CN114866382A - SOQPSK-TG Signal Generation Method Based on Endless Symbol Cyclic Data Block - Google Patents
SOQPSK-TG Signal Generation Method Based on Endless Symbol Cyclic Data Block Download PDFInfo
- Publication number
- CN114866382A CN114866382A CN202210400587.XA CN202210400587A CN114866382A CN 114866382 A CN114866382 A CN 114866382A CN 202210400587 A CN202210400587 A CN 202210400587A CN 114866382 A CN114866382 A CN 114866382A
- Authority
- CN
- China
- Prior art keywords
- soqpsk
- data block
- block
- cyclic
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000004122 cyclic group Chemical group 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 title abstract description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 4
- 238000003780 insertion Methods 0.000 abstract description 2
- 230000037431 insertion Effects 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03159—Arrangements for removing intersymbol interference operating in the frequency domain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03254—Operation with other circuitry for removing intersymbol interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03305—Joint sequence estimation and interference removal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/20—Modulator circuits; Transmitter circuits
- H04L27/2003—Modulator circuits; Transmitter circuits for continuous phase modulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
本发明公开了一种基于无尾符号循环数据块的SOQPSK‑TG信号生成方法,主要解决现有技术中需要插入尾符号导致数据块结构复杂及增加了系统开销的问题。其实现方案是:将发送端随机生成的信源序列分割为两个子块,并将第二个子块复制到信源序列的前端作为循环前缀,构造出不包含尾符号的循环数据块;利用SOQPSK‑TG调制器将该循环数据块调制为SOQPSK‑TG信号;本发明能保证生成的SOQPSK‑TG信号满足相位连续和循环周期的特性,与现有使用插入尾符号数据块生成的SOQPSK‑TG信号相比,简化了循环数据块的结构,降低了系统开销及复杂度,减少了频谱资源浪费,可用于循环前缀的插入以及频域均衡来消除码间串扰。
The invention discloses a SOQPSK-TG signal generation method based on cyclic data blocks without tail symbols, which mainly solves the problems in the prior art that tail symbols need to be inserted, resulting in complex data block structure and increased system overhead. The implementation scheme is: dividing the source sequence randomly generated by the sender into two sub-blocks, and copying the second sub-block to the front end of the source sequence as a cyclic prefix to construct a cyclic data block that does not contain tail symbols; using SOQPSK The cyclic data block is modulated into a SOQPSK-TG signal by the TG modulator; the present invention can ensure that the generated SOQPSK-TG signal satisfies the characteristics of phase continuity and cyclic period, which is different from the existing SOQPSK-TG signal generated by inserting the tail symbol data block. In comparison, the structure of the cyclic data block is simplified, the system overhead and complexity are reduced, and the waste of spectrum resources is reduced, and can be used for the insertion of the cyclic prefix and frequency domain equalization to eliminate inter-symbol crosstalk.
Description
技术领域technical field
本发明属于无线通信技术领域,特别涉及一种无尾符号的循环数据块构造方法,可用于SOQPSK单载波频域均衡系统中循环前缀的插入以及频域均衡来消除码间串扰。The invention belongs to the technical field of wireless communication, in particular to a cyclic data block construction method without tail symbols, which can be used for cyclic prefix insertion and frequency domain equalization in SOQPSK single-carrier frequency domain equalization system to eliminate inter-symbol crosstalk.
背景技术Background technique
成形偏移四相相移键控SOQPSK是一种特殊的连续相位调制CPM技术,近年来该技术以其优异的特性而获得广泛关注。其中,部分响应的成形偏移四相相移键控SOQPSK-TG信号的频谱主瓣更紧凑,频带利用率更高,其恒包络特性使得峰均比PAPR较低,系统对硬件设备的要求比较低。单载波频域均衡技术SC-FDE是在宽带无线通信中成为对抗多径效应的有效方案,复杂度低,对频偏敏感度较低,且具有较低的峰均比PAPR。Shaped-offset quadrature phase-shift keying (SOQPSK) is a special continuous phase modulation CPM technology, which has gained extensive attention in recent years due to its excellent characteristics. Among them, the partial response shaping-offset quadrature phase shift keying SOQPSK-TG signal has a more compact spectrum main lobe and higher frequency band utilization, and its constant envelope characteristic makes the peak-average ratio lower than PAPR, and the system requires hardware equipment. relatively low. The single-carrier frequency domain equalization technology SC-FDE is an effective solution against multipath effects in broadband wireless communication, with low complexity, low sensitivity to frequency offset, and low peak-to-average ratio (PAPR).
将SOQPSK-TG与SC-FDE技术结合起来,需要解决的一个关键问题是:如何在二者结合过程中,既保证SC-FDE要求的循环卷积特性,又保证SOQPSK-TG信号的相位连续特性;对于这个问题,可以通过构造SOQPSK-TG信号的循环数据块进行解决。Combining SOQPSK-TG and SC-FDE technology, a key problem to be solved is: how to ensure both the cyclic convolution characteristics required by SC-FDE and the phase continuity characteristics of SOQPSK-TG signals in the process of combining the two ; For this problem, it can be solved by constructing the cyclic data block of the SOQPSK-TG signal.
2005年,Jun Tan等学者提出一种适用于CPM频域均衡的数据块构造方法来保持CPM信号的相位连续性,这种方法被称为相位归零法,它需要两段同等长度的尾符号,开销较大。In 2005, Jun Tan and other scholars proposed a data block construction method suitable for CPM frequency domain equalization to maintain the phase continuity of the CPM signal. This method is called the phase-to-zero method, which requires two equal-length tail symbols. , the cost is high.
2006年,Fabrizio Pancaldi等学者提出基于信号状态矢量的数据块构造方法。该方法适用于CPM频域均衡,它只需要一段额外的二进制尾符号片段即可,其与上述相位归零法相比,开销较小。但是,由于SOQPSK信号调制器中有预编码器,需要将二进制符号转换为三进制符号,因此针对CPM信号提出的以上方法并不能直接采用。In 2006, Fabrizio Pancaldi and other scholars proposed a data block construction method based on the signal state vector. This method is suitable for CPM frequency domain equalization, and it only needs an extra segment of binary tail symbols, which has less overhead compared with the above-mentioned phase-to-zero method. However, since there is a precoder in the SOQPSK signal modulator, the binary symbols need to be converted into ternary symbols, so the above method proposed for the CPM signal cannot be directly adopted.
兰笑于在申请号为201810744474.5的专利文献中提出了一种基于SOQPSK-TG信号的数据块构造方法,该方法构造出的数据块中包含两个比特的尾符号,存在结构复杂且浪费系统开销的问题。Lan Xiaoyu proposed a data block construction method based on SOQPSK-TG signal in the patent document with the application number of 201810744474.5. The data block constructed by this method contains two-bit tail symbols, which is complicated in structure and wastes system overhead. The problem.
发明内容SUMMARY OF THE INVENTION
本发明目的在于对上述现有技术的不足,提出一种基于无尾符号循环数据块的SOQPSK-TG信号生成方法,以简化循环数据块的结构,降低系统开销,且获得与现有技术一致的相位轨迹和误比特性能。The purpose of the present invention is to solve the above-mentioned deficiencies of the prior art, and propose a SOQPSK-TG signal generation method based on the cyclic data block with no tail symbol, so as to simplify the structure of the cyclic data block, reduce the system overhead, and obtain a signal consistent with the prior art. Phase Trajectory and Bit Error Performance.
为实现上述目的,本发明中的技术方案包括如下:To achieve the above object, the technical scheme in the present invention includes the following:
(1)将信源序列分割为两个子块:(1) put the source sequence Split into two sub-blocks:
在发送端,设第l个长度为N的二进制信源序列为将其分成两个子块,得到其表示式为其中:At the sender, let the lth binary source sequence of length N be Dividing it into two sub-blocks yields its expression as in:
第一子块, first subblock,
第二子块,式中,为第l块的第i个二进制符号,i=Np,Np+1,…,N-1,表示第l块的第j个二进制符号,j=N,N+1,…,N+Np-1,(N-Np)表示第一个子块的长度,N表示二进制信源序列的长度,Np表示第二个子块的长度,即循环前缀的长度,Np≥LD+L,LD为多径信道的最大时延所对应的符号间隔,L为相位约束长度;second subblock, In the formula, is the i-th binary symbol of the l-th block, i=N p , N p +1,...,N-1, Represents the jth binary symbol of the lth block, j=N, N+1, . . . , N+N p -1, (NN p ) represents the first sub-block The length of , N represents the binary source sequence The length of N p represents the second sub-block The length of , that is, the length of the cyclic prefix, N p ≥ L D +L, L D is the symbol interval corresponding to the maximum delay of the multipath channel, and L is the phase constraint length;
(2)将信源序列尾部长为Np的序列复制到的前端,作为循环前缀得到循环数据块表示式为:(2) The length of the tail of the source sequence is Np copy to the front end of , as a cyclic prefix The expression of the loop data block is obtained as:
其中,n表示循环数据块dn (l)的第n个符号的序号,0≤n≤NT-1,NT表示循环数据块dn (l)的长度,NT=N+Np, 表示第l块的第m个二进制符号,m=0,1,…,Np-1;Among them, n represents the serial number of the n-th symbol of the cyclic data block d n (l) , 0≤n≤NT -1, N T represents the length of the cyclic data block d n (l) , N T = N+N p , Represents the mth binary symbol of the lth block,
(3)利用循环数据块dn (l)通过SOQPSK-TG调制器,生成SOQPSK-TG信号:(3) Use the cyclic data block dn (1) to pass through the SOQPSK-TG modulator to generate the SOQPSK-TG signal:
(3a)将循环数据块dn (l)输入到SOQPSK-TG调制器,利用调制器中的预编码器将该二进制数据块序列dn (l)编码为三进制待调制序列αn (l);(3a) Input the cyclic data block d n (1) to the SOQPSK-TG modulator, and use the precoder in the modulator to encode the binary data block sequence d n (1) into a ternary to-be-modulated sequence α n ( l) ;
(3b)利用调制器中的连续相位调制器,对三进制待调制序列αn (l)进行连续相位调制,得到SOQPSK-TG信号sn (l)(t)。(3b) Using the continuous phase modulator in the modulator, perform continuous phase modulation on the ternary to-be-modulated sequence α n (l) to obtain the SOQPSK-TG signal sn (l) (t).
本发明由于对现有技术中包含两个比特尾符号的数据块结构进行改进,删去了尾符号,构成无尾符号的循环数据块结构,不仅简化了数据块的结构,降低了系统开销与复杂度,减少了频谱资源的浪费,而且能保证以该数据块生成的SOQPSK-TG信号能具有与现有技术一致的相位轨迹和误比特性能。The present invention improves the data block structure containing two bit tail symbols in the prior art, deletes the tail symbols, and forms a cyclic data block structure without tail symbols, which not only simplifies the structure of the data block, but also reduces the system overhead and cost. The complexity reduces the waste of spectrum resources, and can ensure that the SOQPSK-TG signal generated with the data block can have the phase trajectory and bit error performance consistent with the prior art.
附图说明Description of drawings
图1为本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;
图2为本发明中构建的无尾符号循环数据块结构图;Fig. 2 is the structure diagram of the tailless symbol cyclic data block constructed in the present invention;
图3为用本发明构建的循环数据块生成的SOQPSK-TG信号示意图;3 is a schematic diagram of the SOQPSK-TG signal generated by the cyclic data block constructed by the present invention;
图4为本发明和现有循环数据块的相位轨迹曲线对比图;Fig. 4 is the phase trajectory curve contrast diagram of the present invention and the existing cyclic data block;
图5为本发明和现有循环数据块生成的SOQPSK-TG信号的误码率曲线对比图。FIG. 5 is a comparison diagram of the bit error rate curve of the SOQPSK-TG signal generated by the present invention and the existing cyclic data block.
具体实施方式Detailed ways
以下结合附图对本发明的具体实施例和效果作进一步详细描述。The specific embodiments and effects of the present invention will be described in further detail below with reference to the accompanying drawings.
参照图1,本实例的实现步骤如下:Referring to Figure 1, the implementation steps of this example are as follows:
步骤1,对信源序列进行分割。
在发送端,随机产生第l个长度为N的二进制信源序列为了使数据块具有循环卷积的特性,将其分成两个子块,得到表示式为其中:At the sender, randomly generate the l-th binary source sequence of length N In order to make the data block have the characteristics of circular convolution, it is divided into two sub-blocks, and the expression is in:
第一子块, first subblock,
第二子块,式中,为第l块的第i个二进制符号,i=Np,Np+1,…,N-1,表示第l块的第j个二进制符号,j=N,N+1,…,N+Np-1,(N-Np)表示第一个子块的长度,N表示二进制信源序列的长度,Np表示第二个子块的长度,即循环前缀的长度,为使得信号与信道时域响应的线性卷积可以等效为循环卷积,则要求Np的长度必须大于信道和调制的总体记忆长度,即Np≥LD+L,LD为多径信道的最大时延所对应的符号间隔,L为相位约束长度;本实施例l=1,N=858,Np=128,L=8。second subblock, In the formula, is the i-th binary symbol of the l-th block, i=N p , N p +1,...,N-1, Represents the jth binary symbol of the lth block, j=N, N+1, . . . , N+N p -1, (NN p ) represents the first sub-block The length of , N represents the binary source sequence The length of N p represents the second sub-block The length of the cyclic prefix is the length of the cyclic prefix. In order to make the linear convolution of the signal and the channel time domain response equivalent to a cyclic convolution, the length of N p must be greater than the overall memory length of the channel and modulation, that is, N p ≥ L D +L, L D is the symbol interval corresponding to the maximum delay of the multipath channel, and L is the phase constraint length; in this embodiment, l=1, N=858, Np= 128, and L=8.
步骤2,对分割后的信源序列插入循环前缀。
为了消除码间串扰,需要给信源序列插入循环前缀,将信源序列尾部长为Np的序列复制到的前端,作为循环前缀得到循环数据块表示式为:In order to eliminate inter-symbol crosstalk, it is necessary to give the source sequence Insert a cyclic prefix to lengthen the tail of the source sequence to a sequence of N p copy to the front end of , as a cyclic prefix The expression of the loop data block is obtained as:
其中,n表示循环数据块dn (l)的第n个符号的序号,0≤n≤NT-1,NT表示循环数据块dn (l)的长度,NT=N+Np, 表示第l块的第m个二进制符号,m=0,1,…,Np-1;本实施例NT=986。Among them, n represents the serial number of the n-th symbol of the cyclic data block d n (l) , 0≤n≤NT -1, N T represents the length of the cyclic data block d n (l) , N T = N+N p , Indicates the mth binary symbol of the lth block, m=0, 1, . . . , N p −1; in this embodiment, N T =986.
通过以上步骤构造的无尾符号循环数据块结构如图2所示,其中循环前缀长度为Np,第一子块长度为(N-Np),第二子块长度为Np,整个循环数据块的长度为NT。The structure of the untail symbol cyclic data block constructed by the above steps is shown in Figure 2, where the cyclic prefix of length N p , the first sub-block of length (NN p ), the second sub-block The length is Np , and the length of the entire cyclic data block is NT .
步骤3,利用循环数据块dn (l)通过SOQPSK-TG调制器,生成SOQPSK-TG信号。Step 3, using the cyclic data block dn (1) to generate a SOQPSK-TG signal through the SOQPSK-TG modulator.
所述SOQPSK-TG调制器,是由预编码器和连续相位调制器串联而成,其中预编码器可以将二进制序列编码为三进制序列,连续相位调制器可以将三进制序列生成为SOQPSK-TG信号。The SOQPSK-TG modulator is composed of a precoder and a continuous phase modulator in series, wherein the precoder can encode the binary sequence into a ternary sequence, and the continuous phase modulator can generate the ternary sequence into SOQPSK -TG signal.
本步骤的具体实现如下:The specific implementation of this step is as follows:
(3.1)将循环数据块dn (l)输入到SOQPSK-TG调制器中的预编码器,将二进制数据块序列dn (l)编码为三进制待调制序列αn (l),其中,三进制待调制序列αn (l)的第i个符号αi (l)表示为:(3.1) Input the cyclic data block d n (l) to the precoder in the SOQPSK-TG modulator, and encode the binary data block sequence d n (l) into a ternary to-be-modulated sequence α n (l) , where , the i-th symbol α i (l) of the ternary to-be-modulated sequence α n (l) is expressed as:
αi (l)=(-1)i+1(2di-1 (l)-1)(di (l)-di-2 (l))α i (l) = (-1) i+1 (2d i-1 (l) -1)(d i (l) -d i-2 (l) )
其中,di (l)、di-1 (l)、di-2 (l)分别表示二进制数据块序列dn (l)的第i、i-1、i-2个符号,0≤i≤NT-1,di (l)∈{0,1}, Among them, d i (l) , d i-1 (l) , and d i-2 (l) represent the i, i-1, i-2 symbols of the binary data block sequence d n (l) , respectively, 0≤ i≤NT -1, d i (l) ∈ {0,1},
(3.2)三进制待调制序列αn (l)再通过连续相位调制器进行连续相位调制,得到SOQPSK-TG信号sn (l)(t):(3.2) The ternary sequence to be modulated α n (l) is then subjected to continuous phase modulation by the continuous phase modulator to obtain the SOQPSK-TG signal s n (l) (t):
其中,t表示时间,nTb≤t≤(n+1)Tb,n表示三进制待调制序列αn (l)的第n个符号的序号,0≤n≤NT-1,Eb为比特能量,Tb为比特周期,表示三进制待调制序列αn (l)的平均功率,j表示复数中虚数的单位,exp(·)表示以自然常数e为底的指数函数,φ(t,αn (l))为相位函数,表示为:Among them, t represents time, nT b ≤t≤(n+1)T b , n represents the serial number of the n-th symbol of the ternary to-be-modulated sequence α n (l) , 0≤n≤NT -1, E b is the bit energy, T b is the bit period, Represents the average power of the ternary sequence to be modulated α n (l) , j represents the unit of the imaginary number in the complex number, exp( ) represents the exponential function with the base of the natural constant e, φ(t,α n (l) ) is Phase function, expressed as:
其中,h为调制指数,αi (l)表示三进制待调制序列αn (l)的第i个符号,0≤i≤n,qTG(·)表示相位脉冲;本实施例Tb=1/6×106,h=1/2。Among them, h is the modulation index, α i (l) represents the ith symbol of the ternary to-be-modulated sequence α n (l) , 0≤i≤n, q TG (·) represents the phase pulse; in this embodiment T b =1/6×10 6 , h=1/2.
通过上述步骤生成的SOQPSK-TG信号如图3所示,其中是由循环数据块的第一子块经过SOQPSK-TG调制器得到的对应的SOQPSK-TG信号,是由循环数据块的第二子块经过SOQPSK-TG调制器得到的对应的SOQPSK-TG信号,由循环数据块的循环前缀经过SOQPSK-TG调制器得到的对应的SOQPSK-TG信号。The SOQPSK-TG signal generated by the above steps is shown in Figure 3, where is the first sub-block of the loop data block The corresponding SOQPSK-TG signal obtained by the SOQPSK-TG modulator, is the second sub-block of the loop data block The corresponding SOQPSK-TG signal obtained by the SOQPSK-TG modulator, by the cyclic prefix of the cyclic data block The corresponding SOQPSK-TG signal obtained by the SOQPSK-TG modulator.
本发明的效果可通过以下仿真进一步说明:The effect of the present invention can be further illustrated by the following simulation:
1.仿真条件:1. Simulation conditions:
仿真使用MATLAB R2018a仿真软件,一帧数据包含5个循环数据块,每个数据块内Np=128,有效数据NT=986,调制方式采用SOQPSK-TG,多径信道各路径衰落系数和时延分别为[1,0.5,0.1,0.01]和[0,5,10,20]μs,均衡采用最小均方误差准则,假定信道各参数的估计理想,仿真次数为25000次。The simulation uses MATLAB R2018a simulation software, one frame of data contains 5 cyclic data blocks, N p = 128 in each data block, and effective data N T = 986, the modulation method adopts SOQPSK-TG, and the fading coefficient and time of each path of the multipath channel are The delays are [1, 0.5, 0.1, 0.01] and [0, 5, 10, 20] μs, respectively. The minimum mean square error criterion is adopted for equalization. It is assumed that the estimation of each parameter of the channel is ideal, and the number of simulations is 25,000.
2.仿真内容及结果分析:2. Simulation content and result analysis:
仿真1,分别对本发明中无尾符号循环数据块和现有技术中包含两比特尾符号循环数据块的相位轨迹进行仿真,仿真结果如图4所示。其中图4(a)为本发明的相位轨迹曲线,图4(b)为现有技术的相位轨迹曲线。
从图4(a)可以看出,本发明中无尾符号循环数据块的循环前缀和子块对应的相位轨迹曲线完全一致,满足循环周期的特性,且起始时刻n=0的相位与终止时刻n=NT的相位相等,满足相位连续的特性,即本发明中构造的循环数据块符合构造数据块的要求;As can be seen from Figure 4(a), the cyclic prefix of the tailless symbol cyclic data block in the present invention and subblocks The corresponding phase trajectory curves are completely consistent and meet the characteristics of the cycle period, and the phase at the start time n=0 is equal to the phase at the end time n =NT, which satisfies the characteristics of phase continuity, that is, the cycle data block constructed in the present invention conforms to Requirements for constructing data blocks;
从图4(a)和图4(b)对比可以看出,本发明中无尾符号循环数据块和现有技术中包含两比特尾符号循环数据块的相位轨迹曲线在区间[0,N]和[N+L+2,NT]完全一致,即本发明在无需插入尾符号的数据块结构下获得了与现有技术一致的相位轨迹曲线,表明本发明简化了数据块的结构,降低了系统复杂度。It can be seen from the comparison between Fig. 4(a) and Fig. 4(b) that the phase trajectory curve of the cyclic data block without tail symbol in the present invention and the cyclic data block containing two-bit tail symbol in the prior art are in the interval [0, N] It is completely consistent with [N+L+2, N T ], that is, the present invention obtains a phase trajectory curve consistent with the prior art under the data block structure without inserting tail symbols, indicating that the present invention simplifies the structure of the data block, reduces the system complexity.
仿真2,分别利用本发明无尾符号循环数据块和现有技术中包含两比特尾符号循环数据块生成的SOQPSK-TG信号,经过相同的多径信道以及接收机的处理后,计算误码率,得到误码率对比曲线,结果如图5所示。其中,横坐标为信噪比,单位为分贝(dB),纵坐标为误码率。
从图5可以看出,本发明中无尾符号循环数据块和现有技术中包含两比特尾符号循环数据块生成的SOQPSK-TG信号的误码率曲线完全一致,进一步表明本发明在不需要插入尾符号的数据块结构下能获得与现有技术一致的误码率曲线,降低了系统的开销,减少了频谱资源的浪费。As can be seen from Fig. 5, the BER curves of the SOQPSK-TG signal generated by the tailless symbol cyclic data block in the present invention and the prior art including the two-bit tail symbol cyclic data block are completely consistent, which further shows that the present invention does not require Under the data block structure with the tail symbol inserted, a bit error rate curve consistent with the prior art can be obtained, the system overhead is reduced, and the waste of spectrum resources is reduced.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210400587.XA CN114866382B (en) | 2022-04-16 | 2022-04-16 | SOQPSK-TG signal generation method based on tailless symbol cyclic data block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210400587.XA CN114866382B (en) | 2022-04-16 | 2022-04-16 | SOQPSK-TG signal generation method based on tailless symbol cyclic data block |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114866382A true CN114866382A (en) | 2022-08-05 |
CN114866382B CN114866382B (en) | 2023-06-16 |
Family
ID=82632081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210400587.XA Active CN114866382B (en) | 2022-04-16 | 2022-04-16 | SOQPSK-TG signal generation method based on tailless symbol cyclic data block |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114866382B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116455707A (en) * | 2023-03-09 | 2023-07-18 | 西安电子科技大学 | A signal detection method, system, equipment and medium of an MC-FTN communication system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753512A (en) * | 2010-01-06 | 2010-06-23 | 中国人民解放军理工大学 | Shortwave high speed data transmission method based on single carrier frequency-domain equalization |
US20180198662A1 (en) * | 2015-07-09 | 2018-07-12 | Idac Holdings, Inc. | Tail cancelation and addition of unique word for orthogonal frequency division multiplexing |
CN109088836A (en) * | 2018-07-09 | 2018-12-25 | 西安电子科技大学 | The data block building method of single carrier frequency domain equalization SOQPSK-TG signal |
US20200267037A1 (en) * | 2016-04-11 | 2020-08-20 | Intel Corporation | Apparatuses for next generation block-wise single carrier waveforms |
CN111903102A (en) * | 2018-03-08 | 2020-11-06 | Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 | Dummy guard interval insertion in FBMC transmitter |
-
2022
- 2022-04-16 CN CN202210400587.XA patent/CN114866382B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753512A (en) * | 2010-01-06 | 2010-06-23 | 中国人民解放军理工大学 | Shortwave high speed data transmission method based on single carrier frequency-domain equalization |
US20180198662A1 (en) * | 2015-07-09 | 2018-07-12 | Idac Holdings, Inc. | Tail cancelation and addition of unique word for orthogonal frequency division multiplexing |
US20200267037A1 (en) * | 2016-04-11 | 2020-08-20 | Intel Corporation | Apparatuses for next generation block-wise single carrier waveforms |
CN111903102A (en) * | 2018-03-08 | 2020-11-06 | Imt卢瓦尔河大区布列塔尼大西洋国立高等矿业电信学校 | Dummy guard interval insertion in FBMC transmitter |
CN109088836A (en) * | 2018-07-09 | 2018-12-25 | 西安电子科技大学 | The data block building method of single carrier frequency domain equalization SOQPSK-TG signal |
Non-Patent Citations (3)
Title |
---|
JINHUA SUN,等: ""Cyclic Block Construction for SOQPSK-TG With Frequency Domain Equalization"", 《2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP)》 * |
兰笑: ""SOQPSK信号的频域均衡技术研究"", 《硕士电子期刊 2020年第02期》 * |
罗爱国;张有志;王庭昌;: "过采样CPM信号的频域均衡", 无线电通信技术, no. 01 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116455707A (en) * | 2023-03-09 | 2023-07-18 | 西安电子科技大学 | A signal detection method, system, equipment and medium of an MC-FTN communication system |
Also Published As
Publication number | Publication date |
---|---|
CN114866382B (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024067173A1 (en) | Decoding cascade iterative underwater acoustic communication system based on gaussian approximation improved polar code | |
CN111884761B (en) | Data transmission method for transmitting end of single carrier frequency domain equalization system | |
CN101848184A (en) | Selective mapping scrambling method for reducing peak-to-average power ratio of orthogonal frequency division multiplexing system | |
CN114389754B (en) | Frequency domain adaptive turbo equalization method based on FBNLMS algorithm | |
CN110351216A (en) | A kind of partial transmission sequence method for suppressing peak to average ratio based on precoding | |
CN103905358A (en) | Improved type differential chaos shift keying DCSK confidentiality communication method | |
CN108923820B (en) | Frequency Hopping Communication Technology Method Based on Joint Index Modulation of Message and Random Sequence | |
CN114866382B (en) | SOQPSK-TG signal generation method based on tailless symbol cyclic data block | |
CN104579613A (en) | Joint encoding modulation method based on no-rate codes and V-OFDM | |
CN116319193A (en) | A GCE-BEM iterative channel estimation method, system, device and medium based on sub-block transmission | |
CN110958204A (en) | Non-orthogonal multi-carrier underwater communication system of asymmetric complex deep neural network | |
CN110381003B (en) | A multi-user signal detection method for peak-to-average ratio suppression in SCMA-OFDM systems | |
Xian et al. | Novel Polarization Construction Method and Synchronization Algorithm for Underwater Acoustic Channel Under T-Distribution Noise Environment | |
CN114726693B (en) | An Iterative Equalization Method for DFT-s-SEFDM Signals | |
Ning et al. | A novel SLM method for PAPR reduction of OFDM system | |
CN110958205B (en) | A multi-symbol joint equalization hybrid carrier transmission method based on shared CP | |
CN201044450Y (en) | Multi-carrier modulation device for free-space optical communication | |
CN114944896A (en) | A Y-shaped network-based index modulation OTFS communication system and method | |
US6704367B1 (en) | Optimal discrete loading algorithm for DMT modulation | |
CN113556305A (en) | FBMC iterative channel equalization method and system suitable for high frequency selective fading | |
CN108737315B (en) | Additive scrambling method and transmitting system for reducing peak-to-average power ratio of OFDM system | |
Yinghai et al. | A new SLM scheme based on constellation rotation for PAPR reduction | |
CN115811453B (en) | Symbol-by-symbol reconstruction type underwater acoustic spread spectrum communication channel estimation method | |
Liu | Deep learning-based end-to-end receiver for the NOMA system | |
CN102307169B (en) | Multimedia broadcast wireless signal noise-immune framing modulation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |