CN114854951A - 一种q460级高耐蚀高强度近海结构钢的生产方法 - Google Patents

一种q460级高耐蚀高强度近海结构钢的生产方法 Download PDF

Info

Publication number
CN114854951A
CN114854951A CN202210570629.4A CN202210570629A CN114854951A CN 114854951 A CN114854951 A CN 114854951A CN 202210570629 A CN202210570629 A CN 202210570629A CN 114854951 A CN114854951 A CN 114854951A
Authority
CN
China
Prior art keywords
equal
rolling
steel
temperature
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210570629.4A
Other languages
English (en)
Inventor
郭泽尧
周文浩
姚双
曹波
丁兴艳
葛金婧
袁桥军
陈志斌
王双双
陈一富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Valin Xiangtan Iron and Steel Co Ltd
Original Assignee
Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Valin Xiangtan Iron and Steel Co Ltd filed Critical Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority to CN202210570629.4A priority Critical patent/CN114854951A/zh
Publication of CN114854951A publication Critical patent/CN114854951A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种Q460级高耐蚀高强度近海结构钢的生产方法,工艺步骤为铁水预处理→转炉炼钢→炉外精炼LF→真空处理RH→连铸→加热→轧制→控轧冷却→回火→精整→性能检验→超声波探伤。其特征在于:钢的质量百分组成为:C=0.03~0.07,Si=0.15~0.40,Mn=0.95~1.05,P≤0.020,S≤0.003,Nb=0.04~0.06,Ti=0.01~0.02,Als=0.02~0.05,Cu=0.30~0.70,Ni=0.7~1.5,其余为Fe及不可避免的杂质元素。生产钢板厚度规格≤60mm,屈服强度≥460MPa,抗拉强度≥570MPa,低温‑60℃冲击韧性,KV2≥120J,钢板1/2厚度处的低温‑60℃冲击韧性,KV2≥120J,抗层状撕裂性能Z≥35%。

