CN114859521A - Optical imaging system - Google Patents

Optical imaging system Download PDF

Info

Publication number
CN114859521A
CN114859521A CN202210666531.9A CN202210666531A CN114859521A CN 114859521 A CN114859521 A CN 114859521A CN 202210666531 A CN202210666531 A CN 202210666531A CN 114859521 A CN114859521 A CN 114859521A
Authority
CN
China
Prior art keywords
lens
imaging system
optical imaging
refractive power
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210666531.9A
Other languages
Chinese (zh)
Inventor
许宰赫
金炳贤
梁召渼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210132520A external-priority patent/KR20230049403A/en
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of CN114859521A publication Critical patent/CN114859521A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical imaging system is provided. The optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens that are arranged in this order from an object side to an imaging side. The first lens has a positive refractive power and the second lens has a negative refractive power. TTL >10.2mm, and TTL/(2 × IMG HT) ≦ 1.7, where TTL is a distance from an object side surface of the first lens to an imaging plane on an optical axis, and IMG HT is equal to half a diagonal length of the imaging plane.

Description

光学成像系统Optical imaging system

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求于2021年10月6日在韩国知识产权局提交第10-2021-0132520号韩国专利申请的优先权的权益,上述韩国专利申请的全部公开内容通过引用并入本文中以用于所有目的。This application claims the benefit of priority from Korean Patent Application No. 10-2021-0132520 filed in the Korean Intellectual Property Office on October 6, 2021, the entire disclosure of which is incorporated herein by reference for all Purpose.

技术领域technical field

以下描述涉及光学成像系统。The following description refers to optical imaging systems.

背景技术Background technique

便携式终端可以包括这样的相机,该相机包括与多个透镜结合的光学成像系统,以执行诸如(但不限于)视频呼叫和图像捕获的操作。The portable terminal may include a camera including an optical imaging system combined with a plurality of lenses to perform operations such as, but not limited to, video calling and image capture.

随着由包括在便携式终端中的相机执行的操作逐渐增加,对用于便携式终端的高分辨率相机的需求增加。As operations performed by cameras included in portable terminals gradually increase, the demand for high-resolution cameras for portable terminals increases.

具有高像素计数(例如,1300万到1亿像素等)的图像传感器可用于并入便携式终端中的相机中以实现改善的图像质量。Image sensors with high pixel counts (eg, 13 to 100 million pixels, etc.) can be used for incorporation into cameras in portable terminals to achieve improved image quality.

另外,由于便携式终端可以被实现为具有小尺寸,所以设置在便携式终端中的相机也可以被实现为具有减小的尺寸,并且因此,可能期望开发可在具有减小的尺寸的同时实现高分辨率的光学成像系统。In addition, since the portable terminal can be implemented to have a small size, the camera provided in the portable terminal can also be implemented to have a reduced size, and therefore, it may be desirable to develop a development that can achieve high resolution while having a reduced size rate of optical imaging systems.

上述信息仅作为背景信息来呈现,以帮助获得对本公开的理解。关于以上中的任何内容是否可以用作关于本公开的现有技术,没有做出确定,也没有做出断言。The above information is presented as background information only to assist in an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above may be considered prior art with regard to the present disclosure.

发明内容SUMMARY OF THE INVENTION

提供本发明内容部分旨在以简要的形式介绍对发明构思的选择,而在下面的具体实施方式部分中将进一步描述这些发明构思。本发明内容部分目的不在于确认所要求保护的主题的关键特征或必要特征,也不籍此帮助确定所要求保护的主题的范围。This Summary is provided to introduce a selection of inventive concepts in a simplified form that are further described in the Detailed Description section below. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be an aid in determining the scope of the claimed subject matter.

在总的方面,光学成像系统包括从物侧到成像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中:第一透镜具有正屈光力,并且第二透镜具有负屈光力;以及TTL>10.2mm,并且TTL/(2×IMG HT)≤1.7,其中TTL是在光轴上从第一透镜的物侧面到成像面的距离,并且IMG HT等于成像面的对角线长度的一半。In a general aspect, an optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in this order from the object side to the imaging side, wherein: the first lens has positive refractive power, and the second lens The lens has negative refractive power; and TTL>10.2mm, and TTL/(2×IMG HT)≤1.7, where TTL is the distance on the optical axis from the object side of the first lens to the imaging plane, and IMG HT is equal to the imaging plane half the length of the diagonal.

在光学成像系统中,IMG HT≥4.5mm,其中f是光学成像系统的总焦距。In the optical imaging system, IMG HT ≥ 4.5mm, where f is the total focal length of the optical imaging system.

n2+n3>3.20,其中n2是第二透镜的折射率,以及n3是第三透镜的折射率。n2+n3>3.20, where n2 is the refractive index of the second lens, and n3 is the refractive index of the third lens.

|f/f1+f/f2|<1.2,其中f是光学成像系统的总焦距,f1是第一透镜的焦距,以及f2是第二透镜的焦距。|f/f1+f/f2|<1.2, where f is the overall focal length of the optical imaging system, f1 is the focal length of the first lens, and f2 is the focal length of the second lens.

BFL/f<0.4,其中f是光学成像系统的总焦距,BFL是在光轴上从第五透镜的像侧面到成像面的距离。BFL/f<0.4, where f is the total focal length of the optical imaging system, and BFL is the distance from the image side of the fifth lens to the imaging surface on the optical axis.

0.80≤TTL/f≤1.05,其中f是光学成像系统的总焦距。0.80≤TTL/f≤1.05, where f is the total focal length of the optical imaging system.

0≤D1/f≤0.05,其中f是光学成像系统的总焦距,D1是在光轴上第一透镜的像侧面与第二透镜的物侧面之间的距离。0≤D1/f≤0.05, where f is the total focal length of the optical imaging system, and D1 is the distance on the optical axis between the image side of the first lens and the object side of the second lens.

R1/f≤0.35,其中f是光学成像系统的总焦距,以及R1是第一透镜的物侧面的曲率半径。R1/f≦0.35, where f is the overall focal length of the optical imaging system, and R1 is the radius of curvature of the object side of the first lens.

第三透镜可以具有正屈光力,第四透镜可以具有负屈光力,并且第五透镜可以具有负屈光力。The third lens may have positive refractive power, the fourth lens may have negative refractive power, and the fifth lens may have negative refractive power.

第三透镜可以具有正屈光力,第四透镜可以具有正屈光力,并且第五透镜可以具有负屈光力。The third lens may have positive refractive power, the fourth lens may have positive refractive power, and the fifth lens may have negative refractive power.

第三透镜可以具有负屈光力,第四透镜可以具有正屈光力,并且第五透镜可以具有负屈光力。The third lens may have negative refractive power, the fourth lens may have positive refractive power, and the fifth lens may have negative refractive power.

光学成像系统还可以包括设置在第五透镜和成像面之间的第六透镜,其中:第三透镜具有正屈光力,第四透镜具有正屈光力,第五透镜具有负屈光力,并且第六透镜具有负屈光力。The optical imaging system may further include a sixth lens disposed between the fifth lens and the imaging surface, wherein: the third lens has positive refractive power, the fourth lens has positive refractive power, the fifth lens has negative refractive power, and the sixth lens has negative refractive power refractive power.

光学成像系统还可以包括设置在第五透镜和成像面之间的第六透镜,其中:第三透镜具有正屈光力,第四透镜具有正屈光力,第五透镜具有正屈光力,并且第六透镜具有负屈光力。The optical imaging system may further include a sixth lens disposed between the fifth lens and the imaging surface, wherein: the third lens has positive refractive power, the fourth lens has positive refractive power, the fifth lens has positive refractive power, and the sixth lens has negative refractive power refractive power.

第二透镜和第三透镜中的至少一个的折射率可以大于1.64。The refractive index of at least one of the second lens and the third lens may be greater than 1.64.

第一透镜和第二透镜中的每一个的焦距的绝对值可以小于第三透镜,第四透镜和第五透镜中的每一个的焦距的绝对值。The absolute value of the focal length of each of the first lens and the second lens may be smaller than the absolute value of the focal length of each of the third lens, the fourth lens and the fifth lens.

根据所附权利要求、附图和下面的具体实施方式,其它特征和方面将变得显而易见。Other features and aspects will become apparent from the appended claims, drawings and the following detailed description.

附图说明Description of drawings

图1是示出根据第一示例性实施方式的示例性光学成像系统的图。FIG. 1 is a diagram illustrating an exemplary optical imaging system according to a first exemplary embodiment.

图2是示出图1所示的示例性光学成像系统的像差特性的图。FIG. 2 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 1 .

图3是示出根据第二示例性实施方式的示例性光学成像系统的图。FIG. 3 is a diagram illustrating an exemplary optical imaging system according to the second exemplary embodiment.

图4是示出图3所示的示例性光学成像系统的像差特性的图。FIG. 4 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 3 .

图5是示出根据第三示例性实施方式的示例性光学成像系统的图。FIG. 5 is a diagram illustrating an exemplary optical imaging system according to a third exemplary embodiment.

图6是示出图5所示的示例性光学成像系统的像差特性的图。FIG. 6 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 5 .

图7是示出根据第四示例性实施方式的示例性光学成像系统的图。FIG. 7 is a diagram illustrating an exemplary optical imaging system according to a fourth exemplary embodiment.

图8是示出图7所示的示例性光学成像系统的像差特性的图。FIG. 8 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 7 .

图9是示出根据第五示例性实施方式的示例性光学成像系统的图。FIG. 9 is a diagram illustrating an exemplary optical imaging system according to a fifth exemplary embodiment.

图10是示出图9所示的示例性光学成像系统的像差特性的图。FIG. 10 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 9 .

图11是示出根据第六示例性实施方式的示例性光学成像系统的图。FIG. 11 is a diagram illustrating an exemplary optical imaging system according to the sixth exemplary embodiment.

图12是示出图11所示的示例性光学成像系统的像差特性的图。FIG. 12 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 11 .

图13是示出根据第七示例性实施方式的示例性光学成像系统的图。FIG. 13 is a diagram illustrating an exemplary optical imaging system according to the seventh exemplary embodiment.

图14是示出图13所示的示例性光学成像系统的像差特性的图。FIG. 14 is a graph showing aberration characteristics of the exemplary optical imaging system shown in FIG. 13 .

图15是示出在图1所示的示例性光学成像系统中包括反射构件的示例的图。FIG. 15 is a diagram showing an example of including a reflective member in the exemplary optical imaging system shown in FIG. 1 .

图16是示出根据示例性实施方式的示例性光学成像系统的非圆形透镜的平面图。16 is a plan view illustrating a non-circular lens of an exemplary optical imaging system according to an exemplary embodiment.

在整个附图和具体实施方式中,相同的附图标记指代相同的元件。出于清楚、说明和方便的目的,附图可能未按照比例绘制,并且附图中元件的相对尺寸、比例和描绘可能被夸大。The same reference numerals refer to the same elements throughout the drawings and the detailed description. The figures may not be drawn to scale and the relative sizes, proportions and depictions of elements in the figures may be exaggerated for purposes of clarity, illustration and convenience.

具体实施方式Detailed ways

提供以下具体实施方式以帮助读者获得对本文中所描述的方法、装置和/或系统的全面理解。然而,在理解本申请的公开内容之后,本文中所描述的方法、装置和/或系统的各种改变、修改和等同将是显而易见的。例如,本文中所描述的操作的顺序仅仅是示例,并且除了必须以特定顺序发生的操作之外,不限于在本文中所阐述的顺序,而是可以如在理解本申请的公开之后将显而易见的那样进行改变。此外,为了更加清楚和简洁,可以省略对在理解本申请的公开内容之后而已知的特征的描述,但应注意,省略特征和它们的描述也并不是承认它们为公知常识。The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatus and/or systems described herein. However, various changes, modifications and equivalents of the methods, apparatus and/or systems described herein will be apparent upon understanding of the disclosure of the present application. For example, the order of operations described herein is merely an example and is not limited to the order set forth herein, except that the operations must occur in a particular order, but may be as will become apparent upon understanding the disclosure of this application Change it that way. Furthermore, descriptions of features that are known after an understanding of the present disclosure may be omitted for increased clarity and conciseness, but it should be noted that omitting features and their descriptions is not an admission that they are common general knowledge.

本文中所描述的特征可以以不同的形式实施,并且不应被理解为受限于本文中所描述的示例。更确切地,本文中所描述的示例仅被提供来说明在理解本申请的公开内容之后将显而易见的实施在本文中描述的方法、装置和/或系统的许多可能的方式中的一些。The features described herein may be implemented in different forms and should not be construed as limited to the examples described herein. Rather, the examples described herein are provided merely to illustrate some of the many possible ways of implementing the methods, apparatus and/or systems described herein that will become apparent after an understanding of the disclosure of the present application.

应当注意,在本文中,相对于实施方式或示例使用措辞“可以”(例如,关于实施方式或示例可以包括或实现的内容)意味着存在其中包括或实现这样的特征的至少一个实施方式或示例,而所有的实施方式和示例并不限制于此。It should be noted that, herein, use of the word "may" with respect to an implementation or example (eg, with respect to what an implementation or example may include or implement) means that there is at least one implementation or example in which such a feature is included or implemented , and all implementations and examples are not limited thereto.

在整个说明书中,当诸如层、区域或基板的元件被描述为位于另一元件“上”、“连接到”或“联接到”另一元件时,该元件可直接位于该另一元件“上”、直接“连接到”或直接“联接到”另一元件,或者可存在介于该元件与该另一元件之间的一个或多个其它元件。相反地,当元件被描述为“直接位于”另一元件“上”、“直接连接到”或“直接联接到”另一元件时,则不存在介于该元件与该另一元件之间的其它元件。Throughout the specification, when an element such as a layer, region or substrate is described as being "on", "connected to" or "coupled to" another element, the element can be directly on the other element ", directly "connected to", or directly "coupled to" another element, or one or more other elements may be present between the element and the other element. In contrast, when an element is described as being "directly on," "directly connected to," or "directly coupled to" another element, there is no intervening element between the element and the other element. other components.

如本文中所使用的,措辞“和/或”包括相关联的所列项目中的任何一项以及任何两项或更多项的任何组合。As used herein, the term "and/or" includes any one and any combination of any two or more of the associated listed items.

尽管在本文中可以使用诸如“第一”、“第二”和“第三”的措辞来描述各种构件、部件、区域、层或部分,但是这些构件、部件、区域、层或部分不受这些措辞的限制。更确切地,这些措辞仅用于将一个构件、部件、区域、层或部分与另一个构件、部件、区域、层或部分区分开。因此,在不背离本文中所描述的示例的教导的情况下,这些示例中提及的第一构件、第一部件、第一区域、第一层或第一部分也可以被称作第二构件、第二部件、第二区域、第二层或第二部分。Although terms such as "first," "second," and "third" may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections are not affected by These wording restrictions. Rather, these terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, reference to a first member, component, region, layer or portion in these examples could also be termed a second member, A second component, a second region, a second layer or a second portion.

诸如“在……之上”、“较上”、“在……之下”和“较下”的空间相对措辞可以在本文中为了描述便利而使用,以描述如附图中所示的一个元件相对于另一个元件的关系。除了涵盖附图中所描绘的定向之外,这些空间相对措辞旨在还涵盖设备在使用或操作中的不同的定向。例如,如果附图中的设备翻转,则描述为位于另一元件“之上”或相对于另一元件“较上”的元件将位于该另一元件“之下”或相对于该另一元件“较下”。因此,根据设备的空间定向,措辞“在……之上”涵盖“在......之上”和“在......之下”的两个定向。该设备还可以以其它方式定向(例如,旋转90度或在其它定向上),并且本文中使用的空间相对措辞应被相应地解释。Spatially relative terms such as "above," "above," "below," and "lower" may be used herein for descriptive convenience to describe one such as that shown in the accompanying drawings. The relationship of an element to another element. In addition to encompassing the orientations depicted in the figures, these spatially relative terms are intended to encompass different orientations of the device in use or operation. For example, if the device in the figures is turned over, elements described as "above" or "above" another element would then be oriented "below" or relative to the other element "Lower". Thus, depending on the spatial orientation of the device, the wording "above" covers both orientations "above" and "below". The device may also be oriented in other ways (eg, rotated 90 degrees or at other orientations) and the spatially relative phraseology used herein should be interpreted accordingly.

本文中使用的术语仅用于描述各种示例,而不用于限制本公开。除非上下文另有明确指示,否则冠词“一”、“一个”和“该”旨在也包括复数形式。措辞“包括”、“包含”和“具有”说明存在所述特征、数字、操作、构件、元件和/或它们的组合,但不排除一个或多个其它特征、数字、操作、构件、元件和/或它们的组合的存在或添加。The terminology used herein is only used to describe various examples, not to limit the present disclosure. The articles "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. The words "comprising", "comprising" and "having" describe the presence of stated features, numbers, operations, components, elements and/or combinations thereof, but do not exclude one or more other features, numbers, operations, components, elements and The presence or addition of/or combinations thereof.

由于制造技术和/或公差,可出现附图中所示形状的变化。因此,本文中描述的示例不限于附图中所示的具体形状,而是包括在制造期间出现的形状变化。Variations from the shapes shown in the figures may occur due to manufacturing techniques and/or tolerances. Accordingly, the examples described herein are not limited to the specific shapes shown in the drawings, but include shape variations that occur during manufacture.

可以以在获得对本申请的公开内容的理解之后将显而易见的各种方式组合本文中描述的示例的特征。此外,尽管本文中描述的示例具有多种配置,但是在获得对本申请的公开内容的理解之后将显而易见的其它配置也是可行的。The features of the examples described herein may be combined in various ways that will become apparent after gaining an understanding of the disclosure of the present application. Furthermore, while the examples described herein have a variety of configurations, other configurations are possible that will become apparent after gaining an understanding of the disclosure of the present application.

在下文中,将参考附图如下描述本公开的示例。Hereinafter, examples of the present disclosure will be described as follows with reference to the accompanying drawings.

一个或多个示例提供了可以实现高分辨率的光学成像系统。One or more examples provide optical imaging systems that can achieve high resolution.

在透镜图中,透镜的厚度、尺寸和形状被夸大,并且具体地,在透镜图中呈现的球面表面或非球面表面的形状仅是示例,但并不限于此。In the lens diagrams, the thickness, size and shape of the lenses are exaggerated, and in particular, the shapes of spherical surfaces or aspherical surfaces presented in the lens diagrams are only examples, but not limited thereto.

根据示例性实施方式的光学成像系统可以包括沿着光轴设置的多个透镜。多个透镜可以沿着光轴以预定距离彼此间隔开。The optical imaging system according to the exemplary embodiment may include a plurality of lenses arranged along the optical axis. The plurality of lenses may be spaced apart from each other by a predetermined distance along the optical axis.

作为示例,光学成像系统包括五个或六个透镜。As an example, the optical imaging system includes five or six lenses.

在包括在光学成像系统中的透镜之中,最前透镜可以指最靠近物侧(或反射构件)的透镜,并且最后透镜可以指最靠近成像面(或图像传感器)的透镜。Among the lenses included in the optical imaging system, the frontmost lens may refer to the lens closest to the object side (or the reflective member), and the last lens may refer to the lens closest to the imaging surface (or image sensor).

作为示例,在光学成像系统包括五个透镜的实施方式中,第一透镜可以指最靠近物侧(或反射构件)的透镜,并且第五透镜可以指最靠近成像面(或图像传感器)的透镜。As an example, in an embodiment in which the optical imaging system includes five lenses, the first lens may refer to the lens closest to the object side (or reflective member), and the fifth lens may refer to the lens closest to the imaging surface (or image sensor) .

在光学成像系统包括六个透镜的实施方式中,第一透镜可以指最靠近物侧(或反射构件)的透镜,并且第六透镜可以指最靠近成像面(或图像传感器)的透镜。另外,在示例性实施方式中,透镜的曲率半径、厚度、距离和焦距以毫米(mm)表示,并且视场(FOV)以度表示。In embodiments where the optical imaging system includes six lenses, the first lens may refer to the lens closest to the object side (or reflective member), and the sixth lens may refer to the lens closest to the imaging surface (or image sensor). Additionally, in exemplary embodiments, the radius of curvature, thickness, distance, and focal length of the lenses are expressed in millimeters (mm), and the field of view (FOV) is expressed in degrees.

在对每个透镜的形状的描述中,其中一个面凸出的配置表示该面的近轴区域部分或近轴区是凸出的,其中一个面凹入的配置表示该面的近轴区域部分或近轴区是凹入的,以及其中一个面是平的配置表示该面的近轴区域部分或近轴区是平的。因此,当透镜的一个面被描述为凸出的时,透镜的边缘部分可以是凹入的。类似地,当透镜的一个面被描述为凹入的时,透镜的边缘部分可以是凸出的。另外,当透镜的一个面被描述为平的时,透镜的边缘部分可以是凸出的或凹入的。In the description of the shape of each lens, a configuration in which one face is convex indicates that the paraxial region portion or paraxial region of the face is convex, and a configuration in which one face is concave indicates the paraxial region portion of the face. Either the paraxial region is concave, and a configuration in which one of the faces is flat means that the paraxial region portion of the face or the paraxial region is flat. Thus, when one face of the lens is described as convex, the edge portion of the lens may be concave. Similarly, when one face of the lens is described as concave, the edge portion of the lens may be convex. Additionally, when one face of the lens is described as being flat, the edge portion of the lens may be convex or concave.

近轴区域可以指邻近光轴的显著窄的区域。A paraxial region may refer to a significantly narrow region adjacent to the optical axis.

成像面可以指由光学成像系统在其上形成对焦图像的虚拟平面。替代地,成像面可以指图像传感器的在其上接收光的一个表面。The imaging plane may refer to the virtual plane on which the in-focus image is formed by the optical imaging system. Alternatively, the imaging surface may refer to a surface of the image sensor on which light is received.

示例性实施方式中的光学成像系统可以包括六个透镜。The optical imaging system in the exemplary embodiment may include six lenses.

在示例中,示例性实施方式中的光学成像系统可以包括从物侧到成像侧依次布置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜至第六透镜可以沿着光轴以预定距离彼此间隔开。In an example, the optical imaging system in the exemplary embodiment may include a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens arranged in this order from the object side to the imaging side. The first to sixth lenses may be spaced apart from each other by a predetermined distance along the optical axis.

另一示例性实施方式中的光学成像系统可以包括五个透镜。An optical imaging system in another exemplary embodiment may include five lenses.

例如,示例性实施方式中的光学成像系统可以包括从物侧到成像侧依次布置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜至第五透镜可以沿着光轴以预定距离彼此间隔开。For example, the optical imaging system in the exemplary embodiment may include a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in this order from the object side to the imaging side. The first to fifth lenses may be spaced apart from each other by a predetermined distance along the optical axis.

然而,示例性实施方式中的光学成像系统可以不仅包括五个透镜或六个透镜,而且可以根据需要进一步包括其它部件。However, the optical imaging system in the exemplary embodiment may include not only five lenses or six lenses, but may further include other components as required.

例如,参照图15,光学成像系统可以进一步包括具有改变光的路径的反射表面的反射构件。反射构件可以配置成将光学构件改变90度(仅作为示例)。作为示例,反射构件可以实现为反射镜或棱镜。For example, referring to FIG. 15, the optical imaging system may further include a reflective member having a reflective surface that changes the path of the light. The reflective member may be configured to change the optical member by 90 degrees (by way of example only). As an example, the reflective member may be implemented as a mirror or a prism.

反射构件可以设置在多个透镜的前面。作为示例,反射构件可以设置在第一透镜的前面(例如,比第一透镜更靠近物侧)。因此,在一个或多个示例中,最靠近物侧设置的透镜可以是最靠近反射构件设置的透镜。The reflection member may be disposed in front of the plurality of lenses. As an example, the reflective member may be disposed in front of the first lens (eg, closer to the object side than the first lens). Thus, in one or more examples, the lens disposed closest to the object side may be the lens disposed closest to the reflective member.

光学成像系统还可以包括将对象的入射图像转换为电信号的图像传感器。The optical imaging system may also include an image sensor that converts an incident image of the subject into electrical signals.

光学成像系统还可以包括阻挡红外线的红外截止滤光器(以下称为“滤光器”)。滤光器可以设置在最靠近成像面设置的透镜(第五透镜或第六透镜)与成像面之间。The optical imaging system may also include an infrared cut filter (hereinafter referred to as a "filter") that blocks infrared rays. The filter may be disposed between the lens (the fifth lens or the sixth lens) disposed closest to the imaging plane and the imaging plane.

光学成像系统还可以包括调节光量的光阑。The optical imaging system may further include a diaphragm that adjusts the amount of light.

包括在示例性实施方式中的光学成像系统中的所有透镜可以由塑料材料形成。All lenses included in the optical imaging system of the exemplary embodiments may be formed of plastic materials.

此外,每个透镜可以由具有与相邻透镜的光学特性不同的光学特性的塑料材料形成。Furthermore, each lens may be formed of a plastic material having optical properties different from those of the adjacent lenses.

参照图16,光学成像系统的透镜中的至少一些可以具有非圆形平面形状。在示例中,最前透镜和最后透镜可以具有非圆形平面形状。其它透镜可以具有非圆形平面形状或圆形平面形状。16, at least some of the lenses of the optical imaging system may have a non-circular planar shape. In an example, the frontmost lens and the rearmost lens may have non-circular planar shapes. Other lenses may have non-circular planar shapes or circular planar shapes.

非圆形透镜可以具有四个侧表面,并且两个侧表面形成为彼此相对。此外,彼此相对的侧表面可以具有对应的形状。The non-circular lens may have four side surfaces, and the two side surfaces are formed to be opposed to each other. Furthermore, the side surfaces opposite to each other may have corresponding shapes.

在示例中,第一透镜可以具有第一侧表面、第二侧表面、第三侧表面和第四侧表面。第一侧表面和第二侧表面设置成相对于光轴彼此相对,并且第三侧表面和第四侧表面设置成相对于光轴彼此相对。第三侧表面和第四侧表面中的每一个可以连接第一侧表面和第二侧表面。In an example, the first lens may have a first side surface, a second side surface, a third side surface, and a fourth side surface. The first side surface and the second side surface are arranged to face each other with respect to the optical axis, and the third side surface and the fourth side surface are arranged to face each other with respect to the optical axis. Each of the third side surface and the fourth side surface may connect the first side surface and the second side surface.

当在光轴方向上观察时,第一透镜的第一侧表面和第二侧表面可以具有弧形形状,并且第三侧表面和第四侧表面可以具有基本上线性的形状。The first and second side surfaces of the first lens may have arcuate shapes, and the third and fourth side surfaces may have substantially linear shapes when viewed in the optical axis direction.

第三侧表面和第四侧表面中的每一个可以连接第一侧表面和第二侧表面。此外,第三侧表面和第四侧表面可以相对于光轴对称,并且可以形成为彼此平行。Each of the third side surface and the fourth side surface may connect the first side surface and the second side surface. Also, the third side surface and the fourth side surface may be symmetrical with respect to the optical axis, and may be formed parallel to each other.

非圆形透镜可以具有与光轴相交的第一轴和第二轴。在示例中,第一轴可以是在穿过光轴的同时连接第一侧表面和第二侧表面的轴,并且第二轴可以是在穿过光轴的同时连接第三侧表面和第四侧表面的轴。第一轴和第二轴可以彼此垂直,并且第一轴的长度可以大于第二轴的长度。The non-circular lens may have a first axis and a second axis that intersect the optical axis. In an example, the first axis may be an axis connecting the first side surface and the second side surface while passing through the optical axis, and the second axis may be an axis connecting the third side surface and the fourth side surface while passing through the optical axis The axis of the side surface. The first axis and the second axis may be perpendicular to each other, and the length of the first axis may be greater than the length of the second axis.

在示例中,第一透镜可以具有与光轴相交并且彼此垂直的两个轴,并且两个轴中的一个轴的长度可以大于两个轴中另一个轴的长度。In an example, the first lens may have two axes that intersect the optical axis and are perpendicular to each other, and a length of one of the two axes may be greater than a length of the other of the two axes.

参照图16,光学成像系统的所有透镜可以包括光学部分10和凸缘部分30。Referring to FIG. 16 , all lenses of the optical imaging system may include the optical portion 10 and the flange portion 30 .

光学部分10可以是其中呈现透镜的光学性能的部分。在示例中,从对象反射的光可以在通过光学部分10时被折射。The optical portion 10 may be a portion in which the optical properties of the lens are exhibited. In an example, light reflected from an object may be refracted as it passes through the optical portion 10 .

光学部分10可以具有屈光力并且可以具有非球面形状。The optical portion 10 may have refractive power and may have an aspherical shape.

另外,光学部分10可以具有物侧面(面向物侧的表面)和像侧面(面向成像侧的表面)(物侧面在图16中示出)。In addition, the optical portion 10 may have an object side (surface facing the object side) and an image side (surface facing the imaging side) (the object side is shown in FIG. 16 ).

凸缘部分30可以是将透镜固定到另一部件(例如,透镜镜筒或另一透镜)的部分。The flange portion 30 may be a portion that secures the lens to another component (eg, a lens barrel or another lens).

凸缘部分30可以从光学部分10的至少一部分的外围延伸,并且可以形成为与光学部分10集成为一体。The flange portion 30 may extend from the periphery of at least a portion of the optical portion 10 and may be formed integrally with the optical portion 10 .

在非圆形透镜中,光学部分10和凸缘部分30可以形成为非圆形。在示例中,当在光轴方向上观察时,光学部分10和凸缘部分30可以是非圆形的(参见图16)。替代地,光学部分10可以形成为圆形的,而凸缘部分30可以形成为非圆形的。In a non-circular lens, the optical portion 10 and the flange portion 30 may be formed in a non-circular shape. In an example, the optical portion 10 and the flange portion 30 may be non-circular when viewed in the optical axis direction (see FIG. 16 ). Alternatively, the optical portion 10 may be formed to be circular, and the flange portion 30 may be formed to be non-circular.

光学部分10可以包括第一边缘11、第二边缘12、第三边缘13和第四边缘14。第一边缘11和第二边缘12可以设置成彼此相对,并且第三边缘13和第四边缘14可以设置成彼此相对。The optical portion 10 may include a first edge 11 , a second edge 12 , a third edge 13 and a fourth edge 14 . The first edge 11 and the second edge 12 may be arranged opposite to each other, and the third edge 13 and the fourth edge 14 may be arranged opposite to each other.

第三边缘13和第四边缘14中的每一个可以连接第一边缘11和第二边缘12。Each of the third edge 13 and the fourth edge 14 may connect the first edge 11 and the second edge 12 .

第一边缘11和第二边缘12可以设置成相对于光轴彼此相对,并且第三边缘13和第四边缘14可以设置成相对于光轴彼此相对。The first edge 11 and the second edge 12 may be arranged opposite to each other with respect to the optical axis, and the third edge 13 and the fourth edge 14 may be arranged opposite to each other with respect to the optical axis.

当在光轴方向上观察时,第一边缘11和第二边缘12可以具有弧形形状,并且第三边缘13和第四边缘14可以具有基本上线性的形状。第三边缘13和第四边缘14可以形成为相对于光轴(Z轴)对称并且彼此平行。When viewed in the optical axis direction, the first edge 11 and the second edge 12 may have an arc shape, and the third edge 13 and the fourth edge 14 may have a substantially linear shape. The third edge 13 and the fourth edge 14 may be formed to be symmetrical with respect to the optical axis (Z axis) and parallel to each other.

第一边缘11和第二边缘12之间的最短距离可以大于第三边缘13和第四边缘14之间的最短距离。The shortest distance between the first edge 11 and the second edge 12 may be greater than the shortest distance between the third edge 13 and the fourth edge 14 .

光学部分10可以具有长轴“a”和短轴“b”。在示例中,当从光轴方向观察时,在穿过光轴的同时以最短距离连接第三边缘13和第四边缘14的线段可以是短轴“b”,并且在穿过光轴并垂直于短轴“b”的同时连接第一边缘11和第二边缘12的线段可以是长轴“a”。The optical portion 10 may have a long axis "a" and a short axis "b". In an example, when viewed from the optical axis direction, a line segment connecting the third edge 13 and the fourth edge 14 at the shortest distance while passing through the optical axis may be the short axis "b", and when passing through the optical axis and perpendicular to The line segment connecting the first edge 11 and the second edge 12 at the same time as the short axis "b" may be the long axis "a".

在该示例中,长轴“a”的一半可以是最大有效半径,而短轴“b”的一半可以是最小有效半径。In this example, half of the major axis "a" may be the maximum effective radius and half of the minor axis "b" may be the minimum effective radius.

假定图16所示的透镜是最前透镜(例如,第一透镜),则最前透镜的物侧面的最大有效半径是图16的附图标记L1S1el,最前透镜的物侧面的最小有效半径是图16的附图标记L1S1es。Assuming that the lens shown in FIG. 16 is the frontmost lens (eg, the first lens), the maximum effective radius of the object side of the frontmost lens is the reference numeral L1S1el of FIG. 16 , and the minimum effective radius of the object side of the frontmost lens is the Reference numeral L1S1es.

凸缘部分30可以包括第一凸缘部分31和第二凸缘部分32。第一凸缘部分31可以从光学部分10的第一边缘11延伸,并且第二凸缘部分32可以从光学部分10的第二边缘12延伸。The flange portion 30 may include a first flange portion 31 and a second flange portion 32 . The first flange portion 31 may extend from the first edge 11 of the optical portion 10 and the second flange portion 32 may extend from the second edge 12 of the optical portion 10 .

光学部分10的第一边缘11可以指邻近第一凸缘部分31的部分,并且光学部分10的第二边缘12可以指邻近第二凸缘部分32的部分。The first edge 11 of the optical portion 10 may refer to a portion adjacent to the first flange portion 31 , and the second edge 12 of the optical portion 10 may refer to a portion adjacent to the second flange portion 32 .

光学部分10的第三边缘13可以指光学部分10的未形成凸缘部分30的一个侧表面,并且光学部分10的第四边缘14可以指光学部分10的未形成凸缘部分30的另一侧表面或相对侧表面。The third edge 13 of the optical portion 10 may refer to one side surface of the optical portion 10 where the flange portion 30 is not formed, and the fourth edge 14 of the optical portion 10 may refer to the other side of the optical portion 10 where the flange portion 30 is not formed surface or the opposite side surface.

第一透镜和第五透镜中的每一个的有效半径可以大于其它透镜中的每一个的有效半径。The effective radius of each of the first lens and the fifth lens may be larger than that of each of the other lenses.

术语“有效半径”是指每个透镜的、光实际通过的一个面(物侧面和像侧面)的半径。在示例中,术语“有效半径”可以指每个透镜的光学部分的半径。The term "effective radius" refers to the radius of one face (object side and image side) of each lens through which light actually passes. In an example, the term "effective radius" may refer to the radius of the optical portion of each lens.

非圆形透镜可以具有最大有效半径(在穿过光轴的同时连接第一边缘11和第二边缘12的直线的一半)和最小有效半径(在穿过光轴的同时连接第三边缘13和第四边缘14的直线的一半)。A non-circular lens can have a maximum effective radius (half a line connecting the first edge 11 and the second edge 12 while passing through the optical axis) and a minimum effective radius (connecting the third edge 13 and the second edge while passing through the optical axis). half of the straight line of the fourth edge 14).

在一个或多个示例中,除非另有说明,否则术语“有效半径”可以指最大有效半径。In one or more examples, unless otherwise stated, the term "effective radius" may refer to the maximum effective radius.

多个透镜中的每一个可以具有至少一个非球面表面。Each of the plurality of lenses may have at least one aspherical surface.

也就是说,每个透镜的第一面和第二面中的至少一个可以是非球面表面。每个透镜的非球面表面表示如下:That is, at least one of the first and second surfaces of each lens may be an aspherical surface. The aspheric surface of each lens is represented as follows:

等式1:Equation 1:

Figure BDA0003690465220000101
Figure BDA0003690465220000101

在等式1中,c是透镜的曲率(曲率半径的倒数),K是圆锥常数,Y是在与光轴垂直的方向上从透镜的非球面表面上的一个点到光轴的距离。另外,常数A到J是非球面系数。Z是在光轴方向上从透镜的非球面表面上的一个点到非球面的顶点的距离。In Equation 1, c is the curvature of the lens (the inverse of the radius of curvature), K is the conic constant, and Y is the distance from a point on the aspheric surface of the lens to the optical axis in the direction perpendicular to the optical axis. In addition, the constants A to J are aspheric coefficients. Z is the distance in the direction of the optical axis from a point on the aspheric surface of the lens to the vertex of the aspheric surface.

包括第一透镜到第六透镜的光学成像系统可以依次从物侧到成像侧分别具有正屈光力、负屈光力、正屈光力、正屈光力、负屈光力和负屈光力,或者可以依次从物侧到成像侧分别具有正屈光力、负屈光力、正屈光力、正屈光力、正屈光力和负屈光力。The optical imaging system including the first lens to the sixth lens may have positive refractive power, negative refractive power, positive refractive power, positive refractive power, negative refractive power, and negative refractive power, respectively, from the object side to the imaging side, or may be sequentially from the object side to the imaging side, respectively. Has positive refractive power, negative refractive power, positive refractive power, positive refractive power, positive refractive power, and negative refractive power.

包括第一透镜到第五透镜的光学成像系统可以依次从物侧到成像侧分别具有正屈光力、负屈光力、正屈光力、负屈光力和负屈光力,或者可以依次从物侧到成像侧分别具有正屈光力、负屈光力、正屈光力、正屈光力和负屈光力,或者可以依次从物侧到成像侧分别具有正屈光力、负屈光力、负屈光力、正屈光力和负屈光力。The optical imaging system including the first lens to the fifth lens may have positive refractive power, negative refractive power, positive refractive power, negative refractive power, and negative refractive power, respectively, from the object side to the imaging side, or may have positive refractive power, respectively, from the object side to the imaging side, respectively , negative refractive power, positive refractive power, positive refractive power, and negative refractive power, or may have positive refractive power, negative refractive power, negative refractive power, positive refractive power, and negative refractive power, respectively, from the object side to the imaging side, respectively.

示例性实施方式中的光学成像系统可以满足如下条件表达式中的至少一个:The optical imaging system in the exemplary embodiment may satisfy at least one of the following conditional expressions:

条件表达式1:TTL>10.2mmConditional expression 1: TTL>10.2mm

条件表达式2:10.2mm<TTL<16mmConditional expression 2: 10.2mm<TTL<16mm

条件表达式3:TTL/(2x IMG HT)≤1.7Conditional expression 3: TTL/(2x IMG HT)≤1.7

条件表达式4:1.2<TTL/(2x IMG HT)≤1.7Conditional expression 4: 1.2<TTL/(2x IMG HT)≤1.7

条件表达式5:1.5<f/IMG HT<3.5Conditional Expression 5: 1.5<f/IMG HT<3.5

条件表达式6:IMG HT≥4.5mmConditional expression 6: IMG HT ≥ 4.5mm

条件表达式7:n2+n3>3.20Conditional expression 7: n2+n3>3.20

条件表达式8:|f/f1+f/f2|<1.2Conditional expression 8: |f/f1+f/f2|<1.2

条件表达式9:0≤D1/f≤0.05Conditional expression 9: 0≤D1/f≤0.05

条件表达式10:0.80≤TTL/f≤1.05Conditional expression 10: 0.80≤TTL/f≤1.05

条件表达式11:R1/f≤0.35Conditional Expression 11: R1/f≤0.35

条件表达式12:BFL/f<0.4Conditional Expression 12: BFL/f<0.4

在条件表达式中,f是光学成像系统的总焦距,f1是第一透镜的焦距,以及f2是第二透镜的焦距。In the conditional expression, f is the total focal length of the optical imaging system, f1 is the focal length of the first lens, and f2 is the focal length of the second lens.

在条件表达式中,n2是第二透镜的折射率,以及n3是第三透镜的折射率。In the conditional expression, n2 is the refractive index of the second lens, and n3 is the refractive index of the third lens.

在条件表达式中,TTL是在光轴上从最前透镜或第一透镜的物侧面到成像面的距离,以及BFL是在光轴上从最后透镜的像侧面到成像面的距离。In the conditional expression, TTL is the distance on the optical axis from the object side of the frontmost lens or the first lens to the imaging plane, and BFL is the distance on the optical axis from the image side of the last lens to the imaging plane.

在条件表达式中,D1是在光轴上第一透镜的像侧面与第二透镜的物侧面之间的距离,R1是第一透镜的物侧面的曲率半径,以及IMG HT等于成像面的对角线长度的一半。In the conditional expression, D1 is the distance on the optical axis between the image side of the first lens and the object side of the second lens, R1 is the radius of curvature of the object side of the first lens, and IMG HT is equal to the pair of image surfaces half the length of the corner.

示例性实施方式中的光学成像系统可以具有摄远透镜的特性,该摄远透镜具有相对窄的视场和相对长的焦距。The optical imaging system in the exemplary embodiment may have characteristics of a telephoto lens having a relatively narrow field of view and a relatively long focal length.

另外,示例性实施方式中的光学成像系统可以配置成具有成像面的相对大的对角线长度。在示例中,图像传感器的有效成像区域可以是宽的(例如,高像素图像传感器)。Additionally, the optical imaging system in the exemplary embodiments may be configured to have a relatively large diagonal length of the imaging plane. In an example, the effective imaging area of the image sensor may be wide (eg, a high pixel image sensor).

因此,当裁剪所捕获的图像时,可以在不降低图像质量的情况下捕获各种放大率的图像。Therefore, when cropping the captured image, images of various magnifications can be captured without degrading the image quality.

第二透镜和第三透镜中的至少一个可以具有大于1.64的折射率。At least one of the second lens and the third lens may have a refractive index greater than 1.64.

第一透镜和第二透镜中的每一个的焦距的绝对值可以小于其它透镜中的每一个的焦距的绝对值。The absolute value of the focal length of each of the first lens and the second lens may be smaller than the absolute value of the focal length of each of the other lenses.

将参考图1和图2描述根据第一示例性实施方式的光学成像系统。An optical imaging system according to the first exemplary embodiment will be described with reference to FIGS. 1 and 2 .

第一示例性实施方式中的光学成像系统100可以包括这样的光学系统,该光学系统包括第一透镜110、第二透镜120、第三透镜130、第四透镜140、第五透镜150和第六透镜160,并且还可以包括滤光器170和图像传感器IS。The optical imaging system 100 in the first exemplary embodiment may include an optical system including a first lens 110, a second lens 120, a third lens 130, a fourth lens 140, a fifth lens 150, and a sixth lens The lens 160, and may also include the filter 170 and the image sensor IS.

第一示例性实施方式中的光学成像系统100可以在图像传感器IS的成像面180上形成对焦图像。成像面180可以指由光学成像系统100在其上形成对焦图像的表面。在示例中,成像面180可以指在图像传感器IS的在其上接收光的一个表面。The optical imaging system 100 in the first exemplary embodiment can form a focused image on the imaging plane 180 of the image sensor IS. Imaging surface 180 may refer to the surface on which a focused image is formed by optical imaging system 100 . In an example, the imaging surface 180 may refer to a surface of the image sensor IS on which light is received.

尽管在图1中未示出,但是光学成像系统100还可以包括设置在第一透镜110的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第一示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 1 , the optical imaging system 100 may further include a reflective member R (see FIG. 15 ) that is disposed in front of the first lens 110 and has a reflective surface that changes the path of light. In the first exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表1中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 1 below.

表1Table 1

Figure BDA0003690465220000121
Figure BDA0003690465220000121

Figure BDA0003690465220000131
Figure BDA0003690465220000131

第一示例性实施方式中的光学成像系统的总焦距f为15mm,并且IMG HT为5.128mm。The overall focal length f of the optical imaging system in the first exemplary embodiment is 15 mm, and the IMG HT is 5.128 mm.

在第一示例性实施方式中,第一透镜110可以具有正屈光力,并且第一透镜110的第一面可以是凸出的,并且第一透镜110的第二面也可以是凸出的。In the first exemplary embodiment, the first lens 110 may have positive refractive power, the first surface of the first lens 110 may be convex, and the second surface of the first lens 110 may also be convex.

第二透镜120可以具有负屈光力,第二透镜120的第一面可以是凸出的,并且第二透镜120的第二面可以是凹入的。The second lens 120 may have negative refractive power, the first face of the second lens 120 may be convex, and the second face of the second lens 120 may be concave.

第三透镜130可以具有正屈光力,第三透镜130的第一面可以是凸出的,并且第三透镜130的第二面可以是凹入的。The third lens 130 may have positive refractive power, the first face of the third lens 130 may be convex, and the second face of the third lens 130 may be concave.

第四透镜140可以具有正屈光力,第四透镜140的第一面可以是凸出的,并且第四透镜140的第二面可以是凹入的。The fourth lens 140 may have positive refractive power, the first face of the fourth lens 140 may be convex, and the second face of the fourth lens 140 may be concave.

第五透镜150可以具有负屈光力,第五透镜150的第一面可以是凸出的,并且第五透镜150的第二面可以是凹入的。The fifth lens 150 may have negative refractive power, the first face of the fifth lens 150 may be convex, and the second face of the fifth lens 150 may be concave.

第六透镜160可以具有负屈光力,第六透镜160的第一面可以在近轴区域中是凸出的,并且第六透镜160的第二面可以在近轴区域中是凹入的。The sixth lens 160 may have negative refractive power, the first face of the sixth lens 160 may be convex in the paraxial region, and the second face of the sixth lens 160 may be concave in the paraxial region.

另外,第六透镜160可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第六透镜160的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分中是凸出的。In addition, the sixth lens 160 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the second face of the sixth lens 160 may be concave in a paraxial region and convex in a portion other than the paraxial region.

第一透镜110到第六透镜160的每个面可以具有下面表2中列出的非球面系数。在示例中,第一透镜110到第六透镜160的物侧面和像侧面可以是非球面的。Each face of the first lens 110 to the sixth lens 160 may have aspheric coefficients listed in Table 2 below. In an example, the object side and the image side of the first to sixth lenses 110 to 160 may be aspherical.

表2Table 2

Figure BDA0003690465220000132
Figure BDA0003690465220000132

Figure BDA0003690465220000141
Figure BDA0003690465220000141

上述配置的光学成像系统100可以具有图2所示的像差特性。The optical imaging system 100 configured as described above may have the aberration characteristics shown in FIG. 2 .

将参考图3和图4描述根据第二示例性实施方式的光学成像系统。An optical imaging system according to the second exemplary embodiment will be described with reference to FIGS. 3 and 4 .

第二示例性实施方式中的光学成像系统200可以包括这样的光学系统,该光学系统包括第一透镜210、第二透镜220、第三透镜230、第四透镜240、第五透镜250和第六透镜260,并且还可以包括滤光器270和图像传感器IS。The optical imaging system 200 in the second exemplary embodiment may include an optical system including a first lens 210, a second lens 220, a third lens 230, a fourth lens 240, a fifth lens 250, and a sixth lens The lens 260, and may also include the filter 270 and the image sensor IS.

第二示例性实施方式中的光学成像系统200可以在成像面280上形成对焦图像。成像面280可以指由光学成像系统200在其上形成对焦图像的图像传感器IS的表面。在示例中,成像面280可以指图像传感器IS的在其上接收光的一个表面。The optical imaging system 200 in the second exemplary embodiment can form a focused image on the imaging plane 280 . The imaging surface 280 may refer to the surface of the image sensor IS on which the in-focus image is formed by the optical imaging system 200 . In an example, the imaging surface 280 may refer to a surface of the image sensor IS on which light is received.

尽管在图3中未示出,但是光学成像系统200还可以包括设置在第一透镜210的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第二示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 3 , the optical imaging system 200 may further include a reflective member R (see FIG. 15 ) disposed in front of the first lens 210 and having a reflective surface that changes the path of light. In the second exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表3中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 3 below.

表3table 3

面编号face number 标记mark 曲率半径Radius of curvature 厚度或距离thickness or distance 折射率refractive index 阿贝数Abbe number 焦距focal length S1S1 第一透镜first lens 4.94896074.9489607 2.0002.000 1.5371.537 55.755.7 9.143759.14375 S2S2 -556.8638-556.8638 0.0500.050 S3S3 第二透镜second lens 35.48960935.489609 0.6500.650 1.6461.646 23.523.5 -8.68276-8.68276 S4S4 4.80585494.8058549 1.5001.500 S5S5 第三透镜third lens 4.09579874.0957987 0.7220.722 1.6791.679 19.219.2 44.012244.0122 S6S6 4.40806444.4080644 0.3000.300 S7S7 第四透镜fourth lens 4.93401214.9340121 0.6140.614 1.5371.537 55.755.7 29.463529.4635 S8S8 6.85755246.8575524 0.5000.500 S9S9 第五透镜Fifth lens 6.7943796.794379 0.7750.775 1.6461.646 23.523.5 144.143144.143 S10S10 7.00176227.0017622 3.7973.797 S11S11 第六透镜sixth lens 5.01566085.0156608 0.8000.800 1.5371.537 55.755.7 -54.7209-54.7209 S12S12 4.04573384.0457338 3.0003.000 S13S13 滤光器filter 无穷大gigantic 0.2100.210 1.5191.519 64.264.2 S14S14 无穷大gigantic 0.8130.813 S15S15 成像面Imaging plane 无穷大gigantic

第二示例性实施方式中的光学成像系统的总焦距f为15mm,并且IMG HT为5.4mm。The overall focal length f of the optical imaging system in the second exemplary embodiment is 15 mm, and the IMG HT is 5.4 mm.

在第二示例性实施方式中,第一透镜210可以具有正屈光力,并且第一透镜210的第一面和第一透镜210的第二面也可以是凸出的。In the second exemplary embodiment, the first lens 210 may have positive refractive power, and the first surface of the first lens 210 and the second surface of the first lens 210 may also be convex.

第二透镜220可以具有负屈光力,第二透镜220的第一面可以是凸出的,并且第二透镜220的第二面可以是凹入的。The second lens 220 may have negative refractive power, the first face of the second lens 220 may be convex, and the second face of the second lens 220 may be concave.

第三透镜230可以具有正屈光力,第三透镜230的第一面可以是凸出的,并且第三透镜230的第二面可以是凹入的。The third lens 230 may have positive refractive power, the first surface of the third lens 230 may be convex, and the second surface of the third lens 230 may be concave.

第四透镜240可以具有正屈光力,第四透镜240的第一面可以是凸出的,并且第四透镜240的第二面可以是凹入的。The fourth lens 240 may have positive refractive power, the first face of the fourth lens 240 may be convex, and the second face of the fourth lens 240 may be concave.

第五透镜250可以具有正屈光力,第五透镜250的第一面可以是凸出的,并且第五透镜250的第二面可以是凹入的。The fifth lens 250 may have positive refractive power, the first face of the fifth lens 250 may be convex, and the second face of the fifth lens 250 may be concave.

第六透镜260可以具有负屈光力,第六透镜260的第一面可以在近轴区域中是凸出的,并且第六透镜260的第二面可以在近轴区域中是凹入的。The sixth lens 260 may have negative refractive power, the first face of the sixth lens 260 may be convex in the paraxial region, and the second face of the sixth lens 260 may be concave in the paraxial region.

另外,第六透镜260可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第六透镜260的第一面可以在近轴区域中是凸出的,并且在除了近轴区域之外的部分或区域中是凹入的。另外,第六透镜260的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the sixth lens 260 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the sixth lens 260 may be convex in a paraxial region and concave in a portion or region other than the paraxial region. In addition, the second face of the sixth lens 260 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜210到第六透镜260的每个面可以具有如下面的表4所示的非球面系数。在示例中,第一透镜210到第六透镜260的物侧面和像侧面都可以是非球面的。Each of the surfaces of the first to sixth lenses 210 to 260 may have aspheric coefficients as shown in Table 4 below. In an example, both the object side and the image side of the first lens 210 to the sixth lens 260 may be aspherical.

表4Table 4

S1S1 S2S2 S3S3 S4S4 S5S5 S6S6 圆锥常数(K)Conic constant (K) -0.67258-0.67258 -99.00000-99.00000 97.4980097.49800 0.000000.00000 0.000000.00000 -0.07552-0.07552 4阶系数(A)4th order coefficient (A) 1.5128E-051.5128E-05 2.2191E-042.2191E-04 -6.5288E-05-6.5288E-05 -1.1672E-03-1.1672E-03 -5.5861E-04-5.5861E-04 -8.1068E-04-8.1068E-04 6阶系数(B)6th order coefficient (B) -1.5868E-05-1.5868E-05 -7.7041E-06-7.7041E-06 1.6242E-051.6242E-05 -5.8934E-05-5.8934E-05 -4.6455E-05-4.6455E-05 -2.2661E-05-2.2661E-05 8阶系数(C)8th order coefficient (C) -1.0719E-06-1.0719E-06 -9.8215E-07-9.8215E-07 -9.0232E-07-9.0232E-07 2.7014E-072.7014E-07 -1.8291E-08-1.8291E-08 -1.9193E-06-1.9193E-06 10阶系数(D)10th order coefficient (D) -4.0847E-08-4.0847E-08 -9.5109E-08-9.5109E-08 -1.2800E-07-1.2800E-07 1.9644E-071.9644E-07 3.5870E-073.5870E-07 2.5331E-082.5331E-08 12阶系数(E)12th order coefficient (E) -1.5147E-09-1.5147E-09 -4.2905E-09-4.2905E-09 -1.3036E-08-1.3036E-08 -1.2270E-08-1.2270E-08 2.9772E-082.9772E-08 1.9633E-071.9633E-07 14阶系数(F)14th order coefficient (F) -2.8803E-11-2.8803E-11 -1.9582E-10-1.9582E-10 -8.6113E-10-8.6113E-10 -4.2051E-09-4.2051E-09 6.5213E-096.5213E-09 4.5778E-084.5778E-08 16阶系数(G)16th order coefficient (G) 4.5059E-124.5059E-12 -2.7803E-11-2.7803E-11 -3.7076E-11-3.7076E-11 -7.5074E-10-7.5074E-10 5.2618E-105.2618E-10 4.1697E-094.1697E-09 18阶系数(H)18th order coefficient (H) -9.5468E-13-9.5468E-13 1.8389E-121.8389E-12 3.6135E-133.6135E-13 -5.5324E-11-5.5324E-11 2.0863E-112.0863E-11 -1.7698E-10-1.7698E-10 20阶系数(J)20th order coefficient (J) 2.5397E-142.5397E-14 1.6251E-131.6251E-13 3.2132E-133.2132E-13 1.1687E-111.1687E-11 -1.7045E-11-1.7045E-11 -2.1568E-10-2.1568E-10 S7S7 S8S8 S9S9 S10S10 S11S11 S12S12 圆锥常数(K)Conic constant (K) 0.264980.26498 -0.92638-0.92638 -2.57360-2.57360 1.028101.02810 -8.37140-8.37140 -5.03820-5.03820 4阶系数(A)4th order coefficient (A) -9.9991E-04-9.9991E-04 -3.6957E-04-3.6957E-04 -1.9038E-03-1.9038E-03 -1.3893E-03-1.3893E-03 -4.0396E-03-4.0396E-03 -4.6693E-03-4.6693E-03 6阶系数(B)6th order coefficient (B) 8.2990E-058.2990E-05 7.6680E-057.6680E-05 -6.8259E-05-6.8259E-05 2.0829E-042.0829E-04 -1.1804E-04-1.1804E-04 1.7996E-051.7996E-05 8阶系数(C)8th order coefficient (C) 1.3755E-051.3755E-05 3.2877E-053.2877E-05 -3.0848E-06-3.0848E-06 -3.7592E-05-3.7592E-05 1.1598E-051.1598E-05 7.6129E-067.6129E-06 10阶系数(D)10th order coefficient (D) 4.8742E-064.8742E-06 6.5958E-066.5958E-06 -4.1405E-06-4.1405E-06 -6.7933E-06-6.7933E-06 4.8391E-074.8391E-07 1.3341E-081.3341E-08 12阶系数(E)12th order coefficient (E) 5.8840E-075.8840E-07 4.2469E-074.2469E-07 -6.8348E-07-6.8348E-07 2.3833E-072.3833E-07 -1.5465E-08-1.5465E-08 -2.4877E-08-2.4877E-08 14阶系数(F)14th order coefficient (F) 6.6712E-086.6712E-08 5.1166E-085.1166E-08 -3.2432E-08-3.2432E-08 6.8499E-096.8499E-09 -3.7533E-09-3.7533E-09 -9.9716E-10-9.9716E-10 16阶系数(G)16th order coefficient (G) 6.4327E-096.4327E-09 5.9823E-095.9823E-09 4.1342E-094.1342E-09 -4.1045E-09-4.1045E-09 1.3933E-141.3933E-14 1.9553E-101.9553E-10 18阶系数(H)18th order coefficient (H) 2.0057E-102.0057E-10 4.6032E-114.6032E-11 1.9997E-091.9997E-09 2.2852E-092.2852E-09 -3.0871E-12-3.0871E-12 -1.1070E-11-1.1070E-11 20阶系数(J)20th order coefficient (J) -3.2966E-10-3.2966E-10 -1.1904E-10-1.1904E-10 -1.4404E-10-1.4404E-10 -1.1245E-10-1.1245E-10 8.2208E-138.2208E-13 2.8425E-132.8425E-13

另外,上述配置的光学成像系统200可以具有图4所示的像差特性。In addition, the optical imaging system 200 configured as described above may have the aberration characteristics shown in FIG. 4 .

将参考图5和图6描述根据第三示例性实施方式的光学成像系统300。The optical imaging system 300 according to the third exemplary embodiment will be described with reference to FIGS. 5 and 6 .

第三示例性实施方式中的光学成像系统300可以包括这样的光学系统,该光学系统包括第一透镜310、第二透镜320、第三透镜330、第四透镜340和第五透镜350,并且还可以包括滤光器370和图像传感器IS。The optical imaging system 300 in the third exemplary embodiment may include an optical system including a first lens 310, a second lens 320, a third lens 330, a fourth lens 340, and a fifth lens 350, and further The filter 370 and the image sensor IS may be included.

第三示例性实施方式中的光学成像系统300可以在图像传感器IS的成像面380上形成对焦图像。成像面380可以指由光学成像系统300在其上形成对焦图像的表面。在示例中,成像面380可以指图像传感器IS的在其上接收光的一个表面。The optical imaging system 300 in the third exemplary embodiment can form a focused image on the imaging surface 380 of the image sensor IS. Imaging surface 380 may refer to the surface on which a focused image is formed by optical imaging system 300 . In an example, the imaging surface 380 may refer to a surface of the image sensor IS on which light is received.

尽管在图5中未示出,但是光学成像系统300还可以包括设置在第一透镜310的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第三示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 5 , the optical imaging system 300 may further include a reflective member R (see FIG. 15 ) that is disposed in front of the first lens 310 and has a reflective surface that changes the path of light. In the third exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表5中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 5 below.

表5table 5

面编号face number 标记mark 曲率半径Radius of curvature 厚度或距离thickness or distance 折射率refractive index 阿贝数Abbe number 焦距focal length S1S1 第一透镜first lens 4.29946634.2994663 2.0002.000 1.5371.537 55.755.7 6.5236.523 S2S2 -15.76502-15.76502 0.0500.050 S3S3 第二透镜second lens -16.46547-16.46547 0.5000.500 1.6461.646 23.523.5 -5.98498-5.98498 S4S4 5.09253795.0925379 0.9570.957 S5S5 第三透镜third lens 4.27668474.2766847 1.1551.155 1.6791.679 19.219.2 8.9818.981 S6S6 13.35899313.358993 0.0500.050 S7S7 第四透镜fourth lens 5.78260165.7826016 0.4000.400 1.5371.537 55.755.7 -18.6452-18.6452 S8S8 3.85498553.8549855 3.3893.389 S9S9 第五透镜Fifth lens 7.90537987.9053798 0.5000.500 1.6461.646 23.523.5 -31.2964-31.2964 S10S10 5.25640015.2564001 3.0003.000 S11S11 滤光器filter 无穷大gigantic 0.2100.210 1.5191.519 64.264.2 S12S12 无穷大gigantic 1.8871.887 S13S13 成像面Imaging plane 无穷大gigantic

第三示例性实施方式中的光学成像系统300的总焦距f为15mm,并且IMG HT为5.4mm。The overall focal length f of the optical imaging system 300 in the third exemplary embodiment is 15 mm, and the IMG HT is 5.4 mm.

在第三示例性实施方式中,第一透镜310可以具有正屈光力,并且第一透镜310的第一面可以是凸出的,并且第一透镜310的第二面可以是凸出的。In the third exemplary embodiment, the first lens 310 may have positive refractive power, the first surface of the first lens 310 may be convex, and the second surface of the first lens 310 may be convex.

第二透镜320可以具有负屈光力,并且第二透镜320的第一面可以是凹入的,并且第二透镜320的第二面可以是凹入的。The second lens 320 may have negative refractive power, the first face of the second lens 320 may be concave, and the second face of the second lens 320 may be concave.

第三透镜330可以具有正屈光力,第三透镜330的第一面可以是凸出的,并且第三透镜330的第二面可以是凹入的。The third lens 330 may have positive refractive power, the first face of the third lens 330 may be convex, and the second face of the third lens 330 may be concave.

第四透镜340可以具有负屈光力,第四透镜340的第一面可以是凸出的,并且第四透镜340的第二面可以是凹入的。The fourth lens 340 may have negative refractive power, the first face of the fourth lens 340 may be convex, and the second face of the fourth lens 340 may be concave.

第五透镜350可以具有负屈光力,第五透镜350的第一面可以在近轴区域中是凸出的,并且第五透镜350的第二面可以在近轴区域中是凹入的。The fifth lens 350 may have negative refractive power, the first face of the fifth lens 350 may be convex in the paraxial region, and the second face of the fifth lens 350 may be concave in the paraxial region.

另外,第五透镜350可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第五透镜350的第一面可以在近轴区域中是凸出的,并且在除了近轴区域之外的部分或区域中是凹入的。第五透镜350的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the fifth lens 350 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the fifth lens 350 may be convex in the paraxial region and concave in a portion or region other than the paraxial region. The second face of the fifth lens 350 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜310到第五透镜350的每个面可以具有如下面的表6所示的非球面系数。在示例中,第一透镜310到第五透镜350的物侧面和像侧面都可以是非球面的。Each face of the first lens 310 to the fifth lens 350 may have aspheric coefficients as shown in Table 6 below. In an example, both the object side and the image side of the first lens 310 to the fifth lens 350 may be aspherical.

表6Table 6

Figure BDA0003690465220000181
Figure BDA0003690465220000181

Figure BDA0003690465220000191
Figure BDA0003690465220000191

上述配置的光学成像系统300可以具有图6所示的像差特性。The optical imaging system 300 configured as described above may have the aberration characteristics shown in FIG. 6 .

将参考图7和图8描述根据第四示例性实施方式的光学成像系统400。An optical imaging system 400 according to the fourth exemplary embodiment will be described with reference to FIGS. 7 and 8 .

第四示例性实施方式中的光学成像系统400可以包括这样的光学系统,该光学系统包括第一透镜410、第二透镜420、第三透镜430、第四透镜440和第五透镜450,并且还可以包括滤光器470和图像传感器IS。The optical imaging system 400 in the fourth exemplary embodiment may include an optical system including a first lens 410, a second lens 420, a third lens 430, a fourth lens 440, and a fifth lens 450, and further The filter 470 and the image sensor IS may be included.

第四示例性实施方式中的光学成像系统400可以在图像传感器IS的成像面480上形成对焦图像。成像面480可以指由光学成像系统400在其上形成对焦图像的表面。作为示例,成像面480可以指图像传感器IS的在其上接收光的一个表面。The optical imaging system 400 in the fourth exemplary embodiment can form a focused image on the imaging surface 480 of the image sensor IS. Imaging surface 480 may refer to the surface on which a focused image is formed by optical imaging system 400 . As an example, the imaging surface 480 may refer to a surface of the image sensor IS on which light is received.

尽管在图7中未示出,但是光学成像系统400还可以包括设置在第一透镜410的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第四示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 7 , the optical imaging system 400 may further include a reflective member R (see FIG. 15 ) that is disposed in front of the first lens 410 and has a reflective surface that changes the path of light. In the fourth exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表7中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 7 below.

表7Table 7

Figure BDA0003690465220000192
Figure BDA0003690465220000192

Figure BDA0003690465220000201
Figure BDA0003690465220000201

第四示例性实施方式中的光学成像系统400的总焦距f为14.9997mm,并且IMG HT为5.4mm。The overall focal length f of the optical imaging system 400 in the fourth exemplary embodiment is 14.9997 mm, and the IMG HT is 5.4 mm.

在第四示例性实施方式中,第一透镜410可以具有正屈光力,并且第一透镜410的第一面可以是凸出的,并且第一透镜410的第二面可以是凸出的。In the fourth exemplary embodiment, the first lens 410 may have positive refractive power, the first surface of the first lens 410 may be convex, and the second surface of the first lens 410 may be convex.

第二透镜420可以具有负屈光力,并且第二透镜420的第一面可以是凹入的,并且第二透镜420的第二面可以是凹入的。The second lens 420 may have negative refractive power, the first face of the second lens 420 may be concave, and the second face of the second lens 420 may be concave.

第三透镜430可以具有正屈光力,第三透镜430的第一面可以是凸出的,并且第三透镜430的第二面可以是凹入的。The third lens 430 may have positive refractive power, the first face of the third lens 430 may be convex, and the second face of the third lens 430 may be concave.

第四透镜440可以具有负屈光力,第四透镜440的第一面可以是凸出的,并且第四透镜440的第二面可以是凹入的。The fourth lens 440 may have negative refractive power, the first face of the fourth lens 440 may be convex, and the second face of the fourth lens 440 may be concave.

第五透镜450可以具有负屈光力,第五透镜450的第一面可以在近轴区域中是凸出的,并且第五透镜450的第二面可以在近轴区域中是凹入的。The fifth lens 450 may have negative refractive power, the first face of the fifth lens 450 may be convex in the paraxial region, and the second face of the fifth lens 450 may be concave in the paraxial region.

另外,第五透镜450可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第五透镜450的第一面可以在近轴区域中是凸出的,而在除了近轴区域之外的部分或区域中是凹入的。第五透镜450的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the fifth lens 450 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the fifth lens 450 may be convex in the paraxial region and concave in a portion or region other than the paraxial region. The second face of the fifth lens 450 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜410到第五透镜450的每个面可以具有如下面的表8所示的非球面系数。在示例中,第一透镜410到第五透镜450的物侧面和像侧面都可以是非球面的。Each face of the first lens 410 to the fifth lens 450 may have aspheric coefficients as shown in Table 8 below. In an example, both the object side and the image side of the first lens 410 to the fifth lens 450 may be aspherical.

表8Table 8

Figure BDA0003690465220000202
Figure BDA0003690465220000202

Figure BDA0003690465220000211
Figure BDA0003690465220000211

另外,上述配置的光学成像系统400可以具有图8所示的像差特性。In addition, the optical imaging system 400 configured as described above may have the aberration characteristics shown in FIG. 8 .

将参考图9和图10描述根据第五示例性实施方式的光学成像系统500。An optical imaging system 500 according to the fifth exemplary embodiment will be described with reference to FIGS. 9 and 10 .

第五示例性实施方式中的光学成像系统500可以包括这样的光学系统,该光学系统包括第一透镜510、第二透镜520、第三透镜530、第四透镜540和第五透镜550,并且还可以包括滤光器570和图像传感器IS。The optical imaging system 500 in the fifth exemplary embodiment may include an optical system including a first lens 510, a second lens 520, a third lens 530, a fourth lens 540, and a fifth lens 550, and further The filter 570 and the image sensor IS may be included.

第五示例性实施方式中的光学成像系统500可以在图像传感器IS的成像面580上形成对焦图像。成像面580可以指由光学成像系统500在其上形成对焦图像的表面。在示例中,成像面580可以指图像传感器IS的在其上接收光的一个表面。The optical imaging system 500 in the fifth exemplary embodiment can form a focused image on the imaging surface 580 of the image sensor IS. Imaging surface 580 may refer to the surface on which a focused image is formed by optical imaging system 500 . In an example, the imaging surface 580 may refer to a surface of the image sensor IS on which light is received.

尽管在图9中未示出,但是光学成像系统500还可以包括设置在第一透镜510的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第五示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 9 , the optical imaging system 500 may further include a reflective member R (see FIG. 15 ) that is disposed in front of the first lens 510 and has a reflective surface that changes the path of light. In the fifth exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在表9中列出。The lens properties of each lens (radius of curvature, thickness of the lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 9.

表9Table 9

面编号face number 标记mark 曲率半径Radius of curvature 厚度或距离thickness or distance 折射率refractive index 阿贝数Abbe number 焦距focal length S1S1 第一透镜first lens 4.404444.40444 1.9541.954 1.5371.537 55.755.7 6.8806.880 S2S2 -19.2806-19.2806 0.1200.120 S3S3 第二透镜second lens -17.4567-17.4567 0.6660.666 1.6441.644 23.523.5 -6.91172-6.91172 S4S4 6.064246.06424 1.0001.000 S5S5 第三透镜third lens 5.089955.08995 0.8630.863 1.6561.656 21.521.5 17.84717.847 S6S6 8.402848.40284 0.3740.374 S7S7 第四透镜fourth lens 7.005487.00548 0.5540.554 1.6671.667 20.420.4 130.743130.743 S8S8 7.376957.37695 2.8002.800 S9S9 第五透镜Fifth lens 14.467614.4676 0.6760.676 1.5371.537 55.755.7 -19.9373-19.9373 S10S10 6.050046.05004 3.0003.000 S11S11 滤光器filter 无穷大gigantic 0.2100.210 1.5181.518 64.264.2 S12S12 无穷大gigantic 1.8831.883 S13S13 成像面Imaging plane 无穷大gigantic

根据第五示例性实施方式的光学成像系统500的总焦距f为15mm,并且IMG HT为5.128mm。The total focal length f of the optical imaging system 500 according to the fifth exemplary embodiment is 15 mm, and the IMG HT is 5.128 mm.

在第五示例性实施方式中,第一透镜510可以具有正屈光力,并且第一透镜510的第一面可以是凸出的,并且第一透镜510的第二面可以是凸出的。In the fifth exemplary embodiment, the first lens 510 may have positive refractive power, the first surface of the first lens 510 may be convex, and the second surface of the first lens 510 may be convex.

第二透镜520可以具有负屈光力,并且第二透镜520的第一面可以是凹入的,并且第二透镜520的第二面可以是凹入的。The second lens 520 may have negative refractive power, the first face of the second lens 520 may be concave, and the second face of the second lens 520 may be concave.

第三透镜530可以具有正屈光力,第三透镜530的第一面可以是凸出的,而第三透镜530的第二面可以是凹入的。The third lens 530 may have positive refractive power, the first surface of the third lens 530 may be convex, and the second surface of the third lens 530 may be concave.

第四透镜540可以具有正屈光力,第四透镜540的第一面可以是凸出的,并且第四透镜540的第二面可以是凹入的。The fourth lens 540 may have positive refractive power, the first face of the fourth lens 540 may be convex, and the second face of the fourth lens 540 may be concave.

第五透镜550可以具有负屈光力,第五透镜550的第一面可以在近轴区域中是凸出的,并且第五透镜550的第二面可以在近轴区域中是凹入的。The fifth lens 550 may have negative refractive power, the first face of the fifth lens 550 may be convex in the paraxial region, and the second face of the fifth lens 550 may be concave in the paraxial region.

另外,第五透镜550可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第五透镜550的第一面可以在近轴区域中是凸出的,并且在除了近轴区域之外的部分或区域中是凹入的。第五透镜550的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the fifth lens 550 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the fifth lens 550 may be convex in the paraxial region and concave in a portion or region other than the paraxial region. The second face of the fifth lens 550 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜510到第五透镜550的每个面可以具有如下面的表10所示的非球面系数。在示例中,第一透镜510到第五透镜550的物侧面和像侧面都可以是非球面的。Each of the surfaces of the first to fifth lenses 510 to 550 may have aspheric coefficients as shown in Table 10 below. In an example, both the object side and the image side of the first lens 510 to the fifth lens 550 may be aspherical.

表10Table 10

S1S1 S2S2 S3S3 S4S4 S5S5 圆锥常数(K)Conic constant (K) -0.67151-0.67151 -2.06050-2.06050 -67.39700-67.39700 0.516000.51600 0.482870.48287 4阶系数(A)4th order coefficient (A) -9.7544E-04-9.7544E-04 8.9298E-038.9298E-03 5.3855E-045.3855E-04 9.6592E-049.6592E-04 1.3533E-021.3533E-02 6阶系数(B)6th order coefficient (B) 3.7070E-033.7070E-03 -2.8714E-02-2.8714E-02 -2.2026E-02-2.2026E-02 -2.3244E-02-2.3244E-02 -3.6408E-02-3.6408E-02 8阶系数(C)8th order coefficient (C) -4.9650E-03-4.9650E-03 3.9580E-023.9580E-02 3.3095E-023.3095E-02 3.9136E-023.9136E-02 5.8110E-025.8110E-02 10阶系数(D)10th order coefficient (D) 4.1990E-034.1990E-03 -2.8768E-02-2.8768E-02 -2.4019E-02-2.4019E-02 -4.1540E-02-4.1540E-02 -6.7755E-02-6.7755E-02 12阶系数(E)12th order coefficient (E) -2.3418E-03-2.3418E-03 1.2652E-021.2652E-02 9.9311E-039.9311E-03 3.0969E-023.0969E-02 5.6345E-025.6345E-02 14阶系数(F)14th order coefficient (F) 8.9903E-048.9903E-04 -3.5434E-03-3.5434E-03 -2.2711E-03-2.2711E-03 -1.6822E-02-1.6822E-02 -3.3560E-02-3.3560E-02 16阶系数(G)16th order coefficient (G) -2.4448E-04-2.4448E-04 6.2316E-046.2316E-04 1.5889E-041.5889E-04 6.7901E-036.7901E-03 1.4514E-021.4514E-02 18阶系数(H)18th order coefficient (H) 4.7772E-054.7772E-05 -5.9034E-05-5.9034E-05 6.6690E-056.6690E-05 -2.0467E-03-2.0467E-03 -4.5935E-03-4.5935E-03 20阶系数(J)20th order coefficient (J) -6.7196E-06-6.7196E-06 -1.1844E-07-1.1844E-07 -2.4662E-05-2.4662E-05 4.5742E-044.5742E-04 1.0621E-031.0621E-03 S6S6 S7S7 S8S8 S9S9 S10S10 圆锥常数(K)Conic constant (K) -1.25120-1.25120 1.483201.48320 1.753201.75320 -95.98000-95.98000 -54.35500-54.35500 4阶系数(A)4th order coefficient (A) 1.8194E-021.8194E-02 4.6046E-024.6046E-02 3.1108E-023.1108E-02 -2.1824E-02-2.1824E-02 3.0220E-033.0220E-03 6阶系数(B)6th order coefficient (B) -3.4014E-02-3.4014E-02 -2.0546E-01-2.0546E-01 -1.7731E-01-1.7731E-01 -6.6542E-03-6.6542E-03 -1.8476E-02-1.8476E-02 8阶系数(C)8th order coefficient (C) 3.1043E-023.1043E-02 5.2291E-015.2291E-01 5.7733E-015.7733E-01 1.5928E-021.5928E-02 1.7662E-021.7662E-02 10阶系数(D)10th order coefficient (D) -1.6899E-02-1.6899E-02 -9.0013E-01-9.0013E-01 -1.2497E+00-1.2497E+00 -1.8903E-02-1.8903E-02 -1.3015E-02-1.3015E-02 12阶系数(E)12th order coefficient (E) 2.3405E-032.3405E-03 1.0763E+001.0763E+00 1.8722E+001.8722E+00 1.4688E-021.4688E-02 7.2515E-037.2515E-03 14阶系数(F)14th order coefficient (F) 4.7088E-034.7088E-03 -9.1427E-01-9.1427E-01 -1.9899E+00-1.9899E+00 -7.7684E-03-7.7684E-03 -2.9614E-03-2.9614E-03 16阶系数(G)16th order coefficient (G) -4.6141E-03-4.6141E-03 5.6129E-015.6129E-01 1.5263E+001.5263E+00 2.8613E-032.8613E-03 8.7898E-048.7898E-04 18阶系数(H)18th order coefficient (H) 2.2951E-032.2951E-03 -2.5123E-01-2.5123E-01 -8.5201E-01-8.5201E-01 -7.4334E-04-7.4334E-04 -1.8951E-04-1.8951E-04 20阶系数(J)20th order coefficient (J) -7.3358E-04-7.3358E-04 8.1937E-028.1937E-02 3.4585E-013.4585E-01 1.3645E-041.3645E-04 2.9590E-052.9590E-05

另外,上述配置的光学成像系统500可以具有图10所示的像差特性。In addition, the optical imaging system 500 configured as described above may have the aberration characteristics shown in FIG. 10 .

将参考图11和图12描述根据第六示例性实施方式的光学成像系统600。An optical imaging system 600 according to the sixth exemplary embodiment will be described with reference to FIGS. 11 and 12 .

第六示例性实施方式中的光学成像系统600可以包括这样的光学系统,该光学系统包括第一透镜610、第二透镜620、第三透镜630、第四透镜640和第五透镜650,并且还可以包括滤光器670和图像传感器IS。The optical imaging system 600 in the sixth exemplary embodiment may include an optical system including a first lens 610, a second lens 620, a third lens 630, a fourth lens 640, and a fifth lens 650, and further The filter 670 and the image sensor IS may be included.

根据第六示例性实施方式的光学成像系统600可以在图像传感器IS的成像面680上形成对焦图像。成像面680可以指由光学成像系统600在其上形成对焦图像的表面。在示例中,成像面680可以指图像传感器IS的在其上接收光的一个表面。The optical imaging system 600 according to the sixth exemplary embodiment can form a focused image on the imaging plane 680 of the image sensor IS. Imaging surface 680 may refer to the surface on which a focused image is formed by optical imaging system 600 . In an example, the imaging surface 680 may refer to a surface of the image sensor IS on which light is received.

尽管在图11中未示出,但是光学成像系统600还可以包括设置在第一透镜610的前面并且具有改变光的路径的反射表面的反射构件R。在第六示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 11 , the optical imaging system 600 may further include a reflective member R disposed in front of the first lens 610 and having a reflective surface that changes the path of light. In the sixth exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表11中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 11 below.

表11Table 11

面编号face number 标记mark 曲率半径Radius of curvature 厚度或距离thickness or distance 折射率refractive index 阿贝数Abbe number 焦距focal length S1S1 第一透镜first lens 4.36454.3645 1.9781.978 1.5371.537 55.755.7 6.9106.910 S2S2 -20.7455-20.7455 0.1300.130 S3S3 第二透镜second lens -19.5126-19.5126 0.6040.604 1.6441.644 23.523.5 -7.10304-7.10304 S4S4 6.048016.04801 1.1531.153 S5S5 第三透镜third lens 5.101225.10122 0.8780.878 1.6561.656 21.521.5 17.92317.923 S6S6 8.399678.39967 0.3250.325 S7S7 第四透镜fourth lens 7.262657.26265 0.5000.500 1.6671.667 20.420.4 229.705229.705 S8S8 7.414387.41438 2.8002.800 S9S9 第五透镜Fifth lens 14.372714.3727 0.6180.618 1.5371.537 55.755.7 -20.4303-20.4303 S10S10 6.125836.12583 3.0003.000 S11S11 滤光器filter 无穷大gigantic 0.2100.210 1.5181.518 64.264.2 S12S12 无穷大gigantic 1.9011.901 S13S13 成像面Imaging plane 无穷大gigantic

第六示例性实施方式中的光学成像系统600的总焦距f为15.0001mm,并且IMG HT为5.644mm。The overall focal length f of the optical imaging system 600 in the sixth exemplary embodiment is 15.0001 mm, and the IMG HT is 5.644 mm.

在第六示例性实施方式中,第一透镜610可以具有正屈光力,并且第一透镜610的第一面可以是凸出的,并且第一透镜610的第二面可以是凸出的。In the sixth exemplary embodiment, the first lens 610 may have positive refractive power, the first surface of the first lens 610 may be convex, and the second surface of the first lens 610 may be convex.

第二透镜620可以具有负屈光力,并且第二透镜620的第一面可以是凹入的,并且第二透镜620的第二面可以是凹入的。The second lens 620 may have negative refractive power, the first face of the second lens 620 may be concave, and the second face of the second lens 620 may be concave.

第三透镜630可以具有正屈光力,第三透镜630的第一面可以是凸出的,并且第三透镜630的第二面可以是凹入的。The third lens 630 may have positive refractive power, the first face of the third lens 630 may be convex, and the second face of the third lens 630 may be concave.

第四透镜640可以具有正屈光力,第四透镜640的第一面可以是凸出的,并且第四透镜640的第二面可以是凹入的。The fourth lens 640 may have positive refractive power, the first face of the fourth lens 640 may be convex, and the second face of the fourth lens 640 may be concave.

第五透镜650可以具有负屈光力,第五透镜650的第一面可以在近轴区域中是凸出的,并且第五透镜650的第二面可以在近轴区域中是凹入的。The fifth lens 650 may have negative refractive power, the first face of the fifth lens 650 may be convex in the paraxial region, and the second face of the fifth lens 650 may be concave in the paraxial region.

另外,第五透镜650可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第五透镜650的第一面可以在近轴区域中是凸出的,并且在除了近轴区域之外的部分或区域中是凹入的。第五透镜650的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the fifth lens 650 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the fifth lens 650 may be convex in a paraxial region and concave in a portion or region other than the paraxial region. The second face of the fifth lens 650 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜610到第五透镜650的每个面可以具有如下面的表12所示的非球面系数。在示例中,第一透镜610到第五透镜650的物侧面和像侧面都可以是非球面的。Each face of the first lens 610 to the fifth lens 650 may have aspheric coefficients as shown in Table 12 below. In an example, both the object side and the image side of the first lens 610 to the fifth lens 650 may be aspherical.

表12Table 12

Figure BDA0003690465220000251
Figure BDA0003690465220000251

Figure BDA0003690465220000261
Figure BDA0003690465220000261

另外,上述配置的光学成像系统600可以具有图12所示的像差特性。In addition, the optical imaging system 600 configured as described above may have the aberration characteristics shown in FIG. 12 .

将参考图13和图14描述根据第七示例性实施方式的光学成像系统700。An optical imaging system 700 according to the seventh exemplary embodiment will be described with reference to FIGS. 13 and 14 .

第七示例性实施方式中的光学成像系统700可以包括这样的光学系统,该光学系统包括第一透镜710、第二透镜720、第三透镜730、第四透镜740和第五透镜750,并且还可以包括滤光器770和图像传感器IS。The optical imaging system 700 in the seventh exemplary embodiment may include an optical system including a first lens 710, a second lens 720, a third lens 730, a fourth lens 740, and a fifth lens 750, and further The filter 770 and the image sensor IS may be included.

第七示例性实施方式中的光学成像系统700可以在图像传感器IS的成像面780上形成对焦图像。成像面780可以指由光学成像系统700在其上形成对焦图像的表面。在示例中,成像面780可以指图像传感器IS的在其上接收光的表面。The optical imaging system 700 in the seventh exemplary embodiment can form a focused image on the imaging surface 780 of the image sensor IS. Imaging surface 780 may refer to the surface on which a focused image is formed by optical imaging system 700 . In an example, the imaging surface 780 may refer to the surface of the image sensor IS on which light is received.

尽管在图13中未示出,但是光学成像系统700还可以包括设置在第一透镜710的前面并且具有改变光的路径的反射表面的反射构件R(参见图15)。在第七示例性实施方式中,反射构件R可以是棱镜,但是也可以实现为反射镜。Although not shown in FIG. 13 , the optical imaging system 700 may further include a reflective member R (see FIG. 15 ) that is disposed in front of the first lens 710 and has a reflective surface that changes the path of light. In the seventh exemplary embodiment, the reflecting member R may be a prism, but may also be implemented as a reflecting mirror.

每个透镜的透镜特性(曲率半径、透镜的厚度或透镜之间的距离、折射率、阿贝数和焦距)在下面的表13中列出。The lens properties of each lens (radius of curvature, thickness of lenses or distance between lenses, refractive index, Abbe number, and focal length) are listed in Table 13 below.

表13Table 13

Figure BDA0003690465220000262
Figure BDA0003690465220000262

Figure BDA0003690465220000271
Figure BDA0003690465220000271

第七示例性实施方式中的光学成像系统700的总焦距f为15mm,并且IMG HT为5.4mm。The overall focal length f of the optical imaging system 700 in the seventh exemplary embodiment is 15 mm, and the IMG HT is 5.4 mm.

在第七示例性实施方式中,第一透镜710可以具有正屈光力,并且第一透镜710的第一面可以是凸出的,并且第一透镜710的第二面可以是凸出的。In the seventh exemplary embodiment, the first lens 710 may have positive refractive power, the first surface of the first lens 710 may be convex, and the second surface of the first lens 710 may be convex.

第二透镜720可以具有负屈光力,第二透镜720的第一面可以是凸出的,并且第二透镜720的第二面可以是凹入的。The second lens 720 may have negative refractive power, the first face of the second lens 720 may be convex, and the second face of the second lens 720 may be concave.

第三透镜730可以具有负屈光力,第三透镜730的第一面可以是凸出的,并且第三透镜730的第二面可以是凹入的。The third lens 730 may have negative refractive power, the first face of the third lens 730 may be convex, and the second face of the third lens 730 may be concave.

第四透镜740可以具有正屈光力,第四透镜740的第一面可以是凹入的,并且第四透镜740的第二面可以是凸出的。The fourth lens 740 may have positive refractive power, the first face of the fourth lens 740 may be concave, and the second face of the fourth lens 740 may be convex.

第五透镜750可以具有负屈光力,第五透镜750的第一面可以在近轴区域中是凸出的,并且第五透镜750的第二面可以在近轴区域中是凹入的。The fifth lens 750 may have negative refractive power, the first face of the fifth lens 750 may be convex in the paraxial region, and the second face of the fifth lens 750 may be concave in the paraxial region.

另外,第五透镜750可以具有形成在第一面和第二面中的至少一个上的至少一个反曲点。在示例中,第五透镜750的第一面可以在近轴区域中是凸出的,并且在除了近轴区域之外的部分或区域中是凹入的。第五透镜750的第二面可以在近轴区域中是凹入的,并且在除了近轴区域之外的部分或区域中是凸出的。In addition, the fifth lens 750 may have at least one inflection point formed on at least one of the first face and the second face. In an example, the first face of the fifth lens 750 may be convex in the paraxial region and concave in a portion or region other than the paraxial region. The second face of the fifth lens 750 may be concave in the paraxial region and convex in a portion or region other than the paraxial region.

第一透镜710到第五透镜750的每个面可以具有如下面的表14所示的非球面系数。在示例中,第一透镜710到第五透镜750的物侧面和像侧面都可以是非球面的。Each face of the first lens 710 to the fifth lens 750 may have aspheric coefficients as shown in Table 14 below. In an example, both the object side and the image side of the first lens 710 to the fifth lens 750 may be aspherical.

表14Table 14

Figure BDA0003690465220000272
Figure BDA0003690465220000272

Figure BDA0003690465220000281
Figure BDA0003690465220000281

此外,上述配置的光学成像系统700可以具有图14所示的像差特性。Furthermore, the optical imaging system 700 configured as described above may have the aberration characteristics shown in FIG. 14 .

如上所述,根据上述一个或多个示例的光学成像系统,可以捕获高分辨率图像。As described above, according to the optical imaging system of one or more of the above examples, high resolution images can be captured.

虽然本公开包括具体的示例,但是在理解本申请的公开内容之后将显而易见的是,在不背离权利要求及其等同方案的精神和范围的情况下,可对这些示例作出形式和细节上的各种改变。本文中所描述的示例仅以描述性的意义进行理解,而非出于限制的目的。对每个示例中的特征或方面的描述应被认为是可适用于其它示例中的相似的特征或方面。如果执行所描述的技术以具有不同的顺序,和/或如果以不同的方式组合和/或通过其它部件或它们的等同件替换或补充所描述的系统、架构、设备或电路中的部件,则仍可实现适当的结果。因此,本公开的范围不由具体实施方式限定,而是由权利要求及其等同方案限定,且在权利要求及其等同方案的范围之内的所有变型应被理解为包括在本公开中。Although this disclosure includes specific examples, it will be apparent after understanding the disclosure of this application that various changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents kind of change. The examples described herein are to be understood in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects in each example should be considered applicable to similar features or aspects in other examples. If the described techniques are performed in a different order, and/or if components in the described system, architecture, device, or circuit are combined in a different manner and/or replace or supplement with other components or their equivalents, then Appropriate results can still be achieved. Therefore, the scope of the present disclosure is defined not by the specific embodiments but by the claims and their equivalents, and all modifications that come within the scope of the claims and their equivalents should be construed as being included in the present disclosure.

Claims (16)

1. An optical imaging system comprising:
a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in this order from an object side to an image side, wherein:
the optical imaging system further includes an image sensor configured to convert optical signals passing through the first to fifth lenses into electrical signals;
the first lens has a positive refractive power and the second lens has a negative refractive power; and
TTL is more than 10.2mm, and TTL/(2 × IMG HT) is less than or equal to 1.7,
wherein TTL is a distance from an object side surface of the first lens element to an imaging plane on an optical axis, and IMG HT is equal to half a diagonal length of the imaging plane.
2. The optical imaging system of claim 1, wherein:
IMG HT≥4.5mm。
3. the optical imaging system of claim 1, wherein:
1.5<f/IMG HT<3.5,
wherein f is the total focal length of the optical imaging system.
4. The optical imaging system of claim 1, wherein:
n2+n3>3.20,
wherein n2 is a refractive index of the second lens, and n3 is a refractive index of the third lens.
5. The optical imaging system of claim 1, wherein:
|f/f1+f/f2|<1.2,
wherein f is an overall focal length of the optical imaging system, f1 is a focal length of the first lens, and f2 is a focal length of the second lens.
6. The optical imaging system of claim 1, wherein:
BFL/f<0.4,
wherein f is a total focal length of the optical imaging system, and BFL is a distance from an image-side surface of the fifth lens to the imaging surface on the optical axis.
7. The optical imaging system of claim 1, wherein:
0.80≤TTL/f≤1.05,
wherein f is the total focal length of the optical imaging system.
8. The optical imaging system of claim 1, wherein:
0≤D1/f≤0.05,
where f is the total focal length of the optical imaging system, and D1 is the distance on the optical axis between the image-side surface of the first lens and the object-side surface of the second lens.
9. The optical imaging system of claim 1, wherein:
R1/f≤0.35,
where f is the total focal length of the optical imaging system, and R1 is the radius of curvature of the object side surface of the first lens.
10. The optical imaging system of claim 1, wherein:
the third lens has a positive refractive power, the fourth lens has a negative refractive power, and the fifth lens has a negative refractive power.
11. The optical imaging system of claim 1, wherein:
the third lens has a positive refractive power, the fourth lens has a positive refractive power, and the fifth lens has a negative refractive power.
12. The optical imaging system of claim 1, wherein:
the third lens has a negative refractive power, the fourth lens has a positive refractive power, and the fifth lens has a negative refractive power.
13. The optical imaging system of claim 1, further comprising:
a sixth lens disposed between the fifth lens and the imaging surface, wherein:
the third lens has a positive refractive power, the fourth lens has a positive refractive power, the fifth lens has a negative refractive power, and the sixth lens has a negative refractive power.
14. The optical imaging system of claim 1, further comprising:
a sixth lens disposed between the fifth lens and the imaging surface, wherein:
the third lens has a positive refractive power, the fourth lens has a positive refractive power, the fifth lens has a positive refractive power, and the sixth lens has a negative refractive power.
15. The optical imaging system of claim 1, wherein:
at least one of the second lens and the third lens has a refractive index greater than 1.64.
16. The optical imaging system of claim 1, wherein:
an absolute value of a focal length of each of the first lens and the second lens is smaller than an absolute value of a focal length of each of the third lens, the fourth lens, and the fifth lens.
CN202210666531.9A 2021-10-06 2022-06-02 Optical imaging system Pending CN114859521A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2021-0132520 2021-10-06
KR1020210132520A KR20230049403A (en) 2021-10-06 2021-10-06 Optical imaging system
CN202210632215.XA CN115933113A (en) 2021-10-06 2022-06-02 optical imaging system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202210632215.XA Division CN115933113A (en) 2021-10-06 2022-06-02 optical imaging system

Publications (1)

Publication Number Publication Date
CN114859521A true CN114859521A (en) 2022-08-05

Family

ID=82652660

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202411330731.2A Pending CN118915287A (en) 2021-10-06 2022-06-02 Optical imaging system
CN202210666531.9A Pending CN114859521A (en) 2021-10-06 2022-06-02 Optical imaging system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202411330731.2A Pending CN118915287A (en) 2021-10-06 2022-06-02 Optical imaging system

Country Status (1)

Country Link
CN (2) CN118915287A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466867A (en) * 2010-11-19 2012-05-23 大立光电股份有限公司 Optical camera lens group
CN102981246A (en) * 2011-09-06 2013-03-20 大立光电股份有限公司 Image lens assembly
CN203773137U (en) * 2013-03-29 2014-08-13 富士胶片株式会社 Imaging lens and imaging device comprising the same
CN105445904A (en) * 2015-07-10 2016-03-30 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lenses thereof
CN105988184A (en) * 2015-02-02 2016-10-05 大立光电股份有限公司 Camera lens group, image capture device and electronic device
CN106569314A (en) * 2015-10-13 2017-04-19 三星电机株式会社 Optical imaging system
CN107664811A (en) * 2017-09-07 2018-02-06 南昌欧菲光电技术有限公司 Eyeglass module
CN107765396A (en) * 2016-08-23 2018-03-06 大立光电股份有限公司 Photographing optical lens assembly, image capturing device and electronic device
CN108459391A (en) * 2017-02-17 2018-08-28 大立光电股份有限公司 Image capturing optical lens assembly, image capturing device and electronic device
CN110515177A (en) * 2018-05-22 2019-11-29 先进光电科技股份有限公司 optical imaging system
CN111221106A (en) * 2020-02-28 2020-06-02 南昌欧菲精密光学制品有限公司 Optical system, image capturing module and electronic equipment
CN111239982A (en) * 2020-03-19 2020-06-05 浙江舜宇光学有限公司 Optical imaging lens
CN112230389A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN113138457A (en) * 2020-01-16 2021-07-20 大立光电股份有限公司 Image capturing optical lens assembly, image capturing device and electronic device
CN217543513U (en) * 2021-10-06 2022-10-04 三星电机株式会社 Optical imaging system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466867A (en) * 2010-11-19 2012-05-23 大立光电股份有限公司 Optical camera lens group
CN102981246A (en) * 2011-09-06 2013-03-20 大立光电股份有限公司 Image lens assembly
CN203773137U (en) * 2013-03-29 2014-08-13 富士胶片株式会社 Imaging lens and imaging device comprising the same
CN105988184A (en) * 2015-02-02 2016-10-05 大立光电股份有限公司 Camera lens group, image capture device and electronic device
CN105445904A (en) * 2015-07-10 2016-03-30 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lenses thereof
CN106569314A (en) * 2015-10-13 2017-04-19 三星电机株式会社 Optical imaging system
CN107765396A (en) * 2016-08-23 2018-03-06 大立光电股份有限公司 Photographing optical lens assembly, image capturing device and electronic device
CN108459391A (en) * 2017-02-17 2018-08-28 大立光电股份有限公司 Image capturing optical lens assembly, image capturing device and electronic device
CN107664811A (en) * 2017-09-07 2018-02-06 南昌欧菲光电技术有限公司 Eyeglass module
CN110515177A (en) * 2018-05-22 2019-11-29 先进光电科技股份有限公司 optical imaging system
CN113138457A (en) * 2020-01-16 2021-07-20 大立光电股份有限公司 Image capturing optical lens assembly, image capturing device and electronic device
CN111221106A (en) * 2020-02-28 2020-06-02 南昌欧菲精密光学制品有限公司 Optical system, image capturing module and electronic equipment
CN111239982A (en) * 2020-03-19 2020-06-05 浙江舜宇光学有限公司 Optical imaging lens
CN112230389A (en) * 2020-10-31 2021-01-15 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN217543513U (en) * 2021-10-06 2022-10-04 三星电机株式会社 Optical imaging system
CN115933113A (en) * 2021-10-06 2023-04-07 三星电机株式会社 optical imaging system

Also Published As

Publication number Publication date
CN118915287A (en) 2024-11-08

Similar Documents

Publication Publication Date Title
CN108254997B (en) Optical imaging system
CN217543513U (en) Optical imaging system
CN214895984U (en) Optical imaging system
CN110133821B (en) Optical imaging system
TW202146973A (en) Optical imaging system
TWM633734U (en) Optical imaging system
TWI772123B (en) Imaging lens system
CN219302748U (en) Optical imaging system
CN115202007B (en) Optical imaging system
TWI805241B (en) Optical imaging system
TWM642241U (en) Optical imaging system
CN115202010A (en) Optical imaging system
CN114859521A (en) Optical imaging system
CN221351840U (en) Optical imaging system
CN222850803U (en) Optical imaging system
CN220491110U (en) Optical imaging system and portable electronic device
CN118915286A (en) Optical imaging system
CN115877551A (en) Optical imaging system
CN117348213A (en) Optical imaging system
TWM651474U (en) Optical imaging system
CN120065456A (en) Optical imaging system
CN116953894A (en) Optical imaging system and portable electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination