CN114854780A - Method for efficiently synthesizing riboflavin based on balanced gene expression - Google Patents
Method for efficiently synthesizing riboflavin based on balanced gene expression Download PDFInfo
- Publication number
- CN114854780A CN114854780A CN202210386334.1A CN202210386334A CN114854780A CN 114854780 A CN114854780 A CN 114854780A CN 202210386334 A CN202210386334 A CN 202210386334A CN 114854780 A CN114854780 A CN 114854780A
- Authority
- CN
- China
- Prior art keywords
- riboflavin
- expression
- gene
- genes
- genetically engineered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 title claims abstract description 123
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 235000019192 riboflavin Nutrition 0.000 title claims abstract description 61
- 229960002477 riboflavin Drugs 0.000 title claims abstract description 61
- 239000002151 riboflavin Substances 0.000 title claims abstract description 61
- 230000014509 gene expression Effects 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 title abstract description 5
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 46
- 238000000855 fermentation Methods 0.000 claims abstract description 33
- 230000004151 fermentation Effects 0.000 claims abstract description 33
- 241000894006 Bacteria Species 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 101150036579 ribBA gene Proteins 0.000 claims abstract description 16
- 235000014469 Bacillus subtilis Nutrition 0.000 claims abstract description 15
- 244000063299 Bacillus subtilis Species 0.000 claims abstract description 13
- 241000588724 Escherichia coli Species 0.000 claims abstract description 13
- 101150078419 zwf gene Proteins 0.000 claims abstract description 13
- 101100174653 Dictyostelium discoideum g6pd-2 gene Proteins 0.000 claims abstract description 10
- 101150085516 ZWF1 gene Proteins 0.000 claims abstract description 10
- 101150026856 zwf2 gene Proteins 0.000 claims abstract description 10
- 238000012216 screening Methods 0.000 claims abstract description 5
- 239000013612 plasmid Substances 0.000 claims description 19
- 239000002609 medium Substances 0.000 claims description 18
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 15
- 239000008103 glucose Substances 0.000 claims description 15
- 108020004999 messenger RNA Proteins 0.000 claims description 13
- 108090000589 ribonuclease E Proteins 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 239000013604 expression vector Substances 0.000 claims description 6
- 102100038740 Activator of RNA decay Human genes 0.000 claims description 5
- 238000003776 cleavage reaction Methods 0.000 claims description 5
- 230000007017 scission Effects 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 3
- 238000010353 genetic engineering Methods 0.000 claims description 3
- 239000001963 growth medium Substances 0.000 claims 1
- 230000000813 microbial effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 108700008625 Reporter Genes Proteins 0.000 abstract description 6
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 23
- 101000834850 Mus musculus KICSTOR complex protein SZT2 Proteins 0.000 description 23
- 102100029839 Myocilin Human genes 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 22
- 239000012634 fragment Substances 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 13
- 239000002243 precursor Substances 0.000 description 12
- 230000004927 fusion Effects 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 230000002503 metabolic effect Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 6
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 108010083912 bleomycin N-acetyltransferase Proteins 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012526 feed medium Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 238000012269 metabolic engineering Methods 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 108010006654 Bleomycin Proteins 0.000 description 3
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229960001561 bleomycin Drugs 0.000 description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000002054 inoculum Substances 0.000 description 3
- 235000013902 inosinic acid Nutrition 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 244000153158 Ammi visnaga Species 0.000 description 2
- 235000010585 Ammi visnaga Nutrition 0.000 description 2
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 2
- 108091029795 Intergenic region Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011218 seed culture Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- OKYHYXLCTGGOLM-BYPYZUCNSA-N (2S)-2-hydroxy-3-oxobutyl phosphate Chemical compound CC(=O)[C@@H](O)COP(O)(O)=O OKYHYXLCTGGOLM-BYPYZUCNSA-N 0.000 description 1
- RTRLXYBQXKHELY-MNPGUSKJSA-N 12-deoxy-16-hydroxyphorbol-(4'-(12',14'-butadienyl)-6'-(16',18',20'-nonatrienyl)bicycle(3.1.0)hexane-(13-0)-2'-(carboxylate)-(16-0)-3'-butenoic-10')ate Chemical compound CCC\C=C\C=C\C=C\C1C(C2\C=C/C=C)C1C(C(OC[C@@]13C)=O)C2\C=C\CC(=O)O[C@]21[C@@H]3[C@@H]1C=C(CO)C[C@]3(O)C(=O)C(C)=CC3[C@@]1(O)[C@H](C)C2 RTRLXYBQXKHELY-MNPGUSKJSA-N 0.000 description 1
- 108030003618 3,4-dihydroxy-2-butanone-4-phosphate synthases Proteins 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102000004567 6-phosphogluconate dehydrogenase Human genes 0.000 description 1
- 108020001657 6-phosphogluconate dehydrogenase Proteins 0.000 description 1
- 238000010446 CRISPR interference Methods 0.000 description 1
- 241000186226 Corynebacterium glutamicum Species 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- FNZLKVNUWIIPSJ-UHNVWZDZSA-N D-ribulose 5-phosphate Chemical compound OCC(=O)[C@H](O)[C@H](O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHNVWZDZSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 102000036509 GTP Cyclohydrolase Human genes 0.000 description 1
- 108010023555 GTP Cyclohydrolase Proteins 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 102000003638 Glucose-6-Phosphatase Human genes 0.000 description 1
- 108010086800 Glucose-6-Phosphatase Proteins 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- XOBNULKAMFDEAL-YMDUGQBDSA-N OP(O)(=O)OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](C=O)OP(O)(O)=O Chemical compound OP(O)(=O)OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](C=O)OP(O)(O)=O XOBNULKAMFDEAL-YMDUGQBDSA-N 0.000 description 1
- FNZLKVNUWIIPSJ-UHFFFAOYSA-N Rbl5P Natural products OCC(=O)C(O)C(O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHFFFAOYSA-N 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 229960000240 hydrocodone Drugs 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- FQXXSQDCDRQNQE-UHFFFAOYSA-N markiertes Thebain Natural products COC1=CC=C2C(N(CC3)C)CC4=CC=C(OC)C5=C4C23C1O5 FQXXSQDCDRQNQE-UHFFFAOYSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 pentose phosphate Chemical class 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- FQXXSQDCDRQNQE-VMDGZTHMSA-N thebaine Chemical compound C([C@@H](N(CC1)C)C2=CC=C3OC)C4=CC=C(OC)C5=C4[C@@]21[C@H]3O5 FQXXSQDCDRQNQE-VMDGZTHMSA-N 0.000 description 1
- 229930003945 thebaine Natural products 0.000 description 1
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P25/00—Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/26—Endoribonucleases producing 5'-phosphomonoesters (3.1.26)
- C12Y301/26012—Ribonuclease E (3.1.26.12)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于平衡基因表达高效合成核黄素的方法,具体涉及mRNA工程平衡操纵子内基因表达高效合成核黄素的策略,属于合成生物学技术领域。The invention relates to a method for efficiently synthesizing riboflavin based on balanced gene expression, in particular to a strategy for efficiently synthesizing riboflavin by balancing gene expression in an mRNA engineering operon, and belongs to the technical field of synthetic biology.
背景技术Background technique
核黄素(VB2)是人类和动物必需的营养素,广泛用于制药、食品添加剂和化妆品。枯草芽孢杆菌(Bacillus subtilis)是一种革兰氏阳性细菌,通过“经典”菌株改良策略具有优异的核黄素生产性能。前体供应被认为是核黄素生物合成的主要限制因素。在枯草杆菌中,葡萄糖-6-磷酸酶脱氢酶(由zwf编码)和6-磷酸葡萄糖酸脱氢酶(由gnd编码)通过磷酸戊糖(PP)途径将葡萄糖-6-磷酸转化为核酮糖-5-磷酸。核黄素是由直接前体5-磷酸核糖和三磷酸鸟苷(GTP)经核黄素合成途径,由rib操纵子编码的一系列酶催化合成的。基因ribBA编码一种双功能GTP环水解酶II/3,4-二羟基-2-丁酮4-磷酸合酶,该合酶催化从核酮糖-5-磷酸和2,5-二氨基-6-核糖氨基-4(3H)-嘧啶酮-50-磷酸(DARPP)合成3,4-二羟基-2-丁酮4-磷酸(DHPB)。增加基因ribBA编码的酶的活性可使核黄素的效价增加25%。磷酸核糖焦磷酸盐(PRPP)是细胞中通过从头嘌呤途径形成的GTP前体,首先转化为肌苷单磷酸(IMP),然后IMP随后转化为GTP。谷氨酸棒杆菌突变基因zwf243和gnd361的联合过表达使补料分批发酵中的核黄素产量增加了39%。通过在培养基中添加额外的GTP,并通过代谢工程策略将代谢重新定向到嘌呤途径,核黄素产量显著增加。因此,GTP是核黄素合成的主要限制因素。通过代谢工程策略消除反馈抑制,核黄素产量增加了3倍。通过增加PP途径的代谢流量和增加细胞内嘌呤途径前体PRPP的供应,可以显著提高核黄素的产量。Riboflavin (VB2) is an essential nutrient for humans and animals and is widely used in pharmaceuticals, food additives and cosmetics. Bacillus subtilis is a Gram-positive bacterium with excellent riboflavin production performance through a "classical" strain improvement strategy. Precursor supply is considered to be the major limiting factor for riboflavin biosynthesis. In Bacillus subtilis, glucose-6-phosphatase dehydrogenase (encoded by zwf) and 6-phosphogluconate dehydrogenase (encoded by gnd) convert glucose-6-phosphate to the nucleus via the pentose phosphate (PP) pathway Keto-5-phosphate. Riboflavin is synthesized from the immediate precursors ribose 5-phosphate and guanosine triphosphate (GTP) via the riboflavin synthesis pathway, catalyzed by a series of enzymes encoded by the rib operon. The gene ribBA encodes a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase that catalyzes the conversion of ribulose-5-phosphate and 2,5-diamino- 6-ribosamino-4(3H)-pyrimidinone-50-phosphate (DARPP) was synthesized into 3,4-dihydroxy-2-butanone 4-phosphate (DHPB). Increasing the activity of the enzyme encoded by the gene ribBA increased the riboflavin titer by 25%. Phosphoribose pyrophosphate (PRPP) is a precursor of GTP formed in cells via the de novo purine pathway, first converted to inosine monophosphate (IMP), and then IMP is subsequently converted to GTP. Combined overexpression of the C. glutamicum mutant genes zwf243 and gnd361 increased riboflavin production by 39% in fed-batch fermentation. Riboflavin production was significantly increased by adding additional GTP to the medium and redirecting metabolism to the purine pathway through a metabolic engineering strategy. Therefore, GTP is the main limiting factor for riboflavin synthesis. Eliminating feedback inhibition by a metabolic engineering strategy increased riboflavin production 3-fold. Riboflavin production can be significantly enhanced by increasing the metabolic flux of the PP pathway and increasing the intracellular supply of the purine pathway precursor PRPP.
基因缺失和过度表达已成为传统代谢工程和基因功能研究的主要策略。在大肠杆菌中,过度表达和敲除技术用于上调或下调基因表达,以促进天然和非天然产物。将天然和非天然产物代谢途径引入工程菌株合成化合物时,往往需要多种酶同时参与。微调多酶催化反应系统中的蛋白质丰度,使细胞达到最佳生长和生产状态。最近的研究使用了几种策略来控制细胞内蛋白质丰度,例如启动子文库、RBS文库、5'-UTR文库、mRNA稳定性和CRISPRi系统。这些策略用于微调基因表达水平,并控制多个基因的协调表达,以优化代谢流量。启动子是合成生物学中的关键调控元件,控制基因表达的强度和时间。通过启动子工程微调该途径的基因表达,以平衡代谢流量。为了平衡平行的多基因表达水平的平行性,一种快速且模块化的方法将基因与一组紧密的核糖体结合位点配对,这些位点可以将蛋白质丰度调节几个数量级。EMOPEC(蛋白质表达变化的经验模型和寡核苷酸)是一种基于SD(Shine Dalgarno)序列对蛋白质表达的贡献而开发的工具,可以通过改变一些碱基来调节任何大肠杆菌基因的表达水平。此外,通过生成可调基因间区文库(TIGR)、重组各种转录后控制元件和筛选所需的相对表达水平来协调操纵子中多个基因的表达,用于合成非天然产物。这种方法可以通过基因间的协同表达有效减少有毒中间代谢物的积累和蛋白质表达的冗余。Gene deletion and overexpression have become the main strategies for traditional metabolic engineering and gene function studies. In E. coli, overexpression and knockout techniques are used to upregulate or downregulate gene expression to promote natural and non-natural products. When natural and non-natural product metabolic pathways are introduced into engineered strains to synthesize compounds, the simultaneous participation of multiple enzymes is often required. Fine-tune protein abundance in multi-enzyme-catalyzed reaction systems for optimal cell growth and production. Recent studies have used several strategies to control intracellular protein abundance, such as promoter libraries, RBS libraries, 5'-UTR libraries, mRNA stability, and the CRISPRi system. These strategies are used to fine-tune gene expression levels and control the coordinated expression of multiple genes to optimize metabolic flux. Promoters are key regulatory elements in synthetic biology that control the strength and timing of gene expression. Gene expression of this pathway is fine-tuned by promoter engineering to balance metabolic flux. To balance the parallelism of parallel polygene expression levels, a rapid and modular approach pairs genes with a tight set of ribosome-binding sites that can regulate protein abundance by orders of magnitude. EMOPEC (empirical model of protein expression changes and oligonucleotides) is a tool developed based on the contribution of SD (Shine Dalgarno) sequences to protein expression, which can modulate the expression level of any E. coli gene by changing a few bases. Furthermore, the expression of multiple genes in the operon is coordinated by generating tunable intergenic region libraries (TIGRs), recombining various post-transcriptional control elements, and screening for desired relative expression levels for the synthesis of non-natural products. This approach can effectively reduce the accumulation of toxic intermediate metabolites and the redundancy of protein expression through cooperative expression among genes.
在代谢工程实践中,前体供应不足是限制目标产品产量的主要瓶颈。高水平表达限速酶以驱动目标产物生物合成途径的代谢流量是增加前体合成的快速而直接的策略。复杂化合物,尤其是天然产物,通常由多种前体通过一系列酶促反应进行催化。例如,阿片类物质蒂巴因和氢可酮的生物合成途径包含21和23种来自植物、哺乳动物、酵母和细菌的酶反应。细胞中前体的比例直接影响化合物的合成效率。浓度最低的前体将成为限制因素,而浓度较高的前体可能对细胞有毒。在生产过程中,基因表达必须适当,以避免速率限制和有毒前体的积累。基于合成生物学的各种策略已被开发用于平衡细胞内代谢,包括启动子工程、RBS文库和动态控制。In metabolic engineering practice, insufficient precursor supply is the main bottleneck limiting the yield of target products. High-level expression of rate-limiting enzymes to drive the metabolic flux of target product biosynthetic pathways is a rapid and straightforward strategy to increase precursor synthesis. Complex compounds, especially natural products, are often catalyzed by multiple precursors through a series of enzymatic reactions. For example, the biosynthetic pathways for the opioids thebaine and hydrocodone contain 21 and 23 enzymatic reactions from plants, mammals, yeast, and bacteria. The proportion of precursors in the cell directly affects the efficiency of compound synthesis. The lowest concentrations of precursors will be the limiting factor, while higher concentrations of precursors may be toxic to cells. During production, gene expression must be appropriate to avoid rate limiting and accumulation of toxic precursors. Various strategies based on synthetic biology have been developed to balance intracellular metabolism, including promoter engineering, RBS libraries, and dynamic control.
在枯草芽孢杆菌合成核黄素的过程中,前体供应不足是限制进一步提高核黄素产量的主要因素,目前单纯的通过表达和敲除代谢途径关键基因虽然可以促进核黄素的合成,并不能使细胞内平衡代谢流的平衡,而细胞内代谢流分配失衡导致副产物增多,造成资源浪费的现象。In the process of Bacillus subtilis synthesizing riboflavin, insufficient supply of precursors is the main factor that limits the further improvement of riboflavin production. At present, the synthesis of riboflavin can be promoted by simply expressing and knocking out key genes in the metabolic pathway. It is impossible to balance the metabolic flow in the cell, and the imbalance of the distribution of the metabolic flow in the cell leads to the increase of by-products, resulting in the phenomenon of waste of resources.
发明内容SUMMARY OF THE INVENTION
本发明提供一种能够高效有效调节细胞内代谢平衡的策略,并用此策略构建高产核黄素的工程菌株,并且采用该基因工程菌生产核黄素,解除发酵过程中的代谢流不平衡限制,提高核黄素产量。设计了一个基因间可调区域库(TIGRs)来调节合成操纵子内多个基因的表达。TIGRs文库由mRNA的二级结构、RNA酶切割位点和RBS序列组成,并用来控制mRNA的加工和稳定。操纵子内基因转录成完整的mRNA链,通过细胞内的RNase E(来源于大肠杆菌基因rne编码)识别TIGR序列上的特殊位点,将mRNA分割成单个转录单元,同时每个转录单元形成独特的5’和3’结构,通过影响mRNA的稳定性和RBS的结构,进而影响蛋白水平。The invention provides a strategy that can efficiently and effectively regulate the metabolic balance in cells, and uses this strategy to construct an engineered strain with high riboflavin production, and uses the genetically engineered strain to produce riboflavin, so as to relieve the restriction of unbalanced metabolic flow in the fermentation process, Increase riboflavin production. A library of intergenic regulatable regions (TIGRs) was designed to regulate the expression of multiple genes within synthetic operons. Libraries of TIGRs consist of mRNA secondary structure, RNase cleavage sites, and RBS sequences, and are used to control mRNA processing and stabilization. The gene in the operon is transcribed into a complete mRNA chain, and the special site on the TIGR sequence is recognized by the intracellular RNase E (encoded from the E. coli gene rne), and the mRNA is divided into individual transcription units, and each transcription unit forms a unique The 5' and 3' structure of mRNA affects the protein level by affecting the stability of mRNA and the structure of RBS.
本发明提供了一种调节基因表达量的元件,所述元件由mRNA二级结构、RNase E切割位点和RBS序列组成,所述元件的核苷酸序列如SEQ ID NO.7所示。The present invention provides an element for regulating gene expression, the element is composed of mRNA secondary structure, RNase E cleavage site and RBS sequence, and the nucleotide sequence of the element is shown in SEQ ID NO.7.
本发明提供了一种调控基因表达的方法,利用所述的元件调控基因的表达,所述基因为两个或多个;The present invention provides a method for regulating gene expression, which utilizes the element to regulate the expression of genes, and the number of said genes is two or more;
所述方法为:The method is:
(1)利用权利要求1所述的元件将基因连接,并整合至表达载体上构建得到重组质粒;(1) utilize the element described in claim 1 to connect the gene, and integrate it into the expression vector to construct a recombinant plasmid;
(2)将重组质粒转入大肠杆菌中,利用表达载体上的抗性基因筛选阳性转化子;(2) transfer the recombinant plasmid into Escherichia coli, and use the resistance gene on the expression vector to screen positive transformants;
(3)从阳性转化子中提取质粒,转入整合了RNase E基因的宿主细胞中得到重组细胞,将重组细胞进行培养并检测荧光强度,根据荧光强度与基因表达强度成正相关筛选对应的重组细胞。(3) Extract the plasmid from the positive transformant, transfer it into the host cell integrating the RNase E gene to obtain recombinant cells, culture the recombinant cells and detect the fluorescence intensity, and screen the corresponding recombinant cells according to the positive correlation between the fluorescence intensity and the gene expression intensity .
本发明提供了一种生产核黄素的基因工程菌,利用所述表达元件调控zwf、ribBA和ywlf基因的表达,所述基因工程菌的基因组上还整合了来源于大肠杆菌的RNase E基因。The present invention provides a genetically engineered bacterium for producing riboflavin. The expression element is used to regulate the expression of zwf, ribBA and ywlf genes. The genome of the genetically engineered bacterium also integrates the RNase E gene derived from Escherichia coli.
在一种实施方式中,所述基因zwf、ribBA和ywlf的核苷酸序列分别如SEQ IDNO.20~22所示In one embodiment, the nucleotide sequences of the genes zwf, ribBA and ywlf are shown in SEQ ID NO. 20-22, respectively
在一种实施方式中,所述zwf基因和ribBA基因之间由SEQ ID NO.10、12、14、16或18连接;所述ribBA和ywlf基因之间由SEQ ID NO.11、13、15、17或18连接。In one embodiment, the zwf gene and the ribBA gene are linked by SEQ ID NO.10, 12, 14, 16 or 18; the ribBA and ywlf genes are linked by SEQ ID NO.11, 13, 15 , 17 or 18 connections.
优选地,利用SEQ ID NO.14和SEQ ID NO.15分别连接zwf基因和ribBA基因、ribBA和ywlf基因。Preferably, the zwf gene and the ribBA gene, ribBA and ywlf gene are linked using SEQ ID NO. 14 and SEQ ID NO. 15, respectively.
在有一种实施方式中,利用质粒pMA5-sat为表达载体,所述质粒pMA5-sat记载于公开号为CN104531745A的专利文献中。In one embodiment, the plasmid pMA5-sat is used as the expression vector, and the plasmid pMA5-sat is described in the patent document with publication number CN104531745A.
在一种实施方式中,所述基因工程菌以枯草芽孢杆菌RF1为宿主细胞,所述枯草芽孢杆菌RF1公开于公开号为CN104531745A的专利文献中。In one embodiment, the genetically engineered bacteria use Bacillus subtilis RF1 as a host cell, and the Bacillus subtilis RF1 is disclosed in the patent document with publication number CN104531745A.
本发明提供了一种生产核黄素的方法,是利用生产核黄素的基因工程菌发酵生产核黄素。The invention provides a method for producing riboflavin, which is to use genetic engineering bacteria for producing riboflavin to ferment and produce riboflavin.
在一种实施方式中,将所述基因工程菌培养至OD600=24~26以3%(v/v)的量添加至摇瓶发酵体系中,在37℃~45℃、150~250rpm下发酵生产不少于24h。In one embodiment, the genetically engineered bacteria are cultured to an OD 600 of 24-26 and added to a shake flask fermentation system in an amount of 3% (v/v) at 37° C. to 45° C. and 150 to 250 rpm. Fermentation production is not less than 24h.
在一种实施方式中,所述摇瓶发酵体系中含有15~25g/L葡萄糖,15~25g/L酵母粉,2~5g/L柠檬酸铵,0.5~2g/L K2HPO4,0.5~2g/L KH2PO4,1~5g/L MgSO4·7H2O,0.01~0.05g/L MnCl2,0.01~0.1g/L CaCl2,1~5g/L CuSO4,pH 6.8。In one embodiment, the shake flask fermentation system contains 15-25 g/L glucose, 15-25 g/L yeast powder, 2-5 g/L ammonium citrate, 0.5-2 g/LK 2 HPO 4 , 0.5-25 g/L ammonium citrate 2g/L KH 2 PO 4 , 1~5g/L MgSO 4 ·7H 2 O, 0.01~0.05g/L MnCl 2 , 0.01~0.1g/L CaCl 2 , 1~5g/L CuSO 4 , pH 6.8.
在一种实施方式中,将所述基因工程菌培养至OD600=20~25以3%(v/v)的量添加至分批补料发酵体系中,并添加补料培养基,以保持葡萄糖浓度不低于5g/L,在37℃~45℃、400~800rpm下发酵生产不少于24h。In one embodiment, the genetically engineered bacteria are cultured to OD 600 = 20-25 and added to a fed-batch fermentation system in an amount of 3% (v/v), and a feed medium is added to maintain The glucose concentration is not less than 5g/L, and the fermentation production is not less than 24h at 37℃~45℃ and 400~800rpm.
在一种实施方式中,分批补料发酵体系中含有15~25g/L葡萄糖,15~25g/L酵母粉,2~9g/L(NH4)2HPO4,3~8g/L K2HPO4,1~1.5g/L MgSO4·7H2O,0.01~0.05g/L ZnSO4·7H2O,0.01~0.05g/L MnCl2,0.01~0.02g/L FeSO4·7H2O。In one embodiment, the fed-batch fermentation system contains 15-25 g/L glucose, 15-25 g/L yeast powder, 2-9 g/L (NH 4 ) 2 HPO 4 , and 3-8 g/LK 2 HPO 4. 1~1.5g/L MgSO 4 ·7H 2 O, 0.01~0.05g/L ZnSO 4 ·7H 2 O, 0.01~0.05g/L MnCl 2 , 0.01~0.02g/L FeSO 4 ·7H 2 O.
在一种实施方式中,补料培养基中含有500~600g/L葡萄糖,5~10g/L酵母粉,4~6g/L(NH4)2HPO4,1~5g/L K2HPO4,0.1~1g/L MgSO4·7H2O。In one embodiment, the feed medium contains 500-600 g/L glucose, 5-10 g/L yeast powder, 4-6 g/L (NH 4 ) 2 HPO 4 , 1-5 g/LK 2 HPO 4 , 0.1~1g/L MgSO 4 ·7H 2 O.
本发明提供了所述基因工程菌在生产核黄素及其衍生物中的应用。The present invention provides the application of the genetically engineered bacteria in the production of riboflavin and derivatives thereof.
有益效果:Beneficial effects:
(1)使用双荧光报告基因GFP和mCherry表征TIGR序列的调节能力,在枯草芽孢杆菌中,操纵子中第二个基因的表达明显高于第一个基因的表达,红色和绿色的相对荧光比变化超过70倍(从4:1mCherry/EGFP到18:1EGFP/mCherry)。在TIGR文库中,mCherry的荧光变化范围超过80倍,EGFP的荧光变化范围超过40倍。使用TIGR文库生成一系列包含zwf、ribBA和ywlf基因的操纵子,并筛选最优的操纵子组合。从5000个多克隆的文库筛选到5株高产核黄素的工程菌。(1) Using the dual fluorescent reporter genes GFP and mCherry to characterize the regulatory ability of the TIGR sequence, in Bacillus subtilis, the expression of the second gene in the operon was significantly higher than that of the first gene, and the relative fluorescence ratio of red and green was More than 70-fold change (from 4:1 mCherry/EGFP to 18:1 EGFP/mCherry). In the TIGR library, the fluorescence range of mCherry was more than 80-fold and that of EGFP was more than 40-fold. A series of operons containing the zwf, ribBA, and ywlf genes were generated using the TIGR library, and the optimal operon combinations were screened. Five high-producing riboflavin-producing engineering bacteria were screened from 5000 polyclonal library.
(2)在摇瓶发酵水平,筛选到的工程菌RF1-L3的核黄素效价达到2.7g/L,与亲本相比增加了64.35%。(2) At the level of shake flask fermentation, the riboflavin titer of the screened engineered bacteria RF1-L3 reached 2.7 g/L, an increase of 64.35% compared with the parent.
(3)在5-L发酵水平,与亲本菌株RF1相比,工程菌株RF1-L3的核黄素滴度在48小时时增加59.27%,达到11.77g/L。(3) At the 5-L fermentation level, compared with the parental strain RF1, the riboflavin titer of the engineered strain RF1-L3 increased by 59.27% at 48 hours, reaching 11.77 g/L.
附图说明Description of drawings
图1为TIGR序列结构示意图;Fig. 1 is a schematic diagram of the TIGR sequence structure;
图2为TIGR报告基因文库示意图;Figure 2 is a schematic diagram of a TIGR reporter gene library;
图3为TIGR文库在枯草芽孢杆菌中调控能力分析;Fig. 3 is the regulation ability analysis of TIGR library in Bacillus subtilis;
图4为摇瓶发酵分析高产核黄素菌株合成核黄素能力;Fig. 4 is a shake flask fermentation analysis of the ability of high-producing riboflavin strain to synthesize riboflavin;
图5为5L发酵罐分析RF1和RF-L3合成核黄素能力。Figure 5 is the analysis of the riboflavin synthesis ability of RF1 and RF-L3 in a 5L fermenter.
具体实施方式Detailed ways
下述实施例中所涉及的培养基如下:The media involved in the following examples are as follows:
种子培养基:40g/L葡萄糖、5g/L酵母膏、10g/L蛋白胨、10g/L NaCl和10μg/m L氯霉素。Seed medium: 40 g/L glucose, 5 g/L yeast extract, 10 g/L peptone, 10 g/L NaCl and 10 μg/mL chloramphenicol.
摇瓶发酵培养基:20g/L葡萄糖,20g/L酵母粉,4g/L柠檬酸铵,1g/L K2HPO4,1g/LKH2PO4,2g/L MgSO4·7H2O,0.04g/L MnCl2,0.06g/L CaCl2,2g/L CuSO4,pH 6.8。Shake flask fermentation medium: 20g/L glucose, 20g/L yeast powder, 4g/L ammonium citrate, 1g/LK 2 HPO 4 , 1g/LKH 2 PO 4 , 2g/L MgSO 4 ·7H 2 O, 0.04g /L MnCl 2 , 0.06 g/L CaCl 2 , 2 g/L CuSO 4 , pH 6.8.
分批补料发酵培养基:20g/L葡萄糖,20g/L酵母粉,6g/L(NH4)2HPO4,5g/L K2HPO4,1.5g/L MgSO4·7H2O,0.03g/L ZnSO4·7H2O,0.05g/L MnCl2,0.02g/L FeSO4·7H2O。Fed-batch fermentation medium: 20 g/L glucose, 20 g/L yeast powder, 6 g/L (NH 4 ) 2 HPO 4 , 5 g/LK 2 HPO 4 , 1.5 g/L MgSO 4 ·7H 2 O, 0.03 g /L ZnSO 4 ·7H 2 O, 0.05 g/L MnCl 2 , 0.02 g/L FeSO 4 ·7H 2 O.
补料培养基:600g/L葡萄糖,10g/L酵母粉,6g/L(NH4)2HPO4,5g/L K2HPO4,0.5g/LMgSO4·7H2O。Feed medium: 600 g/L glucose, 10 g/L yeast powder, 6 g/L (NH 4 ) 2 HPO 4 , 5 g/LK 2 HPO 4 , 0.5 g/LMgSO 4 ·7H 2 O.
最低培养基含有葡萄糖:20.0g/L、(NH4)2SO4 2.0g/L、KH2PO4 13.1g/L、K2HPO46.0g/L、NaC6H5O7·2H2O 1.2g/L、MgSO4·7H2O 0.05g/L,并补充色氨酸、苯丙氨酸和酪氨酸(各25mg/L)。Minimum medium containing glucose: 20.0 g/L, (NH4) 2 SO 4 2.0 g/L, KH 2 PO 4 13.1 g/L, K 2 HPO 4 6.0 g/L, NaC 6 H 5 O 7 2H 2 O 1.2 g/L, MgSO 4 ·7H 2 O 0.05 g/L, and supplemented with tryptophan, phenylalanine and tyrosine (25 mg/L each).
下述实施例中所涉及的检测方法如下:The detection methods involved in the following examples are as follows:
测定EGFP和mCherry的荧光值,以评估pMTG文库的表达范围。将含有pMTG文库的大肠杆菌和枯草杆菌接种在含有200μl LB培养基的无菌96个黑孔板(康宁3603)中,并在37℃下培养10小时。此外,EGFP荧光(激发,490nm;发射,530nm)、mCherry荧光(激发,588nm;发射,633nm),光密度(600nm处的吸光度)在培养结束时用微孔板多模式读取器(BIOTEK,Cytation 3)测定。使用方程式(1)计算相对荧光密度。FPbg表示不含荧光蛋白的菌株的荧光值,ODbg表示培养基的吸光度。Fluorescence values of EGFP and mCherry were measured to assess the expression range of the pMTG library. E. coli and B. subtilis containing the pMTG library were inoculated into sterile 96 black well plates (Corning 3603) containing 200 μl of LB medium and incubated at 37°C for 10 hours. In addition, EGFP fluorescence (excitation, 490 nm; emission, 530 nm), mCherry fluorescence (excitation, 588 nm; emission, 633 nm), optical density (absorbance at 600 nm) were measured at the end of the incubation with a microplate multimode reader (BIOTEK, Cytation 3) Determination. The relative fluorescence density was calculated using equation (1). FPbg represents the fluorescence value of the strain without fluorescent protein, and ODbg represents the absorbance of the medium.
核黄素在440~500nm波长的光照射下发出黄绿色荧光,其荧光强度与其在稀溶液中的浓度成正比。对于核黄素标准曲线,将10mM核黄素母液稀释至不同浓度,包括10mM、5mM、2.5mM、1.25mM、0.625mM、0.313mM和0.1562mM。在激发波长444nm和吸收波长500nm处测量荧光值,并绘制标准曲线。将来自工程菌株库的克隆接种到含有200μl最低培养基的96孔板中,在37℃下以220rpm的转速振荡培养24小时。使用0.01MNaOH将细胞培养物稀释至适当浓度,并通过微孔板多模式读取器(BIOTEK,Cytation 3)测量荧光强度。用分光光度计监测OD600nm下细胞的生长。Riboflavin emits yellow-green fluorescence under the irradiation of light with wavelengths of 440-500 nm, and its fluorescence intensity is proportional to its concentration in dilute solution. For the riboflavin standard curve, 10 mM riboflavin stock solutions were diluted to various concentrations including 10 mM, 5 mM, 2.5 mM, 1.25 mM, 0.625 mM, 0.313 mM and 0.1562 mM. Fluorescence values were measured at excitation wavelength 444 nm and absorption wavelength 500 nm, and a standard curve was drawn. Clones from the engineered strain library were inoculated into 96-well plates containing 200 μl of minimal medium and cultured at 37°C with shaking at 220 rpm for 24 hours. Cell cultures were diluted to appropriate concentrations using 0.01 M NaOH, and fluorescence intensity was measured by a multi-mode microplate reader (BIOTEK, Cytation 3). Cell growth at OD 600 nm was monitored with a spectrophotometer.
将制备得到的发酵液用0.01M NaOH稀释,然后在12000rpm下离心2min,取上清液测定核黄素浓度。将上清液转移到新的EP管中,并稀释至合适的浓度范围(0.3-0.8),使用分光光度计在OD444nm处测量吸光度值。核黄素浓度根据核黄素浓度标准曲线计算。按照核黄素标准曲线计算公式为:OD444*稀释倍数*30/1000。The prepared fermentation broth was diluted with 0.01M NaOH, then centrifuged at 12,000 rpm for 2 min, and the supernatant was taken to measure the riboflavin concentration. Transfer the supernatant to a new EP tube and dilute to the appropriate concentration range (0.3-0.8) and measure the absorbance value at OD 444 nm using a spectrophotometer. Riboflavin concentration was calculated from a standard curve of riboflavin concentration. According to the riboflavin standard curve, the calculation formula is: OD 444 * dilution factor * 30/1000.
使用Glucose analysis(Model-SBA40,Shandong,China)测量葡萄糖浓度。Glucose concentration was measured using Glucose analysis (Model-SBA40, Shandong, China).
下述实施例中所使用的对照菌株RF1-aPaGaTgV、RF1均公开于公开号为CN104531745A的专利文献中。The control strains RF1-aPaGaTgV and RF1 used in the following examples are disclosed in the patent document with publication number CN104531745A.
下述实施例中所涉及的引物序列如表1所示:The primer sequences involved in the following examples are shown in Table 1:
表1引物序列Table 1 Primer sequences
实施例1:在枯草芽孢杆菌中异源表达基因rneExample 1: Heterologous expression of the gene rne in Bacillus subtilis
利用同源重组的方式将来源于大肠杆菌的RNase E基因rne整合到枯草芽孢杆菌168的基因组上的基因amyE(Gene ID:938356)处。The RNase E gene rne from Escherichia coli was integrated into the gene amyE (Gene ID: 938356) in the genome of Bacillus subtilis 168 by means of homologous recombination.
具体步骤如下:Specific steps are as follows:
(1)按照表1的引物序列扩增基因amyE上游同源臂(1000bp)和下游同源臂(1000bp),分别获得amyE上游、下游同源臂片段;并通过琼脂糖凝胶电泳分离PCR产物,并切胶回收目的PCR产物。然后将上下游同源臂、Pveg-rne片段(片段核苷酸序列如SEQ ID NO.1所示)与抗性Marker(博来霉素抗性基因,核苷酸序列如SEQ ID NO.2所示)通过融合PCR的策略进行融合。(1) Amplify the upstream homology arm (1000bp) and the downstream homology arm (1000bp) of the gene amyE according to the primer sequences in Table 1 to obtain the upstream and downstream homology arm fragments of amyE respectively; and separate the PCR products by agarose gel electrophoresis , and cut the gel to recover the target PCR product. Then, the upstream and downstream homology arms, the Pveg-rne fragment (the nucleotide sequence of the fragment is shown in SEQ ID NO.1) and the resistance Marker (bleomycin resistance gene, the nucleotide sequence is shown in SEQ ID NO.2) shown) fusions were performed by the strategy of fusion PCR.
首先将上下游同源臂、Pveg-rne片段与抗性Marker片段按体积比1:1混合,加入等体积的PCR酶进行融合PCR反应(条件为98℃3min,98℃8s,61℃5s,72℃2min,扩增13个循环),以该步反应后的产物为模板,使用引物amyE-veg-rne-F1和amyE-veg-rne-R3扩增融合片段(反应条件为:98℃3min,98℃10s,58℃15s,72℃1min,扩增34个循环)。将PCR产物纯化回收用于敲除反应,融合后的片段含有博来霉素抗性基因和lox66-lox71重组位点,便于后期抗性Marker的消除。First, the upstream and downstream homology arms, the Pveg-rne fragment and the resistance Marker fragment were mixed in a volume ratio of 1:1, and an equal volume of PCR enzyme was added to carry out a fusion PCR reaction (conditions were 98°C for 3 min, 98°C for 8s, 61°C for 5s, 72°C for 2min, amplification for 13 cycles), using the product after this step as a template, use primers amyE-veg-rne-F1 and amyE-veg-rne-R3 to amplify the fusion fragment (reaction conditions: 98°C for 3min , 98°C for 10s, 58°C for 15s, 72°C for 1min, and 34 cycles of amplification). The PCR product was purified and recovered for the knockout reaction. The fused fragment contained the bleomycin resistance gene and the lox66-lox71 recombination site, which facilitated the elimination of the later resistance Marker.
(2)将步骤(1)得到的融合PCR产物利用化转的方法化转至Bacillus subtilis168感受态细胞中,并涂布在含有博来霉素抗性的LB平板,37℃培养12h,抗性平板上生长的菌株使用菌落PCR方法验证整合是否成功,验证引物使用amyE-veg-rne-F1和amyE-veg-rne-R3,经PCR验证之后得到整合成功的阳性转化子。(2) The fusion PCR product obtained in step (1) was transformed into Bacillus subtilis168 competent cells using the transformation method, and spread on the LB plate containing bleomycin resistance, cultured at 37°C for 12 hours, and the resistance The colony PCR method was used to verify the successful integration of the strains grown on the plate. The primers used for verification were amyE-veg-rne-F1 and amyE-veg-rne-R3, and positive transformants with successful integration were obtained after PCR verification.
(3)将pDG148质粒化转至步骤(2)制备得到的正确的阳性转化子中,在180rpm、37℃震荡培养24h,然后取部分培养液涂布于LB平板上,37℃培养12h至长出单菌落,用无菌牙签将LB平板上的单菌落一一对应点到另一块含有博来霉素的抗性平板上,在37℃培养培养12h,在LB平板上可以生长且在博来霉素抗性平板上无法生长的菌落为消除博来霉素抗性的敲除菌株。(3) Plasmidize pDG148 and transfer it to the correct positive transformants prepared in step (2), and shake at 180 rpm and 37 °C for 24 hours, then take part of the culture solution and spread it on LB plates, and culture at 37 °C for 12 hours to a long time. A single colony was obtained, and the single colony on the LB plate was one-to-one corresponding to another plate containing bleomycin with a sterile toothpick, and cultured at 37 °C for 12 hours. Colonies that failed to grow on the bleomycin-resistant plates were knockout strains that eliminated bleomycin resistance.
将得到的敲除菌株在180rpm、42℃震荡培养24h用来消除pDG148质粒。将部分培养液涂布于LB固体培养基上,然后37℃培养培养12h后,用无菌牙签将LB平板上的菌落一一对应点到另一块含有氨苄青霉素的抗性平板上,37℃培养培养12h,在LB平板上可以生长,而在博来霉素抗性平板上无法生长的菌落为消除质pDG148粒的敲除菌株。最后得到的菌株为无痕敲除的目的菌株BSF01。The resulting knockout strain was shaken at 180rpm and 42°C for 24h to eliminate the pDG148 plasmid. Part of the culture solution was spread on LB solid medium, and then cultured at 37°C for 12 hours. Use sterile toothpicks to point the colonies on the LB plate to another resistant plate containing ampicillin, and culture at 37°C. After culturing for 12 hours, the colonies could grow on LB plates, but the colonies that could not grow on bleomycin-resistant plates were knockout strains that eliminated the plasmid pDG148. The final strain obtained is the target strain BSF01 with no trace knockout.
实施例2:含有双荧光报告基因的TIGR文库构建Example 2: Construction of TIGR library containing dual fluorescent reporter genes
TIGRs文库包括mRNA二级结构、RNase E切割位点和RBS序列控制元件。TIGRs文库利用mRNA的二级结构、RNase E酶切割位点和RBS序列控制mRNA的加工和稳定,从而影响操纵子上基因的表达(图1)。Libraries of TIGRs include mRNA secondary structures, RNase E cleavage sites, and RBS sequence control elements. Libraries of TIGRs utilize mRNA secondary structure, RNase E enzymatic cleavage sites, and RBS sequences to control mRNA processing and stabilization, thereby affecting gene expression on operons (Figure 1).
为了进一步扩增适用于枯草杆菌的合成生物工具,基于TIGR构建M-TIGR-G文库(图2),并将TIGRs文库导入菌株BSF01,该菌株在amyE位点过表达来源于大肠杆菌的基因rne。测定两个报告基因的荧光值,以评估枯草杆菌中TIGR文库的调节能力。In order to further amplify the synthetic biology tools suitable for B. subtilis, an M-TIGR-G library was constructed based on TIGR (Fig. 2), and the TIGRs library was introduced into strain BSF01, which overexpressed the gene rne derived from E. coli at the amyE site . The fluorescence values of the two reporter genes were determined to assess the regulatory capacity of the TIGR library in B. subtilis.
具体步骤如下:Specific steps are as follows:
1、TIGR文库的制备1. Preparation of TIGR library
(1)使用PCR合成TIGR,将寡核苷酸序列TIGR-A、TIGR-B、TIGR-C和TIGR-D(核苷酸序列分别如SEQ ID NO.3~6所示)组装成嵌合DNA序列(核苷酸序列如SEQ ID NO.7所示)。将每个寡核苷酸序列中的五个核苷酸替换为随机核苷酸“N”,以合成多样性序列。通过融合PCR整合mCherry基因、TIGR序列(嵌合DNA序列)和GFP基因构建融合片段M-TIGRs-G。然后,通过Gibson组装将融合PCR片段M-TIGRs-G插入质粒pP43NMK中,构建用于筛选TIGR的报告质粒pMTG,使得报告操纵子的转录由强启动子P43控制。将质粒pMTG转化到有活性的大肠杆菌JM109细胞中,并用氨苄青霉素筛选转化子。刮取大肠杆菌文库菌落并提取质粒,从三个单独的平板上收集,并转化到BSF01中。(1) Use PCR to synthesize TIGR, and assemble the oligonucleotide sequences TIGR-A, TIGR-B, TIGR-C and TIGR-D (the nucleotide sequences are shown in SEQ ID NO. 3 to 6, respectively) into a chimera DNA sequence (nucleotide sequence is shown in SEQ ID NO. 7). The five nucleotides in each oligonucleotide sequence were replaced with random nucleotides "N" to synthesize diverse sequences. The fusion fragment M-TIGRs-G was constructed by integrating mCherry gene, TIGR sequence (chimeric DNA sequence) and GFP gene by fusion PCR. Then, the fusion PCR fragment M-TIGRs-G was inserted into the plasmid pP43NMK by Gibson assembly to construct the reporter plasmid pMTG for screening TIGR, so that the transcription of the reporter operon was controlled by the strong promoter P43. Plasmid pMTG was transformed into viable E. coli JM109 cells and transformants were selected with ampicillin. E. coli library colonies were scraped and plasmids were extracted, collected from three separate plates, and transformed into BSF01.
(2)将步骤(1)得到的多克隆文库接种到96孔板中,测定GFP和mCherry荧光值,构建TIGR文库。(2) Inoculate the polyclonal library obtained in step (1) into a 96-well plate, measure the fluorescence values of GFP and mCherry, and construct a TIGR library.
结果显示:操纵子中第二个基因的表达明显高于第一个基因的表达,根据基因间区域的不同,红色和绿色的相对荧光比变化超过70倍(从mCherry/EGFP=4:1到EGFP/mCherry=18:1;图3)。The results showed that the expression of the second gene in the operon was significantly higher than that of the first gene, and the relative fluorescence ratio of red and green changed more than 70-fold depending on the intergenic region (from mCherry/EGFP=4:1 to EGFP/mCherry=18:1; Figure 3).
实施例3:构建TIGR文库筛选高产核黄素工程菌株Example 3: Construction of TIGR library to screen high-yielding riboflavin engineered strains
按照实施例1的方式,在核黄素生产菌株RF1的基因amyE处整合来源于大肠杆菌的RNase E基因rne,构建得到菌株RF1-R。According to the method of Example 1, the RNase E gene rne derived from Escherichia coli was integrated into the gene amyE of the riboflavin-producing strain RF1, and the strain RF1-R was constructed.
使用TIGR文库来产生一系列包含zwf、ribBA和ywlf基因的合成操纵子,这些操纵子随后筛选出增加核黄素产量的最优组合。使用巨引物PCR方法,在操纵子的第一个和第二个基因以及第二个和第三个基因之间同时引入TIGR文库。基因zwf被用作操纵子的第一个基因,ribBA和ywlf被用作操纵子的第二和第三个基因。The TIGR library was used to generate a series of synthetic operons containing the zwf, ribBA and ywlf genes, which were then screened for the optimal combination to increase riboflavin production. Using the macroprimer PCR method, the TIGR library was introduced simultaneously between the first and second genes and the second and third genes of the operon. The gene zwf was used as the first gene of the operon, and ribBA and ywf were used as the second and third genes of the operon.
具体步骤如下:Specific steps are as follows:
(1)通过融合PCR构建含有TIGR文库的基因片段。首先,设计引物ZRY-F2/ZRY-R2、ZRY-F4/ZRY-R4,以实施例2中的TIGR文库(核苷酸序列如SEQ ID NO.7所示的嵌合DNA序列)为模板,扩增基因zwf、ribBA和ywlf之间的TIGR文库。将PCR片段zwf、TIGR文库进行融合PCR,获得zwf-TIGR(核苷酸序列如SEQ ID NO.8所示)。根据上述方法获得了ribBA-TIGR的PCR片段(核苷酸序列如SEQ ID NO.9所示)。将质粒pMA5-sat使用限制性内切酶EcoRI和KpnI在37℃处理30min并纯化回收,然后将纯化的PCR片段zwf-TIGR、ribBA-TIGR和ywlf通过融合PCR方法连接成一条PCR片段,并插入质粒pMA5-sat,使用Gibson组装获得zwf-TIGR-ribBA-TIGR-ywlf文库,并转化到大肠杆菌DH5α感受态中,37℃培养16h,并通过菌落PCR筛选正确转化子。将得到的转化子混合提取质粒得到文库并转化到RF1-R中构建工程菌株文库,将来自工程菌株库的克隆接种到含有200μl最低培养基的96孔板中,在37℃下以220rpm的转速振荡培养24小时。使用0.01M NaOH将细胞培养物稀释至适当浓度,并通过微孔板多模式读取器(BIOTEK,Cytation 3)测量荧光强度,筛选荧光强度最高的突变株。(1) Construct gene fragments containing TIGR library by fusion PCR. First, the primers ZRY-F2/ZRY-R2 and ZRY-F4/ZRY-R4 were designed, and the TIGR library in Example 2 (the chimeric DNA sequence whose nucleotide sequence was shown in SEQ ID NO. 7) was used as a template, Amplify the TIGR library between the genes zwf, ribBA and ywlf. The PCR fragment zwf and TIGR library were subjected to fusion PCR to obtain zwf-TIGR (the nucleotide sequence is shown in SEQ ID NO. 8). The PCR fragment of ribBA-TIGR was obtained according to the above method (the nucleotide sequence is shown in SEQ ID NO. 9). Plasmid pMA5-sat was treated with restriction enzymes EcoRI and KpnI at 37°C for 30 min and purified and recovered. Then the purified PCR fragments zwf-TIGR, ribBA-TIGR and ywlf were ligated into a PCR fragment by fusion PCR method and inserted into The plasmid pMA5-sat was assembled using Gibson to obtain the zwf-TIGR-ribBA-TIGR-ywlf library, which was transformed into E. coli DH5α competent cells, cultured at 37°C for 16 hours, and the correct transformants were screened by colony PCR. The resulting transformants were mixed and extracted with plasmids to obtain a library and transformed into RF1-R to construct an engineering strain library. The clones from the engineering strain library were inoculated into a 96-well plate containing 200 μl of minimal medium at 37°C at a speed of 220 rpm. Shake culture for 24 hours. The cell culture was diluted to the appropriate concentration with 0.01M NaOH, and the fluorescence intensity was measured by a multi-mode microplate reader (BIOTEK, Cytation 3), and the mutant with the highest fluorescence intensity was screened.
实施例4:摇瓶阶段采用基因工程菌株发酵生产核黄素Example 4: Fermentation production of riboflavin using genetically engineered strains in shake flask stage
使用摇瓶发酵对实施例3中筛选得到的荧光强度最高的突变株菌株进行复筛。The mutant strain with the highest fluorescence intensity screened in Example 3 was re-screened using shake flask fermentation.
将单个菌落接种在10ml-LB培养基中,并在37℃下以180rpm的转速摇动培养。16小时后,按照1%(v/v)接种量将培养物转移至含有50ml LBG培养基(40g/L葡萄糖、5g/L酵母提取物、10g/L蛋白胨和10g/L NaCl)的250ml挡板摇瓶中,并在41℃下以220rpm的转速振荡24小时得到种子培养物。种子培养物(OD600=25.21)转移至含有50ml发酵培养基(3%(v/v)接种量)的500ml挡板摇瓶中,然后在41℃下以220rpm的转速振荡培养48小时。在摇瓶发酵期间,每12小时取样1毫升细胞悬浮液,以测量OD600和核黄素浓度。A single colony was inoculated in 10 ml-LB medium and incubated at 37°C with shaking at 180 rpm. After 16 hours, the culture was transferred to a 250ml block containing 50ml LBG medium (40g/L glucose, 5g/L yeast extract, 10g/L peptone and 10g/L NaCl) at 1% (v/v) inoculum size. Plate in shake flasks and shake at 220 rpm for 24 hours at 41 °C to obtain seed cultures. The seed culture ( OD600 = 25.21) was transferred to a 500 ml baffled shake flask containing 50 ml of fermentation medium (3% (v/v) inoculum) and incubated at 41°C with shaking at 220 rpm for 48 hours. During shake flask fermentation, 1 ml of cell suspension was sampled every 12 hours to measure OD600 and riboflavin concentration.
结果表明,五株工程菌的核黄素效价均显著提高,其中以工程菌RF1-L3的效价优势最为明显。工程菌RF1-L3的核黄素效价达到2.7g/L,比亲本的1.67g/L提高了64.35%(图4为发酵48h结束后各菌株的核黄素产量),工程菌RF1-L1、RF1-L2、RF1-L4、RF1-L5的核黄素效价分别为1.94g/L、2.01g/L、2.16g/L、2.24g/L。The results showed that the riboflavin titers of the five engineered strains were significantly increased, and the titer advantage of the engineered strain RF1-L3 was the most obvious. The riboflavin titer of the engineered bacteria RF1-L3 reached 2.7 g/L, which was 64.35% higher than that of the parental 1.67 g/L (Figure 4 shows the riboflavin yield of each strain after 48 hours of fermentation). The engineered bacteria RF1-L1, RF1 The riboflavin titers of -L2, RF1-L4 and RF1-L5 were 1.94g/L, 2.01g/L, 2.16g/L and 2.24g/L, respectively.
表2菌株RF1-L1~RF1-L5的TIGR序列Table 2 TIGR sequences of strains RF1-L1~RF1-L5
实施例5:发酵罐水平采用基因工程菌株发酵生产核黄素Example 5: Fermentation production of riboflavin using genetically engineered strains at the fermenter level
具体步骤如下:Specific steps are as follows:
(1)分别将在10mL LB培养基中培养24h的枯草芽孢杆菌菌株RF1-aPaGaTgV、RF1按照体积比3%(v/v)的接种量接种到100mL种子培养基中(种子培养基包括20g/L葡萄糖,20g/L酵母粉,4g/L柠檬酸铵,1g/L K2HPO4,1g/L KH2PO4,,2g/L MgSO4·7H2O,0.04g/LMnCl2,0.06g/L CaCl2,2g/L CuSO4),温度为41℃,转速为180rpm,培养16h后,制备得到种子液(OD600=23.5);(1) Bacillus subtilis strains RF1-aPaGaTgV and RF1 cultured in 10 mL LB medium for 24 h were inoculated into 100 mL of seed medium at an inoculum of 3% (v/v) by volume (the seed medium included 20 g/v/v). L glucose, 20g/L yeast powder, 4g/L ammonium citrate, 1g/LK 2 HPO 4 , 1g/L KH 2 PO 4 , 2g/L MgSO 4 ·7H 2 O, 0.04g/LMnCl 2 , 0.06g /L CaCl 2 , 2g/L CuSO 4 ), the temperature was 41°C, the rotation speed was 180rpm, and after culturing for 16h, the seed solution (OD 600 =23.5) was prepared;
(2)将制备得到的100mL种子液全部接种到含有1900mL的发酵培养基的5L发酵罐中,进行分批补料发酵。(2) All 100 mL of the prepared seed solution was inoculated into a 5 L fermentor containing 1900 mL of fermentation medium, and fed-batch fermentation was performed.
通过控制补料培养基流量,使发酵液中的剩余葡萄糖浓度保持在不低于5g/L。发酵过程中,使用1M H2SO4和50%氨水保持发酵液pH为6.8。在开始分批进料前,转速保持在400rpm,然后逐渐将转速提高到900rpm直到发酵结束,温度始终保持在41℃。The residual glucose concentration in the fermentation broth was maintained at not less than 5 g/L by controlling the flow rate of the feed medium. During the fermentation, the pH of the fermentation broth was maintained at 6.8 using 1M H2SO4 and 50% ammonia . The rotation speed was maintained at 400 rpm before starting the batch feed, and then gradually increased to 900 rpm until the end of the fermentation, and the temperature was maintained at 41°C throughout.
结果显示:在5L生物反应器中进行补料分批发酵,以验证工程菌枯草杆菌RF1-L3在核黄素生产中的大规模发酵性能。在补料分批发酵中,工程菌和亲本菌株的生长没有明显差异。与亲本菌株RF1(7.39g/L)及RF1-aPaGaTgV(10.71g/L)相比,工程菌株RF1-L3的核黄素滴度在48h时增加了59.27%,达到11.77g/L(图5A和图5B)。The results showed that fed-batch fermentation was carried out in a 5L bioreactor to verify the large-scale fermentation performance of engineered bacteria Bacillus subtilis RF1-L3 in riboflavin production. In fed-batch fermentation, there was no significant difference in growth between the engineered and parental strains. Compared with the parental strains RF1 (7.39g/L) and RF1-aPaGaTgV (10.71g/L), the riboflavin titer of the engineered strain RF1-L3 increased by 59.27% at 48h, reaching 11.77g/L (Fig. 5A). and Figure 5B).
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 江南大学<110> Jiangnan University
<120> BAA220441A<120> BAA220441A
<130> 一种基于平衡基因表达高效合成核黄素的方法<130> A method for efficient synthesis of riboflavin based on balanced gene expression
<160> 22<160> 22
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 3263<211> 3263
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
cgttgatata atttaaattt tatttgacaa aaatgggctc gtgttgtaca ataaatgtgt 60cgttgatata atttaaattt tatttgacaa aaatgggctc gtgttgtaca ataaatgtgt 60
aagagaggaa tgtacacatg aaaagaatgt taatcaacgc aactcagcag gaagagttgc 120aagagaggaa tgtacacatg aaaagaatgt taatcaacgc aactcagcag gaagagttgc 120
gcgttgccct tgtagatggg cagcgtctgt atgacctgga tatcgaaagt ccagggcacg 180gcgttgccct tgtagatggg cagcgtctgt atgacctgga tatcgaaagt ccagggcacg 180
agcagaaaaa ggcaaacatc tacaaaggta aaatcacccg cattgaaccg agtctggaag 240agcagaaaaa ggcaaacatc tacaaaggta aaatcacccg cattgaaccg agtctggaag 240
ctgcttttgt tgattacggc gctgaacgtc acggtttcct cccactaaaa gaaattgccc 300ctgcttttgt tgattacggc gctgaacgtc acggtttcct cccactaaaa gaaattgccc 300
gcgaatattt ccctgctaac tacagtgctc atggtcgtcc caacattaaa gatgtgttgc 360gcgaatattt ccctgctaac tacagtgctc atggtcgtcc caacattaaa gatgtgttgc 360
gtgaaggtca ggaagtcatt gttcagatcg ataaagaaga gcgcggcaac aaaggcgcgg 420gtgaaggtca ggaagtcatt gttcagatcg ataaagaaga gcgcggcaac aaaggcgcgg 420
cattaaccac ctttatcagt ctggcgggta gctatctggt tctgatgccg aacaacccgc 480cattaaccac ctttatcagt ctggcgggta gctatctggt tctgatgccg aacaacccgc 480
gcgcgggtgg catttctcgc cgtatcgaag gcgacgaccg taccgaatta aaagaagcac 540gcgcgggtgg catttctcgc cgtatcgaag gcgacgaccg taccgaatta aaagaagcac 540
tggcaagcct tgaactgccg gaaggcatgg ggcttatcgt gcgcaccgct ggcgtcggca 600tggcaagcct tgaactgccg gaaggcatgg ggcttatcgt gcgcaccgct ggcgtcggca 600
aatctgctga ggcgctgcaa tgggatttaa gcttccgtct gaaacactgg gaagccatca 660aatctgctga ggcgctgcaa tgggatttaa gcttccgtct gaaacactgg gaagccatca 660
aaaaagccgc tgaaagccgc ccggccccgt tcctgattca tcaggagagc aacgtaatcg 720aaaaagccgc tgaaagccgc ccggccccgt tcctgattca tcaggagagc aacgtaatcg 720
ttcgcgcatt ccgcgattac ttacgtcagg acatcggcga aatccttatc gataacccga 780ttcgcgcatt ccgcgattac ttacgtcagg acatcggcga aatccttatc gataacccga 780
aagtgctcga actggcacgt cagcatatcg ctgcattagg tcgcccggat ttcagcagca 840aagtgctcga actggcacgt cagcatatcg ctgcattagg tcgcccggat ttcagcagca 840
aaatcaaact gtacaccggc gagatcccgc tgttcagcca ctaccagatc gagtcacaga 900aaatcaaact gtacaccggc gagatcccgc tgttcagcca ctaccagatc gagtcacaga 900
tcgagtccgc cttccagcgt gaagttcgtc tgccgtctgg tggttccatt gttatcgaca 960tcgagtccgc cttccagcgt gaagttcgtc tgccgtctgg tggttccatt gttatcgaca 960
gcaccgaagc gttaacggcc atcgacatca actccgcacg cgcgacccgc ggcggcgata 1020gcaccgaagc gttaacggcc atcgacatca actccgcacg cgcgacccgc ggcggcgata 1020
tcgaagaaac cgcgtttaac actaacctcg aagctgccga tgagattgct cgtcagctgc 1080tcgaagaaac cgcgtttaac actaacctcg aagctgccga tgagattgct cgtcagctgc 1080
gcctgcgtga cctcggcggc ctgattgtta tcgacttcat cgacatgacg ccagtacgcc 1140gcctgcgtga cctcggcggc ctgattgtta tcgacttcat cgacatgacg ccagtacgcc 1140
accagcgtgc ggtagaaaac cgtctgcgtg aagcggtgcg tcaggaccgt gcgcgtattc 1200accagcgtgc ggtagaaaac cgtctgcgtg aagcggtgcg tcaggaccgt gcgcgtattc 1200
aaatcagcca tatttctcgc tttggcctgc tggaaatgtc ccgtcagcgc ctgagcccat 1260aaatcagcca tatttctcgc tttggcctgc tggaaatgtc ccgtcagcgc ctgagcccat 1260
cactgggtga atccagtcat cacgtttgtc cgcgttgttc tggtactggc accgtgcgtg 1320cactgggtga atccagtcat cacgtttgtc cgcgttgttc tggtactggc accgtgcgtg 1320
acaacgaatc gctgtcgctc tctattctgc gtctgatcga agaagaagcg ctgaaagaga 1380acaacgaatc gctgtcgctc tctattctgc gtctgatcga agaagaagcg ctgaaagaga 1380
acacccagga agttcacgcc attgttcctg tgccaatcgc ttcttacctg ctgaatgaaa 1440acacccagga agttcacgcc attgttcctg tgccaatcgc ttcttacctg ctgaatgaaa 1440
aacgttctgc ggtaaatgcc attgaaactc gtcaggacgg tgtgcgctgt gtaattgtgc 1500aacgttctgc ggtaaatgcc attgaaactc gtcaggacgg tgtgcgctgt gtaattgtgc 1500
caaacgatca gatggaaacc ccgcactacc acgtgctgcg cgtgcgtaaa ggggaagaaa 1560caaacgatca gatggaaacc ccgcactacc acgtgctgcg cgtgcgtaaa ggggaagaaa 1560
ccccaacctt aagctacatg ctgccgaagc tgcatgaaga agcgatggcg ctgccgtctg 1620ccccaacctt aagctacatg ctgccgaagc tgcatgaaga agcgatggcg ctgccgtctg 1620
aagaagagtt cgctgaacgt aagcgtccgg aacaacctgc gctggcaacc tttgccatgc 1680aagaagagtt cgctgaacgt aagcgtccgg aacaacctgc gctggcaacc tttgccatgc 1680
cggatgtgcc gcctgcgcca acgccagctg aacctgccgc gcctgttgta gctccagcac 1740cggatgtgcc gcctgcgcca acgccagctg aacctgccgc gcctgttgta gctccagcac 1740
cgaaagctgc accggcaaca ccagcagctc ctgcacaacc tgggctgttg agccgcttct 1800cgaaagctgc accggcaaca ccagcagctc ctgcacaacc tgggctgttg agccgcttct 1800
tcggcgcact gaaagcgctg ttcagcggtg gtgaagaaac caaaccgacc gagcaaccag 1860tcggcgcact gaaagcgctg ttcagcggtg gtgaagaaac caaaccgacc gagcaaccag 1860
caccgaaagc agaagcgaaa ccggaacgtc aacaggatcg tcgcaagcct cgtcagaaca 1920caccgaaagc agaagcgaaa ccggaacgtc aacaggatcg tcgcaagcct cgtcagaaca 1920
accgccgtga ccgtaatgag cgccgcgaca cccgtagtga acgtactgaa ggcagcgata 1980accgccgtga ccgtaatgag cgccgcgaca cccgtagtga acgtactgaa ggcagcgata 1980
atcgcgaaga aaaccgtcgt aatcgtcgcc aggcacagca gcagactgcc gagacgcgtg 2040atcgcgaaga aaaccgtcgt aatcgtcgcc aggcacagca gcagactgcc gagacgcgtg 2040
agagccgtca gcaggctgag gtaacggaaa aagcgcgtac cgccgacgag cagcaagcgc 2100agagccgtca gcaggctgag gtaacggaaa aagcgcgtac cgccgacgag cagcaagcgc 2100
cgcgtcgtga acgtagccgc cgccgtaatg atgataaacg tcaggcgcaa caagaagcga 2160cgcgtcgtga acgtagccgc cgccgtaatg atgataaacg tcaggcgcaa caagaagcga 2160
aggcgctgaa tgttgaagag caatctgttc aggaaaccga acaggaagaa cgtgtacgtc 2220aggcgctgaa tgttgaagag caatctgttc aggaaaccga acaggaagaa cgtgtacgtc 2220
cggttcagcc gcgtcgtaaa cagcgtcagc tcaatcagaa agtgcgttac gagcaaagcg 2280cggttcagcc gcgtcgtaaa cagcgtcagc tcaatcagaa agtgcgttac gagcaaagcg 2280
tagccgaaga agcggtagtc gcaccggtgg ttgaagaaac tgtcgctgcc gaaccaattg 2340tagccgaaga agcggtagtc gcaccggtgg ttgaagaaac tgtcgctgcc gaaccaattg 2340
ttcaggaagc gccagctcca cgcacagaac tggtgaaagt cccgctgcca gtcgtagcgc 2400ttcaggaagc gccagctcca cgcacagaac tggtgaaagt cccgctgcca gtcgtagcgc 2400
aaactgcacc agaacagcaa gaagagaaca atgctgataa ccgtgacaac ggtggcatgc 2460aaactgcacc agaacagcaa gaagagaaca atgctgataa ccgtgacaac ggtggcatgc 2460
cgcgtcgttc tcgccgctcg cctcgtcacc tgcgcgtaag tggtcagcgt cgtcgtcgct 2520cgcgtcgttc tcgccgctcg cctcgtcacc tgcgcgtaag tggtcagcgt cgtcgtcgct 2520
atcgtgacga gcgttatcca acccagtcgc caatgccgtt gaccgtagcg tgcgcgtctc 2580atcgtgacga gcgttatcca acccagtcgc caatgccgtt gaccgtagcg tgcgcgtctc 2580
cggaactggc ctctggcaaa gtctggatcc gctatccaat tgtacgtccg caagatgtac 2640cggaactggc ctctggcaaa gtctggatcc gctatccaat tgtacgtccg caagatgtac 2640
aggttgaaga gcagcgcgaa caggaagaag tacatgtgca gccgatggtg actgaggtcc 2700aggttgaaga gcagcgcgaa caggaagaag tacatgtgca gccgatggtg actgaggtcc 2700
ctgtcgccgc cgctatcgaa ccggttgtta gcgcgccagt tgttgaagaa gtggccggtg 2760ctgtcgccgc cgctatcgaa ccggttgtta gcgcgccagt tgttgaagaa gtggccggtg 2760
tcgtagaagc ccccgttcag gttgccgaac cgcaaccgga agtggttgaa acgacgcatc 2820tcgtagaagc ccccgttcag gttgccgaac cgcaaccgga agtggttgaa acgacgcatc 2820
ctgaagtgat cgctgccgcg gtaactgaac agccgcaggt gattaccgag tctgatgttg 2880ctgaagtgat cgctgccgcg gtaactgaac agccgcaggt gattaccgag tctgatgttg 2880
ccgtagccca ggaagttgca gaacaagcag aaccggtggt tgaaccgcag gaagagacgg 2940ccgtagccca ggaagttgca gaacaagcag aaccggtggt tgaaccgcag gaagagacgg 2940
cagatattga agaagttgtc gaaactgctg aggttgtagt tgctgaacct gaagttgttg 3000cagatattga agaagttgtc gaaactgctg aggttgtagt tgctgaacct gaagttgttg 3000
ctcaacctgc cgcgccagta gtcgctgaag tcgcagcaga agttgaaacg gtagctgcgg 3060ctcaacctgc cgcgccagta gtcgctgaag tcgcagcaga agttgaaacg gtagctgcgg 3060
tcgaacctga ggtcaccgtt gagcataacc acgctaccgc gccaatgacg cgcgctccag 3120tcgaacctga ggtcaccgtt gagcataacc acgctaccgc gccaatgacg cgcgctccag 3120
caccggaata tgttccggag gcaccgcgtc acagtgactg gcagcgccct acttttgcct 3180caccggaata tgttccggag gcaccgcgtc acagtgactg gcagcgccct acttttgcct 3180
tcgaaggtaa aggtgccgca ggtggtcata cggcaacaca tcatgcctct gccgctcctg 3240tcgaaggtaa aggtgccgca ggtggtcata cggcaacaca tcatgcctct gccgctcctg 3240
cgcgtccgca acctgttgag taa 3263cgcgtccgca acctgttgag taa 3263
<210> 2<210> 2
<211> 497<211> 497
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
taccgttcgt atagcataca ttatacgaag ttatcttgat atggcttttt atatgtgtta 60taccgttcgt atagcataca ttatacgaag ttatcttgat atggcttttt atatgtgtta 60
ctctacatac agaaaggagg aactaaatat ggccaagttg accagtgccg ttccggtgct 120ctctacatac agaaaggagg aactaaatat ggccaagttg accagtgccg ttccggtgct 120
caccgcgcgc gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg 180caccgcgcgc gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg 180
ggacttcgtg gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag 240ggacttcgtg gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag 240
cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 300cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 300
ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 360ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 360
gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 420gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 420
ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgaataactt cgtatagcat 480ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgaataactt cgtatagcat 480
acattatacg aacggta 497acattatacg aacggta 497
<210> 3<210> 3
<211> 70<211> 70
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (32)..(36)<222> (32)..(36)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 3<400> 3
gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60
gcatagtctg 70gcatagtctg 70
<210> 4<210> 4
<211> 66<211> 66
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (31)..(35)<222> (31)..(35)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 4<400> 4
aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct cagactatgc 60aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct cagactatgc 60
agatgt 66agatgt 66
<210> 5<210> 5
<211> 65<211> 65
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (31)..(35)<222> (31)..(35)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 5<400> 5
gccttgaatt tacagtattt tagtggcctt nnnnnatact attcggtcac cttatccgct 60gccttgaatt tacagtattt tagtggcctt nnnnnnatact attcggtcac cttatccgct 60
caaga 65caaga 65
<210> 6<210> 6
<211> 71<211> 71
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (39)..(42)<222> (39)..(42)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 6<400> 6
ggatacagta tctgcggtac cctagattta gtggccttnn nnatactact cggtctcttg 60ggatacagta tctgcggtac cctagattta gtggccttnn nnatactact cggtctcttg 60
agcggataag g 71agcggataag g 71
<210> 7<210> 7
<211> 272<211> 272
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (32)..(36)<222> (32)..(36)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (101)..(105)<222> (101)..(105)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (167)..(171)<222> (167)..(171)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (240)..(243)<222> (240)..(243)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 7<400> 7
gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60
gcatagtctg aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct 120gcatagtctg aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct 120
cagactatgc agatgtgcct tgaatttaca gtattttagt ggccttnnnn natactattc 180cagactatgc agatgtgcct tgaatttaca gtattttagt ggccttnnnn natactattc 180
ggtcacctta tccgctcaag aggatacagt atctgcggta ccctagattt agtggccttn 240ggtcacctta tccgctcaag aggatacagt atctgcggta ccctagattt agtggccttn 240
nnnatactac tcggtctctt gagcggataa gg 272nnnatactac tcggtctctt gagcggataa gg 272
<210> 8<210> 8
<211> 1762<211> 1762
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (1528)..(1532)<222> (1528)..(1532)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1582)..(1586)<222> (1582)..(1586)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1627)..(1631)<222> (1627)..(1631)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1675)..(1678)<222> (1675)..(1678)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 8<400> 8
gcatcgcgcg cggggaattc tgataggtga aaacaaacca acaaccaaaa gcagtaattg 60gcatcgcgcg cggggaattc tgataggtga aaacaaacca acaaccaaaa gcagtaattg 60
tcatattcgg tgcaactgga gatttagcaa aacgaaaatt gtatccgtct attcaccgtt 120tcatattcgg tgcaactgga gatttagcaa aacgaaaatt gtatccgtct attcaccgtt 120
tatatcaaaa cggacaaatc ggagaagagt ttgcagtggt aggagttgga agaagacctt 180tatatcaaaa cggacaaatc ggagaagagt ttgcagtggt aggagttgga agaagacctt 180
ggtctaatga ggatcttcgc caaactgtta aaacatccat ttcctcatct gcagataagc 240ggtctaatga ggatcttcgc caaactgtta aaacatccat ttcctcatct gcagataagc 240
atatagatga tttcacgtct catttttact atcacccgtt tgacgtgaca aaccctggtt 300atatagatga tttcacgtct catttttact atcacccgtt tgacgtgaca aaccctggtt 300
cttatcaaga gctaaacgta ttgcttaacc agctggaaga tacatatcaa attcctaaca 360cttatcaaga gctaaacgta ttgcttaacc agctggaaga tacatatcaa attcctaaca 360
acagaatgtt ctacttggca atggctcctg aattcttcgg aacgattgca aaaacattaa 420acagaatgtt ctacttggca atggctcctg aattcttcgg aacgattgca aaaacattaa 420
aatcagaggg tgtaacagct acaaccggct ggtcccgcct tgtcatcgaa aaaccgttcg 480aatcagaggg tgtaacagct acaaccggct ggtcccgcct tgtcatcgaa aaaccgttcg 480
gccatgatct gccaagcgca caggcattga ataaagaaat ccgcgaagca tttacggaag 540gccatgatct gccaagcgca caggcattga ataaagaaat ccgcgaagca tttacggaag 540
atcaaattta cagaatcgac cattatctag gcaaacaaat ggttcagaac attgaagtga 600atcaaattta cagaatcgac cattatctag gcaaacaaat ggttcagaac attgaagtga 600
ttcgatttgc caatgcgatt ttcgaaccgc tttggacaaa ccgctacatt tcaaacattc 660ttcgatttgc caatgcgatt ttcgaaccgc tttggacaaa ccgctacatt tcaaacattc 660
aaatcacatc tagcgaatca ctaggcgttg aagaccgcgc aagatattac gaaaaatcag 720aaatcacatc tagcgaatca ctaggcgttg aagacgcgc aagatattac gaaaaatcag 720
gcgcccttcg cgacatggtg caaaaccata ttatgcagat ggttgccctt cttgcaatgg 780gcgcccttcg cgacatggtg caaaaccata ttatgcagat ggttgccctt cttgcaatgg 780
agccgcctat caaattgaac acagaagaaa tccgcagcga gaaagtgaag gtgctgagag 840agccgcctat caaattgaac acagaagaaa tccgcagcga gaaagtgaag gtgctgagag 840
cactgcgtcc tattgcaaaa gacgaagtgg atgaatactt tgtgcgcgga caatatcatg 900cactgcgtcc tattgcaaaa gacgaagtgg atgaatactt tgtgcgcgga caatatcatg 900
ctggtgaaat tgacggtgta ccggttcctg cttatacaga tgaagataat gtcgctcctg 960ctggtgaaat tgacggtgta ccggttcctg cttatacaga tgaagataat gtcgctcctg 960
actccaatac agaaaccttt gttgccggca agctcttgat cgacaacttc agatgggctg 1020actccaatac agaaaccttt gttgccggca agctcttgat cgacaacttc agatgggctg 1020
gtgttccatt ctacatcaga accggaaaac gaatgaaaga aaagtccaca aaaattgtcg 1080gtgttccatt ctacatcaga accggaaaac gaatgaaaga aaagtccaca aaaattgtcg 1080
ttcaatttaa ggacattccg atgaacctgt actacggtaa tgaaaacaac atgaatccga 1140ttcaatttaa ggacattccg atgaacctgt actacggtaa tgaaaacaac atgaatccga 1140
acttgcttgt cattcatatt cagcctgacg aaggcattac gctttactta aatgctaaaa 1200acttgcttgt cattcatatt cagcctgacg aaggcattac gctttactta aatgctaaaa 1200
agcttggcgg agcagcacac gcacagccaa tcaaactcga ttattgcagc aattgcaatg 1260agcttggcgg agcagcacac gcacagccaa tcaaactcga ttattgcagc aattgcaatg 1260
acgagttgaa cacccctgaa gcatatgaaa aactaattca cgactgtctt cttggcgatg 1320acgagttgaa cacccctgaa gcatatgaaa aactaattca cgactgtctt cttggcgatg 1320
caacaaactt tgcacactgg gatgaagttg ccctttcttg gagctttgtc gactctattt 1380caacaaactt tgcacactgg gatgaagttg ccctttcttg gagctttgtc gactctattt 1380
ctgaaacatg ggcagcaaac aaaaccttat ctcctaacta cgaatcaggc tcaatgggac 1440ctgaaacatg ggcagcaaac aaaaccttat ctcctaacta cgaatcaggc tcaatgggac 1440
cgaaagaatc tgatgatctt ttggtgaaag acggcttaca ctggtggaac atataagcct 1500cgaaagaatc tgatgatctt ttggtgaaag acggcttaca ctggtggaac atataagcct 1500
agcaagatct cctgatcaga gggacaannn nnaaggtcat tgcagctcag acatctgcat 1560agcaagatct cctgatcaga gggacaannn nnaaggtcat tgcagctcag acatctgcat 1560
agtctgagct gcagtggcct tnnnnnttga ccttctgcct tgaatttaca gtattttagt 1620agtctgagct gcagtggcct tnnnnnttga ccttctgcct tgaatttaca gtattttagt 1620
ggccttnnnn natactattc ggtcacctta tccgctcaag agaccgagta gtatnnnnaa 1680ggccttnnnn natactattc ggtcacctta tccgctcaag agaccgagta gtatnnnnaa 1680
ggccactaaa tctagggtac cgcagatact gtatccgtaa gagaggaatg tacacatgtt 1740ggccactaaa tctagggtac cgcagatact gtatccgtaa gagaggaatg tacacatgtt 1740
tcatccgata gaagaagcac tg 1762tcatccgata gaagaagcac tg 1762
<210> 9<210> 9
<211> 1463<211> 1463
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (1229)..(1233)<222> (1229)..(1233)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1283)..(1287)<222> (1283)..(1287)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1328)..(1332)<222> (1328)..(1332)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<220><220>
<221> misc_feature<221> misc_feature
<222> (1376)..(1379)<222> (1376)..(1379)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 9<400> 9
atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60
gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120
ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180
gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240
cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300
gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360
cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420
catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480
tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540
aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600
acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660
gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720
gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780
gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840
gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900
atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960
gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020
gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080
gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140
aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaagcc 1200aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaagcc 1200
tagcaagatc tcctgatcag agggacaann nnnaaggtca ttgcagctca gacatctgca 1260tagcaagatc tcctgatcag agggacaann nnnnaaggtca ttgcagctca gacatctgca 1260
tagtctgagc tgcagtggcc ttnnnnnttg accttctgcc ttgaatttac agtattttag 1320tagtctgagc tgcagtggcc ttnnnnnttg accttctgcc ttgaatttac agtattttag 1320
tggccttnnn nnatactatt cggtcacctt atccgctcaa gagaccgagt agtatnnnna 1380tggccttnnn nnatactatt cggtcacctt atccgctcaa gagaccgagt agtatnnnna 1380
aggccactaa atctagggta ccgcagatac tgtatccgta agagaggaat gtacacatga 1440aggccactaa atctagggta ccgcagatac tgtatccgta agagaggaat gtacacatga 1440
aagtagccat tgcatcggat cat 1463aagtagccat tgcatcggat cat 1463
<210> 10<210> 10
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<220><220>
<221> misc_feature<221> misc_feature
<222> (131)..(131)<222> (131)..(131)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 10<400> 10
gcctagcaag atctcctgat cagagggaca aaatcaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaatcaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttccgac ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttccgac ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt nacagatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt nacagatact attcggtcac cttatccgct caagagaccg agtagtatga 180
ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 11<210> 11
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 11<400> 11
gcctagcaag atctcctgat cagagggaca attcgcaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca attcgcaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttgatta ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgatta ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt gtcctatact attcggtcac cttatccgct caagagaccg agtagtatca 180tagtggcctt gtcctatact attcggtcac cttatccgct caagagaccg agtagtatca 180
aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 12<210> 12
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 12<400> 12
gcctagcaag atctcctgat cagagggaca aaacgcaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaacgcaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttctaat ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttctaat ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt gaaccatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt gaaccatact attcggtcac cttatccgct caagagaccg agtagtatga 180
ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 13<210> 13
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 13<400> 13
gcctagcaag atctcctgat cagagggaca ataaacaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca ataaacaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttgctta ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgctta ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt cgaatatact attcggtcac cttatccgct caagagaccg agtagtattc 180tagtggcctt cgaatatact attcggtcac cttatccgct caagagaccg agtagtattc 180
caaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239caaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 14<210> 14
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 14<400> 14
gcctagcaag atctcctgat cagagggaca accattaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca accattaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttgttat ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgttat ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt gcccaatact attcggtcac cttatccgct caagagaccg agtagtattt 180tagtggcctt gcccaatact attcggtcac cttatccgct caagagaccg agtagtattt 180
aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 15<210> 15
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 15<400> 15
gcctagcaag atctcctgat cagagggaca aaatgaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaatgaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gcctttacgc ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gcctttacgc ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt ttagaatact attcggtcac cttatccgct caagagaccg agtagtattt 180tagtggcctt ttagaatact attcggtcac cttatccgct caagagaccg agtagtattt 180
aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 16<210> 16
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 16<400> 16
gcctagcaag atctcctgat cagagggaca agccgaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca agccgaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttgtaag ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgtaag ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt gattaatact attcggtcac cttatccgct caagagaccg agtagtatca 180tagtggcctt gattaatact attcggtcac cttatccgct caagagaccg agtagtatca 180
ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 17<210> 17
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 17<400> 17
gcctagcaag atctcctgat cagagggaca attagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca attagaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttatccg ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttatccg ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt aagatatact attcggtcac cttatccgct caagagaccg agtagtatgg 180tagtggcctt aagatatact attcggtcac cttatccgct caagagaccg agtagtatgg 180
aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 18<210> 18
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 18<400> 18
gcctagcaag atctcctgat cagagggaca acgagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca acgagaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttgagac ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgagac ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt attgaatact attcggtcac cttatccgct caagagaccg agtagtatgg 180tagtggcctt attgaatact attcggtcac cttatccgct caagagaccg agtagtatgg 180
aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 19<210> 19
<211> 239<211> 239
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 19<400> 19
gcctagcaag atctcctgat cagagggaca acaagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca acaagaaagg tcattgcagc tcagacatct 60
gcatagtctg agctgcagtg gccttttacc ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttttacc ttgaccttct gccttgaatt tacagtattt 120
tagtggcctt aagaaatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt aagaaatact attcggtcac cttatccgct caagagaccg agtagtatga 180
ctaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ctaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239
<210> 20<210> 20
<211> 1470<211> 1470
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 20<400> 20
gtgaaaacaa accaacaacc aaaagcagta attgtcatat tcggtgcaac tggagattta 60gtgaaaacaa accaacaacc aaaagcagta attgtcatat tcggtgcaac tggagattta 60
gcaaaacgaa aattgtatcc gtctattcac cgtttatatc aaaacggaca aatcggagaa 120gcaaaacgaa aattgtatcc gtctattcac cgtttatatc aaaacggaca aatcggagaa 120
gagtttgcag tggtaggagt tggaagaaga ccttggtcta atgaggatct tcgccaaact 180gagtttgcag tggtaggagt tggaagaaga ccttggtcta atgaggatct tcgccaaact 180
gttaaaacat ccatttcctc atctgcagat aagcatatag atgatttcac gtctcatttt 240gttaaaacat ccatttcctc atctgcagat aagcatatag atgatttcac gtctcatttt 240
tactatcacc cgtttgacgt gacaaaccct ggttcttatc aagagctaaa cgtattgctt 300tactatcacc cgtttgacgt gacaaaccct ggttcttatc aagagctaaa cgtattgctt 300
aaccagctgg aagatacata tcaaattcct aacaacagaa tgttctactt ggcaatggct 360aaccagctgg aagatacata tcaaattcct aacaacagaa tgttctactt ggcaatggct 360
cctgaattct tcggaacgat tgcaaaaaca ttaaaatcag agggtgtaac agctacaacc 420cctgaattct tcggaacgat tgcaaaaaca ttaaaatcag agggtgtaac agctacaacc 420
ggctggtccc gccttgtcat cgaaaaaccg ttcggccatg atctgccaag cgcacaggca 480ggctggtccc gccttgtcat cgaaaaaccg ttcggccatg atctgccaag cgcacaggca 480
ttgaataaag aaatccgcga agcatttacg gaagatcaaa tttacagaat cgaccattat 540ttgaataaag aaatccgcga agcatttacg gaagatcaaa tttacagaat cgaccattat 540
ctaggcaaac aaatggttca gaacattgaa gtgattcgat ttgccaatgc gattttcgaa 600ctaggcaaac aaatggttca gaacattgaa gtgattcgat ttgccaatgc gattttcgaa 600
ccgctttgga caaaccgcta catttcaaac attcaaatca catctagcga atcactaggc 660ccgctttgga caaaccgcta catttcaaac attcaaatca catctagcga atcactaggc 660
gttgaagacc gcgcaagata ttacgaaaaa tcaggcgccc ttcgcgacat ggtgcaaaac 720gttgaagacc gcgcaagata ttacgaaaaa tcaggcgccc ttcgcgacat ggtgcaaaac 720
catattatgc agatggttgc ccttcttgca atggagccgc ctatcaaatt gaacacagaa 780catattatgc agatggttgc ccttcttgca atggagccgc ctatcaaatt gaacacagaa 780
gaaatccgca gcgagaaagt gaaggtgctg agagcactgc gtcctattgc aaaagacgaa 840gaaatccgca gcgagaaagt gaaggtgctg agagcactgc gtcctattgc aaaagacgaa 840
gtggatgaat actttgtgcg cggacaatat catgctggtg aaattgacgg tgtaccggtt 900gtggatgaat actttgtgcg cggacaatat catgctggtg aaattgacgg tgtaccggtt 900
cctgcttata cagatgaaga taatgtcgct cctgactcca atacagaaac ctttgttgcc 960cctgcttata cagatgaaga taatgtcgct cctgactcca atacagaaac ctttgttgcc 960
ggcaagctct tgatcgacaa cttcagatgg gctggtgttc cattctacat cagaaccgga 1020ggcaagctct tgatcgacaa cttcagatgg gctggtgttc cattctacat cagaaccgga 1020
aaacgaatga aagaaaagtc cacaaaaatt gtcgttcaat ttaaggacat tccgatgaac 1080aaacgaatga aagaaaagtc cacaaaaatt gtcgttcaat ttaaggacat tccgatgaac 1080
ctgtactacg gtaatgaaaa caacatgaat ccgaacttgc ttgtcattca tattcagcct 1140ctgtactacg gtaatgaaaa caacatgaat ccgaacttgc ttgtcattca tattcagcct 1140
gacgaaggca ttacgcttta cttaaatgct aaaaagcttg gcggagcagc acacgcacag 1200gacgaaggca ttacgcttta cttaaatgct aaaaagcttg gcggagcagc acacgcacag 1200
ccaatcaaac tcgattattg cagcaattgc aatgacgagt tgaacacccc tgaagcatat 1260ccaatcaaac tcgattattg cagcaattgc aatgacgagt tgaacacccc tgaagcatat 1260
gaaaaactaa ttcacgactg tcttcttggc gatgcaacaa actttgcaca ctgggatgaa 1320gaaaaactaa ttcacgactg tcttcttggc gatgcaacaa actttgcaca ctgggatgaa 1320
gttgcccttt cttggagctt tgtcgactct atttctgaaa catgggcagc aaacaaaacc 1380gttgcccttt cttggagctt tgtcgactct atttctgaaa catgggcagc aaacaaaacc 1380
ttatctccta actacgaatc aggctcaatg ggaccgaaag aatctgatga tcttttggtg 1440ttatctccta actacgaatc aggctcaatg ggaccgaaag aatctgatga tcttttggtg 1440
aaagacggct tacactggtg gaacatataa 1470aaagacggct tacactggtg gaacatataa 1470
<210> 21<210> 21
<211> 1197<211> 1197
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 21<400> 21
atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60
gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120
ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180
gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240
cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300
gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360
cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420
catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480
tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540
aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600
acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660
gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720
gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780
gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840
gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900
atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960
gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020
gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080
gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140
aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaa 1197aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaa 1197
<210> 22<210> 22
<211> 450<211> 450
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 22<400> 22
atgaaagtag ccattgcatc ggatcatggc ggcgttcaca ttcgaaatga aatcaaagag 60atgaaagtag ccattgcatc ggatcatggc ggcgttcaca ttcgaaatga aatcaaagag 60
ttaatggacg aattgcaaat tgaatatatt gatatgggct gtgactgcgg cagcggctct 120ttaatggacg aattgcaaat tgaatatatt gatatgggct gtgactgcgg cagcggctct 120
gtcgattatc cggattatgc ttttccggtg gccgaaaaag tggttagcgg cgaagttgac 180gtcgattatc cggattatgc ttttccggtg gccgaaaaag tggttagcgg cgaagttgac 180
agaggcattt taatttgcgg gacaggcatc ggcatgagca tttccgctaa taaagtaaaa 240agaggcattt taatttgcgg gacaggcatc ggcatgagca tttccgctaa taaagtaaaa 240
gggattcgct gcgcgctggc gcacgatacc ttcagcgcga aggcgacgag ggagcataat 300gggattcgct gcgcgctggc gcacgatacc ttcagcgcga aggcgacgag ggagcataat 300
gacacaaaca tccttgcgat gggtgaacgg gtgatcggac ctggtttggc tcgggaaatc 360gacacaaaca tccttgcgat gggtgaacgg gtgatcggac ctggtttggc tcgggaaatc 360
gcaaaaatct ggctgactac tgagtttacc gggggaagac accaaacgcg tattggaaaa 420gcaaaaatct ggctgactac tgagtttacc gggggaagac accaaacgcg tattggaaaa 420
atctccgatt atgaagagaa aaacctgtag 450atctccgatt atgaagagaa aaacctgtag 450
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210386334.1A CN114854780A (en) | 2022-04-13 | 2022-04-13 | Method for efficiently synthesizing riboflavin based on balanced gene expression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210386334.1A CN114854780A (en) | 2022-04-13 | 2022-04-13 | Method for efficiently synthesizing riboflavin based on balanced gene expression |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114854780A true CN114854780A (en) | 2022-08-05 |
Family
ID=82631687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210386334.1A Pending CN114854780A (en) | 2022-04-13 | 2022-04-13 | Method for efficiently synthesizing riboflavin based on balanced gene expression |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114854780A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104531745A (en) * | 2014-12-09 | 2015-04-22 | 江南大学 | Construction of novel plasmid with resistance and application of plasmid to riboflavin producing strain |
CN107190004A (en) * | 2016-03-14 | 2017-09-22 | 辛珉 | A kind of mevalonate pathway of TIGR regulation and control |
CN110591990A (en) * | 2019-07-05 | 2019-12-20 | 中国科学院天津工业生物技术研究所 | A high-yielding riboflavin engineering strain and its application |
CN113073074A (en) * | 2021-04-12 | 2021-07-06 | 江南大学 | Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof |
CN114181963A (en) * | 2021-12-07 | 2022-03-15 | 上海市农业科学院 | Method for improving riboflavin production capacity of escherichia coli engineering bacteria by DNA shuffling |
-
2022
- 2022-04-13 CN CN202210386334.1A patent/CN114854780A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104531745A (en) * | 2014-12-09 | 2015-04-22 | 江南大学 | Construction of novel plasmid with resistance and application of plasmid to riboflavin producing strain |
CN107190004A (en) * | 2016-03-14 | 2017-09-22 | 辛珉 | A kind of mevalonate pathway of TIGR regulation and control |
CN110591990A (en) * | 2019-07-05 | 2019-12-20 | 中国科学院天津工业生物技术研究所 | A high-yielding riboflavin engineering strain and its application |
CN113073074A (en) * | 2021-04-12 | 2021-07-06 | 江南大学 | Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof |
CN114181963A (en) * | 2021-12-07 | 2022-03-15 | 上海市农业科学院 | Method for improving riboflavin production capacity of escherichia coli engineering bacteria by DNA shuffling |
Non-Patent Citations (1)
Title |
---|
尤甲甲: "代谢工程改造枯草芽孢杆菌高效合成核黄素", 《中国博士学位论文全文数据库(电子期刊) 工程科技I辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115806926B (en) | Gene engineering strain for producing pseudouridine and construction method and application thereof | |
CN112877270B (en) | Genetic engineering bacterium for producing hydroxyl tetrahydropyrimidine and application thereof | |
CN111393515B (en) | Ribonucleotide reductase transcription repressor mutant, mutant gene and its application in the preparation of vitamin B2 | |
CN102165056A (en) | Microorganism for producing L-amino acids and method for producing L-amino acids using same | |
CN113897382B (en) | Coenzyme self-sufficient escherichia coli and construction method and application thereof | |
CN114015632A (en) | L-threonine-producing genetically engineered bacteria and its construction method and application | |
CN116555145A (en) | Recombinant Escherichia coli and its construction method and method for producing 2′-fucosyllactose | |
CN109666617B (en) | L-homoserine production strain and construction method and application thereof | |
CN113583929B (en) | Recombinant bacterium for producing purine nucleoside by fermentation and construction method and application thereof | |
CN115029289B (en) | Genetically engineered bacterium for high-yield L-threonine and construction method and application thereof | |
Zhang et al. | De novo 2′-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis | |
CN115873852A (en) | Recombinant nucleic acid sequence, genetic engineering bacteria and method for producing 1,5-pentanediamine | |
CN114277046A (en) | A three-gene tandem expression vector for synthesizing tetrahydropyrimidine and its application | |
CN102304490B (en) | Recombinant bacterium for efficiently expressing orotate phosphoribosyl transferase and orotidylic acid decarboxylase and construction method thereof | |
CN116004489B (en) | Recombinant escherichia coli for producing NMN and application thereof | |
CN115197954A (en) | Recombinant DNA for fermentation production of 1, 5-pentanediamine, strain and application thereof | |
CN114854780A (en) | Method for efficiently synthesizing riboflavin based on balanced gene expression | |
CN116478894B (en) | Genetically engineered bacterium for improving sialyllactose yield and production method thereof | |
CN114410561B (en) | A genetically engineered strain producing thymidine and its construction method and application | |
CN113604413B (en) | A kind of recombinant bacterial strain and preparation method and application | |
CN113025550B (en) | High yield of vitamin B2Bacillus subtilis engineering strain, construction and application thereof | |
CN116121160A (en) | Genetically engineered bacteria overexpressing pyrB gene and method for producing L-arginine | |
CN114480461A (en) | Recombinant microorganism for producing beta-nicotinamide mononucleotide and construction method and application thereof | |
CN110656074B (en) | A kind of recombinant bacteria for synthesizing hypoxanthine and its construction method and application | |
CN112375725A (en) | Metabolic engineering strain for producing vitamin B6 and construction method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220805 |
|
RJ01 | Rejection of invention patent application after publication |