Description

一种Q460级高耐蚀高强度近海结构钢的生产方法
技术领域
本发明属于冶金材料制造技术,是一种Q460级高耐蚀高强度近海结构钢的生产方法。
背景技术
随着岛礁基础设施建设、跨海大桥建设、海滨建筑以及船舶海洋工程的发展,针对海洋大气和海水腐蚀环境的近海结构钢的需求量大大增加。根据近海高湿热、高盐、高辐射和强热带风暴的独特、复杂、多变的海洋腐蚀环境,研究基础设施和重点工程用钢的力学-腐蚀性能,开发与之相匹配的高耐蚀合金化和组织结构的钢材,是目前冶金工业研究的重点方向之一。
CN200510045624.6公开了一种低合金耐候钢,可用于铁路、桥梁和车辆等长期暴晒在大气条件下使用的结构钢。该钢材的C含量为0.12%~0.21%,碳含量过高恶化了钢的低温冲击性能和焊接性能,Al≤0.2%含量较高,对炼钢和轧制造成诸多不便。
CN200810046963.X公开了一种屈服强度大于450MPa超低碳热轧耐候钢。该钢中C含量0.01%~0.05%,达到了超低碳水平,且具有较高的强度、良好的低温冲击性能和焊接性能;但是Mn含量1.50%~1.90%,容易产生带状组织,产生力学性能明显的差异性。CN201210072989.8的专利公开了一种无Cr高性能耐候桥梁钢及其制备方法。该钢较低成本且具有良好的综合力学性能、焊接性能并且不含有毒性元素Cr的耐海洋大气腐蚀钢。但其Ni含量低,只作为提高钢的耐海洋大气腐蚀性能,实际耐海洋大气腐蚀能力弱。
CN201210027231.2的专利公开了一种含Mo的高性能桥梁耐候钢及其制备方法,具有低成本、低屈强比的特点,同时具有优良的低温冲击韧性、焊接性能和耐大气腐蚀性,并采用超低碳设计。非耐海洋大气腐蚀钢,超低碳设计,冶炼困难。
CN201210055632.9的专利公开了一种洁净的耐腐蚀的海洋工程用钢及其生产方法,该专利Nb元素含量少,P含量高,都不利于母材和焊接热影响区的韧性。
CN201310398905.4的专利公开了耐海洋环境腐蚀性能优良的焊接结构用钢及其制造方法,该专利加Cu、Mo较多,Cu增加连铸过程的铸坯裂纹,Mo过多提高原料生产成本,同时增加焊接后硬度和增大焊后裂纹敏感性。
CN201811323097.4公开了一种耐候桥梁钢及冶炼工艺,应用于铁道、车辆、桥梁、塔架、光伏、高速工程等长期暴露在大气中使用的钢结构,采用高碳设计韧性差,不能满足近海结构要求。
CN202010804029.0公开了一种超厚高韧性耐候桥梁钢板及其生产方法,涉及超宽耐候桥梁钢板的制造技术领域,主要满足≥60mm超厚耐候桥梁钢板的性能要求,未涉及耐海洋大气腐蚀领域。
CN202110342322.4公开了一种420MPa级耐候桥梁钢及其生产方法采用低成本,并兼顾钢的强韧性、耐候性和焊接性等综合性能,达到低成本、易工业化生产的目的。此为耐工业大气腐蚀钢,非耐海洋气候钢。
发明内容
针对上述现有技术的不足,本发明旨在提供一种Q460级高耐蚀高强度近海结构钢的生产方法,生产岛礁基础设施建设、跨海大桥建设、海滨建筑建设以及船舶海洋工程用钢,厚度规格≤60mm,屈服强度≥460MPa,抗拉强度≥570MPa,低温-60℃冲击韧性,KV2≥120J,钢板1/2厚度处的低温-60℃冲击韧性,KV2≥120J,抗层状撕裂性能Z≥35%。
本发明的技术方案:
一种Q460级高耐蚀高强度近海结构钢的生产方法,工艺步骤为铁水预处理→转炉炼钢→炉外精炼LF→真空处理RH→连铸→加热→轧制→控轧冷却→回火→精整→性能检验→超声波探伤。钢的化学组成质量百分比为C=0.03~0.07,Si=0.15~0.40,Mn=0.95~1.05,P≤0.020,S≤0.003,Nb=0.04~0.06,Ti=0.01~0.02,Als=0.02~0.05,Cu=0.30~0.70,Ni=0.7~1.5,其余为Fe及不可避免的杂质元素,Pcm≤0.20,I≥6.0;关键工艺步骤为:
(1)连铸:钢水过热度小于15℃;
(2)轧制:加热炉加热段温度1100~1240℃,均热段温度1100~1200℃,均热段保温时间≥30min;中间坯厚度大于等于2倍成品厚度,粗轧轧制采用大压下制度,保证展宽后有连续3道次压下率≥14%;精轧终轧温度700~800℃,精轧前几个道次压下率≥10%;
(3)轧后冷却:直接入水,返红温度450℃~550℃,冷速7-20℃;
(4)轧后回火:630-650℃温度回火,时间为板厚mm×(2.0~3.5)min/mm,空冷。
其中:Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B (%);
I=26.01(%Cu)+3.88(%Ni)+1.20(%Cr)+1.49(%Si)+17.28(%P)-7.29(%Ni)(%Cu)-9.10(%Ni)(%P)-33.39(%Cu)(%Cu)。
技术原理:
本发明采用Ni-Cu系合金设计耐海洋大气腐蚀环境共性技术和低碳贝氏体组织结构设计,采用模拟腐蚀和现场挂片3-5年研究,建立全寿命周期内材料性能快速评价方法,构建材料腐蚀性能数据库。
Ni是一种比较稳定的元素,加入Ni能使钢的自腐蚀电位向正方向变化,增加了钢的稳定性。大气暴露试验表明,当Ni含量在4%左右时,能显著提高近海耐大气腐蚀钢的抗大气腐蚀性能。稳定锈层中富集Ni能有效抑制Cl-离子的侵入,促进保护性锈层生成,降低钢的腐蚀速率。但是较高的Ni含量必然导致钢材的成本升高,不利于工业大生产的使用,因此在满足一定海洋耐候性与经济性的平衡考虑下,研究Ni含量1.0%左右对近海结构钢使用、加工及耐候性能是合适的。
Cu作为强化元素越来越多地加入到钢中,尤其是超低碳钢。含铜高纯净钢固溶处理后,铜溶质原子并非均匀分布于铁素体基体,而是以一种不均匀的短程有序形式存在。有序畴的存在可为随后的时效析出创造有利条件,从而对含铜钢的时效强化行为产生一定影响。
本发明的有益效果:攻克高耐蚀合金成分设计、冶金质量、显微组织、材料性能的协同调控关键技术,开发新型合金化近海结构钢和配套焊接材料技术。本发明钢的系列化组织设计为低碳贝氏体钢,采用其余合金和微合金强化并结合轧制和回火工艺对强度进行调整,并能形成强度系列化近海结构钢。钢板厚度规格≤60mm,屈服强度≥460MPa,抗拉强度≥570MPa,低温-60℃冲击韧性,KV2≥120J,钢板1/2厚度处的低温-60℃冲击韧性,KV2≥120J,抗层状撕裂性能Z≥35%。
附图说明
图1为50mm钢板1/4厚度金相组织照片。
具体实施方式
下面结合实施例进一步说明本发明的内容。
实施例1:生产50mmQ460级高耐蚀高强度近海结构钢板
钢的化学组成质量百分比为C=0.04,Si=0.24,Mn=1.02,P=0.010,S=0.001,Nb=0.045,Ti=0.018,Als=0.032,Cu=0.42,Ni=1.02,其余为Fe及不可避免的杂质元素,Pcm=0.14,I=6.33;关键工艺步骤:
(1)连铸:钢水过热度14℃;
(2)轧制:加热炉加热段温度1150~1200℃,均热段温度1180~1200℃,均热段保温时间45min;坯料厚度为300mm,中间坯厚度100mm,粗轧轧制采用大压下制度,展宽后连续3道次压下率 为17%、21%、22%;精轧终轧温度742℃,精轧前三个道次压下率10%、11%、12%;
(3)轧后冷却:直接入水,返红温度455℃,冷速8℃;
(4)轧后回火:640℃温度回火,时间为125min,空冷。
钢板性能检验结果如表1 ;超声波探伤检测,按照GB/T2970标准探伤I级合格。
实施例2:生产25mmQ460级高耐蚀高强度近海结构钢板。
钢的化学组成质量百分比为C=0.04,Si=0.25,Mn=0.99,P=0.012,S=0.001, Nb=0.042,Ti=0.012,Als=0.037,Cu=0.37,Ni=0.72,其余为Fe及不可避免的杂质元素,Pcm=0.13,I=6.43;关键工艺步骤:
(1)连铸:钢水过热度14℃;
(2)轧制:加热炉加热段温度1160~1200℃,均热段温度1180~1200℃,均热段保温时间35min;
坯料厚度为300mm,中间坯厚度70mm,粗轧轧制采用大压下制度,展宽后连续3道次压下率 为23%、26%、27%;精轧终轧温度788℃,精轧前三个道次压下率11%、12%、12%;
(3)轧后冷却:直接入水,返红温度520℃,冷速10℃;
(4)轧后回火:640℃温度回火,时间为75min,空冷。
钢板性能检验结果如表2 ;超声波探伤检测,按照GB/T2970标准探伤I级合格。
实施例3:生产12mmQ460级高耐蚀高强度近海结构钢板。
钢的化学组成质量百分比为C=0.04,Si=0.25,Mn=0.99,P=0.012,S=0.001, Nb=0.042,Ti=0.012,Als=0.037,Cu=0.37,Ni=0.72,其余为Fe及不可避免的杂质元素。Pcm=0.13,I=6.43;关键工艺步骤:
(1)连铸:钢水过热度14℃;
(2)轧制:加热炉加热段温度1160~1200℃,均热段温度1180~1200℃,均热段保温时间35min;坯料厚度为300mm,中间坯厚度70mm,粗轧轧制采用大压下制度,展宽后连续3道次压下率为23%、26%、26%;精轧终轧温度798℃,精轧前三个道次压下率17%、15%、15%;
(3)轧后冷却:直接入水,返红温度550℃,冷速10℃;
(4)轧后回火:650℃温度回火,时间为30min,空冷。
钢板性能检验结果如表3 ;超声波探伤检测,按照GB/T2970标准探伤I级合格。
表1 实施例1钢板性能检验结果
Figure 499440DEST_PATH_IMAGE001
表2 实施例2钢板性能检验结果
Figure 997418DEST_PATH_IMAGE002
表3 实施例3钢板性能检验结果
Figure 34644DEST_PATH_IMAGE003

Claims (1)

1.一种Q460级高耐蚀高强度近海结构钢的生产方法,工艺步骤为铁水预处理→转炉炼钢→炉外精炼LF→真空处理RH→连铸→加热→轧制→控轧冷却→回火→精整→性能检验→超声波探伤,其特征在于:钢的化学组成质量百分比为C=0.03~0.07,Si=0.15~0.40,Mn=0.95~1.05,P≤0.020,S≤0.003,Nb=0.04~0.06,Ti=0.01~0.02,Als=0.02~0.05,Cu=0.30~0.70,Ni=0.7~1.5,其余为Fe及不可避免的杂质元素,Pcm≤0.20,I≥6.0;关键工艺步骤为:
(1)连铸:钢水过热度小于15℃;
(2)轧制:加热炉加热段温度1100~1240℃,均热段温度1100~1200℃,均热段保温时间≥30min;中间坯厚度大于等于2倍成品厚度,粗轧轧制采用大压下制度,保证展宽后有连续3道次压下率≥14%;精轧终轧温度700~800℃,精轧前几个道次压下率≥10%;
(3)轧后冷却:直接入水,返红温度450℃~550℃,冷速7~20℃;
(4)轧后回火:630-650℃温度回火,时间为板厚mm×(2.0~3.5)min/mm,空冷。
CN202210570629.4A 2022-05-25 2022-05-25 一种q460级高耐蚀高强度近海结构钢的生产方法 Pending CN114854951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210570629.4A CN114854951A (zh) 2022-05-25 2022-05-25 一种q460级高耐蚀高强度近海结构钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210570629.4A CN114854951A (zh) 2022-05-25 2022-05-25 一种q460级高耐蚀高强度近海结构钢的生产方法

Publications (1)

Publication Number Publication Date
CN114854951A true CN114854951A (zh) 2022-08-05

Family

ID=82638776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210570629.4A Pending CN114854951A (zh) 2022-05-25 2022-05-25 一种q460级高耐蚀高强度近海结构钢的生产方法

Country Status (1)

Country Link
CN (1) CN114854951A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404384A (zh) * 2014-12-19 2015-03-11 山东钢铁股份有限公司 一种550MPa级低压缩比高韧性海洋工程平台用钢板及生产方法
CN112746216A (zh) * 2019-10-29 2021-05-04 宝山钢铁股份有限公司 一种耐海洋环境海水干湿交替腐蚀钢板及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404384A (zh) * 2014-12-19 2015-03-11 山东钢铁股份有限公司 一种550MPa级低压缩比高韧性海洋工程平台用钢板及生产方法
CN112746216A (zh) * 2019-10-29 2021-05-04 宝山钢铁股份有限公司 一种耐海洋环境海水干湿交替腐蚀钢板及其制造方法

Similar Documents

Publication Publication Date Title
CN109402508B (zh) 一种低碳微合金化q690级高强耐候钢及其制备方法
CN114921711B (zh) 一种q620级高耐蚀高强度近海结构钢的生产方法
CN109957707B (zh) 一种1000MPa级紧固件用耐候冷镦钢盘条及其生产方法
CN109082594B (zh) 一种耐酸性土壤腐蚀埋地结构用钢及其制造方法
CN112159921B (zh) 一种热轧低屈强比高强度耐酸腐蚀钢板及其生产方法
CN1108397C (zh) 高强度、高韧性、耐腐蚀系泊链用钢及其生产工艺
CN114892090A (zh) 一种q550级高耐蚀高强度近海结构钢的生产方法
CN112251672B (zh) 焊接性能优良的低屈强比eh690钢板及其制造方法
CN113832321B (zh) 一种500MPa级海洋岛礁混凝土工程用铝处理高耐蚀钢筋及其生产方法
CN115216610A (zh) Q690级高耐蚀高强度近海结构用调质钢板的生产方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN108004488B (zh) 一种耐海洋气候高韧性桥梁钢板及其生产方法
CN111235464A (zh) 一种钛微合金化经济型高强耐候钢及其生产方法
CN115216609A (zh) Q460级高耐蚀高强度近海结构用调质钢板的生产方法
CN115094218A (zh) Q550级高耐蚀高强度近海结构用调质钢板的生产方法
CN115141968A (zh) Q620级高耐蚀高强度近海结构用调质钢板的生产方法
CN110331334B (zh) 屈服强度≥890MPa级耐腐蚀海洋工程用钢及其生产方法
CN111850416A (zh) 570MPa级高耐蚀耐候钢及其制备方法
WO2024082955A1 (zh) 耐腐蚀460MPa级钢板及其生产方法
CN115717214B (zh) 一种沿海大气环境炼化管道用钢及其制备方法
CN111850411A (zh) 400MPa级高铬耐候钢及其制备方法
CN104726780A (zh) 一种高强度特厚钢板及其生产方法
CN110284073A (zh) 一种氧含量不低于0.004%的可裸露使用耐腐蚀桥梁钢及生产方法
CN115216608A (zh) Q420级高耐蚀高强度近海结构用调质钢板的生产方法
CN114854951A (zh) 一种q460级高耐蚀高强度近海结构钢的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination