CN114865674A - 一种大规模电动汽车接入场景下配电网馈线负荷调整方法 - Google Patents

一种大规模电动汽车接入场景下配电网馈线负荷调整方法 Download PDF

Info

Publication number
CN114865674A
CN114865674A CN202210787612.4A CN202210787612A CN114865674A CN 114865674 A CN114865674 A CN 114865674A CN 202210787612 A CN202210787612 A CN 202210787612A CN 114865674 A CN114865674 A CN 114865674A
Authority
CN
China
Prior art keywords
load
feeder line
overload
distribution network
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210787612.4A
Other languages
English (en)
Other versions
CN114865674B (zh
Inventor
任羽纶
赵红生
王博
林致远
唐飞
徐秋实
熊一
熊志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan University WHU
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU, Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan University WHU
Priority to CN202210787612.4A priority Critical patent/CN114865674B/zh
Publication of CN114865674A publication Critical patent/CN114865674A/zh
Application granted granted Critical
Publication of CN114865674B publication Critical patent/CN114865674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种大规模电动汽车接入场景下配电网馈线负荷调整方法,先采用DIgSILENT配电网仿真模型对配电网进行潮流仿真计算,以确定过载馈线及其配置的储能装置的负荷功率和位置,再以电动汽车作为储能装置,采用SUMO交通网仿真模型,计算过载馈线的电动汽车需求数量,然后根据各过载馈线的电动汽车需求数量进行车辆调度。本发明实现了配电网过载馈线的负荷调整,使发电、用电趋于平衡。

Description

一种大规模电动汽车接入场景下配电网馈线负荷调整方法
技术领域
本发明属于新能源并网与控制领域,具体涉及一种大规模电动汽车接入场景下配电网馈线负荷调整方法。
背景技术
随着传统石油化石能源的开发利用,不可再生的化石燃料能源储备日渐枯竭,同时环境污染问题也在逐渐加剧。而电动汽车具有清洁、高效的特点,考虑到保护环境与减少化石燃料的使用,电动汽车的大规模使用已经成为必然的趋势。目前,世界各国都在推广电动汽车的使用,政府也提供了大量的优惠政策来促进电动汽车产业的广泛发展。随着电动汽车的快速发展,电动汽车充电桩和电动汽车充电站也被带动着发展起来,充电桩和充电站的建设有了显著发展,已成为电动汽车发展浪潮中不可或缺的一部分。
随着经济的快速增长和国家政策的大力支持,电动汽车取代汽油汽车的大规模普及成为必然。而电动汽车在城市充电设施和充电站中的充电行为给城市配电网带来了新的负荷,这种不稳定的负荷由于电动汽车的大规模性和不确定的行为给城市配电网带来了新的挑战。
发明内容
本发明的目的是针对现有技术存在的上述问题,提供一种大规模电动汽车接入场景下配电网馈线负荷调整方法。
为实现以上目的,本发明的技术方案如下:
一种大规模电动汽车接入场景下配电网馈线负荷调整方法,依次包括以下步骤:
步骤A、采用DIgSILENT配电网仿真模型对配电网进行潮流仿真计算,以确定过载馈线及其配置的储能装置的负荷功率和位置;
步骤B、以电动汽车作为储能装置,采用SUMO交通网仿真模型,先计算过载馈线的电动汽车需求数量,然后根据各过载馈线的电动汽车需求数量进行车辆调度,以实现各过载馈线的负荷调整。
所述步骤A依次包括以下步骤:
步骤A1、在DIgSILENT配电网仿真模型中选取配电网的负荷数据,并根据该负荷数据确定过载馈线及其负荷百分比曲线;
步骤A2、构建如下储能配置模型:
Figure DEST_PATH_IMAGE001
Figure 993502DEST_PATH_IMAGE002
上式中,
Figure DEST_PATH_IMAGE003
为目标函数,x为过载馈线配置的储能装置的负荷功率变量,
Figure 134633DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
为虚拟的系数,
Figure 694928DEST_PATH_IMAGE006
为馈线负荷百分比公式,
Figure DEST_PATH_IMAGE007
为热约束方程,
Figure 779426DEST_PATH_IMAGE008
为电压约束 方程;
步骤A3、采用内点法对上述储能配置模型进行求解,得到各过载馈线所配置的储能装置的负荷功率和位置。
步骤A2中,所述馈线负荷百分比公式为:
Figure DEST_PATH_IMAGE009
上式中,
Figure 526802DEST_PATH_IMAGE010
为馈线负荷百分比,
Figure DEST_PATH_IMAGE011
Figure 206045DEST_PATH_IMAGE012
分别为馈线的电压、电流有效值,
Figure DEST_PATH_IMAGE013
为功率因 数,
Figure 355266DEST_PATH_IMAGE014
为馈线的额定输出功率;
所述热约束方程为:
Figure DEST_PATH_IMAGE015
上式中,
Figure 360131DEST_PATH_IMAGE016
为馈线发热量,
Figure DEST_PATH_IMAGE017
为馈线的额定温度;
所述电压约束方程为:
Figure 329224DEST_PATH_IMAGE018
上式中,
Figure DEST_PATH_IMAGE019
为节点电压,
Figure 313623DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE021
分别为节点电压下、上限。
步骤B中,所述根据各过载馈线的电动汽车需求数量进行车辆调度的方法为:
先通过TraCI连接获取调度时刻所有在SUMO交通网仿真模型中行驶的电动汽车编号及其对应的坐标位置,并根据此时各过载馈线所配置的储能装置位置确定其对应在SUMO交通网仿真模型中的储能配置点坐标,再计算SUMO交通网仿真模型中行驶的各电动汽车到储能配置点的距离,并获取距离最近的需求数量的电动汽车编号,然后通过TraCI将这些电动汽车调度至储能配置点进行充电或放电。
与现有技术相比,本发明的有益效果为:
本发明一种大规模电动汽车接入场景下配电网馈线负荷调整方法先采用DIgSILENT配电网仿真模型对配电网进行潮流仿真计算,以确定过载馈线及其配置的储能装置的负荷功率和位置,再以电动汽车作为储能装置,采用SUMO交通网仿真模型,计算过载馈线的电动汽车需求数量,然后根据各过载馈线的电动汽车需求数量进行车辆调度,以实现各过载馈线的负荷调整,该方法针对配电网馈线负荷过载问题,使用交通网仿真软件SUMO与配电网仿真软件DIgSILENT进行数据交互,实现两网联合仿真,以电动汽车作为储能装置,以电动汽车的调度作为储能配置方式,在高峰时段即负荷过载时段调度一定数量的电动汽车到储能配置点进行放电,从而有效解决上述问题;在低峰时段即馈线负荷百分比较低时段调度一定数量电动汽车到储能配置点充电,适当提高馈线负荷,可有效提升经济效益,从整体上起到了削峰填谷的作用,使发电、用电趋于平衡。因此,本发明实现了配电网过载馈线的负荷调整。
附图说明
图1为实施例1中过载馈线FD_21_05在储能配置前、后的负荷百分比曲线。
图2为实施例1中过载馈线FD_21_05在各时间点的电动汽车需求数量。
具体实施方式
下面结合具体实施方式以及附图对本发明作进一步详细的说明。
本发明提出了一种大规模电动汽车接入场景下配电网馈线负荷调整方法,该方法针对配电网馈线过载问题,通过搭建DIgSILENT-Python-SUMO联合仿真平台,先用DIgSILENT配电网仿真模型进行模拟计算,为过载馈线配置储能装置,实现削峰填谷,提高了配电网运行的安全性与经济性;之后采用SUMO交通网仿真模型,以电动汽车作为分布式电源,通过python脚本确定过载馈线配置的电动汽车数量,再基于配置的电动汽车数量通过python脚本进行电动汽车调度,以替代储能装置的配置,最终以电动汽车对配电网馈线充放电的形式调节馈线负荷。
实施例1:
一种大规模电动汽车接入场景下配电网馈线负荷调整方法,本实施例以某地区中压配电网在2021年6月20日的运行状况为基础,依次按照以下步骤进行:
1、在DIgSILENT配电网仿真模型中选取该日配电网的负荷数据,得到配电网中每条馈线的负荷百分比,从而确定各馈线是否存在过载情况,对于过载馈线,对其进行最大负荷分析,每30分钟进行一次计算,得到其负荷百分比曲线;
本实施例中,过载馈线FD_21_05的负荷百分比曲线如图1中的虚线所示,该馈线在7:00-12:30存在过载状况,最大过载负荷百分比达118.32%,日最小负荷百分比为45.53%;
2、构建如下储能配置模型:
Figure 582931DEST_PATH_IMAGE001
Figure 227538DEST_PATH_IMAGE002
上式中,
Figure 418348DEST_PATH_IMAGE022
为目标函数,x为过载馈线配置的储能装置的负荷功率变量,
Figure 173815DEST_PATH_IMAGE004
Figure 500891DEST_PATH_IMAGE005
为虚拟的系数,
Figure 316400DEST_PATH_IMAGE006
为馈线负荷百分比公式,
Figure 994506DEST_PATH_IMAGE007
为热约束方程,
Figure DEST_PATH_IMAGE023
为电压约束 方程;
所述馈线负荷百分比公式为:
Figure 583357DEST_PATH_IMAGE009
上式中,
Figure 30519DEST_PATH_IMAGE010
为馈线负荷百分比,
Figure 751350DEST_PATH_IMAGE011
Figure 916752DEST_PATH_IMAGE012
分别为馈线的电压、电流有效值,
Figure 14021DEST_PATH_IMAGE013
为功率因 数,
Figure 581269DEST_PATH_IMAGE014
为馈线的额定输出功率;
所述热约束方程为:
Figure 473002DEST_PATH_IMAGE024
上式中,
Figure 391279DEST_PATH_IMAGE016
为馈线发热量,
Figure 26660DEST_PATH_IMAGE017
为馈线的额定温度;
所述电压约束方程为:
Figure 684299DEST_PATH_IMAGE018
上式中,
Figure 12513DEST_PATH_IMAGE019
为节点电压,
Figure 886928DEST_PATH_IMAGE020
Figure 591578DEST_PATH_IMAGE021
分别为节点电压下、上限;
3、采用内点法对上述储能配置模型进行求解,得到各过载馈线所配置的储能装置的负荷功率和位置;
本实施例对过载馈线FD_21_05配置储能装置后,其负荷百分比曲线如图1中的实线所示,配置储能后的最大负荷百分比为100.39%,满足配电网运行的安全性要求,同时,在负荷百分比较低时段通过配置储能增加其负荷,实现削峰填谷;
4、建立SUMO交通网仿真模型
基于该地区地图生成路网文件、随机生成车辆形成车辆信息文件的交通网仿真模型,利用SUMO软件的工具osmWebWizard.py文件从地图中导出与配电网地理一致的路网文件,并设置随机生成如表1所示车辆参数:
表1 随机生成车辆参数
Figure DEST_PATH_IMAGE025
上表中,通过流量因子为穿行整个仿真地图区域车辆与仅在仿真区域行驶车辆数量之比,每千米每车道生成数量为在每条车道上每千米生成该类型车辆数量,车辆类型包括汽车与公交车,这两种车辆类型仅区分行驶车道不同与车辆建模大小不同,两者均用于进行充放电调度;
5、运行python脚本,获取配置储能前后各过载馈线的负荷百分比曲线,将其作差以得到储能的负荷百分比功率,并根据该负荷百分比换算成该馈线的电动汽车需求数量,例如,100%负荷为10MW,电动车充放电功率采用快速充电模型,每辆车充放电功率为100kW,则每一百分比负荷代表1辆电动汽车;
本实施例计算得到的过载馈线FD_21_05在各时间点的电动汽车需求数量如图2所示,其中,正数代表电动汽车放电,负数代表电动汽车充电;
6、建立TraCI连接
Python脚本检查SUMO程序环境变量的设置,若已设置好则继续进行下一步,若未设置将返回提示“请先配置可用的环境变量 'SUMO_HOME'”,然后将sumo-gui.exe应用程序的路径赋值给变量sumoBinary,调用traci.start函数,并在函数内输入参数包含sumoBinary、需打开的sumocfg文件的路径,此时脚本与SUMO程序完成TraCI连接;
7、设置初始值为0 的循环条件step变量,通过循环调用traci.simulationStep函数以运行SUMO交通网仿真模型,并通过time.sleep函数控制仿真运行的实际速度,随后获取仿真时间,当仿真时间达到调度时刻时(根据配电网仿真步长为30分钟,对应设置每30步长进行一次车辆调度,共进行48次调度,分别为时间段0-47),输出当前仿真时间与车辆需求数量;
8、Python脚本通过TraCI连接获取当前时刻所有在SUMO交通网仿真模型中行驶的电动汽车编号及其对应的坐标位置,并根据此时各过载馈线所配置的储能装置位置确定其对应在SUMO交通网仿真模型中的储能配置点坐标,再计算SUMO交通网仿真模型中行驶的各电动汽车到储能配置点的距离,并获取距离最近的需求数量的电动汽车编号,然后脚本通过TraCI将这些电动汽车调度至储能配置点进行充电或放电30步长后离开。

Claims (4)

1.一种大规模电动汽车接入场景下配电网馈线负荷调整方法,其特征在于:
所述方法依次包括以下步骤:
步骤A、采用DIgSILENT配电网仿真模型对配电网进行潮流仿真计算,以确定过载馈线及其配置的储能装置的负荷功率和位置;
步骤B、以电动汽车作为储能装置,基于SUMO交通网仿真模型,先计算各过载馈线所对应的电动汽车需求数量,然后根据各过载馈线的电动汽车需求数量进行车辆调度,以实现各过载馈线的负荷调整。
2.根据权利要求1所述的一种大规模电动汽车接入场景下配电网馈线负荷调整方法,其特征在于:
所述步骤A依次包括以下步骤:
步骤A1、在DIgSILENT配电网仿真模型中选取配电网的负荷数据,并根据该负荷数据确定过载馈线及其负荷百分比曲线;
步骤A2、构建如下储能配置模型:
Figure 668445DEST_PATH_IMAGE001
Figure 874299DEST_PATH_IMAGE002
上式中,
Figure 663263DEST_PATH_IMAGE003
为目标函数,x为过载馈线配置的储能装置的负荷功率变量,
Figure 60484DEST_PATH_IMAGE004
Figure 505372DEST_PATH_IMAGE005
为虚拟的系数,
Figure 514916DEST_PATH_IMAGE006
为馈线负荷百分比公式,
Figure 627229DEST_PATH_IMAGE007
为热约束方程,
Figure 431237DEST_PATH_IMAGE008
为电压约束方程;
步骤A3、采用内点法对上述储能配置模型进行求解,得到各过载馈线所配置的储能装置的负荷功率和位置。
3.根据权利要求2所述的一种大规模电动汽车接入场景下配电网馈线负荷调整方法,其特征在于:
步骤A2中,所述馈线负荷百分比公式为:
Figure 629000DEST_PATH_IMAGE009
上式中,
Figure 911077DEST_PATH_IMAGE010
为馈线负荷百分比,
Figure 877896DEST_PATH_IMAGE011
Figure 616919DEST_PATH_IMAGE012
分别为馈线的电压、电流有效值,
Figure 833137DEST_PATH_IMAGE013
为功率因数,
Figure 184484DEST_PATH_IMAGE014
为馈线的额定输出功率;
所述热约束方程为:
Figure 740230DEST_PATH_IMAGE015
上式中,
Figure 151620DEST_PATH_IMAGE016
为馈线发热量,
Figure 855134DEST_PATH_IMAGE017
为馈线的额定温度;
所述电压约束方程为:
Figure 744592DEST_PATH_IMAGE018
上式中,
Figure 686004DEST_PATH_IMAGE019
为节点电压,
Figure 2715DEST_PATH_IMAGE020
Figure 396788DEST_PATH_IMAGE021
分别为节点电压下、上限。
4.根据权利要求1-3中任一项所述的一种大规模电动汽车接入场景下配电网馈线负荷调整方法,其特征在于:
步骤B中,所述根据各过载馈线的电动汽车需求数量进行车辆调度的方法为:
先通过TraCI连接获取调度时刻所有在SUMO交通网仿真模型中行驶的电动汽车编号及其对应的坐标位置,并根据此时各过载馈线所配置的储能装置位置确定其对应在SUMO交通网仿真模型中的储能配置点坐标,再计算SUMO交通网仿真模型中行驶的各电动汽车到储能配置点的距离,并获取距离最近的需求数量的电动汽车编号,然后通过TraCI将这些电动汽车调度至储能配置点进行充电或放电。
CN202210787612.4A 2022-07-06 2022-07-06 一种大规模电动汽车接入场景下配电网馈线负荷调整方法 Active CN114865674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210787612.4A CN114865674B (zh) 2022-07-06 2022-07-06 一种大规模电动汽车接入场景下配电网馈线负荷调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210787612.4A CN114865674B (zh) 2022-07-06 2022-07-06 一种大规模电动汽车接入场景下配电网馈线负荷调整方法

Publications (2)

Publication Number Publication Date
CN114865674A true CN114865674A (zh) 2022-08-05
CN114865674B CN114865674B (zh) 2022-09-20

Family

ID=82626042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210787612.4A Active CN114865674B (zh) 2022-07-06 2022-07-06 一种大规模电动汽车接入场景下配电网馈线负荷调整方法

Country Status (1)

Country Link
CN (1) CN114865674B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631642A (zh) * 2013-12-13 2014-03-12 国家电网公司 基于生态模拟的电动汽车充换电服务网络仿真系统及方法
CN108510128A (zh) * 2018-04-11 2018-09-07 华南理工大学广州学院 一种区域电动汽车充电负荷时空分布预测方法
CN109871981A (zh) * 2019-01-10 2019-06-11 国家电网有限公司 一种计及分布式电源和电动汽车影响的负荷特性预测方法
US20190353690A1 (en) * 2018-05-15 2019-11-21 Tata Consultancy Services Limited Method and system providing temporal-spatial prediction of load demand
WO2021098352A1 (zh) * 2019-11-22 2021-05-27 国网福建省电力有限公司 一种考虑电动汽车充电站选址定容的主动配电网规划模型的建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631642A (zh) * 2013-12-13 2014-03-12 国家电网公司 基于生态模拟的电动汽车充换电服务网络仿真系统及方法
CN108510128A (zh) * 2018-04-11 2018-09-07 华南理工大学广州学院 一种区域电动汽车充电负荷时空分布预测方法
US20190353690A1 (en) * 2018-05-15 2019-11-21 Tata Consultancy Services Limited Method and system providing temporal-spatial prediction of load demand
CN109871981A (zh) * 2019-01-10 2019-06-11 国家电网有限公司 一种计及分布式电源和电动汽车影响的负荷特性预测方法
WO2021098352A1 (zh) * 2019-11-22 2021-05-27 国网福建省电力有限公司 一种考虑电动汽车充电站选址定容的主动配电网规划模型的建立方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FEDERICO MONTORI: "A co-simulation platform for the analysis of the impact of electromobility scenarios on the urban distribution network", 《2016 IEEE 2ND INTERNATIONAL FORUM ON RESEARCH AND TECHNOLOGIES FOR SOCIETY AND INDUSTRY LEVERAGING A BETTER TOMORROW (RTSI))》 *
KHIZIR MAHMUD: "review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks", 《ELSEVICE》 *
刘丽军: "基于时空特性以及需求响应的DG和EV充电站多目标优化配置", 《电力自动化设备》 *
郑远硕: ""车 路 网"模式下电动汽车充放电时空灵活性优化调度策略", 《电力系统自动化》 *

Also Published As

Publication number Publication date
CN114865674B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Bryden et al. Rating a stationary energy storage system within a fast electric vehicle charging station considering user waiting times
Jian et al. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
Madzharov et al. Integrating electric vehicles as flexible load in unit commitment modeling
CN109301852B (zh) 一种微电网分级多目标联合的经济调度方法
Fathabadi Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems
Aljanad et al. A novel method for optimal placement of vehicle-to-grid charging stations in distribution power system using a quantum binary lightning search algorithm
CN112186809B (zh) 基于电动汽车v2g模式的虚拟电厂优化协同调度方法
Geth et al. Impact-analysis of the charging of plug-in hybrid vehicles on the production park in Belgium
Roe et al. Power system level impacts of plug-in hybrid electric vehicles using simulation data
Gao et al. Research on time-of-use price applying to electric vehicles charging
CN103241130A (zh) 一种电动公交车充换电站的能量管理方法及系统
CN110289622B (zh) 一种光储充能量路由器的日前经济优化调度方法
Zhou et al. The impact of vehicle-to-grid on electric power systems: A review
CN104966127A (zh) 一种基于需求响应的电动汽车经济调度方法
Galus et al. Power system considerations of plug-in hybrid electric vehicles based on a multi energy carrier model
Murat et al. Energy management for EV charging based on solar energy in an industrial microgrid
CN112347615A (zh) 一种计及光储快充一体站的配电网混合优化调度方法
CN112193121A (zh) 一种v2g直流充电桩的集群放电控制方法
Jiang et al. A coordinated charging strategy for electric vehicles based on multi-objective optimization
CN107959301A (zh) 含光伏的低压配电网分布式储能优化配置与运行方法
CN112070628B (zh) 一种计及环境因素的智能电网多目标经济调度方法
CN116029453A (zh) 一种电动汽车充电桩配置方法、记录媒体及系统
Zhong et al. Multiobjective optimization regarding vehicles and power grids
CN107482675A (zh) 一种基于离网型微网的电动汽车消纳可再生能源的计算方法
Karaki et al. Fuel cell hybrid electric vehicle sizing using ordinal optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant