CN114854992B - Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation - Google Patents
Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation Download PDFInfo
- Publication number
- CN114854992B CN114854992B CN202210568948.1A CN202210568948A CN114854992B CN 114854992 B CN114854992 B CN 114854992B CN 202210568948 A CN202210568948 A CN 202210568948A CN 114854992 B CN114854992 B CN 114854992B
- Authority
- CN
- China
- Prior art keywords
- arsenic
- antimony
- oxidation
- solution
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 52
- 230000003647 oxidation Effects 0.000 title claims abstract description 41
- 229910052787 antimony Inorganic materials 0.000 title claims abstract description 39
- 229910052785 arsenic Inorganic materials 0.000 title claims abstract description 39
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims abstract description 39
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000002386 leaching Methods 0.000 title claims description 28
- 239000003518 caustics Substances 0.000 title claims description 10
- 239000010802 sludge Substances 0.000 title claims 10
- 238000003756 stirring Methods 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000011572 manganese Substances 0.000 claims abstract description 16
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 239000007789 gas Substances 0.000 claims abstract description 8
- 150000002696 manganese Chemical class 0.000 claims abstract description 6
- CIWAOCMKRKRDME-UHFFFAOYSA-N tetrasodium dioxido-oxo-stibonatooxy-lambda5-stibane Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Sb]([O-])(=O)O[Sb]([O-])([O-])=O CIWAOCMKRKRDME-UHFFFAOYSA-N 0.000 claims abstract description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000002893 slag Substances 0.000 claims description 4
- 238000005273 aeration Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 230000005587 bubbling Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000003513 alkali Substances 0.000 abstract description 26
- 230000008569 process Effects 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 abstract description 8
- 238000007664 blowing Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 54
- 238000003723 Smelting Methods 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- -1 Mn(II) ions Chemical class 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- 229910003174 MnOOH Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 235000002867 manganese chloride Nutrition 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 229940099607 manganese chloride Drugs 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- MMIPFLVOWGHZQD-UHFFFAOYSA-N manganese(3+) Chemical compound [Mn+3] MMIPFLVOWGHZQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- MHUWZNTUIIFHAS-XPWSMXQVSA-N 9-octadecenoic acid 1-[(phosphonoxy)methyl]-1,2-ethanediyl ester Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C\CCCCCCCC MHUWZNTUIIFHAS-XPWSMXQVSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229910019446 NaSb Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- CNFDGXZLMLFIJV-UHFFFAOYSA-L manganese(II) chloride tetrahydrate Chemical compound O.O.O.O.[Cl-].[Cl-].[Mn+2] CNFDGXZLMLFIJV-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940047047 sodium arsenate Drugs 0.000 description 1
- PTLRDCMBXHILCL-UHFFFAOYSA-M sodium arsenite Chemical compound [Na+].[O-][As]=O PTLRDCMBXHILCL-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- NSBGJRFJIJFMGW-UHFFFAOYSA-N trisodium;stiborate Chemical compound [Na+].[Na+].[Na+].[O-][Sb]([O-])([O-])=O NSBGJRFJIJFMGW-UHFFFAOYSA-N 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/02—Obtaining antimony
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/04—Obtaining arsenic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开一种从砷碱渣浸出液中深度氧化分离砷锑的方法,该方法是将砷碱渣浸出液置于反应容器内;按一定的As(III)/Mn摩尔比将可溶性锰盐加入到浸出液中,并向浸出液内鼓入含氧气体搅拌,完成氧化反应后过滤,得到氧化渣和氧化后液;将氧化后液静置后分离,得到沉锑后液和焦锑酸钠。本发明具有操作流程简单、氧化效率高、成本低、催化剂可循环利用等优点,解决了当下砷碱渣浸出液中As(III)氧化成本高、效率低、砷锑分离困难等问题。
The invention discloses a method for deep oxidation and separation of arsenic and antimony from arsenic-alkali residue leachate. The method is to place the arsenic-alkali residue leachate in a reaction vessel; add soluble manganese salt to the arsenic-alkali residue leachate according to a certain As(III)/Mn molar ratio. into the leachate, and stir by blowing oxygen-containing gas into the leachate. After completing the oxidation reaction, filter to obtain oxidized residue and post-oxidation liquid; leave the post-oxidation liquid to stand and then separate to obtain post-antimony precipitated liquid and sodium pyroantimonate. The invention has the advantages of simple operation process, high oxidation efficiency, low cost, and recyclable catalyst, and solves the current problems of high oxidation cost, low efficiency, and difficulty in arsenic and antimony separation of As(III) in arsenic-alkali residue leach solution.
Description
技术领域Technical field
本发明涉及湿法冶金技术领域,具体涉及一种从砷碱渣浸出液中深度氧化分离砷锑的方法。The invention relates to the technical field of hydrometallurgy, and in particular to a method for deep oxidation separation of arsenic and antimony from arsenic-alkali residue leaching solution.
背景技术Background technique
砷碱渣是锑精炼过程产出的典型副产物,主要含有15~20%的砷、18~22%的锑和一定量苛性碱,其中砷主要以亚砷酸钠、砷酸钠形式存在,锑除了以亚锑酸钠、锑酸钠存在外,还有少量金属锑。砷碱渣成分相对简单、且富含有价金属锑,但由于砷、锑性质相似,使得砷、锑分离较为困难,导致砷碱渣的处置一直是锑冶炼产业的一大棘手问题。当前砷碱渣处理的主流技术为水浸-氧化工艺。Arsenic-alkali residue is a typical by-product of the antimony refining process. It mainly contains 15-20% arsenic, 18-22% antimony and a certain amount of caustic alkali. Arsenic mainly exists in the form of sodium arsenite and sodium arsenate. In addition to antimony existing as sodium antimonite and sodium antimonate, there is also a small amount of metallic antimony. The composition of arsenic-alkali slag is relatively simple and rich in valuable metal antimony. However, due to the similar properties of arsenic and antimony, it is difficult to separate arsenic and antimony. As a result, the disposal of arsenic-alkali slag has always been a thorny issue in the antimony smelting industry. The current mainstream technology for arsenic-alkali residue treatment is the water immersion-oxidation process.
除了完成砷、锑分离外,降低砷毒性,便于砷固化是进行砷碱渣浸出液氧化处理的另一目的,因而氧化处理是含As(Ⅲ)溶液处理的必要步骤之一。目前已报道的用于含As(Ⅲ)的溶液的氧化剂主要有过氧化氢、氯、臭氧、高锰酸钾等。其中以过氧化氢的应用最为普遍。过量的过氧化氢可以在较宽的pH范围内作为有效的砷氧化剂,尤其是在碱性溶液中,在较短的时间可将溶液中的As(Ⅲ)浓度降低10-15倍。毫无疑问,上述强氧化剂对As(Ⅲ)的氧化效率较高、As(III)氧化效果十分理想,但消耗大、价格高是不争的事实,同时大多数氧化剂还存在引入杂质的问题,因而,开发低成本As(III)氧化方法是当前含砷物料处理研究的热点方向之一。In addition to completing the separation of arsenic and antimony, reducing arsenic toxicity and facilitating arsenic solidification is another purpose of oxidation treatment of arsenic-alkali residue leachate. Therefore, oxidation treatment is one of the necessary steps in the treatment of solutions containing As(Ⅲ). The oxidants reported so far for solutions containing As(Ⅲ) mainly include hydrogen peroxide, chlorine, ozone, potassium permanganate, etc. Among them, hydrogen peroxide is the most commonly used. Excess hydrogen peroxide can act as an effective arsenic oxidant in a wide pH range, especially in alkaline solutions, and can reduce the As(III) concentration in the solution by 10-15 times in a short period of time. There is no doubt that the above-mentioned strong oxidants have high oxidation efficiency for As(Ⅲ) and the oxidation effect of As(III) is very ideal. However, it is an indisputable fact that it consumes a lot and is expensive. At the same time, most oxidants also have the problem of introducing impurities. Therefore, , developing low-cost As(III) oxidation methods is one of the current hot topics in arsenic-containing material processing research.
空气/纯氧无疑是最为理想的氧化剂,价廉易得,且不引入杂质。利用空气/纯氧氧化As(III)在热力学上是可行的,但由于动力学的原因,其氧化效率较低,氧对As(Ⅲ)的氧化速率十分缓慢,其半衰期长达1年左右。因而,在空气/纯氧氧化As(III)反应体系中引入催化剂以解决提高反应效率已成为广大研究人员的共识。如专利CN113754040A公开了一种利用微/纳米活性炭粉氧化水体中三价砷的方法,该方法是将微/纳米活性炭粉加入到含有三价砷的溶液中,用碱液将溶液pH调至微碱性(pH在7~9.5左右),通入空气/氧气搅拌反应1~3天,即可将污染水体中的As(III)氧化为As(V)。如专利CN110204030A公开了一种利用生物炭氧化地下水中三价砷的方法,该方法是将生物炭加入到含有As(III)的地下水中,同时通入含氧气体,搅拌反应1~3天,即可将地下水中的As(III)氧化为As(V)。但As(III)彻底氧化为As(V)所需时间依旧较长,且面临催化剂无法重复利用等问题,如何进一步提高As(III)的催化氧化速率并使催化剂重复利用是业界重点关注发展方向。Air/pure oxygen is undoubtedly the most ideal oxidant, it is cheap and easy to obtain, and does not introduce impurities. It is thermodynamically feasible to oxidize As(III) using air/pure oxygen, but due to kinetic reasons, the oxidation efficiency is low. The oxidation rate of As(III) with oxygen is very slow, and its half-life is as long as about 1 year. Therefore, it has become a consensus among researchers to introduce catalysts into the air/pure oxygen oxidation As(III) reaction system to improve reaction efficiency. For example, patent CN113754040A discloses a method of using micro/nano activated carbon powder to oxidize trivalent arsenic in water. The method is to add micro/nano activated carbon powder to a solution containing trivalent arsenic, and use alkali to adjust the pH of the solution to slightly Alkaline (pH around 7 to 9.5), air/oxygen stirring and reaction for 1 to 3 days can oxidize As(III) in polluted water to As(V). For example, patent CN110204030A discloses a method of using biochar to oxidize trivalent arsenic in groundwater. The method is to add biochar to groundwater containing As(III), and at the same time, oxygen-containing gas is introduced, and the reaction is stirred for 1 to 3 days. As(III) in groundwater can be oxidized to As(V). However, it still takes a long time to completely oxidize As(III) to As(V), and the catalyst cannot be reused. How to further improve the catalytic oxidation rate of As(III) and reuse the catalyst is a key development direction of the industry. .
发明内容Contents of the invention
本发明涉及一种从砷碱渣浸出液中深度氧化分离砷锑的方法,实现砷碱渣浸出液中深度高效氧化分离砷锑并使催化剂重复利用的目的。The invention relates to a method for deep oxidation and separation of arsenic and antimony from arsenic and alkali residue leaching solutions, achieving the purpose of deep and efficient oxidation and separation of arsenic and antimony in the arsenic and alkali residue leaching solution and reusing the catalyst.
为实现上述目的,本发明提出的一种从砷碱渣浸出液中深度氧化分离砷锑的方法,包括以下步骤:In order to achieve the above objectives, the present invention proposes a method for deep oxidation separation of arsenic and antimony from arsenic-alkali residue leachate, including the following steps:
将砷碱渣浸出液置于反应容器内;Place the arsenic-alkali residue leach solution into the reaction vessel;
按一定的As(III)/Mn摩尔比将可溶性锰盐加入到浸出液中,并向浸出液内鼓入含氧气体搅拌,完成氧化反应后过滤,得到氧化渣和氧化后液;Add soluble manganese salt to the leach solution according to a certain As(III)/Mn molar ratio, and bubble oxygen-containing gas into the leach solution for stirring. After completing the oxidation reaction, filter to obtain oxidized slag and oxidized liquid;
将氧化后液静置后分离,得到沉锑后液和焦锑酸钠。The oxidized liquid is allowed to stand and then separated to obtain the antimony precipitated liquid and sodium pyroantimonate.
优选地,所述可溶性锰盐以溶液形式加入。Preferably, the soluble manganese salt is added in solution.
优选地,As(III)/Mn摩尔比为1.27~50.96:1。Preferably, the As(III)/Mn molar ratio is 1.27-50.96:1.
优选地,所述含氧气体选自空气、工业纯氧其中一种,其流速为0~1.2L/min。Preferably, the oxygen-containing gas is selected from one of air and industrial pure oxygen, and its flow rate is 0 to 1.2L/min.
优选地,反应容器内的温度为30~90℃。Preferably, the temperature inside the reaction vessel is 30 to 90°C.
优选地,搅拌时,控制其搅拌转速为200~500r/min。Preferably, during stirring, the stirring speed is controlled to be 200 to 500 r/min.
优选地,反应容器内加装曝气条。Preferably, an aeration strip is installed in the reaction vessel.
优选地,氧化反应时间控制为1~5h。Preferably, the oxidation reaction time is controlled to be 1 to 5 hours.
优选地,所述氧化渣循环用于氧化新的砷碱渣浸出液。Preferably, the oxidation residue circulation is used to oxidize new arsenic-alkali residue leachate.
优选地,氧化后液静置时间控制为6~12h。Preferably, the resting time of the oxidized liquid is controlled to be 6 to 12 hours.
本发明的技术原理和构思如下:The technical principles and concepts of the present invention are as follows:
在开放体系下,碱性溶液中的As(III)主要以AsO2 -形式存在;Mn(Ⅱ)在碱性溶液中以固体形式存在,例如Mn(OH)2,MnO2·nH2O,Mn3O4,MnOOH,MnO2等,向砷碱渣浸出液通入含氧气体并引入锰盐,MnSO4会提供Mn(II)离子,当溶液中存在游离的Mn(II)离子,溶液中的溶解氧会与其反应,将其氧化为MnOOH,MnO2,随后与溶液中的As(Ⅲ)发生直接氧化反应或者催化空气/纯氧氧化反应,将As(Ⅲ)氧化As(V)。MnO2对As(Ⅲ)的直接氧化过程分为两个步骤:首先将As(Ⅲ)氧化为As(Ⅴ),通常伴随着Mn(IV)还原为Mn(III),然后Mn(III)通过电子转移机制进一步还原为溶解的Mn(II)离子。因此,体系内部可能会发生的反应如下式(1)-(6)所示:In an open system, As(III) in alkaline solution mainly exists in the form of AsO 2 - ; Mn(II) exists in solid form in alkaline solution, such as Mn(OH) 2 , MnO 2 ·nH 2 O, Mn 3 O 4 , MnOOH, MnO 2, etc., pass oxygen-containing gas into the arsenic-alkali residue leaching solution and introduce manganese salt. MnSO 4 will provide Mn(II) ions. When there are free Mn(II) ions in the solution, The dissolved oxygen will react with it and oxidize it to MnOOH, MnO 2 , and then directly oxidize it with As(III) in the solution or catalyze the air/pure oxygen oxidation reaction to oxidize As(III) to As(V). The direct oxidation process of As(Ⅲ) by MnO 2 is divided into two steps: first, As(Ⅲ) is oxidized to As(Ⅴ), usually accompanied by the reduction of Mn(IV) to Mn(III), and then Mn(III) passes through The electron transfer mechanism further reduces to dissolved Mn(II) ions. Therefore, the reactions that may occur inside the system are as shown in the following formulas (1)-(6):
2Μn(II)+Ο2+4OH-→2ΜnIVΟ2+2H2O (1)2Μn(II)+Ο 2 +4OH - →2Μn IV Ο 2 +2H 2 O (1)
4Mn(II)+Ο2+8OH-→4ΜnIIIΟOH+2H2O(2)4ΜnIIIΟOH+Ο2→4ΜnIVΟ2+2H2O4Mn(II)+Ο 2 +8OH-→4Μn III ΟOH+2H 2 O(2)4Μn III ΟOH+Ο 2 →4Μn IV Ο 2 +2H 2 O
(3) (3)
2ΜnIVΟ2+AsO2 -+2OH-→2ΜnIIIΟOH+AsO4 3- (4)2Μn IV Ο 2 +AsO 2 - +2OH - →2Μn III ΟOH+AsO 4 3- (4)
2ΜnIIIΟOH+AsO2 -+2H+→2Mn(II)+AsO4 3-+2H2O (5)2Μn III ΟOH+AsO 2 - +2H + →2Mn(II)+AsO 4 3- +2H 2 O (5)
在As(III)的氧化过程中,还伴随有Sb(III)的氧化。Sb(III)氧化成Sb(V)后,与溶液中的Na+和OH-结合形成NaSb(OH)6沉淀。该过程中涉及的化学反应如下式(7)-(8)所示:During the oxidation process of As(III), the oxidation of Sb(III) is also accompanied. After Sb(III) is oxidized to Sb(V), it combines with Na + and OH - in the solution to form NaSb(OH) 6 precipitate. The chemical reactions involved in this process are shown in the following formulas (7)-(8):
MnO2+Sb(OH)3+4H2O+OH-→Sb(OH)6 -+Mn(OH)2 (7)MnO 2 +Sb(OH) 3 +4H 2 O+OH - →Sb(OH) 6 - +Mn(OH) 2 (7)
As(Ⅲ)的催化氧化反应及MnO2循环再生过程会消耗溶解氧,随着空气的不断鼓入,溶液中溶解氧得到不断的补充,因此,理论上溶液中MnO2经过循环再生,溶液中MnO2含量将会维持不变,起到较好的直接氧化和催化氧化性能。氧化反应结束后的过滤所得MnO2可继续返回氧化工序重复利用。The catalytic oxidation reaction of As(Ⅲ) and the cyclic regeneration process of MnO 2 will consume dissolved oxygen. With the continuous blowing of air, the dissolved oxygen in the solution is continuously replenished. Therefore, theoretically, after the MnO 2 in the solution is recycled and regenerated, the dissolved oxygen in the solution The MnO 2 content will remain unchanged, providing better direct oxidation and catalytic oxidation performance. After the oxidation reaction, the filtered MnO 2 can be returned to the oxidation process for reuse.
与现有技术相比,本发明具有以下优势:Compared with the existing technology, the present invention has the following advantages:
(1)本发明清洁高效、成本低、操作简单、能耗低、无特殊装备要求,方便后续处理工艺,易于实现产业化。(1) The invention is clean and efficient, has low cost, is simple to operate, has low energy consumption, has no special equipment requirements, is convenient for subsequent processing processes, and is easy to realize industrialization.
(2)本发明的技术方案采用溶液体系中一步合成锰基催化剂,催化剂原料投入量少,氧化剂为廉价易得的含氧气体,可高效彻底氧化浸出液中As(III),并实现砷锑的深度分离,使沉锑后液中锑的浓度降至37mg/L以下,确保锑的回收利用。(2) The technical solution of the present invention adopts a one-step synthesis of manganese-based catalysts in a solution system. The input amount of catalyst raw materials is small, and the oxidant is a cheap and easily available oxygen-containing gas. It can efficiently and completely oxidize As(III) in the leach solution, and realize the removal of arsenic and antimony. Deep separation reduces the concentration of antimony in the solution after antimony precipitation to less than 37 mg/L, ensuring the recovery and utilization of antimony.
(3)本发明完成氧化浸出液后的滤渣为MnO2,具有较强的循环使用性能,可返回氧化工序中继续氧化新的一份浸出液,实现重复利用性,因此环境友好,无废气、废渣产生。(3) The filter residue after completing the oxidation of the leachate in the present invention is MnO 2 , which has strong recycling performance and can be returned to the oxidation process to continue oxidizing a new portion of the leachate to achieve reusability. Therefore, it is environmentally friendly and does not produce waste gas or waste residue. .
附图说明Description of the drawings
图1为本发明提出的一种从砷碱渣浸出液中深度氧化分离砷锑的方法的流程示意图。Figure 1 is a schematic flow chart of a method for deep oxidation separation of arsenic and antimony from arsenic-alkali residue leaching solution proposed by the present invention.
具体实施方式Detailed ways
以下将结合附图对本发明作进一步的描述,需要说明的是,以下实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。The present invention will be further described below in conjunction with the accompanying drawings. It should be noted that the following examples are based on the technical solution and provide detailed implementation modes and specific operating processes. However, the protection scope of the present invention is not limited to this invention. Example.
实施例1:Example 1:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,控制As(III)/Mn摩尔比分别为1.27:1、4.25:1、6.37:1、12.74:1、25.48:1和50.96:1,加入溶液形式的一水合硫酸锰,保持溶液温度为90℃,然后鼓入空气,空气流速为1L/min,搅拌速度为300r/min,在常压下搅拌氧化2小时,分别取液体样化验的As(III)含量分别为0mg/L、0mg/L、0mg/L、0mg/L、181.4mg/L、393.1mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为100%、100%、100%、100%、72.09%、39.53%。Take 1.2L of the leaching solution, control the As(III)/Mn molar ratio to 1.27:1, 4.25:1, 6.37:1, 12.74:1, 25.48:1 and 50.96:1 respectively, add manganese sulfate monohydrate in solution form, and keep The temperature of the solution is 90°C, then air is blown in, the air flow rate is 1L/min, the stirring speed is 300r/min, stir and oxidize under normal pressure for 2 hours, and the As(III) content of the liquid samples tested is 0mg/L. , 0mg/L, 0mg/L, 0mg/L, 181.4mg/L, 393.1mg/L, the oxidation rates of As(III) to As(Ⅴ) are 100%, 100%, 100%, 100%, respectively. 72.09%, 39.53%.
实施例2:Example 2:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为25.48:1加入溶液形式的无水氯化锰,保持溶液温度为90℃,然后鼓入空气,空气流速为1L/min,搅拌速度为300r/min,在常压下分别搅拌氧化0.5小时、1小时、1.5小时、2小时、2.5小时、3小时。分别取液体样化验的As(III)含量分别为476.16mg/L、370.35mg/L、249.42mg/L、181.40mg/L、0mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为26.74%、43.02%、61.63%、72.09%、88.37%、100.00%。Take 1.2L of the leaching solution, add anhydrous manganese chloride in the form of a solution at an As(III)/Mn molar ratio of 25.48:1, keep the solution temperature at 90°C, and then blow in air, the air flow rate is 1L/min, and the stirring speed is 300r/min, stir and oxidize under normal pressure for 0.5 hours, 1 hour, 1.5 hours, 2 hours, 2.5 hours, and 3 hours respectively. The As(III) contents of liquid samples tested were respectively 476.16mg/L, 370.35mg/L, 249.42mg/L, 181.40mg/L, and 0mg/L. The oxidation rate of As(III) to As(Ⅴ) They are 26.74%, 43.02%, 61.63%, 72.09%, 88.37% and 100.00% respectively.
实施例3:Example 3:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为12.74:1加入溶液形式的硝酸锰,然后鼓入空气,空气流速为1L/min,搅拌速度为300r/min,在常压下搅拌氧化2小时,分别控制反应温度为30℃、45℃、60℃、75℃、90℃。分别取液体样化验的As(III)含量分别为211.63mg/L、181.40mg/L、136.05mg/L、60.47mg/L、0mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为67.44%、72.09%、79.07%、90.70%、100.00%。Take 1.2L of the leaching solution, add manganese nitrate in the form of a solution at an As(III)/Mn molar ratio of 12.74:1, then blow in air, the air flow rate is 1L/min, the stirring speed is 300r/min, stir and oxidize under normal pressure 2 hours, controlling the reaction temperature to 30°C, 45°C, 60°C, 75°C, and 90°C respectively. The As(III) contents of the liquid samples tested were 211.63 mg/L, 181.40 mg/L, 136.05 mg/L, 60.47 mg/L, and 0 mg/L respectively. The oxidation rate of As(III) to As(Ⅴ) They are 67.44%, 72.09%, 79.07%, 90.70% and 100.00% respectively.
实施例4:Example 4:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为12.74:1加入溶液形式的硫酸锰,保持溶液温度为90℃,然后鼓入空气,搅拌速度为300r/min,在常压下搅拌氧化2小时,分别控制反空气流速为0L/min、0.6L/min、1L/min、1.2L/min。分别取液体样化验的As(III)含量分别为453.49mg/L、90.70mg/L、0mg/L、0mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为30.23%、86.05%、100%、100.00%。Take 1.2L of the leaching solution, add manganese sulfate in the form of a solution at an As(III)/Mn molar ratio of 12.74:1, keep the solution temperature at 90°C, then blow in air, the stirring speed is 300r/min, stir and oxidize under normal pressure For 2 hours, control the reverse air flow rate to 0L/min, 0.6L/min, 1L/min, and 1.2L/min respectively. The As(III) contents of liquid samples tested were 453.49 mg/L, 90.70 mg/L, 0 mg/L, and 0 mg/L respectively. The oxidation rates of As(III) to As(V) were 30.23% and 86.05 respectively. %, 100%, 100.00%.
实施例5:Example 5:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为12.74:1加入溶液形式的硫酸锰,保持溶液温度为90℃,然后鼓入空气,空气流速为1L/min,在常压下搅拌氧化2小时,控制搅拌速度分别为200r/min、300r/min、400r/min、500r/min,分别取液体样化验的As(III)含量分别为45.35mg/L、0mg/L、15.12mg/L、30.23mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为93.02%、100%、97.67%、95.35%。Take 1.2L of the leaching solution, add manganese sulfate in the form of a solution at an As(III)/Mn molar ratio of 12.74:1, keep the solution temperature at 90°C, then blow in air with an air flow rate of 1L/min, stir and oxidize under normal pressure For 2 hours, control the stirring speed to 200r/min, 300r/min, 400r/min, and 500r/min. The As(III) content of the liquid samples tested are 45.35mg/L, 0mg/L, and 15.12mg/L respectively. , 30.23mg/L, the oxidation rates of As(III) to As(Ⅴ) are 93.02%, 100%, 97.67%, and 95.35% respectively.
实施例6:Example 6:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为12.74:1加入溶液形式的四水合氯化锰,保持溶液温度为90℃,然后鼓入空气,空气流速为1L/min,搅拌速度为300r/min,在常压下搅拌氧化2小时,对氧化后的滤渣进行收集,进行氧化新的一份浸出液,如此循环5次。对每次氧化后的溶液进行取液体样化验的As(III)含量分别为0mg/L、0mg/L、0mg/L、7.63mg/L、20.05mg/L,As(III)氧化为As(Ⅴ)的氧化率分别为100%、100%、100%、98.83%、96.92%,说明催化剂循环使用性能强。Take 1.2L of the leaching solution, add manganese chloride tetrahydrate in the form of a solution at an As(III)/Mn molar ratio of 12.74:1, keep the solution temperature at 90°C, and then blow in air, the air flow rate is 1L/min, and the stirring speed is 300r/min, stir and oxidize under normal pressure for 2 hours, collect the oxidized filter residue, and oxidize a new portion of the leachate, and repeat this cycle 5 times. The As(III) contents of the liquid samples taken from each oxidized solution were 0 mg/L, 0 mg/L, 0 mg/L, 7.63 mg/L, and 20.05 mg/L respectively. As(III) is oxidized to As( The oxidation rates of V) are 100%, 100%, 100%, 98.83%, and 96.92% respectively, indicating that the catalyst has strong recycling performance.
实施例7:Example 7:
样品采自我国某锑冶炼厂,不同砷碱渣浸出所得浸出液主要成分变化较大,溶液初始pH为13.4,其主要成分如下表:The sample was collected from an antimony smelting plant in my country. The main components of the leachate obtained from leaching different arsenic-alkali residues vary greatly. The initial pH of the solution is 13.4. The main components are as follows:
取1.2L浸出液,以As(III)/Mn摩尔比为12.74:1加入溶液形式的无水氯化锰,保持溶液温度为90℃,然后鼓入空气,空气流速为1L/min,搅拌速度为300r/min,在常压下搅拌氧化2小时,对氧化后液进行静置,控制静置时间分别为0小时、6小时、12小时,分别取液体样化验的锑含量分别为173.55mg/L、117.82mg/L、36.69mg/L,锑的沉淀率分别为8.66%、37.99%、80.69%,说明延长静置时间可以有效地将砷锑深度分离。Take 1.2L of the leaching solution, add anhydrous manganese chloride in the form of a solution at an As(III)/Mn molar ratio of 12.74:1, keep the solution temperature at 90°C, and then blow in air, the air flow rate is 1L/min, and the stirring speed is 300r/min, stir and oxidize under normal pressure for 2 hours, let the oxidized liquid stand still, control the standing time to be 0 hours, 6 hours, and 12 hours respectively. The antimony content of each liquid sample taken for testing is 173.55mg/L. , 117.82mg/L, 36.69mg/L, and the precipitation rates of antimony were 8.66%, 37.99%, and 80.69% respectively, indicating that extending the standing time can effectively deeply separate arsenic and antimony.
对于本领域的技术人员来说,可以根据以上的技术方案和构思,给出各种相应的改变和变形,而所有的这些改变和变形,都应该包括在本发明权利要求的保护范围之内。For those skilled in the art, various corresponding changes and modifications can be made based on the above technical solutions and concepts, and all these changes and modifications should be included in the protection scope of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210568948.1A CN114854992B (en) | 2022-05-24 | 2022-05-24 | Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210568948.1A CN114854992B (en) | 2022-05-24 | 2022-05-24 | Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114854992A CN114854992A (en) | 2022-08-05 |
CN114854992B true CN114854992B (en) | 2024-03-15 |
Family
ID=82638335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210568948.1A Active CN114854992B (en) | 2022-05-24 | 2022-05-24 | Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114854992B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118979154B (en) * | 2024-10-18 | 2025-01-07 | 山东恒邦冶炼股份有限公司 | Method for recovering valuable elements by co-disposing antimony electrodeposition barren liquid and arsenic sulfide slag |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA651934A (en) * | 1962-11-06 | B. Ryland Lloyd | Dehydrogenation process | |
CN103951026A (en) * | 2014-05-13 | 2014-07-30 | 中南大学 | Method of catalyzing trivalent arsenic in air oxidation liquor by taking manganese dioxide as catalyst |
CN108486379A (en) * | 2018-03-15 | 2018-09-04 | 中南大学 | The efficient separation method of arsenic and alkali in a kind of arsenic alkaline slag |
-
2022
- 2022-05-24 CN CN202210568948.1A patent/CN114854992B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA651934A (en) * | 1962-11-06 | B. Ryland Lloyd | Dehydrogenation process | |
CN103951026A (en) * | 2014-05-13 | 2014-07-30 | 中南大学 | Method of catalyzing trivalent arsenic in air oxidation liquor by taking manganese dioxide as catalyst |
CN108486379A (en) * | 2018-03-15 | 2018-09-04 | 中南大学 | The efficient separation method of arsenic and alkali in a kind of arsenic alkaline slag |
Also Published As
Publication number | Publication date |
---|---|
CN114854992A (en) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101743203B (en) | The treatment method of arsenic trioxide | |
ES2300469T3 (en) | ZINC RECOVERY PROCESS. | |
US4599177A (en) | Process for removal of mercury from waste water | |
CN104911358B (en) | A kind of method that arsenic and selenium are separated in the alkaline leaching liquid from copper anode mud | |
CN114854992B (en) | Method for separating arsenic and antimony from arsenic caustic sludge leaching solution by deep oxidation | |
CN112456676A (en) | Method for treating organic wastewater | |
CN110304758A (en) | A method for removing manganese ions in manganese-containing wastewater | |
CN101481144B (en) | Clean production method for preparing potassium chromate from chromic iron | |
CN106276819B (en) | A kind of method for being catalyzed reduction selenium | |
CN103789542B (en) | A kind of wet reducing leaching method of manganese oxide mineral | |
Zheng et al. | New progresses in efficient, selective, and environmentally friendly recovery of valuable metal from e‐waste and industrial catalysts | |
WO2023221907A1 (en) | Method for synchronously removing fluorine, chlorine and iron in solution | |
Yang et al. | Recycling of heavy metals-rich spinel from electroplating sludge: Enrichment performance and environmental application | |
CN111876601A (en) | A method for treating arsenic-containing lead anode slime by cyclic alkali leaching of low-grade magnesium oxide-containing soot | |
WO2024021290A1 (en) | Waste lithium battery leachate treatment method and waste lithium battery recovery method | |
EP4433619A1 (en) | Hydrometallurgical process for waste materials of the zinc and steel industries | |
CN101745312B (en) | Catalytic oxidation sweetening and coal ash utilizing method | |
US4218431A (en) | Removal of sulfide contaminants from carbonate waters with production of CO2 -free H2 S | |
CN114455561A (en) | Comprehensive utilization process of hot galvanizing pickling wastewater and method for preparing battery-grade iron phosphate | |
CN115074542B (en) | A method for separating arsenic and antimony from arsenic-alkali residue using catalytic oxidation leaching process | |
CN109930003A (en) | A kind of integrated conduct method of arsenic sulfide slag resource utilization | |
CN110102009A (en) | A kind of method of catalysis oxidation rhodanide | |
CN111450784B (en) | Electrochemical treatment system suitable for carbide slag alkaline slurry and application thereof | |
CN119797434B (en) | Method for oxidizing and separating manganese and magnesium and preparing basic magnesium carbonate by using manganese dioxide as catalyst | |
CN112609092B (en) | Method for comprehensively recovering calcium and arsenic from calcium arsenate/calcium arsenite precipitate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |