649426400000011
式(1),m表示负载的质量,y表示液压油缸活塞杆的位移,
Figure FDA0003649426400000012
表示液压油缸活塞杆的速度,
Figure FDA0003649426400000013
表示液压油缸活塞杆的加速度,A表示液压油缸活塞的有效作用面积,P1表示液压油缸进油腔油压,P2表示液压油缸出油腔油压,B表示液压缸的粘性阻尼系数,Af表示液压缸库仑摩擦幅值,
Figure FDA0003649426400000016
表示液压缸库仑摩擦近似形状函数,d1(t)表示系统机械未建模干扰,t表示时间;
Formula (1), m represents the mass of the load, y represents the displacement of the piston rod of the hydraulic cylinder,
Figure FDA0003649426400000012
represents the speed of the hydraulic cylinder piston rod,
Figure FDA0003649426400000013
Represents the acceleration of the piston rod of the hydraulic cylinder, A represents the effective action area of the hydraulic cylinder piston, P 1 represents the oil pressure of the hydraulic cylinder inlet chamber, P 2 represents the oil pressure of the hydraulic cylinder outlet chamber, B represents the viscous damping coefficient of the hydraulic cylinder, A f represents the Coulomb friction amplitude of the hydraulic cylinder,
Figure FDA0003649426400000016
represents the approximate shape function of the Coulomb friction of the hydraulic cylinder, d 1 (t) represents the unmodeled disturbance of the system machinery, and t represents the time;
则式(1)改写为:The formula (1) can be rewritten as:
Figure FDA0003649426400000014
Figure FDA0003649426400000014
电液比例伺服阀位置轴控系统中,忽略油缸油液外泄漏,则压力动态方程为:In the electro-hydraulic proportional servo valve position axis control system, ignoring the external leakage of oil in the cylinder, the pressure dynamic equation is:
Figure FDA0003649426400000015
Figure FDA0003649426400000015
式(3)中,βe表示油液有效弹性模量,Ct表示液压缸内泄漏系数,油缸两侧进出油腔油压压差PL=P1-P2,进油腔的控制体积V1=V01+Ay,出油腔的控制体积V2=V02-Ay,V01表示进油腔的初始体积,V02表示出油腔的初始体积,Q1表示进油腔的流量,Q2表示出油腔的流量,q1表示P1的未建模干扰,q2表示P2的未建模干扰,
Figure FDA0003649426400000021
表示P1的一阶导数,
Figure FDA0003649426400000022
表示P2的一阶导数;
In formula (3), β e represents the effective elastic modulus of the oil, C t represents the leakage coefficient in the hydraulic cylinder, the oil pressure difference P L =P 1 -P 2 between the inlet and outlet of the oil chamber on both sides of the oil cylinder, the control volume of the oil inlet chamber V 1 =V 01 +Ay, the control volume of the oil outlet chamber V 2 =V 02 -Ay, V 01 represents the initial volume of the oil inlet chamber, V 02 represents the initial volume of the oil outlet chamber, and Q 1 represents the flow rate of the oil inlet chamber , Q2 represents the flow rate out of the oil chamber, q1 represents the unmodeled disturbance of P1, q2 represents the unmodeled disturbance of P2,
Figure FDA0003649426400000021
represents the first derivative of P 1 ,
Figure FDA0003649426400000022
represents the first derivative of P2 ;
Q1、Q2分别与电液比例伺服阀阀芯位移xv有如下关系:Q 1 and Q 2 are respectively related to the displacement x v of the electro-hydraulic proportional servo valve spool as follows:
Figure FDA0003649426400000023
Figure FDA0003649426400000023
其中,电液比例伺服阀阀系数
Figure FDA0003649426400000024
Cd表示电液比例伺服阀的流量系数,w0表示电液比例伺服阀的阀芯面积梯度,ρ表示油液密度,Ps表示供油压力,Pr表示回油压力,s(·)表示中间变量·的函数,被定义为:
Among them, the valve coefficient of electro-hydraulic proportional servo valve
Figure FDA0003649426400000024
C d represents the flow coefficient of the electro-hydraulic proportional servo valve, w 0 represents the spool area gradient of the electro-hydraulic proportional servo valve, ρ represents the oil density, P s represents the oil supply pressure, P r represents the oil return pressure, s( ) The function representing the intermediate variable · is defined as:
Figure FDA0003649426400000025
Figure FDA0003649426400000025
忽略电液比例伺服阀阀芯动态,假设作用于阀芯的控制输入u和阀芯位移xv成比例关系,即满足xv=kiu,其中,ki表示电压-阀芯位移增益系数,因此式(4)被改写成:Ignoring the spool dynamics of the electro-hydraulic proportional servo valve, it is assumed that the control input u acting on the spool is proportional to the spool displacement x v , that is, x v = ki u, where ki represents the voltage-spool displacement gain coefficient , so equation (4) is rewritten as:
Figure FDA0003649426400000026
Figure FDA0003649426400000026
式(6),中间变量ku=kqki,中间变量
Figure FDA0003649426400000027
中间变量
Figure FDA0003649426400000028
Equation (6), the intermediate variable ku = k q k i , the intermediate variable
Figure FDA0003649426400000027
Intermediate variables
Figure FDA0003649426400000028
步骤1-2、定义状态变量:
Figure FDA0003649426400000029
其中,中间变量x1=y,中间变量
Figure FDA00036494264000000210
中间变量x3=(AP1-AP2)/m,系统未知时变参数Θ1=[θ123]T=[B,Af,D1]T,其中,中间变量θ1=B,中间变量θ2=Af,中间变量θ3=D1,系统未知时变参数Θ2=D2,则将式(2)转化为状态方程:
Step 1-2, define state variables:
Figure FDA0003649426400000029
Among them, the intermediate variable x 1 =y, the intermediate variable
Figure FDA00036494264000000210
Intermediate variable x 3 =(AP 1 -AP 2 )/m, system unknown time-varying parameter Θ 1 =[θ 123 ] T =[B,A f ,D 1 ] T , where the intermediate variable θ 1 =B, the intermediate variable θ 2 =A f , the intermediate variable θ 3 =D 1 , and the unknown time-varying parameter θ 2 =D 2 of the system, then formula (2) is transformed into the state equation:
Figure FDA0003649426400000031
Figure FDA0003649426400000031
式(7),
Figure FDA0003649426400000032
表示x1的一阶导数,
Figure FDA0003649426400000033
表示x2的一阶导数,
Figure FDA0003649426400000034
表示x3的一阶导数,中间变量
Figure FDA0003649426400000035
中间变量
Figure FDA0003649426400000036
中间变量D1=d1(t)/m,中间变量
Figure FDA0003649426400000037
中间变量
Figure FDA0003649426400000038
中间变量
Figure FDA0003649426400000039
中间变量
Figure FDA00036494264000000310
Formula (7),
Figure FDA0003649426400000032
represents the first derivative of x 1 ,
Figure FDA0003649426400000033
represents the first derivative of x2 ,
Figure FDA0003649426400000034
represents the first derivative of x 3 , the intermediate variable
Figure FDA0003649426400000035
Intermediate variables
Figure FDA0003649426400000036
Intermediate variable D 1 =d 1 (t)/m, intermediate variable
Figure FDA0003649426400000037
Intermediate variables
Figure FDA0003649426400000038
Intermediate variables
Figure FDA0003649426400000039
Intermediate variables
Figure FDA00036494264000000310
为便于设计控制器与未知动态观测器,作如下假设:To facilitate the design of controllers and unknown dynamic observers, the following assumptions are made: 假设1:系统期望跟踪位置指令xd是二阶连续的,且系统期望位置指令、速度指令及加速度指令都是有界的;Assumption 1: The system expects the tracking position command x d to be second-order continuous, and the system expects the position command, velocity command and acceleration command to be bounded; 假设2:系统未知时变参数Θ1与Θ2满足:Assumption 2: The unknown time-varying parameters Θ 1 and Θ 2 of the system satisfy: ||Θ1||≤δ1,||Θ2||≤δ2 (8)||Θ 1 ||≤δ 1 ,||Θ 2 ||≤δ 2 (8) 式(8),δ1和δ2均为未知的正的常数;Equation (8), δ 1 and δ 2 are unknown positive constants; 转入步骤2。Go to step 2.
3.根据权利要求2所述的考虑时变参数不确定性的电液比例伺服阀轴控方法,其特征在于,步骤2中,基于电液比例伺服阀位置轴控系统的数学模型,设计考虑时变参数不确定性的自适应动态面控制器,具体步骤如下:3. The electro-hydraulic proportional servo valve shaft control method considering time-varying parameter uncertainty according to claim 2 is characterized in that, in step 2, based on the mathematical model of the electro-hydraulic proportional servo valve position shaft control system, the design considers Adaptive dynamic surface controller with time-varying parameter uncertainty, the specific steps are as follows: 步骤2-1、为便于设计控制器,定义系统的跟踪误差z1=x1-xd,xd是系统期望跟踪位置指令,设计如下非线性滤波器:Step 2-1. In order to facilitate the design of the controller, define the tracking error of the system z 1 =x 1 -x d , where x d is the desired tracking position command of the system, and design the following nonlinear filter:
Figure FDA00036494264000000311
Figure FDA00036494264000000311
式(9),滤波增益τ1>0,α1表示x2的虚拟控制,α1f表示α1的滤波信号,α1f与x2的误差z2=x21f,α1滤波误差ε1=α1f1,增益l1>0表示
Figure FDA00036494264000000312
的上界,σ1(t)表示恒为正的函数,且满足
Figure FDA00036494264000000313
其中,ν表示积分变量,
Figure FDA0003649426400000041
表示恒正的常数,
Figure FDA0003649426400000042
表示α1的一阶导数,
Figure FDA0003649426400000043
表示α1f的一阶导数;
Equation (9), the filter gain τ 1 >0, α 1 represents the virtual control of x 2 , α 1f represents the filtered signal of α 1 , the error between α 1f and x 2 z 2 =x 21f , the filter error of α 1 ε 11f1 , the gain l 1 >0 means
Figure FDA00036494264000000312
The upper bound of , σ 1 (t) represents a function that is always positive and satisfies
Figure FDA00036494264000000313
where ν represents the integral variable,
Figure FDA0003649426400000041
represents a constant positive constant,
Figure FDA0003649426400000042
represents the first derivative of α 1 ,
Figure FDA0003649426400000043
represents the first derivative of α 1f ;
对z1求导,得:Derivative with respect to z 1 , we get:
Figure FDA0003649426400000044
Figure FDA0003649426400000044
设计虚拟控制α1为:The virtual control α 1 is designed as:
Figure FDA0003649426400000045
Figure FDA0003649426400000045
其中,
Figure FDA0003649426400000046
表示xd的一阶导数,增益k1>0,则
in,
Figure FDA0003649426400000046
represents the first derivative of x d , and the gain k 1 > 0, then
Figure FDA0003649426400000047
Figure FDA0003649426400000047
步骤2-2、对z2求导得:Step 2-2. Derive z 2 to get:
Figure FDA0003649426400000048
Figure FDA0003649426400000048
设计如下非线性滤波器:Design the following nonlinear filter:
Figure FDA0003649426400000049
Figure FDA0003649426400000049
式(14),滤波增益τ2>0,α2表示x3的虚拟控制,α2f表示α2的滤波信号,α2f与x3的误差z3=x32f,α2滤波误差ε2=α2f2,增益l2>0表示
Figure FDA00036494264000000410
的上界,σ2(t)表示恒为正的函数,且满足
Figure FDA00036494264000000411
其中,ν表示积分变量,
Figure FDA00036494264000000412
表示恒正的常数,
Figure FDA00036494264000000413
表示α2的一阶导数,
Figure FDA00036494264000000414
表示α2f的一阶导数;
Equation (14), the filter gain τ 2 >0, α 2 represents the virtual control of x 3 , α 2f represents the filtered signal of α 2 , the error between α 2f and x 3 z 3 =x 32f , the filter error of α 2 ε 22f2 , the gain l 2 >0 indicates that
Figure FDA00036494264000000410
The upper bound of , σ 2 (t) represents a function that is always positive and satisfies
Figure FDA00036494264000000411
where ν represents the integral variable,
Figure FDA00036494264000000412
represents a constant positive constant,
Figure FDA00036494264000000413
represents the first derivative of α2 ,
Figure FDA00036494264000000414
represents the first derivative of α 2f ;
定义中间变量
Figure FDA00036494264000000422
设计虚拟控制α2为:
define intermediate variables
Figure FDA00036494264000000422
Design virtual control α 2 as:
Figure FDA00036494264000000415
Figure FDA00036494264000000415
式(15),χ1表示中间变量,
Figure FDA00036494264000000416
表示
Figure FDA00036494264000000421
的估计值,增益k2>0,中间变量
Figure FDA00036494264000000417
Figure FDA00036494264000000418
的更新律
Figure FDA00036494264000000419
Equation (15), χ 1 represents the intermediate variable,
Figure FDA00036494264000000416
express
Figure FDA00036494264000000421
The estimated value of , the gain k 2 > 0, the intermediate variable
Figure FDA00036494264000000417
Figure FDA00036494264000000418
The renewal law of
Figure FDA00036494264000000419
for
Figure FDA00036494264000000420
Figure FDA00036494264000000420
式(16),增益μ1>0;Equation (16), gain μ 1 >0; 将式(15)代入式(13),得:Substituting equation (15) into equation (13), we get:
Figure FDA0003649426400000051
Figure FDA0003649426400000051
步骤2-3、对z3求导得:Step 2-3, take the derivative of z 3 to get:
Figure FDA0003649426400000052
Figure FDA0003649426400000052
定义中间变量
Figure FDA00036494264000000513
根据式(18),则阀芯的控制输入,即设计考虑时变参数不确定性的自适应动态面控制器u为:
define intermediate variables
Figure FDA00036494264000000513
According to equation (18), the control input of the spool, that is, the adaptive dynamic surface controller u designed to consider the uncertainty of time-varying parameters is:
Figure FDA0003649426400000053
Figure FDA0003649426400000053
式(19),增益k3>0,中间变量
Figure FDA0003649426400000054
χ2表示中间变量,
Figure FDA0003649426400000055
表示
Figure FDA00036494264000000514
的估计值,
Figure FDA0003649426400000056
更新律
Figure FDA0003649426400000057
Equation (19), gain k 3 >0, intermediate variable
Figure FDA0003649426400000054
χ 2 represents the intermediate variable,
Figure FDA0003649426400000055
express
Figure FDA00036494264000000514
the estimated value of ,
Figure FDA0003649426400000056
Renewal law
Figure FDA0003649426400000057
for
Figure FDA0003649426400000058
Figure FDA0003649426400000058
式(20),增益μ2>0;Equation (20), gain μ 2 >0; 将式(19)代入式(18)中得:Substitute equation (19) into equation (18) to get:
Figure FDA0003649426400000059
Figure FDA0003649426400000059
转入步骤3。Go to step 3.
4.根据权利要求3所述的考虑时变参数不确定性的电液比例伺服阀轴控方法,其特征在于,步骤3所述的运用李雅普诺夫稳定性理论进行考虑时变参数不确定性的自适应动态面控制器稳定性证明,得到系统跟踪误差渐近稳定的结果,具体如下:4. The electro-hydraulic proportional servo valve shaft control method considering time-varying parameter uncertainty according to claim 3, wherein the step 3 uses Lyapunov stability theory to consider time-varying parameter uncertainty The stability of the adaptive dynamic surface controller is proved by , and the result that the system tracking error is asymptotically stable is obtained, as follows: 定义李雅普诺夫函数如下:The Lyapunov function is defined as follows:
Figure FDA00036494264000000510
Figure FDA00036494264000000510
其中,中间变量
Figure FDA00036494264000000511
中间变量
Figure FDA00036494264000000512
Among them, the intermediate variable
Figure FDA00036494264000000511
Intermediate variables
Figure FDA00036494264000000512
运用李雅普诺夫稳定性理论进行稳定性证明,得到系统跟踪误差渐进稳定的结果。The Lyapunov stability theory is used to prove the stability, and the result of the asymptotic stability of the system tracking error is obtained.
CN202210538766.XA 2022-05-18 2022-05-18 A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty Pending CN114879501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210538766.XA CN114879501A (en) 2022-05-18 2022-05-18 A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210538766.XA CN114879501A (en) 2022-05-18 2022-05-18 A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty

Publications (1)

Publication Number Publication Date
CN114879501A true CN114879501A (en) 2022-08-09

Family

ID=82675675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210538766.XA Pending CN114879501A (en) 2022-05-18 2022-05-18 A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty

Country Status (1)

Country Link
CN (1) CN114879501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118068714A (en) * 2024-03-04 2024-05-24 南京理工大学 Intelligent valve core displacement control method considering unknown hydrodynamic force compensation
CN118192225A (en) * 2024-02-26 2024-06-14 南京理工大学 Electrohydraulic proportional servo valve self-learning gain position axis control method
CN118295246A (en) * 2024-03-15 2024-07-05 南京理工大学 Pilot-operated electro-hydraulic proportional servo valve output feedback control method based on instruction filtering
CN118655776A (en) * 2024-05-28 2024-09-17 南京理工大学 A method for position axis control of an electro-hydraulic proportional servo valve considering output performance safety

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678763A (en) * 2015-01-21 2015-06-03 浙江工业大学 Friction compensation and dynamic surface control method based on least squares support vector machine for electromechanical servo system
CN106374490A (en) * 2016-09-21 2017-02-01 河海大学常州校区 Active Power Filter Control Method Based on Dynamic Surface Fuzzy Sliding Mode Control
CN106438593A (en) * 2016-10-21 2017-02-22 电子科技大学 An electro-hydraulic servo control method and mechanical arm with parameter uncertainty and load disturbance
CN106647277A (en) * 2017-01-06 2017-05-10 淮阴工学院 Self-adaptive dynamic surface control method of arc-shaped mini-sized electromechanical chaotic system
CN107769651A (en) * 2017-11-02 2018-03-06 宁波工程学院 A kind of method for controlling permanent magnet synchronous motor based on dynamic sliding surface
KR20190135755A (en) * 2018-05-29 2019-12-09 전남대학교산학협력단 Electro-Hydraulic Servo System and Control Method thereof
CN113431926A (en) * 2021-07-12 2021-09-24 南京工程学院 Electro-hydraulic proportional valve and high-precision position control system thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678763A (en) * 2015-01-21 2015-06-03 浙江工业大学 Friction compensation and dynamic surface control method based on least squares support vector machine for electromechanical servo system
CN106374490A (en) * 2016-09-21 2017-02-01 河海大学常州校区 Active Power Filter Control Method Based on Dynamic Surface Fuzzy Sliding Mode Control
CN106438593A (en) * 2016-10-21 2017-02-22 电子科技大学 An electro-hydraulic servo control method and mechanical arm with parameter uncertainty and load disturbance
CN106647277A (en) * 2017-01-06 2017-05-10 淮阴工学院 Self-adaptive dynamic surface control method of arc-shaped mini-sized electromechanical chaotic system
CN107769651A (en) * 2017-11-02 2018-03-06 宁波工程学院 A kind of method for controlling permanent magnet synchronous motor based on dynamic sliding surface
KR20190135755A (en) * 2018-05-29 2019-12-09 전남대학교산학협력단 Electro-Hydraulic Servo System and Control Method thereof
CN113431926A (en) * 2021-07-12 2021-09-24 南京工程学院 Electro-hydraulic proportional valve and high-precision position control system thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIAOWEI YANG .ET AL: "《Adaptive dynamic surface tracking control for uncertain full-state constrained nonlinear systems with disturbance compensation》", JOURNAL OF THE FRANKLIN INSTITUTE, 20 February 2022 (2022-02-20), pages 2424 *
崔龙飞等: "《大型喷杆喷雾机钟摆式主被动悬架自适应鲁棒控制研究》", 农业机械学报, vol. 51, no. 12, 31 December 2020 (2020-12-31), pages 133 - 136 *
江浩斌等: "《流量控制式 ECHPS 系统的自适应动态面控制策略》", 机床与液压, vol. 43, no. 13, 31 July 2015 (2015-07-31), pages 42 - 46 *
赵纯: "《运载火箭自动脐带连接器对接轨迹跟踪控制研究》", 中国博士学位论文全文数据库 工程科技Ⅱ辑, 15 January 2022 (2022-01-15), pages 031 - 99 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118192225A (en) * 2024-02-26 2024-06-14 南京理工大学 Electrohydraulic proportional servo valve self-learning gain position axis control method
CN118192225B (en) * 2024-02-26 2024-11-05 南京理工大学 Electrohydraulic proportional servo valve self-learning gain position axis control method
CN118068714A (en) * 2024-03-04 2024-05-24 南京理工大学 Intelligent valve core displacement control method considering unknown hydrodynamic force compensation
CN118068714B (en) * 2024-03-04 2024-08-09 南京理工大学 Intelligent valve core displacement control method considering unknown hydrodynamic force compensation
CN118295246A (en) * 2024-03-15 2024-07-05 南京理工大学 Pilot-operated electro-hydraulic proportional servo valve output feedback control method based on instruction filtering
CN118655776A (en) * 2024-05-28 2024-09-17 南京理工大学 A method for position axis control of an electro-hydraulic proportional servo valve considering output performance safety

Similar Documents

Publication Publication Date Title
CN114943146A (en) Electro-hydraulic proportional servo valve position axial control method considering input time lag
CN114879501A (en) A Shaft Control Method of Electro-hydraulic Proportional Servo Valve Considering Time-varying Parameter Uncertainty
CN115143165A (en) Electro-hydraulic proportional servo valve position shaft control method considering unknown dynamic compensation of system
Guan et al. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters
CN110703608B (en) A kind of intelligent motion control method of hydraulic servo actuator
CN110308651B (en) Electro-hydraulic servo system all-state constraint control method based on extended state observer
CN111577711B (en) Active-disturbance-rejection robust control method for double-rod hydraulic cylinder position servo system
CN104345639A (en) Robust adaptive control (RAC) method of electro-hydraulic position servo control system
CN104345638A (en) ADRAC (active-disturbance-rejection adaptive control) method for hydraulic motor position servo system
CN110928182A (en) A Robust Adaptive Repetitive Control Method for Hydraulic Servo System Based on State Estimation
CN111308889B (en) Adaptive integral robust control method of spray rod system
CN108958023A (en) A kind of electro-hydraulic position servo control system, terminal, storage medium
CN107165892A (en) A kind of sliding-mode control of electrohydraulic servo system
CN118545646B (en) Backstepping sliding mode control method for heavy forklift pump-controlled lifting system based on nonlinear observer
CN114692429A (en) A control method, equipment and medium for an electro-hydraulic servo system
CN118131602B (en) Output feedback control method of pilot type electro-hydraulic proportional servo valve considering disturbance suppression
CN117518830A (en) Asymptotic tracking control method of single-rod electro-hydraulic servo system based on disturbance compensation
CN118192225B (en) Electrohydraulic proportional servo valve self-learning gain position axis control method
CN118655776B (en) Electrohydraulic proportional servo valve position axis control method considering output performance safety
CN112987575B (en) A position closed-loop tracking error limiting control method for electro-hydraulic servo systems
CN120029055A (en) Hydraulic multi-way valve intelligent shaft control method based on reinforcement learning
CN115524973A (en) A fuzzy sliding mode control method for electro-hydraulic servo system integrating potential-like functions
CN117666362A (en) Nonlinear disturbance rejection method of proportional valve control motor system considering valve dynamic compensation
CN118295246B (en) Pilot-operated electro-hydraulic proportional servo valve output feedback control method based on instruction filtering
CN118092143B (en) Proportional servo valve core displacement control method considering unknown hysteresis compensation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination