CN114866216A - Chaotic synchronization system and method based on resistance and fractional order equivalent capacitance coupling - Google Patents
Chaotic synchronization system and method based on resistance and fractional order equivalent capacitance coupling Download PDFInfo
- Publication number
- CN114866216A CN114866216A CN202210303040.8A CN202210303040A CN114866216A CN 114866216 A CN114866216 A CN 114866216A CN 202210303040 A CN202210303040 A CN 202210303040A CN 114866216 A CN114866216 A CN 114866216A
- Authority
- CN
- China
- Prior art keywords
- resistor
- coupling
- comparator
- response
- fractional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 175
- 238000010168 coupling process Methods 0.000 title claims abstract description 175
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 175
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000004044 response Effects 0.000 claims abstract description 150
- 239000003990 capacitor Substances 0.000 claims abstract description 64
- 238000013178 mathematical model Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 abstract description 7
- 238000004891 communication Methods 0.000 description 18
- 230000001360 synchronised effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 102220257439 rs1395190094 Human genes 0.000 description 1
- 102220265263 rs1449870708 Human genes 0.000 description 1
- 102220024172 rs397515479 Human genes 0.000 description 1
- 102220094197 rs778354962 Human genes 0.000 description 1
- 102220207965 rs778468876 Human genes 0.000 description 1
- 102220095348 rs876659304 Human genes 0.000 description 1
- 102220099820 rs878853791 Human genes 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/12—Details relating to cryptographic hardware or logic circuitry
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Manipulation Of Pulses (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术领域,特别涉及基于电阻和分数阶等效电容耦合的混沌同步系统和方法。The invention relates to the technical field of communication, in particular to a chaotic synchronization system and method based on resistance and fractional-order equivalent capacitive coupling.
背景技术Background technique
对于国家安全而言,通信是很重要的一环。目前,大数据时代背景的数据信息交互非常频繁和迅速,传统保密通信已经不能完全满足当前网络通讯的安全要求。混沌信号具有初始条件和系统参数的极端敏感性、连续宽带谱、遍历性、有界性、内随机性、分维性、普适性等特点,与密码学、保密通信要求相一致。Communication is an important part of national security. At present, the exchange of data and information in the background of the era of big data is very frequent and rapid, and traditional confidential communication can no longer fully meet the security requirements of current network communication. Chaotic signals have the characteristics of extreme sensitivity of initial conditions and system parameters, continuous wide-band spectrum, ergodicity, boundedness, internal randomness, fractal dimension, and universality, which are consistent with the requirements of cryptography and secure communication.
混沌是对一类复杂、无序运动的概括,表现出对于微小变化的极端敏感。将混沌的阶延伸到分数的范围,便得到分数阶混沌模型。阶次的变化使得分数阶混沌模型表现出更为复杂的演化轨迹,演变出许多分数阶混沌特有的性质:如分数阶导数或积分综合考虑了过去历史以及非局部分布式的影响,在表示系统自身特性以及实际物理特性上更加准确。因此,分数阶混沌系统和整数阶混沌系统相比较,更符合实际情况,更能准确反映实际系统的动态特性;且更复杂的动力学特性和伪随机性提高了系统的保密安全性。另外,分数阶混沌系统对于噪声干扰级参数扰动具有较强的抑制能力,线性电阻耦合控制使混沌同步具有更好的鲁棒性。Chaos is a generalization of a kind of complex and disordered motion, showing extreme sensitivity to small changes. The fractional-order chaos model is obtained by extending the order of chaos to the range of fractions. The change of order makes the fractional chaotic model show a more complex evolution trajectory, and evolves many properties unique to fractional chaos: for example, the fractional derivative or integral comprehensively considers the past history and the influence of non-local distribution, in the representation system. Its own characteristics and actual physical characteristics are more accurate. Therefore, compared with the integer-order chaotic system, the fractional-order chaotic system is more in line with the actual situation and can more accurately reflect the dynamic characteristics of the actual system; and the more complex dynamic characteristics and pseudo-randomness improve the security of the system. In addition, the fractional-order chaotic system has a strong ability to suppress the disturbance of noise level parameters, and the linear resistive coupling control makes the chaotic synchronization have better robustness.
目前混沌系统的同步控制方法,中国专利(CN113141250A)公开了发送端与接收端混沌系统保密通信同步控制方法及装置,通过设定发送端的混沌系统的系统初始值;根据发送端的混沌系统的数学模型,构建接收端的混沌系统的数学模型;设定接收端的混沌系统的系统初始值;根据发送端的混沌系统的数学模型和接收端的混沌系统的数学模型,定义发送端的混沌系统与接收端的混沌系统的同步误差,得到误差系统;构建控制器;基于控制器对误差系统进行控制,实现发送端的混沌系统与接收端的混沌系统的同步;同步后的发送端与接收端开始执行保密通信。该控制方法在同步时间上更具优越性以及快速响应能力。但是,研究表明一般低维混沌系统易受自适应同步控制的攻击,不具有很高的保密性;低维混沌系统的系统动力学特性简单且密钥空间小,无法抵御相空间重构,很容易被破译。更关键的是,该专利使用的是驱动-响应同步法思想,该法为开环状态,对于噪声及参数失配较敏感,因此鲁棒性较差。更重要的是,该方法的控制器项由三部分组成,包括不确定项、外部扰动项,以及误差系统,结构复杂。导致在具体的电路实现中会需要较多元器件,造成信号之间干扰大,而混沌信号的初值敏感性决定了其容易受到信号的干扰,所以会导致实现较大误差。The current synchronization control method of the chaotic system, Chinese patent (CN113141250A) discloses the synchronization control method and device for the secure communication of the chaotic system between the sender and the receiver, by setting the initial value of the chaotic system at the sender; according to the mathematical model of the chaotic system at the sender , construct the mathematical model of the chaotic system at the receiving end; set the initial value of the chaotic system at the receiving end; define the synchronization of the chaotic system at the sending end and the chaotic system at the receiving end according to the mathematical model of the chaotic system at the sending end and the mathematical model of the chaotic system at the receiving end The error system is obtained; the controller is constructed; the error system is controlled based on the controller to realize the synchronization of the chaotic system at the sender end and the chaotic system at the receiver end; after the synchronization, the sender end and the receiver end start to perform secure communication. The control method has more advantages in synchronization time and fast response ability. However, studies have shown that general low-dimensional chaotic systems are vulnerable to adaptive synchronization control attacks and do not have high confidentiality; low-dimensional chaotic systems have simple system dynamics and small key space, and cannot resist phase space reconstruction. easily deciphered. More importantly, the patent uses the idea of the drive-response synchronization method, which is an open-loop state and is more sensitive to noise and parameter mismatch, so the robustness is poor. More importantly, the controller term of this method consists of three parts, including the uncertainty term, the external disturbance term, and the error system, and the structure is complex. As a result, more components are required in the specific circuit implementation, resulting in large interference between signals, and the initial value sensitivity of the chaotic signal determines that it is easily interfered by the signal, so it will lead to large errors in implementation.
中国专利(CN110149201A)公开一种基于误差掩盖与混沌同步的保密通信方法,包括以下步骤:发送端构建驱动混沌系统,利用所述驱动混沌系统中的第一个参数对待加密信息进行加密得到已加密信息;送端利用驱动混沌系统中的第二个参数以及第三个参数对加密信息进行掩盖叠加得到混沌信号,并将混沌信号发送至接收端;接收端构造响应混沌系统,并根据所述发送端发送的混沌信号以及响应混沌系统构造误差信号以及同步规律;接收端对同步规律进行调整,以使所述误差信号趋近于零;并在所述误差信号趋近于零时,根据所述响应混沌系统的第一个参数以及所述混沌信号中包括的加密信息,得到解密信息。该方法可以提高数据传输过程中的安全性。该发明仅在接收端加入了同步规律(控制项),发送端未加入同步规律,因此从实际系统来看,发送端和接收端混沌系统的线性特性已经发生了变化,已经变成了两个不同的系统,且加入的控制项非常复杂,在实际物理实现上非常困难;该发明误差系统的e3未含非线性项,对于线性系统,其稳定性和输出特性只决定与系统本身的结构和参数;而非线性系统的稳定性和输出动态过程,不仅与系统的结构和参数有关,还与系统的初始条件和输入信号大小有关,加大了信号破译的难度。所以,进行同步保密通信时线性系统比含有非线性系统更易被破解,降低了数据传输过程中的安全性。A Chinese patent (CN110149201A) discloses a secure communication method based on error concealment and chaotic synchronization, comprising the following steps: the sender constructs a driving chaotic system, and encrypts the information to be encrypted by using the first parameter in the driving chaotic system to obtain encrypted information. The sending end uses the second parameter and the third parameter in the driving chaotic system to mask and superimpose the encrypted information to obtain a chaotic signal, and sends the chaotic signal to the receiving end; The chaotic signal sent by the receiving end and the error signal and the synchronization law in response to the chaotic system construction; the receiving end adjusts the synchronization law to make the error signal approach zero; and when the error signal approaches zero, according to the Decryption information is obtained in response to the first parameter of the chaotic system and the encrypted information included in the chaotic signal. The method can improve the security during data transmission. The invention only adds synchronization rules (control items) at the receiving end, and does not add synchronization rules at the sending end. Therefore, from the perspective of the actual system, the linear characteristics of the chaotic system at the sending end and the receiving end have changed, and have become two Different systems, and the added control terms are very complex, which is very difficult to realize in actual physical implementation; the e3 of the error system of the invention does not contain nonlinear terms, and for linear systems, its stability and output characteristics are only determined by the structure and the system itself. The stability and output dynamic process of a nonlinear system are not only related to the structure and parameters of the system, but also related to the initial conditions of the system and the size of the input signal, which increases the difficulty of signal deciphering. Therefore, the linear system is easier to be cracked than the nonlinear system when the synchronous secure communication is performed, which reduces the security of the data transmission process.
发明内容SUMMARY OF THE INVENTION
针对现有技术中混沌同步系统基于非线性耦合导致数据传输安全性较低的问题,本发明提出基于电阻和分数阶等效电容耦合的混沌同步系统和方法,通过采用电阻和分数阶等效电容对驱动端和响应端进行耦合同步,从而实现混沌同步系统的线性耦合,进而提高混沌同步过程中数据的安全性。Aiming at the problem of low data transmission security caused by nonlinear coupling in the chaotic synchronization system in the prior art, the present invention proposes a chaotic synchronization system and method based on the coupling of resistance and fractional-order equivalent capacitance. By adopting resistance and fractional-order equivalent capacitance The driving end and the responding end are coupled and synchronized, so as to realize the linear coupling of the chaotic synchronization system, thereby improving the security of data in the process of chaotic synchronization.
为了实现上述目的,本发明提供以下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
基于电阻和分数阶等效电容耦合的混沌同步系统,包括耦合驱动端、控制端、耦合响应端;所述耦合驱动端上设置有耦合驱动电路,所述耦合响应端上设置有耦合响应电路,所述控制端上设置有线性耦合电路;耦合驱动电路通过线性耦合电路和耦合响应电路连接。The chaotic synchronization system based on the coupling of resistance and fractional equivalent capacitance includes a coupling drive end, a control end, and a coupling response end; the coupling drive end is provided with a coupling drive circuit, and the coupling response end is provided with a coupling response circuit, The control terminal is provided with a linear coupling circuit; the coupling driving circuit is connected through the linear coupling circuit and the coupling response circuit.
优选地,所述耦合驱动电路包括第一驱动电路、第二驱动电路和第三驱动电路;Preferably, the coupling driving circuit includes a first driving circuit, a second driving circuit and a third driving circuit;
所述第一驱动电路包括第一驱动变量端x1:The first drive circuit includes a first drive variable terminal x1:
第一驱动变量端x1和第一电阻R1的一端连接,第一电阻R1的另一端、第一分数阶等效电容F1的一端、第二电阻R2的一端并联后与第一比较器U1的反相输入端连接,第一比较器U1的同相输入端接地,第一分数阶等效电容F1的另一端分别和第一驱动变量端x1、第一比较器U1的输出端、第八电阻R8的一端连接,第八电阻R8的另一端、第九电阻R9的一端并联后与第四比较器U4的反相输入端连接,第四比较器U4的同相输入端接地,第四比较器U4的输出端、第九电阻R9的另一端并联后与第二驱动电路中第三电阻R3的一端连接,第二电阻R2的另一端分别与第二驱动电路中第四电阻R4的一端、第十一电阻R11的另一端、第五比较器U5的输出端以及第三驱动电路中第二乘法器X2的第二输入端连接;The first drive variable end x1 is connected to one end of the first resistor R1, the other end of the first resistor R1, one end of the first fractional equivalent capacitor F1, and one end of the second resistor R2 are connected in parallel with the inverse of the first comparator U1. The phase input terminal is connected, the non-phase input terminal of the first comparator U1 is grounded, and the other terminal of the first fractional equivalent capacitor F1 is connected to the first drive variable terminal x1, the output terminal of the first comparator U1, and the output terminal of the eighth resistor R8 respectively. One end is connected, the other end of the eighth resistor R8 and one end of the ninth resistor R9 are connected in parallel with the inverting input end of the fourth comparator U4, the non-inverting input end of the fourth comparator U4 is grounded, and the output of the fourth comparator U4 The other end of the ninth resistor R9 is connected in parallel with one end of the third resistor R3 in the second drive circuit, and the other end of the second resistor R2 is respectively connected with one end of the fourth resistor R4 and the eleventh resistor in the second drive circuit. The other end of R11, the output end of the fifth comparator U5 and the second input end of the second multiplier X2 in the third drive circuit are connected;
第二驱动电路包括第二驱动变量端x2和耦合驱动端u:The second driving circuit includes a second driving variable terminal x2 and a coupling driving terminal u:
第二驱动变量端x2与线性耦合电路中第二十三电阻R23的一端连接,耦合驱动端u和第三十电阻R30的一端连接,第一乘法器X1的第一输入端和第一驱动变量端x1连接,第一乘法器X1的输出端和第五电阻R5的一端连接,第三十电阻R30的另一端、第三电阻R3的另一端、第四电阻R4的另一端、第五电阻R5的另一端、第二分数阶等效电容F2的一端并联后与第二比较器U2的反相输入端连接,第二比较器U2的同相输入端接地,第二分数阶等效电容F2的另一端、第二比较器U2的输出端、第十电阻R10的一端并联后与第二驱动变量端x2连接,第十电阻R10的另一端、第十一电阻R11的一端并联后与第五比较器U5的反相输入端连接,第五比较器U5的同相输入端接地,第十一电阻R11的另一端、第五比较器U5的输出端并联后与第二电阻R2的另一端连接;The second drive variable end x2 is connected to one end of the twenty-third resistor R23 in the linear coupling circuit, the coupling drive end u is connected to one end of the thirtieth resistor R30, and the first input end of the first multiplier X1 is connected to the first drive variable The terminal x1 is connected, the output terminal of the first multiplier X1 is connected to one end of the fifth resistor R5, the other end of the thirtieth resistor R30, the other end of the third resistor R3, the other end of the fourth resistor R4, and the fifth resistor R5 The other end of the second fractional equivalent capacitor F2 is connected in parallel with the inverting input terminal of the second comparator U2, the non-inverting input terminal of the second comparator U2 is grounded, and the other end of the second fractional equivalent capacitor F2 is connected to the ground. One end, the output end of the second comparator U2, and one end of the tenth resistor R10 are connected in parallel with the second drive variable end x2, and the other end of the tenth resistor R10 and one end of the eleventh resistor R11 are connected in parallel with the fifth comparator The inverting input end of U5 is connected, the non-inverting input end of the fifth comparator U5 is grounded, and the other end of the eleventh resistor R11 and the output end of the fifth comparator U5 are connected in parallel with the other end of the second resistor R2;
第三驱动电路包括第三驱动变量端x3:The third drive circuit includes a third drive variable terminal x3:
第三驱动变量端x3分别与第一乘法器X1的第二输入端、第六电阻R6的一端、第三分数阶等效电容F3的另一端、第三比较器U3的输出端连接,第二乘法器X2的第一输入端与第一驱动变量端x1连接,第二乘法器X2的第二输入端与第二电阻R2的另一端连接,第二乘法器X2的输出端与第七电阻R7的一端连接,第六电阻R6的另一端、第七电阻R7的另一端、第三分数阶等效电容F3的一端并联后与第三比较器U3的反相输入端连接,第三比较器U3的同相输入端接地。The third driving variable terminal x3 is respectively connected to the second input terminal of the first multiplier X1, one terminal of the sixth resistor R6, the other terminal of the third fractional equivalent capacitor F3, and the output terminal of the third comparator U3. The first input end of the multiplier X2 is connected to the first drive variable end x1, the second input end of the second multiplier X2 is connected to the other end of the second resistor R2, and the output end of the second multiplier X2 is connected to the seventh resistor R7 The other end of the sixth resistor R6, the other end of the seventh resistor R7, and one end of the third fractional equivalent capacitor F3 are connected in parallel with the inverting input end of the third comparator U3, and the third comparator U3 The non-inverting input is grounded.
优选地,所述耦合响应电路包括第一响应电路、第二响应电路和第三响应电路;Preferably, the coupling response circuit includes a first response circuit, a second response circuit and a third response circuit;
第一响应电路包括第一响应变量端y1:The first response circuit includes a first response variable terminal y1:
第一响应变量端y1和第十六电阻R16的一端连接,第十六电阻R16的另一端、第四分数阶等效电容F4的一端、第十七电阻R17的一端并联后与第八比较器U8的反相输入端连接,第八比较器U8的同相输入端接地,第四分数阶等效电容F4的另一端、第八比较器U8的输出端、第十四电阻R14的一端并联后与第一响应变量端y1连接,第十四电阻R14的另一端、第十二电阻R12的一端并联后与第六比较器U6的反相输入端连接,第六比较器U6的同相输入端接地,第六比较器U6的输出端、第十二电阻R12的另一端并联后与第二响应电路中第十八电阻R18的一端连接,第十七电阻R17的另一端分别与第二驱动电路中第十九电阻R19的一端、第十三电阻R13的另一端、第七比较器U7的输出端以及第三响应电路中第四乘法器X4的第二输入端连接;The first response variable end y1 is connected to one end of the sixteenth resistor R16, the other end of the sixteenth resistor R16, one end of the fourth fractional equivalent capacitor F4, and one end of the seventeenth resistor R17 are connected in parallel with the eighth comparator The inverting input end of U8 is connected, the non-inverting input end of the eighth comparator U8 is grounded, the other end of the fourth fractional-order equivalent capacitor F4, the output end of the eighth comparator U8, and one end of the fourteenth resistor R14 are connected in parallel with The first response variable terminal y1 is connected, the other end of the fourteenth resistor R14 and one end of the twelfth resistor R12 are connected in parallel with the inverting input terminal of the sixth comparator U6, and the non-inverting input terminal of the sixth comparator U6 is grounded, The output end of the sixth comparator U6 and the other end of the twelfth resistor R12 are connected in parallel with one end of the eighteenth resistor R18 in the second response circuit, and the other end of the seventeenth resistor R17 is respectively connected with the first end of the eighteenth resistor R18 in the second response circuit. One end of the nineteenth resistor R19, the other end of the thirteenth resistor R13, the output end of the seventh comparator U7 and the second input end of the fourth multiplier X4 in the third response circuit are connected;
第二响应电路包括第二响应变量端y2和耦合响应端-u:The second response circuit includes a second response variable terminal y2 and a coupled response terminal -u:
线性耦合电路的输出端和耦合响应端-u连接,耦合响应端-u还与第三十一电阻R31的一端连接,第三乘法器X3的第一输入端和第一响应变量端y1连接,第三乘法器X3的输出端和第二十电阻R20的一端连接,第三十一电阻R31的另一端、第十八电阻R18另一端、第十九电阻R19的另一端、第二十电阻R20的另一端、第五分数阶等效电容F5的一端并联后与第九比较器U9的反相输入端连接,第九比较器U9的同相输入端接地,第五分数阶等效电容F5的另一端、第九比较器U9的输出端、第十五电阻R15的一端并联后与第二响应变量端y2连接,第二响应变量端y2还与线性耦合电路中第二十四电阻R24的一端连接,第十五电阻R15的另一端、第十三电阻R13的一端并联后与第七比较器U7的反相输入端连接,第七比较器U7的同相输入端接地,第十三电阻R13的另一端、第七比较器U7的输出端并联后与第十七电阻R17的另一端连接;The output end of the linear coupling circuit is connected to the coupling response end-u, the coupling response end-u is also connected to one end of the thirty-first resistor R31, the first input end of the third multiplier X3 is connected to the first response variable end y1, The output end of the third multiplier X3 is connected to one end of the twentieth resistor R20, the other end of the thirty-first resistor R31, the other end of the eighteenth resistor R18, the other end of the nineteenth resistor R19, and the twentieth resistor R20 The other end of the fifth fractional equivalent capacitor F5 is connected in parallel with the inverting input terminal of the ninth comparator U9, the non-inverting input terminal of the ninth comparator U9 is grounded, and the other end of the fifth fractional equivalent capacitor F5 is connected to the ground. One end, the output end of the ninth comparator U9, and one end of the fifteenth resistor R15 are connected in parallel with the second response variable end y2, and the second response variable end y2 is also connected with one end of the twenty-fourth resistor R24 in the linear coupling circuit , the other end of the fifteenth resistor R15 and one end of the thirteenth resistor R13 are connected in parallel with the inverting input end of the seventh comparator U7, the non-inverting input end of the seventh comparator U7 is grounded, and the other end of the thirteenth resistor R13 One end and the output end of the seventh comparator U7 are connected in parallel with the other end of the seventeenth resistor R17;
第三响应电路包括第三响应变量端y3:The third response circuit includes a third response variable terminal y3:
第三响应变量端y3分别与第三乘法器X3的第二输入端、第二十一电阻R21的一端、第六分数阶等效电容F6的另一端、第十比较器U10的输出端连接,第四乘法器X4的第一输入端与第一响应变量端y1连接,第四乘法器X4的第二输入端与第十七电阻R17的另一端连接,第四乘法器X4的输出端与第二十二电阻R22的一端连接,第二十一电阻R21的另一端、第二十二电阻R22的另一端、第六分数阶等效电容F6的一端并联后与第十比较器U10的反相输入端连接,第十比较器U10的同相输入端接地。The third response variable end y3 is respectively connected to the second input end of the third multiplier X3, one end of the twenty-first resistor R21, the other end of the sixth fractional equivalent capacitor F6, and the output end of the tenth comparator U10, The first input end of the fourth multiplier X4 is connected to the first response variable end y1, the second input end of the fourth multiplier X4 is connected to the other end of the seventeenth resistor R17, and the output end of the fourth multiplier X4 is connected to the 17th resistor R17. One end of the twenty-two resistor R22 is connected in parallel, and the other end of the twenty-first resistor R21, the other end of the twenty-second resistor R22, and one end of the sixth fractional-order equivalent capacitor F6 are connected in parallel with the inversion of the tenth comparator U10. The input terminal is connected, and the non-inverting input terminal of the tenth comparator U10 is grounded.
优选地,所述线性耦合电路包括线性电阻Rk和第七分数阶等效电容F7:Preferably, the linear coupling circuit includes a linear resistance R k and a seventh fractional-order equivalent capacitance F7:
第二十三电阻R23的一端与第二驱动变量端x2连接,第二十四电阻R24的一端与第二响应变量端y2连接,第二十三电阻R23的另一端、第二十六电阻R26的一端并联后与第十一比较器U11的反相输入端连接,第二十四电阻R24的另一端、第二十五电阻R25的一端并联后与第十一比较器U11的同相输入端连接,第二十五电阻R25的另一端接地,第二十六电阻R26另一端、第十一比较器U11的输出端并联后分别与线性电阻Rk的一端、第七分数阶等效电容F7的一端连接,线性电阻Rk的另一端、第七分数阶等效电容F7的另一端、第二十七电阻R27的一端并联后与第十二比较器U12的反相输入端连接,第十二比较器U12的同相输入端接地,第十二比较器U12的输出端、第二十七电阻R27的另一端、第二十八电阻R28的一端并联后与耦合驱动端u连接,第二十八电阻R28的另一端、第二十九电阻R29的一端并联后与第十三比较器U13的反相输入端连接,第十三比较器U13的同相输入端接地,第二十九电阻R29的另一端、第十三比较器U13的输出端并联后与耦合响应端-u连接。One end of the twenty-third resistor R23 is connected to the second drive variable terminal x2, one end of the twenty-fourth resistor R24 is connected to the second response variable terminal y2, the other end of the twenty-third resistor R23, the twenty-sixth resistor R26 One end of the 24th resistor R24 and one end of the 25th resistor R25 are connected in parallel with the non-inverting input end of the eleventh comparator U11 after being connected in parallel with the inverting input end of the eleventh comparator U11. , the other end of the twenty-fifth resistor R25 is grounded, the other end of the twenty-sixth resistor R26 and the output end of the eleventh comparator U11 are connected in parallel with one end of the linear resistor R k and the seventh fractional equivalent capacitor F7. One end is connected, the other end of the linear resistor R k , the other end of the seventh fractional equivalent capacitor F7, and one end of the twenty-seventh resistor R27 are connected in parallel with the inverting input end of the twelfth comparator U12, the twelfth The non-inverting input end of the comparator U12 is grounded, the output end of the twelfth comparator U12, the other end of the twenty-seventh resistor R27, and one end of the twenty-eighth resistor R28 are connected in parallel with the coupling drive end u, and the twenty-eighth The other end of the resistor R28 and one end of the twenty-ninth resistor R29 are connected in parallel with the inverting input terminal of the thirteenth comparator U13, the non-inverting input terminal of the thirteenth comparator U13 is grounded, and the other end of the twenty-ninth resistor R29 is connected to the ground. One end and the output end of the thirteenth comparator U13 are connected in parallel with the coupling response end -u.
优选地,所述第七分数阶等效电容F7的等效电路为:Preferably, the equivalent circuit of the seventh fractional-order equivalent capacitance F7 is:
第a电阻Ra的一端和第一电容C1的一端并联后与输入端口连接,第a电阻Ra的另一端、第一电容C1的另一端并联后分别与第b电阻Rb的一端、第二电容C2的一端连接,第b电阻Rb的另一端、第二电容C2的另一端并联后分别与第c电阻Rc的一端、第三电容C3的一端连接,第c电阻Rc的另一端、第三电容C3的另一端并联后与输出端口连接。One end of the a-th resistor Ra and one end of the first capacitor C1 are connected in parallel with the input port, and the other end of the a-th resistor Ra and the other end of the first capacitor C1 are connected in parallel with one end of the b-th resistor Rb and the second capacitor C2 respectively. one end of the resistor Rb and the other end of the second capacitor C2 are connected in parallel with one end of the cth resistor Rc and one end of the third capacitor C3 respectively, and the other end of the cth resistor Rc and the third capacitor C3 The other end is connected in parallel with the output port.
本发明还提供了一种基于电阻和分数阶等效电容耦合的混沌同步方法,具体包括以下步骤:The invention also provides a chaotic synchronization method based on resistance and fractional equivalent capacitance coupling, which specifically includes the following steps:
S1:构建驱动端的数学模型:S1: Build the mathematical model of the driver:
公式(1)中,x1,x2,x3分别表示驱动变量,分别为x1,x2,x3的导数,q表示分数阶导数;In formula (1), x 1 , x 2 , and x 3 represent driving variables, respectively, are the derivatives of x 1 , x 2 , and x 3 respectively, and q represents the fractional derivative;
S2:根据驱动端的数学模型构建响应端的数学模型:S2: Build the mathematical model of the response side according to the mathematical model of the driver side:
公式(2)中,y1,y2,y3分别表示响应变量,分别为y1,y2,y3的导数;In formula (2), y 1 , y 2 , and y 3 represent the response variables, respectively, are the derivatives of y 1 , y 2 , and y 3 respectively;
S3:确定线性耦合项,并分别对驱动端和响应端进行改进,得到耦合驱动端和耦合响应端;S3: Determine the linear coupling term, and improve the driving end and the response end respectively to obtain the coupling driving end and the coupling response end;
线性耦合项的数学模型为:The mathematical model of the linear coupling term is:
公式(3)中,u表示线性耦合控制项,KR表示线性电阻耦合系数,Rk表示线性电阻,R0=100KΩ;In formula (3), u represents the linear coupling control term, K R represents the linear resistance coupling coefficient, R k represents linear resistance, R 0 =100KΩ;
将线性耦合项与驱动端进行结合得到耦合驱动端,其数学模型为:Combining the linear coupling term and the driving end to get the coupling driving end, its mathematical model is:
将线性耦合项与响应端进行结合得到耦合响应端,其数学模型为:Combining the linear coupling term with the response end gets the coupled response end, and its mathematical model is:
公式(4)、(5)中,x1,x2,x3表示驱动变量,分别为x1,x2,x3的导数;y1,y2,y3表示响应变量,分别为y1,y2,y3的导数,q表示分数阶导数;In formulas (4) and (5), x 1 , x 2 , and x 3 represent driving variables, are the derivatives of x 1 , x 2 , and x 3 respectively; y 1 , y 2 , and y 3 represent the response variables, are the derivatives of y 1 , y 2 , and y 3 respectively, and q represents the fractional derivative;
S4:根据公式(4)、(5)定义耦合驱动端和耦合响应端之间的同步误差,得到误差系统,将误差系统布置在控制端,从而实现耦合驱动端和耦合响应端的同步;S4: Define the synchronization error between the coupling drive end and the coupling response end according to formulas (4) and (5), obtain an error system, and arrange the error system at the control end, so as to realize the synchronization of the coupling drive end and the coupling response end;
误差系统的数学模型为:The mathematical model of the error system is:
公式(6)中,ei=xi-yi,i=1,2,3; In formula (6), e i =x i -y i , i=1,2,3;
优选地,所述S1中,驱动端的数学模型对应的电路状态方程为:Preferably, in the S1, the circuit state equation corresponding to the mathematical model of the driving end is:
电路状态方程(5)映射的无量纲状态方程表示如下:The dimensionless state equation mapped by the circuit state equation (5) is expressed as follows:
公式(7)、(8)中,V1、V2、V3分别表示电压,对应x1,x2,x3;t=τ/t0,R0=100kΩ,C0=10nF,t0=R0C0,F表示分数阶等效电容,令R1=R2=2.5kΩ,R3=R5=R7=10kΩ,R4=4kΩ,R6=33.3kΩ。In formulas (7) and (8), V1, V2, and V3 represent voltages respectively, corresponding to x 1 , x 2 , and x 3 ; t=τ/t 0 , R 0 =100kΩ, C 0 =10nF, t 0 =R 0 C 0 , F represents fractional equivalent capacitance, let R 1 =R 2 =2.5kΩ, R 3 =R 5 =R 7 =10kΩ, R 4 =4kΩ, R 6 =33.3kΩ.
优选地,所述S4中,误差系统的同步误差ei=xi-yi,i=1,2,3。Preferably, in the S4, the synchronization error of the error system e i =x i -y i , i=1,2,3.
优选地,所述S3中,q=0.95,KR=1。Preferably, in the S3, q=0.95, and K R =1.
综上所述,由于采用了上述技术方案,与现有技术相比,本发明至少具有以下有益效果:To sum up, due to the adoption of the above technical solutions, compared with the prior art, the present invention has at least the following beneficial effects:
1.本发明采用分数阶系统,由于分数阶系统具有历史记忆性等特点,它的动力学特性更加的复杂,难于破译,可以大大增强混沌保密通信的安全性。1. The present invention adopts a fractional-order system. Since the fractional-order system has the characteristics of historical memory and the like, its dynamic characteristics are more complex and difficult to decipher, which can greatly enhance the security of chaotic secure communication.
2.基于线性耦合技术实现同步:非线性系统通过线性反馈实现耦合的连续性与持久性,即使在较大的环境噪声干扰下,耦合分数阶混沌系统仍然可以实现同步,具有较强的抗噪声能力。因此,经过结构简单易于实现的线性耦合控制器,分数阶混沌系统可以实现稳定耦合同步,并且混沌同步系统对于噪声干扰和混沌系统参数扰动具有较强的抑制能力,耦合控制分数阶混沌同步系统具有更好的鲁棒性。更重要的是,相互耦合的非线性系统在自然界中普遍存在,且由于本发明的线性耦合结构简单,因此具有非常突出的实用价值。2. Synchronization based on linear coupling technology: The nonlinear system realizes the continuity and persistence of the coupling through linear feedback. Even under the interference of large environmental noise, the coupled fractional-order chaotic system can still achieve synchronization and has strong anti-noise. ability. Therefore, through the simple and easy-to-implement linear coupled controller, the fractional-order chaotic system can achieve stable coupling synchronization, and the chaotic synchronization system has a strong ability to suppress noise interference and chaotic system parameter disturbance. The coupled control fractional-order chaotic synchronization system has better robustness. More importantly, mutually coupled nonlinear systems are ubiquitous in nature, and because the linear coupling structure of the present invention is simple, it has very prominent practical value.
3.成本低:现有的分数阶混沌同步系统采用的元器件较多,信号之间干扰大,实现误差较大;本发明只需要一个电阻和分数阶等效电容即可实现耦合项,器件和结构简单,提高了同步系统的鲁棒性和适普性,提高了通信系统的安全性。3. Low cost: the existing fractional-order chaotic synchronization system adopts many components, the interference between signals is large, and the realization error is large; And the structure is simple, the robustness and applicability of the synchronization system are improved, and the security of the communication system is improved.
附图说明:Description of drawings:
图1为根据本发明示例性实施例的基于电阻和分数阶等效电容耦合的混沌同步系统的电路示意图。FIG. 1 is a schematic circuit diagram of a chaotic synchronization system based on resistance and fractional-order equivalent capacitive coupling according to an exemplary embodiment of the present invention.
图2为根据本发明示例性实施例的分数阶等效电容等效电路示意图。FIG. 2 is a schematic diagram of a fractional-order equivalent capacitance equivalent circuit according to an exemplary embodiment of the present invention.
图3为根据本发明示例性实施例的误差系统中最大李雅普诺夫指数随KR变化的模拟示意图。3 is a schematic diagram of a simulation of the variation of the maximum Lyapunov exponent with K R in an error system according to an exemplary embodiment of the present invention.
图4为根据本发明示例性实施例的误差系统的同步误差模拟示意图。FIG. 4 is a schematic diagram of a synchronization error simulation of an error system according to an exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。The present invention will be further described in detail below with reference to the examples and specific implementation manners. However, it should not be construed that the scope of the above-mentioned subject matter of the present invention is limited to the following embodiments, and all technologies realized based on the content of the present invention belong to the scope of the present invention.
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "portrait", "horizontal", "upper", "lower", "front", "rear", "left", "right", "vertical", The orientations or positional relationships indicated by "horizontal", "top", "bottom", "inside", "outside", etc. are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than Indication or implication that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, is not to be construed as a limitation of the invention.
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the description of the present invention, unless otherwise specified and limited, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a mechanical connection or an electrical connection, or two The internal communication between the elements may be directly connected or indirectly connected through an intermediate medium, and those of ordinary skill in the art can understand the specific meanings of the above terms according to specific circumstances.
混沌同步是实现混沌保密通信的重要条件。混沌同步通信的基本思想是:把被传输的信号源加在某一由混沌系统产生的混沌信号上,生成混沌类噪声信号,对信息源加密,该混沌信号发送到接收器上后,再由一个相应的混沌系统分离其中的混沌信号,即解密过程,进而恢复出原输送的信息源,由于混沌同步效应的存在,使得这一解密过程能够实现。Chaos synchronization is an important condition for realizing chaotic secure communication. The basic idea of chaotic synchronous communication is to add the transmitted signal source to a chaotic signal generated by a chaotic system to generate a chaotic noise-like signal, encrypt the information source, and after the chaotic signal is sent to the receiver, it is then sent to the receiver. A corresponding chaotic system separates the chaotic signal, that is, the decryption process, and then restores the original transmitted information source. Due to the existence of the chaotic synchronization effect, this decryption process can be realized.
本发明是利用电阻和分数阶等效电容来实现驱动系统和响应系统的线性耦合,最终达到同步,并将同步后的混沌系统用于保密通信领域。本发明流程图主要包括:构建驱动系统及其电路实现、构建响应系统及其电路实现、通过电阻和分数阶等效电容实现耦合项并绘制同步电路图、根据耦合驱动系统和耦合响应系统构建误差系统及其电路实现、实现分数阶混沌系统同步五个主要步骤。The invention utilizes resistance and fractional-order equivalent capacitance to realize the linear coupling of the drive system and the response system, finally achieves synchronization, and uses the synchronized chaotic system in the field of secure communication. The flow chart of the present invention mainly includes: constructing a driving system and its circuit implementation, constructing a response system and its circuit implementation, realizing the coupling term through resistance and fractional equivalent capacitance and drawing a synchronous circuit diagram, and constructing an error system according to the coupled driving system and the coupling response system And its circuit realizes five main steps to realize the synchronization of fractional-order chaotic system.
如图1所示,本发明提供基于电阻和分数阶等效电容耦合的混沌同步系统,包括耦合驱动端、控制端、耦合响应端,耦合驱动端上设置有耦合驱动电路1,耦合响应端上设置有耦合响应电路3,控制端上设置有线性耦合电路2,耦合驱动电路1、耦合响应电路3,耦合驱动电路1通过线性耦合电路2和耦合响应电路3连接。As shown in FIG. 1 , the present invention provides a chaotic synchronization system based on resistance and fractional-order equivalent capacitive coupling, including a coupling drive end, a control end, and a coupling response end. The coupling drive end is provided with a
本实施例中,耦合驱动电路1包括第一驱动电路、第二驱动电路和第三驱动电路。In this embodiment, the
第一驱动电路包括第一驱动变量端x1:The first drive circuit includes a first drive variable terminal x1:
第一驱动变量端x1和第一电阻R1的一端连接,第一电阻R1的另一端、第一分数阶等效电容F1的一端、第二电阻R2的一端并联后与第一比较器U1的反相输入端连接,第一比较器U1的同相输入端接地,第一分数阶等效电容F1的另一端分别和第一驱动变量端x1、第一比较器U1的输出端、第八电阻R8的一端连接,第八电阻R8的另一端、第九电阻R9的一端并联后与第四比较器U4的反相输入端连接,第四比较器U4的同相输入端接地,第四比较器U4的输出端、第九电阻R9的另一端并联后与第二驱动电路中第三电阻R3的一端连接,第二电阻R2的另一端分别与第二驱动电路中第四电阻R4的一端、第十一电阻R11的另一端、第五比较器U5的输出端以及第三驱动电路中第二乘法器X2的第二输入端连接。本实施例中,第八电阻R8、第九电阻R9、第四比较器U4构成的电路作用是:对第一驱动变量端x1输入的第一变量信号x1进行反相。The first drive variable end x1 is connected to one end of the first resistor R1, the other end of the first resistor R1, one end of the first fractional equivalent capacitor F1, and one end of the second resistor R2 are connected in parallel with the inverse of the first comparator U1. The phase input terminal is connected, the non-phase input terminal of the first comparator U1 is grounded, and the other terminal of the first fractional equivalent capacitor F1 is connected to the first drive variable terminal x1, the output terminal of the first comparator U1, and the output terminal of the eighth resistor R8 respectively. One end is connected, the other end of the eighth resistor R8 and one end of the ninth resistor R9 are connected in parallel with the inverting input end of the fourth comparator U4, the non-inverting input end of the fourth comparator U4 is grounded, and the output of the fourth comparator U4 The other end of the ninth resistor R9 is connected in parallel with one end of the third resistor R3 in the second drive circuit, and the other end of the second resistor R2 is respectively connected with one end of the fourth resistor R4 and the eleventh resistor in the second drive circuit. The other end of R11, the output end of the fifth comparator U5 and the second input end of the second multiplier X2 in the third driving circuit are connected. In this embodiment, the circuit formed by the eighth resistor R8, the ninth resistor R9 and the fourth comparator U4 is used to invert the first variable signal x1 input from the first drive variable terminal x1.
第二驱动电路包括第二驱动变量端x2和耦合驱动端u:The second driving circuit includes a second driving variable terminal x2 and a coupling driving terminal u:
第二驱动变量端x2与线性耦合电路2的输入端(第二十三电阻的一端)连接,耦合驱动端u和第三十电阻R30的一端连接,第一乘法器X1的第一输入端和第一驱动变量端x1连接,X1的输出端和第五电阻R5的一端连接,第三十电阻R30的另一端、第三电阻R3的另一端、第四电阻R4的另一端、第五电阻R5的另一端、第二分数阶等效电容F2的一端并联后与第二比较器U2的反相输入端连接,第二比较器U2的同相输入端接地,第二分数阶等效电容F2的另一端、第二比较器U2的输出端、第十电阻R10的一端并联后与第二驱动变量端x2连接,第十电阻R10的另一端、第十一电阻R11的一端并联后与第五比较器U5的反相输入端连接,第五比较器U5的同相输入端接地,第十一电阻R11的另一端、第五比较器U5的输出端并联后与第二电阻R2的另一端连接。本实施例中,第十电阻R10、第十一电阻R11、第五比较器U5构成的电路作用是:对第二驱动变量端x2输入的第二变量信号x2进行反相。The second driving variable terminal x2 is connected to the input terminal of the linear coupling circuit 2 (one terminal of the twenty-third resistor), the coupling driving terminal u is connected to one terminal of the thirtieth resistor R30, and the first input terminal of the first multiplier X1 and The first drive variable end x1 is connected, the output end of X1 is connected to one end of the fifth resistor R5, the other end of the thirtieth resistor R30, the other end of the third resistor R3, the other end of the fourth resistor R4, and the fifth resistor R5 The other end of the second fractional equivalent capacitor F2 is connected in parallel with the inverting input terminal of the second comparator U2, the non-inverting input terminal of the second comparator U2 is grounded, and the other end of the second fractional equivalent capacitor F2 is connected to the ground. One end, the output end of the second comparator U2, and one end of the tenth resistor R10 are connected in parallel with the second drive variable end x2, and the other end of the tenth resistor R10 and one end of the eleventh resistor R11 are connected in parallel with the fifth comparator The inverting input terminal of U5 is connected, the non-inverting input terminal of the fifth comparator U5 is grounded, and the other terminal of the eleventh resistor R11 and the output terminal of the fifth comparator U5 are connected in parallel with the other terminal of the second resistor R2. In this embodiment, the circuit formed by the tenth resistor R10 , the eleventh resistor R11 , and the fifth comparator U5 is used to invert the second variable signal x2 input from the second drive variable terminal x2 .
第三驱动电路包括第三驱动变量端x3:The third drive circuit includes a third drive variable terminal x3:
第三驱动变量端x3分别与X1的第二输入端、第六电阻R6的一端、第三分数阶等效电容F3的另一端、第三比较器U3的输出端连接,第二乘法器X2的第一输入端与第一驱动变量端x1连接,X2的第二输入端与第二电阻R2的另一端连接,第二乘法器X2的输出端与第七电阻R7的一端连接,第六电阻R6的另一端、第七电阻R7的另一端、第三分数阶等效电容F3的一端并联后与第三比较器U3的反相输入端连接,第三比较器U3的同相输入端接地。The third drive variable terminal x3 is respectively connected to the second input terminal of X1, one terminal of the sixth resistor R6, the other terminal of the third fractional equivalent capacitor F3, and the output terminal of the third comparator U3. The first input end is connected to the first drive variable end x1, the second input end of X2 is connected to the other end of the second resistor R2, the output end of the second multiplier X2 is connected to one end of the seventh resistor R7, and the sixth resistor R6 The other end of , the other end of the seventh resistor R7, and one end of the third fractional equivalent capacitor F3 are connected in parallel with the inverting input terminal of the third comparator U3, and the non-inverting input terminal of the third comparator U3 is grounded.
本实施例中,耦合驱动电路1对应的数学模型为:In this embodiment, the mathematical model corresponding to the
公式(1)中,x1,x2,x3分别表示第一驱动电路、第二驱动电路、第三驱动电路输入的驱动变量,分别为x1,x2,x3的导数,q表示分数阶导数,KR表示线性电阻耦合系数,Rk表示线性电阻,R0=100KΩ。In formula (1), x 1 , x 2 , and x 3 represent the drive variables input by the first drive circuit, the second drive circuit, and the third drive circuit, respectively, are the derivatives of x 1 , x 2 , and x 3 respectively, q represents the fractional derivative, K R represents the linear resistance coupling coefficient, R k represents the linear resistance, R 0 =100KΩ.
本实施例中,对应的,耦合响应电路3包括第一响应电路、第二响应电路和第三响应电路。In this embodiment, correspondingly, the
第一响应电路包括第一响应变量端y1:The first response circuit includes a first response variable terminal y1:
第一响应变量端y1和第十六电阻R16的一端连接,第十六电阻R16的另一端、第四分数阶等效电容F4的一端、第十七电阻R17的一端并联后与第八比较器U8的反相输入端连接,第八比较器U8的同相输入端接地,第四分数阶等效电容F4的另一端、第八比较器U8的输出端、第十四电阻R14的一端并联后与第一响应变量端y1连接,第十四电阻R14的另一端、第十二电阻R12的一端并联后与第六比较器U6的反相输入端连接,第六比较器U6的同相输入端接地,第六比较器U6的输出端、第十二电阻R12的另一端并联后与第二响应电路中第十八电阻R18的一端连接,第十七电阻R17的另一端分别与第二驱动电路中第十九电阻R19的一端、第十三电阻R13的另一端、第七比较器U7的输出端以及第三响应电路中第四乘法器X4的第二输入端连接。The first response variable end y1 is connected to one end of the sixteenth resistor R16, the other end of the sixteenth resistor R16, one end of the fourth fractional equivalent capacitor F4, and one end of the seventeenth resistor R17 are connected in parallel with the eighth comparator The inverting input end of U8 is connected, the non-inverting input end of the eighth comparator U8 is grounded, the other end of the fourth fractional-order equivalent capacitor F4, the output end of the eighth comparator U8, and one end of the fourteenth resistor R14 are connected in parallel with The first response variable terminal y1 is connected, the other end of the fourteenth resistor R14 and one end of the twelfth resistor R12 are connected in parallel with the inverting input terminal of the sixth comparator U6, and the non-inverting input terminal of the sixth comparator U6 is grounded, The output end of the sixth comparator U6 and the other end of the twelfth resistor R12 are connected in parallel with one end of the eighteenth resistor R18 in the second response circuit, and the other end of the seventeenth resistor R17 is respectively connected with the first end of the eighteenth resistor R18 in the second response circuit. One end of the nineteenth resistor R19, the other end of the thirteenth resistor R13, the output end of the seventh comparator U7, and the second input end of the fourth multiplier X4 in the third response circuit are connected.
第二响应电路包括第二响应变量端y2和耦合响应端-u:The second response circuit includes a second response variable terminal y2 and a coupled response terminal -u:
线性耦合电路2的输出端和耦合响应端-u连接,耦合响应端-u还与第三十一电阻R31的一端连接,第三乘法器X3的第一输入端和第一响应变量端y1连接,X3的输出端和第二十电阻R20的一端连接,第三十一电阻R31的另一端、第十八电阻R18另一端、第十九电阻R19的另一端、第二十电阻R20的另一端、第五分数阶等效电容F5的一端并联后与第九比较器U9的反相输入端连接,第九比较器U9的同相输入端接地,第五分数阶等效电容F5的另一端、第九比较器U9的输出端、第十五电阻R15的一端并联后与第二响应变量端y2连接,第二响应变量端y2还与线性耦合电路2中第二十四电阻R24的一端连接,第十五电阻R15的另一端、第十三电阻R13的一端并联后与第七比较器U7的反相输入端连接,第七比较器U7的同相输入端接地,第十三电阻R13的另一端、第七比较器U7的输出端并联后与第十七电阻R17的另一端连接。The output end of the
第三响应电路包括第三响应变量端y3:The third response circuit includes a third response variable terminal y3:
第三响应变量端y3分别与X3的第二输入端、第二十一电阻R21的一端、第六分数阶等效电容F6的另一端、第十比较器U10的输出端连接,X4的第一输入端与第一响应变量端y1连接,X4的第二输入端与第十七电阻R17的另一端连接,X4的输出端与第二十二电阻R22的一端连接,第二十一电阻R21的另一端、第二十二电阻R22的另一端、第六分数阶等效电容F6的一端并联后与第十比较器U10的反相输入端连接,第十比较器U10的同相输入端接地。The third response variable terminal y3 is respectively connected to the second input terminal of X3, one terminal of the twenty-first resistor R21, the other terminal of the sixth fractional equivalent capacitor F6, and the output terminal of the tenth comparator U10. The input end is connected to the first response variable end y1, the second input end of X4 is connected to the other end of the seventeenth resistor R17, the output end of X4 is connected to one end of the twenty-second resistor R22, and the second end of the twenty-first resistor R21 is connected. The other end, the other end of the twenty-second resistor R22, and one end of the sixth fractional equivalent capacitor F6 are connected in parallel with the inverting input end of the tenth comparator U10, and the non-inverting input end of the tenth comparator U10 is grounded.
本实施例中,耦合响应电路3的数学模型为:In this embodiment, the mathematical model of the
公式(2)中,y1,y2,y3分别表示第一响应电路、第二响应电路、第三响应电路输出的响应变量,分别为y1,y2,y3的导数,q表示分数阶导数,KR表示线性电阻耦合系数,Rk表示线性电阻,R0=100KΩ。In formula (2), y 1 , y 2 , and y 3 represent the response variables output by the first response circuit, the second response circuit, and the third response circuit, respectively, are the derivatives of y 1 , y 2 , and y 3 respectively, q is the fractional derivative, K R is the linear resistance coupling coefficient, R k represents the linear resistance, R 0 =100KΩ.
本实施例中,驱动电路和响应电路是一一对应关系,例如第一驱动电路对应第一响应电路,第二驱动电路对应第二响应电路,第三驱动电路对应第三响应电路。In this embodiment, the driving circuit and the response circuit are in a one-to-one correspondence. For example, the first driving circuit corresponds to the first response circuit, the second driving circuit corresponds to the second response circuit, and the third driving circuit corresponds to the third response circuit.
本实施例中,线性耦合电路2包括线性电阻Rk和分数阶等效电容F7:In this embodiment, the
第二十三电阻R23的一端与第二驱动变量端x2连接,第二十四电阻R24的一端与第二响应变量端y2连接,第二十三电阻R23的另一端、第二十六电阻R26的一端并联后与第十一比较器U11的反相输入端连接,第二十四电阻R24的另一端、第二十五电阻R25的一端、并联后与第十一比较器U11的同相输入端连接,第二十五电阻R25的另一端接地,第二十六电阻R26另一端、第十一比较器U11的输出端并联后分别与线性电阻Rk的一端、分数阶等效电容F7的一端连接,线性电阻Rk的另一端、第二十七电阻R27的一端、分数阶等效电容F7的另一端并联后与第十二比较器U12的反相输入端连接,第十二比较器U12的同相输入端接地,第十二比较器U12的输出端、第二十七电阻R27的另一端、第二十八电阻R28的一端并联后与耦合驱动端u连接,第二十八电阻R28的另一端、第二十九电阻R29的一端并联后与第十三比较器U13的反相输入端连接,第十三比较器U13的同相输入端接地,第二十九电阻R29的另一端、第十三比较器U13的输出端并联后与耦合响应端-u连接。One end of the twenty-third resistor R23 is connected to the second drive variable terminal x2, one end of the twenty-fourth resistor R24 is connected to the second response variable terminal y2, the other end of the twenty-third resistor R23, the twenty-sixth resistor R26 One end is connected in parallel with the inverting input end of the eleventh comparator U11, the other end of the twenty-fourth resistor R24 and one end of the twenty-fifth resistor R25 are connected in parallel with the non-inverting input end of the eleventh comparator U11 connected, the other end of the twenty-fifth resistor R25 is grounded, the other end of the twenty-sixth resistor R26 and the output end of the eleventh comparator U11 are connected in parallel with one end of the linear resistor R k and one end of the fractional equivalent capacitor F7 respectively. Connection, the other end of the linear resistor R k , one end of the twenty-seventh resistor R27, and the other end of the fractional equivalent capacitor F7 are connected in parallel with the inverting input end of the twelfth comparator U12, and the twelfth comparator U12 The non-inverting input terminal of the twelfth comparator U12 is grounded, the output terminal of the twelfth comparator U12, the other end of the twenty-seventh resistor R27, and one end of the twenty-eighth resistor R28 are connected in parallel with the coupling drive terminal u, and the twenty-eighth resistor R28 is connected in parallel. The other end, one end of the twenty-ninth resistor R29 is connected in parallel with the inverting input terminal of the thirteenth comparator U13, the non-inverting input terminal of the thirteenth comparator U13 is grounded, and the other end of the twenty-ninth resistor R29, the third The output terminals of the thirteen comparators U13 are connected in parallel with the coupling response terminal -u.
本实施例中,线性耦合电路2的数学模型为:In this embodiment, the mathematical model of the
公式(3)中,u表示线性耦合控制项,KR表示线性电阻耦合系数,Rk表示线性电阻,R0=100KΩ,其阻值可根据需要进行调整。In formula (3), u represents the linear coupling control term, K R represents the linear resistance coupling coefficient, R k represents the linear resistance, R 0 =100KΩ, and its resistance value can be adjusted as required.
本实施例中,R23=R24=R25=R26=R28=R29=10KΩ,R27=100KΩ。In this embodiment, R23=R24=R25=R26=R28=R29=10KΩ, and R27=100KΩ.
本实施例中,每个分数阶等效电容均为分数阶等效电容F,即F1=F2=F3=F4=F5=F6=F7=F,分数阶等效电容F的等效电路如图2所示:In this embodiment, each fractional equivalent capacitor is a fractional equivalent capacitor F, that is, F1=F2=F3=F4=F5=F6=F7=F, and the equivalent circuit of the fractional equivalent capacitor F is shown in the figure 2 shows:
第a电阻Ra的一端和第一电容C1的一端并联后与输入端口连接,第a电阻Ra的另一端、第一电容C1的另一端并联后分别与第b电阻Rb的一端、第二电容C2的一端连接,第b电阻Rb的另一端、第二电容C2的另一端并联后分别与第c电阻Rc的一端、第三电容C3的一端连接,第c电阻Rc的另一端、第三电容C3的另一端并联后与输出端口连接。One end of the a-th resistor Ra and one end of the first capacitor C1 are connected in parallel with the input port, and the other end of the a-th resistor Ra and the other end of the first capacitor C1 are connected in parallel with one end of the b-th resistor Rb and the second capacitor C2 respectively. one end of the resistor Rb and the other end of the second capacitor C2 are connected in parallel with one end of the cth resistor Rc and one end of the third capacitor C3 respectively, and the other end of the cth resistor Rc and the third capacitor C3 The other end is connected in parallel with the output port.
本实施例中,当分数阶导数q=0.95时,C1=3.616MF、C2=4.622MF、C3=1.267MF、Ra=15.1KΩ、Rb=1.51MΩ、Rc=692.9MΩ。In this embodiment, when the fractional derivative q=0.95, C1=3.616MF, C2=4.622MF, C3=1.267MF, Ra=15.1KΩ, Rb=1.51MΩ, and Rc=692.9MΩ.
现有技术方案,大多使用的为整数阶混沌系统,其混沌特性远远低于分数阶混沌系统。因为分数阶导数或积分反映的不是局部或某个点的性质或数量,而是综合考虑了过去历史以及非局部分布式的影响,因此分数阶混沌系统能更准确地描述实际混沌的物理模型,对分数阶系统的同步控制进行分析研究拥有更普遍的应用范围。而且,从控制能量的角度来讲,耦合混沌同步的耦合强度要远比混沌或周期状态下实现耦合同步的耦合强度大得多。所以,本发明利用分数阶混沌(q)实现耦合同步,由于分数阶系统具有历史记忆性等特点,它的动力学特性更加的复杂,难于破译,可以大大增强混沌保密通信的安全性。Most of the existing technical solutions use integer-order chaotic systems, whose chaotic characteristics are far lower than fractional-order chaotic systems. Because the fractional derivative or integral does not reflect the nature or quantity of the local or a certain point, but comprehensively considers the influence of past history and non-local distribution, the fractional chaotic system can more accurately describe the physical model of actual chaos, Analytical research on synchronous control of fractional-order systems has a more general scope of application. Moreover, from the point of view of control energy, the coupling strength of coupled chaotic synchronization is much larger than the coupling strength of coupled synchronization in chaotic or periodic state. Therefore, the present invention utilizes fractional chaos (q) to realize coupling synchronization. Since the fractional system has the characteristics of historical memory, its dynamic characteristics are more complex and difficult to decipher, which can greatly enhance the security of chaotic secure communication.
本发明提供基于电阻和分数阶等效电容耦合的混沌同步系统的设计方法,具体包括以下步骤:The present invention provides a method for designing a chaotic synchronization system based on resistance and fractional-order equivalent capacitive coupling, which specifically includes the following steps:
S1:在驱动端构建驱动电路的数学模型:S1: Build the mathematical model of the drive circuit at the drive end:
公式(4)中,x1,x2,x3分别表示第一驱动电路、第二驱动电路、第三驱动电路输入的驱动变量,分别为x1,x2,x3的导数,q表示分数阶导数。In formula (4), x 1 , x 2 , and x 3 represent the drive variables input by the first drive circuit, the second drive circuit, and the third drive circuit, respectively, are the derivatives of x 1 , x 2 , and x 3 , respectively, and q represents the fractional derivative.
采用Multisim软件实现驱动电路仿真,使得搭建驱动电路中的各电压之间的关系满足式(2),则基于电路原理,驱动电路的状态方程表达式如下:The Multisim software is used to simulate the drive circuit, so that the relationship between the voltages in the drive circuit satisfies equation (2). Based on the circuit principle, the state equation of the drive circuit is expressed as follows:
则从公式(5)映射的无量纲状态方程表示如下:Then the dimensionless state equation mapped from formula (5) is expressed as follows:
公式(5)、(6)中,V1、V2、V3分别表示第一驱动电路、第二驱动电路、第三驱动电路的电压,t=τ/t0,R0=100kΩ,C0=10nF,t0=R0C0,F表示分数阶等效电容,令R1=R2=2.5kΩ,R3=R5=R7=10kΩ,R4=4kΩ,R6=33.3kΩ。In formulas (5) and (6), V 1 , V 2 , and V 3 represent the voltages of the first drive circuit, the second drive circuit, and the third drive circuit, respectively, t=τ/t 0 , R 0 =100kΩ, C 0 = 10nF, t 0 =R 0 C 0 , F represents fractional equivalent capacitance, let R 1 =R 2 =2.5kΩ, R 3 =R 5 =R 7 =10kΩ, R 4 =4kΩ, R 6 =33.3 kΩ.
S2:根据驱动电路的数学模型在响应端构建响应电路的数学模型:S2: Build the mathematical model of the response circuit at the response end according to the mathematical model of the driving circuit:
公式(7)中,y1,y2,y3分别表示第一响应电路、第二响应电路、第三响应电路输出的响应变量,分别为y1,y2,y3的导数,q表示分数阶导数。In formula (7), y 1 , y 2 , and y 3 represent the response variables output by the first response circuit, the second response circuit, and the third response circuit, respectively, are the derivatives of y 1 , y 2 , and y 3 respectively, and q represents the fractional derivative.
本实施例中,要实现同步,则需要响应电路的电路结构和驱动电路的电路结构相同,这样才能更好地进行信号同步,因此响应电路的电路状态模型变换原理和驱动电路的电路状态模型原理相同,属于简单的替换,因此不在此重复赘述。In this embodiment, to achieve synchronization, the circuit structure of the response circuit and the circuit structure of the drive circuit need to be the same, so that the signal synchronization can be better performed. Therefore, the circuit state model transformation principle of the response circuit and the circuit state model principle of the drive circuit It is the same and belongs to simple replacement, so it will not be repeated here.
S3:确定线性耦合项的数学模型,并分别对驱动电路的数学模型和响应电路的数学模型进行改进,得到耦合驱动电路的数学模型和耦合响应电路的数学模型。S3: Determine the mathematical model of the linear coupling term, and improve the mathematical model of the driving circuit and the mathematical model of the response circuit respectively to obtain the mathematical model of the coupled driving circuit and the mathematical model of the coupled response circuit.
线性耦合项的数学模型为:The mathematical model of the linear coupling term is:
公式(8)中,u表示线性耦合控制项,KR表示线性电阻耦合系数,Rk表示线性电阻,R0=100KΩ,其阻值可根据需要进行调整。In formula (8), u represents the linear coupling control term, K R represents the linear resistance coupling coefficient, R k represents the linear resistance, R 0 =100KΩ, and its resistance value can be adjusted as required.
则将线性耦合项与驱动电路进行结合得到耦合驱动电路,其数学模型为:Then the linear coupling term and the driving circuit are combined to obtain the coupling driving circuit, and its mathematical model is:
将线性耦合项与响应电路进行结合得到耦合响应电路,其数学模型为:The coupling response circuit is obtained by combining the linear coupling term with the response circuit, and its mathematical model is:
公式(9)、(10)中,x1,x2,x3分别表示第一驱动电路、第二驱动电路、第三驱动电路输入的驱动变量,分别为x1,x2,x3的导数;y1,y2,y3分别表示第一响应电路、第二响应电路、第三响应电路输出的响应变量,分别为y1,y2,y3的导数,q表示分数阶导数,KR表示线性电阻耦合系数,R0=100KΩ,Rk表示线性电阻,其阻值可根据需要进行调整。In formulas (9) and (10), x 1 , x 2 , and x 3 represent the drive variables input by the first drive circuit, the second drive circuit, and the third drive circuit, respectively, are the derivatives of x 1 , x 2 , and x 3 respectively; y 1 , y 2 , and y 3 represent the response variables output by the first response circuit, the second response circuit, and the third response circuit, respectively, are the derivatives of y 1 , y 2 , and y 3 respectively, q is the fractional derivative, K R is the linear resistance coupling coefficient, R 0 =100KΩ, R k represents a linear resistance, and its resistance value can be adjusted as required.
S4:根据公式(9)、(10)定义耦合驱动端和耦合响应端的同步误差,得到误差系统,将误差系统布置在控制端,从而实现耦合驱动端和耦合响应端的同步。S4: Define the synchronization error of the coupling drive end and the coupling response end according to formulas (9) and (10), obtain the error system, and arrange the error system at the control end, so as to realize the synchronization of the coupling drive end and the coupling response end.
本实施例中,误差系统的数学模型为:In this embodiment, the mathematical model of the error system is:
公式(11)中,ei=xi-yi,i=1,2,3;q表示分数阶导数,KR表示线性电阻耦合系数,R0=100KΩ;Rk表示线性电阻,其阻值可根据需要进行调整。In formula (11), e i =x i -y i , i=1,2,3; q is the fractional derivative, K R is the linear resistive coupling coefficient, R 0 =100KΩ; R k represents the linear resistance, and its resistance value can be adjusted as required.
当ei=0,i=1,2,3是渐进稳定,则耦合驱动端和耦合响应端可实现分数阶混沌系统同步。When e i = 0, i = 1, 2, and 3 are asymptotically stable, the coupling drive end and the coupling response end can achieve fractional-order chaotic system synchronization.
本实施例中,可利用李雅普诺夫指数判据来判断同步稳定性为:In this embodiment, the Lyapunov index criterion can be used to judge the synchronization stability as:
对于非线性系统方程而言,对运动轨道各点的拉伸或压缩速率做长时间的平均就得到了Lyapunov指数λ。若λ>0,意味着运动轨道在每个局部都是不稳定的,相邻点之间最终要呈指数分离,但在轨道的整体稳定因素作用下反复折叠后形成混沌吸引子;若λ<0,则意味着运动轨道在局部也是稳定的,相邻点之间最终要靠拢,对应于动力学系统的周期运动或稳定平衡点;λ=0则对应于分岔点,由负变正的过程即倍周期分岔到混沌的过程。所以,当S4中误差系统(11)的所有李雅普诺夫指数都是负值时,其状态误差会在有限时间内逐渐趋于零,说明耦合驱动端和耦合响应端达到了同步。For a nonlinear system of equations, the Lyapunov exponent λ is obtained by averaging the stretching or compression rates at each point of the trajectory over a long period of time. If λ>0, it means that the orbit is unstable in each part, and the adjacent points will eventually be separated exponentially, but the chaotic attractor will be formed after repeated folding under the action of the overall stability factor of the orbit; if λ< 0, it means that the motion orbit is also stable locally, and the adjacent points will eventually get closer, corresponding to the periodic motion or stable equilibrium point of the dynamic system; λ=0 corresponds to the bifurcation point, which changes from negative to positive. The process is the process of period-doubling bifurcation to chaos. Therefore, when all the Lyapunov exponents of the error system (11) in S4 are negative values, the state error will gradually tend to zero within a limited time, indicating that the coupling drive end and the coupling response end are synchronized.
如图3所示,为当q=0.95时,误差系统中最大李雅普诺夫指数随KR变化的示意图,可知道范围内最大李雅普诺夫指数值均为负,即选择线性电阻时,耦合驱动端和耦合响应端实现混沌同步。As shown in Figure 3, when q=0.95, the maximum Lyapunov exponent in the error system changes with K R , it can be known that The maximum Lyapunov exponent values in the range are all negative, that is, linear resistance is selected When , the coupling drive end and the coupling response end realize chaotic synchronization.
例如,令分数阶导数q=0.95,KR=1,即线性电阻Rk=100KΩ时,耦合驱动端(9)的驱动变量x1,x2,x3为(2,2,2),耦合响应端(10)的响应变量y1,y2,y3为(-2,-5,5),则计算得到S4中误差系统(11)的三个李雅普洛夫指数为λ1=-2.4781,λ2=-3.2007,λ3=-5.7004,均为负数,即表明耦合驱动端和耦合响应端同步。For example, let the fractional derivative q=0.95 and K R =1, that is, when the linear resistance R k =100KΩ, the driving variables x 1 , x 2 , and x 3 of the coupling driving terminal (9) are (2, 2, 2), The response variables y 1 , y 2 , and y 3 of the coupled response terminal (10) are (-2, -5, 5), then the three Lyapulov exponents of the error system (11) in S4 are calculated as λ 1 =- 2.4781, λ 2 =-3.2007, λ 3 =-5.7004, which are all negative numbers, which means that the coupling driving end and the coupling responding end are synchronized.
本实施例中,误差系统的同步误差多次模拟得到q=0.95,KR=1,即线性电阻Rk=100KΩ时的模拟图,如图4所示,同步误差值Err(t)在一段时间内(1s)逐渐趋于零,耦合驱动端和耦合响应端达到完全同步。In this embodiment, the synchronization error of the error system After several simulations, q = 0.95, K R = 1, that is, the simulation diagram when the linear resistance R k = 100KΩ, as shown in Figure 4, the synchronization error value Err(t) gradually tends to zero within a period of time (1s), The coupling drive end and the coupling response end are fully synchronized.
本发明相对于现有技术来说具有以下优势:Compared with the prior art, the present invention has the following advantages:
1.安全性高:现有技术方案,大多使用的为一般整数阶混沌系统,其混沌特性远远低于分数阶混沌系统。分数阶混沌系统能更准确地描述实际混沌的物理模型。因为分数阶导数或积分反映的不是局部或某个点的性质或数量,而是综合考虑了过去历史以及非局部分布式的影响。所以,分数阶混沌系统更能反映系统呈现的工程物理现象,对分数阶系统的同步控制进行分析研究拥有更普遍的应用范围。而且,从控制能量的角度来讲,耦合混沌同步的耦合强度要远比混沌或周期状态下实现耦合同步的耦合强度大得多。所以,本发明利用分数阶混沌实现耦合同步,由于分数阶系统具有历史记忆性等特点,它的动力学特性更加的复杂,难于破译,可以大大增强混沌保密通信的安全性。1. High security: Most of the existing technical solutions use general integer-order chaotic systems, whose chaotic characteristics are far lower than fractional-order chaotic systems. Fractional-order chaotic systems can more accurately describe the physical model of actual chaos. Because the fractional derivative or integral does not reflect the nature or quantity of the local or a certain point, but comprehensively considers the past history and the influence of non-local distribution. Therefore, the fractional-order chaotic system can better reflect the engineering physical phenomena presented by the system, and the analysis and research of the synchronous control of the fractional-order system has a more general application range. Moreover, from the point of view of control energy, the coupling strength of coupled chaotic synchronization is much greater than the coupling strength of coupled synchronization in chaotic or periodic state. Therefore, the present invention utilizes fractional chaos to realize coupling synchronization. Because the fractional system has the characteristics of historical memory and the like, its dynamic characteristics are more complex and difficult to decipher, which can greatly enhance the security of chaotic secure communication.
2.基于线性耦合技术实现同步:非线性系统通过线性反馈实现耦合的连续性与持久性,即使在较大的环境噪声干扰下,耦合分数阶混沌系统仍然可以实现同步,具有较强的抗噪声能力。因此,经过结构简单易于实现的线性耦合控制器,分数阶混沌系统可以实现稳定耦合同步,并且混沌同步系统对于噪声干扰和混沌系统参数扰动具有较强的抑制能力,耦合控制分数阶混沌同步系统具有更好的鲁棒性。更重要的是,相互耦合的非线性系统在自然界中普遍存在,且由于本发明的线性耦合结构简单,因此具有非常突出的实用价值。另外,线性耦合同步系统不需要对混沌系统进行预先的计算分析,技术可行,易于实现。2. Synchronization based on linear coupling technology: The nonlinear system realizes the continuity and persistence of the coupling through linear feedback. Even under the interference of large environmental noise, the coupled fractional-order chaotic system can still achieve synchronization and has strong anti-noise. ability. Therefore, through the simple and easy-to-implement linear coupled controller, the fractional-order chaotic system can achieve stable coupling synchronization, and the chaotic synchronization system has a strong ability to suppress noise interference and chaotic system parameter disturbance. The coupled control fractional-order chaotic synchronization system has better robustness. More importantly, mutually coupled nonlinear systems are ubiquitous in nature, and because the linear coupling structure of the present invention is simple, it has very prominent practical value. In addition, the linear coupled synchronous system does not require pre-calculation and analysis of the chaotic system, and the technology is feasible and easy to implement.
3.成本低:现有的分数阶混沌同步系统采用的元器件较多,信号之间干扰大,实现误差较大;本发明只需要一个电阻和分数阶等效电容即可实现耦合项,器件和结构简单,提高了同步系统的鲁棒性和适普性,提高了通信系统的安全性。3. Low cost: the existing fractional-order chaotic synchronization system adopts many components, the interference between signals is large, and the realization error is large; And the structure is simple, the robustness and applicability of the synchronization system are improved, and the security of the communication system is improved.
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发发明的精神和范围。Those skilled in the art can understand that the above-mentioned embodiments are specific examples for realizing the present invention, and in practical applications, various changes can be made in form and details without departing from the spirit of the present invention and range.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210303040.8A CN114866216B (en) | 2022-03-24 | 2022-03-24 | Chaotic synchronization system and method based on resistance and fractional-order equivalent capacitance coupling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210303040.8A CN114866216B (en) | 2022-03-24 | 2022-03-24 | Chaotic synchronization system and method based on resistance and fractional-order equivalent capacitance coupling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114866216A true CN114866216A (en) | 2022-08-05 |
CN114866216B CN114866216B (en) | 2024-05-28 |
Family
ID=82628580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210303040.8A Active CN114866216B (en) | 2022-03-24 | 2022-03-24 | Chaotic synchronization system and method based on resistance and fractional-order equivalent capacitance coupling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114866216B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980057574A (en) * | 1996-12-30 | 1998-09-25 | 추호석 | Chaos system synchronizer by feeding back noise or chaos signals to variables and secret communication system using same |
WO2000004685A1 (en) * | 1998-07-17 | 2000-01-27 | Science Applications International Corporation | Communications system using synchronized chaotic circuits |
CN104156768A (en) * | 2014-08-05 | 2014-11-19 | 中国科学院重庆绿色智能技术研究院 | Small data size chaos identifying method through fuzzy C-means cluster |
CN209402524U (en) * | 2019-04-16 | 2019-09-17 | 湖南科技大学 | Synchronous Communication Security Circuit for Seven-Dimensional Fractional Chaos System |
CN110740031A (en) * | 2019-10-25 | 2020-01-31 | 华中师范大学 | A Synchronization Method of Two Chaotic System Circuits Based on Memristor |
-
2022
- 2022-03-24 CN CN202210303040.8A patent/CN114866216B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980057574A (en) * | 1996-12-30 | 1998-09-25 | 추호석 | Chaos system synchronizer by feeding back noise or chaos signals to variables and secret communication system using same |
WO2000004685A1 (en) * | 1998-07-17 | 2000-01-27 | Science Applications International Corporation | Communications system using synchronized chaotic circuits |
CN104156768A (en) * | 2014-08-05 | 2014-11-19 | 中国科学院重庆绿色智能技术研究院 | Small data size chaos identifying method through fuzzy C-means cluster |
CN209402524U (en) * | 2019-04-16 | 2019-09-17 | 湖南科技大学 | Synchronous Communication Security Circuit for Seven-Dimensional Fractional Chaos System |
CN110740031A (en) * | 2019-10-25 | 2020-01-31 | 华中师范大学 | A Synchronization Method of Two Chaotic System Circuits Based on Memristor |
Non-Patent Citations (3)
Title |
---|
XIN ZHOU: "Design and Analysis of a New Logistic Chaotic Digital Generation Circuit", 《INTERNATIONAL CONFERENCE ON GREEN COMMUNICATIONS AND NETWORKING》, 30 November 2020 (2020-11-30) * |
周平;危丽佳;程雪峰;: "只有一个非线性项的超混沌系统", 物理学报, no. 08, 15 August 2009 (2009-08-15) * |
杨飞飞;罗春风;牟俊;曹颖鸿;: "基于驱动-响应和耦合同步算法的忆阻混沌系统同步分析", 大连工业大学学报, no. 03, 15 May 2019 (2019-05-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN114866216B (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Novel image encryption algorithm based on improved logistic map | |
Zhao et al. | A novel image encryption scheme based on an improper fractional-order chaotic system | |
Panahi et al. | Performance Evaluation of L-Block Algorithm for IoT Applications | |
CN102687184A (en) | Representative calculation system, method, request device, program and recording medium | |
Kim et al. | Device authentication protocol for smart grid systems using homomorphic hash | |
CN107070635B (en) | Four-dimensional fractional order time lag chaotic circuit containing triple magnetic control memristor | |
Ustimenko et al. | On dynamical systems of large girth or cycle indicator and their applications to multivariate cryptography | |
Choudhury et al. | Tripled coincidence point theorems for nonlinear contractions in partially ordered metric spaces | |
CN112269318B (en) | A finite-time remote safe state estimation method for time-delay uncertain systems | |
Song et al. | Distributed consensus‐based Kalman filtering in sensor networks with quantised communications and random sensor failures | |
CN114866216A (en) | Chaotic synchronization system and method based on resistance and fractional order equivalent capacitance coupling | |
CN108650074B (en) | An encrypted communication method for single-channel chaotic system based on parameter identification | |
CN114640435A (en) | Chaos synchronization system based on linear resistance coupling and design method | |
CN114860840A (en) | Fractional order equivalent capacitance coupling-based chaotic synchronization system and design method | |
Lai et al. | Multiscroll chaos and extreme multistability of memristive chaotic system with application to image encryption | |
CN118822057A (en) | Intelligent vehicle sensing management system and operation method | |
Drakakis et al. | On the nonlinearity of exponential Welch Costas functions | |
Li et al. | Discrete synchronization method for continuous chaotic systems and its application in secure communication | |
CN203233426U (en) | A five-dimensional hyperchaotic circuit | |
CN106936564B (en) | Fractional order chaotic circuit containing smooth memristor | |
Ding et al. | The cipher code parameter selection and its impact on output cycles | |
CN103826218B (en) | Pseudo-random sequence generation method and application method for wireless sensor network nodes | |
Feng et al. | Formal Security Evaluation and Research of Automotive CAN Protocol Based on CPN | |
CN116073982B (en) | Secret communication method and system for resisting DoS attack in limited time | |
Elkholy et al. | Real time implementation of secure communication system based on synchronization of hyper chaotic systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |