CN114854780A - Method for efficiently synthesizing riboflavin based on balanced gene expression - Google Patents

Method for efficiently synthesizing riboflavin based on balanced gene expression Download PDF

Info

Publication number
CN114854780A
CN114854780A CN202210386334.1A CN202210386334A CN114854780A CN 114854780 A CN114854780 A CN 114854780A CN 202210386334 A CN202210386334 A CN 202210386334A CN 114854780 A CN114854780 A CN 114854780A
Authority
CN
China
Prior art keywords
riboflavin
expression
gene
genes
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210386334.1A
Other languages
Chinese (zh)
Inventor
饶志明
尤甲甲
杨套伟
潘学玮
张显
徐美娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210386334.1A priority Critical patent/CN114854780A/en
Publication of CN114854780A publication Critical patent/CN114854780A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P25/00Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/26Endoribonucleases producing 5'-phosphomonoesters (3.1.26)
    • C12Y301/26012Ribonuclease E (3.1.26.12)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a method for efficiently synthesizing riboflavin based on balanced gene expression, belonging to the technical field of synthetic biology. The present invention modulates the expression of the mCherry and egfp genes within the operon by generating a library of tunable intergenic regions (TIGR) and confirms the relative expression of the two reporter genes. The TIGR library can coordinate the expression rate of the reporter gene in Escherichia coli to be more than 180 times, and the expression rate in Bacillus subtilis to be more than 70 times. TIGR libraries were used to modulate the expression of zwf, ribBA and ywlf genes to increase riboflavin biosynthesis. And (3) rapidly screening the optimal combination mutant by using a 96-well plate according to the fluorescence characteristic of the riboflavin. The best engineering bacteria are screened, the yield of the riboflavin is 2.7g/L, and the riboflavin is increased by 64.35 percent in a shake flask. Finally, in fed-batch fermentation, the riboflavin titer increased 59.27% to 11.77 g/L. It is helpful for the industrialized production of the bacillus subtilis riboflavin and related products.

Description

一种基于平衡基因表达高效合成核黄素的方法A method for efficient synthesis of riboflavin based on balanced gene expression

技术领域technical field

本发明涉及一种基于平衡基因表达高效合成核黄素的方法,具体涉及mRNA工程平衡操纵子内基因表达高效合成核黄素的策略,属于合成生物学技术领域。The invention relates to a method for efficiently synthesizing riboflavin based on balanced gene expression, in particular to a strategy for efficiently synthesizing riboflavin by balancing gene expression in an mRNA engineering operon, and belongs to the technical field of synthetic biology.

背景技术Background technique

核黄素(VB2)是人类和动物必需的营养素,广泛用于制药、食品添加剂和化妆品。枯草芽孢杆菌(Bacillus subtilis)是一种革兰氏阳性细菌,通过“经典”菌株改良策略具有优异的核黄素生产性能。前体供应被认为是核黄素生物合成的主要限制因素。在枯草杆菌中,葡萄糖-6-磷酸酶脱氢酶(由zwf编码)和6-磷酸葡萄糖酸脱氢酶(由gnd编码)通过磷酸戊糖(PP)途径将葡萄糖-6-磷酸转化为核酮糖-5-磷酸。核黄素是由直接前体5-磷酸核糖和三磷酸鸟苷(GTP)经核黄素合成途径,由rib操纵子编码的一系列酶催化合成的。基因ribBA编码一种双功能GTP环水解酶II/3,4-二羟基-2-丁酮4-磷酸合酶,该合酶催化从核酮糖-5-磷酸和2,5-二氨基-6-核糖氨基-4(3H)-嘧啶酮-50-磷酸(DARPP)合成3,4-二羟基-2-丁酮4-磷酸(DHPB)。增加基因ribBA编码的酶的活性可使核黄素的效价增加25%。磷酸核糖焦磷酸盐(PRPP)是细胞中通过从头嘌呤途径形成的GTP前体,首先转化为肌苷单磷酸(IMP),然后IMP随后转化为GTP。谷氨酸棒杆菌突变基因zwf243和gnd361的联合过表达使补料分批发酵中的核黄素产量增加了39%。通过在培养基中添加额外的GTP,并通过代谢工程策略将代谢重新定向到嘌呤途径,核黄素产量显著增加。因此,GTP是核黄素合成的主要限制因素。通过代谢工程策略消除反馈抑制,核黄素产量增加了3倍。通过增加PP途径的代谢流量和增加细胞内嘌呤途径前体PRPP的供应,可以显著提高核黄素的产量。Riboflavin (VB2) is an essential nutrient for humans and animals and is widely used in pharmaceuticals, food additives and cosmetics. Bacillus subtilis is a Gram-positive bacterium with excellent riboflavin production performance through a "classical" strain improvement strategy. Precursor supply is considered to be the major limiting factor for riboflavin biosynthesis. In Bacillus subtilis, glucose-6-phosphatase dehydrogenase (encoded by zwf) and 6-phosphogluconate dehydrogenase (encoded by gnd) convert glucose-6-phosphate to the nucleus via the pentose phosphate (PP) pathway Keto-5-phosphate. Riboflavin is synthesized from the immediate precursors ribose 5-phosphate and guanosine triphosphate (GTP) via the riboflavin synthesis pathway, catalyzed by a series of enzymes encoded by the rib operon. The gene ribBA encodes a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase that catalyzes the conversion of ribulose-5-phosphate and 2,5-diamino- 6-ribosamino-4(3H)-pyrimidinone-50-phosphate (DARPP) was synthesized into 3,4-dihydroxy-2-butanone 4-phosphate (DHPB). Increasing the activity of the enzyme encoded by the gene ribBA increased the riboflavin titer by 25%. Phosphoribose pyrophosphate (PRPP) is a precursor of GTP formed in cells via the de novo purine pathway, first converted to inosine monophosphate (IMP), and then IMP is subsequently converted to GTP. Combined overexpression of the C. glutamicum mutant genes zwf243 and gnd361 increased riboflavin production by 39% in fed-batch fermentation. Riboflavin production was significantly increased by adding additional GTP to the medium and redirecting metabolism to the purine pathway through a metabolic engineering strategy. Therefore, GTP is the main limiting factor for riboflavin synthesis. Eliminating feedback inhibition by a metabolic engineering strategy increased riboflavin production 3-fold. Riboflavin production can be significantly enhanced by increasing the metabolic flux of the PP pathway and increasing the intracellular supply of the purine pathway precursor PRPP.

基因缺失和过度表达已成为传统代谢工程和基因功能研究的主要策略。在大肠杆菌中,过度表达和敲除技术用于上调或下调基因表达,以促进天然和非天然产物。将天然和非天然产物代谢途径引入工程菌株合成化合物时,往往需要多种酶同时参与。微调多酶催化反应系统中的蛋白质丰度,使细胞达到最佳生长和生产状态。最近的研究使用了几种策略来控制细胞内蛋白质丰度,例如启动子文库、RBS文库、5'-UTR文库、mRNA稳定性和CRISPRi系统。这些策略用于微调基因表达水平,并控制多个基因的协调表达,以优化代谢流量。启动子是合成生物学中的关键调控元件,控制基因表达的强度和时间。通过启动子工程微调该途径的基因表达,以平衡代谢流量。为了平衡平行的多基因表达水平的平行性,一种快速且模块化的方法将基因与一组紧密的核糖体结合位点配对,这些位点可以将蛋白质丰度调节几个数量级。EMOPEC(蛋白质表达变化的经验模型和寡核苷酸)是一种基于SD(Shine Dalgarno)序列对蛋白质表达的贡献而开发的工具,可以通过改变一些碱基来调节任何大肠杆菌基因的表达水平。此外,通过生成可调基因间区文库(TIGR)、重组各种转录后控制元件和筛选所需的相对表达水平来协调操纵子中多个基因的表达,用于合成非天然产物。这种方法可以通过基因间的协同表达有效减少有毒中间代谢物的积累和蛋白质表达的冗余。Gene deletion and overexpression have become the main strategies for traditional metabolic engineering and gene function studies. In E. coli, overexpression and knockout techniques are used to upregulate or downregulate gene expression to promote natural and non-natural products. When natural and non-natural product metabolic pathways are introduced into engineered strains to synthesize compounds, the simultaneous participation of multiple enzymes is often required. Fine-tune protein abundance in multi-enzyme-catalyzed reaction systems for optimal cell growth and production. Recent studies have used several strategies to control intracellular protein abundance, such as promoter libraries, RBS libraries, 5'-UTR libraries, mRNA stability, and the CRISPRi system. These strategies are used to fine-tune gene expression levels and control the coordinated expression of multiple genes to optimize metabolic flux. Promoters are key regulatory elements in synthetic biology that control the strength and timing of gene expression. Gene expression of this pathway is fine-tuned by promoter engineering to balance metabolic flux. To balance the parallelism of parallel polygene expression levels, a rapid and modular approach pairs genes with a tight set of ribosome-binding sites that can regulate protein abundance by orders of magnitude. EMOPEC (empirical model of protein expression changes and oligonucleotides) is a tool developed based on the contribution of SD (Shine Dalgarno) sequences to protein expression, which can modulate the expression level of any E. coli gene by changing a few bases. Furthermore, the expression of multiple genes in the operon is coordinated by generating tunable intergenic region libraries (TIGRs), recombining various post-transcriptional control elements, and screening for desired relative expression levels for the synthesis of non-natural products. This approach can effectively reduce the accumulation of toxic intermediate metabolites and the redundancy of protein expression through cooperative expression among genes.

在代谢工程实践中,前体供应不足是限制目标产品产量的主要瓶颈。高水平表达限速酶以驱动目标产物生物合成途径的代谢流量是增加前体合成的快速而直接的策略。复杂化合物,尤其是天然产物,通常由多种前体通过一系列酶促反应进行催化。例如,阿片类物质蒂巴因和氢可酮的生物合成途径包含21和23种来自植物、哺乳动物、酵母和细菌的酶反应。细胞中前体的比例直接影响化合物的合成效率。浓度最低的前体将成为限制因素,而浓度较高的前体可能对细胞有毒。在生产过程中,基因表达必须适当,以避免速率限制和有毒前体的积累。基于合成生物学的各种策略已被开发用于平衡细胞内代谢,包括启动子工程、RBS文库和动态控制。In metabolic engineering practice, insufficient precursor supply is the main bottleneck limiting the yield of target products. High-level expression of rate-limiting enzymes to drive the metabolic flux of target product biosynthetic pathways is a rapid and straightforward strategy to increase precursor synthesis. Complex compounds, especially natural products, are often catalyzed by multiple precursors through a series of enzymatic reactions. For example, the biosynthetic pathways for the opioids thebaine and hydrocodone contain 21 and 23 enzymatic reactions from plants, mammals, yeast, and bacteria. The proportion of precursors in the cell directly affects the efficiency of compound synthesis. The lowest concentrations of precursors will be the limiting factor, while higher concentrations of precursors may be toxic to cells. During production, gene expression must be appropriate to avoid rate limiting and accumulation of toxic precursors. Various strategies based on synthetic biology have been developed to balance intracellular metabolism, including promoter engineering, RBS libraries, and dynamic control.

在枯草芽孢杆菌合成核黄素的过程中,前体供应不足是限制进一步提高核黄素产量的主要因素,目前单纯的通过表达和敲除代谢途径关键基因虽然可以促进核黄素的合成,并不能使细胞内平衡代谢流的平衡,而细胞内代谢流分配失衡导致副产物增多,造成资源浪费的现象。In the process of Bacillus subtilis synthesizing riboflavin, insufficient supply of precursors is the main factor that limits the further improvement of riboflavin production. At present, the synthesis of riboflavin can be promoted by simply expressing and knocking out key genes in the metabolic pathway. It is impossible to balance the metabolic flow in the cell, and the imbalance of the distribution of the metabolic flow in the cell leads to the increase of by-products, resulting in the phenomenon of waste of resources.

发明内容SUMMARY OF THE INVENTION

本发明提供一种能够高效有效调节细胞内代谢平衡的策略,并用此策略构建高产核黄素的工程菌株,并且采用该基因工程菌生产核黄素,解除发酵过程中的代谢流不平衡限制,提高核黄素产量。设计了一个基因间可调区域库(TIGRs)来调节合成操纵子内多个基因的表达。TIGRs文库由mRNA的二级结构、RNA酶切割位点和RBS序列组成,并用来控制mRNA的加工和稳定。操纵子内基因转录成完整的mRNA链,通过细胞内的RNase E(来源于大肠杆菌基因rne编码)识别TIGR序列上的特殊位点,将mRNA分割成单个转录单元,同时每个转录单元形成独特的5’和3’结构,通过影响mRNA的稳定性和RBS的结构,进而影响蛋白水平。The invention provides a strategy that can efficiently and effectively regulate the metabolic balance in cells, and uses this strategy to construct an engineered strain with high riboflavin production, and uses the genetically engineered strain to produce riboflavin, so as to relieve the restriction of unbalanced metabolic flow in the fermentation process, Increase riboflavin production. A library of intergenic regulatable regions (TIGRs) was designed to regulate the expression of multiple genes within synthetic operons. Libraries of TIGRs consist of mRNA secondary structure, RNase cleavage sites, and RBS sequences, and are used to control mRNA processing and stabilization. The gene in the operon is transcribed into a complete mRNA chain, and the special site on the TIGR sequence is recognized by the intracellular RNase E (encoded from the E. coli gene rne), and the mRNA is divided into individual transcription units, and each transcription unit forms a unique The 5' and 3' structure of mRNA affects the protein level by affecting the stability of mRNA and the structure of RBS.

本发明提供了一种调节基因表达量的元件,所述元件由mRNA二级结构、RNase E切割位点和RBS序列组成,所述元件的核苷酸序列如SEQ ID NO.7所示。The present invention provides an element for regulating gene expression, the element is composed of mRNA secondary structure, RNase E cleavage site and RBS sequence, and the nucleotide sequence of the element is shown in SEQ ID NO.7.

本发明提供了一种调控基因表达的方法,利用所述的元件调控基因的表达,所述基因为两个或多个;The present invention provides a method for regulating gene expression, which utilizes the element to regulate the expression of genes, and the number of said genes is two or more;

所述方法为:The method is:

(1)利用权利要求1所述的元件将基因连接,并整合至表达载体上构建得到重组质粒;(1) utilize the element described in claim 1 to connect the gene, and integrate it into the expression vector to construct a recombinant plasmid;

(2)将重组质粒转入大肠杆菌中,利用表达载体上的抗性基因筛选阳性转化子;(2) transfer the recombinant plasmid into Escherichia coli, and use the resistance gene on the expression vector to screen positive transformants;

(3)从阳性转化子中提取质粒,转入整合了RNase E基因的宿主细胞中得到重组细胞,将重组细胞进行培养并检测荧光强度,根据荧光强度与基因表达强度成正相关筛选对应的重组细胞。(3) Extract the plasmid from the positive transformant, transfer it into the host cell integrating the RNase E gene to obtain recombinant cells, culture the recombinant cells and detect the fluorescence intensity, and screen the corresponding recombinant cells according to the positive correlation between the fluorescence intensity and the gene expression intensity .

本发明提供了一种生产核黄素的基因工程菌,利用所述表达元件调控zwf、ribBA和ywlf基因的表达,所述基因工程菌的基因组上还整合了来源于大肠杆菌的RNase E基因。The present invention provides a genetically engineered bacterium for producing riboflavin. The expression element is used to regulate the expression of zwf, ribBA and ywlf genes. The genome of the genetically engineered bacterium also integrates the RNase E gene derived from Escherichia coli.

在一种实施方式中,所述基因zwf、ribBA和ywlf的核苷酸序列分别如SEQ IDNO.20~22所示In one embodiment, the nucleotide sequences of the genes zwf, ribBA and ywlf are shown in SEQ ID NO. 20-22, respectively

在一种实施方式中,所述zwf基因和ribBA基因之间由SEQ ID NO.10、12、14、16或18连接;所述ribBA和ywlf基因之间由SEQ ID NO.11、13、15、17或18连接。In one embodiment, the zwf gene and the ribBA gene are linked by SEQ ID NO.10, 12, 14, 16 or 18; the ribBA and ywlf genes are linked by SEQ ID NO.11, 13, 15 , 17 or 18 connections.

优选地,利用SEQ ID NO.14和SEQ ID NO.15分别连接zwf基因和ribBA基因、ribBA和ywlf基因。Preferably, the zwf gene and the ribBA gene, ribBA and ywlf gene are linked using SEQ ID NO. 14 and SEQ ID NO. 15, respectively.

在有一种实施方式中,利用质粒pMA5-sat为表达载体,所述质粒pMA5-sat记载于公开号为CN104531745A的专利文献中。In one embodiment, the plasmid pMA5-sat is used as the expression vector, and the plasmid pMA5-sat is described in the patent document with publication number CN104531745A.

在一种实施方式中,所述基因工程菌以枯草芽孢杆菌RF1为宿主细胞,所述枯草芽孢杆菌RF1公开于公开号为CN104531745A的专利文献中。In one embodiment, the genetically engineered bacteria use Bacillus subtilis RF1 as a host cell, and the Bacillus subtilis RF1 is disclosed in the patent document with publication number CN104531745A.

本发明提供了一种生产核黄素的方法,是利用生产核黄素的基因工程菌发酵生产核黄素。The invention provides a method for producing riboflavin, which is to use genetic engineering bacteria for producing riboflavin to ferment and produce riboflavin.

在一种实施方式中,将所述基因工程菌培养至OD600=24~26以3%(v/v)的量添加至摇瓶发酵体系中,在37℃~45℃、150~250rpm下发酵生产不少于24h。In one embodiment, the genetically engineered bacteria are cultured to an OD 600 of 24-26 and added to a shake flask fermentation system in an amount of 3% (v/v) at 37° C. to 45° C. and 150 to 250 rpm. Fermentation production is not less than 24h.

在一种实施方式中,所述摇瓶发酵体系中含有15~25g/L葡萄糖,15~25g/L酵母粉,2~5g/L柠檬酸铵,0.5~2g/L K2HPO4,0.5~2g/L KH2PO4,1~5g/L MgSO4·7H2O,0.01~0.05g/L MnCl2,0.01~0.1g/L CaCl2,1~5g/L CuSO4,pH 6.8。In one embodiment, the shake flask fermentation system contains 15-25 g/L glucose, 15-25 g/L yeast powder, 2-5 g/L ammonium citrate, 0.5-2 g/LK 2 HPO 4 , 0.5-25 g/L ammonium citrate 2g/L KH 2 PO 4 , 1~5g/L MgSO 4 ·7H 2 O, 0.01~0.05g/L MnCl 2 , 0.01~0.1g/L CaCl 2 , 1~5g/L CuSO 4 , pH 6.8.

在一种实施方式中,将所述基因工程菌培养至OD600=20~25以3%(v/v)的量添加至分批补料发酵体系中,并添加补料培养基,以保持葡萄糖浓度不低于5g/L,在37℃~45℃、400~800rpm下发酵生产不少于24h。In one embodiment, the genetically engineered bacteria are cultured to OD 600 = 20-25 and added to a fed-batch fermentation system in an amount of 3% (v/v), and a feed medium is added to maintain The glucose concentration is not less than 5g/L, and the fermentation production is not less than 24h at 37℃~45℃ and 400~800rpm.

在一种实施方式中,分批补料发酵体系中含有15~25g/L葡萄糖,15~25g/L酵母粉,2~9g/L(NH4)2HPO4,3~8g/L K2HPO4,1~1.5g/L MgSO4·7H2O,0.01~0.05g/L ZnSO4·7H2O,0.01~0.05g/L MnCl2,0.01~0.02g/L FeSO4·7H2O。In one embodiment, the fed-batch fermentation system contains 15-25 g/L glucose, 15-25 g/L yeast powder, 2-9 g/L (NH 4 ) 2 HPO 4 , and 3-8 g/LK 2 HPO 4. 1~1.5g/L MgSO 4 ·7H 2 O, 0.01~0.05g/L ZnSO 4 ·7H 2 O, 0.01~0.05g/L MnCl 2 , 0.01~0.02g/L FeSO 4 ·7H 2 O.

在一种实施方式中,补料培养基中含有500~600g/L葡萄糖,5~10g/L酵母粉,4~6g/L(NH4)2HPO4,1~5g/L K2HPO4,0.1~1g/L MgSO4·7H2O。In one embodiment, the feed medium contains 500-600 g/L glucose, 5-10 g/L yeast powder, 4-6 g/L (NH 4 ) 2 HPO 4 , 1-5 g/LK 2 HPO 4 , 0.1~1g/L MgSO 4 ·7H 2 O.

本发明提供了所述基因工程菌在生产核黄素及其衍生物中的应用。The present invention provides the application of the genetically engineered bacteria in the production of riboflavin and derivatives thereof.

有益效果:Beneficial effects:

(1)使用双荧光报告基因GFP和mCherry表征TIGR序列的调节能力,在枯草芽孢杆菌中,操纵子中第二个基因的表达明显高于第一个基因的表达,红色和绿色的相对荧光比变化超过70倍(从4:1mCherry/EGFP到18:1EGFP/mCherry)。在TIGR文库中,mCherry的荧光变化范围超过80倍,EGFP的荧光变化范围超过40倍。使用TIGR文库生成一系列包含zwf、ribBA和ywlf基因的操纵子,并筛选最优的操纵子组合。从5000个多克隆的文库筛选到5株高产核黄素的工程菌。(1) Using the dual fluorescent reporter genes GFP and mCherry to characterize the regulatory ability of the TIGR sequence, in Bacillus subtilis, the expression of the second gene in the operon was significantly higher than that of the first gene, and the relative fluorescence ratio of red and green was More than 70-fold change (from 4:1 mCherry/EGFP to 18:1 EGFP/mCherry). In the TIGR library, the fluorescence range of mCherry was more than 80-fold and that of EGFP was more than 40-fold. A series of operons containing the zwf, ribBA, and ywlf genes were generated using the TIGR library, and the optimal operon combinations were screened. Five high-producing riboflavin-producing engineering bacteria were screened from 5000 polyclonal library.

(2)在摇瓶发酵水平,筛选到的工程菌RF1-L3的核黄素效价达到2.7g/L,与亲本相比增加了64.35%。(2) At the level of shake flask fermentation, the riboflavin titer of the screened engineered bacteria RF1-L3 reached 2.7 g/L, an increase of 64.35% compared with the parent.

(3)在5-L发酵水平,与亲本菌株RF1相比,工程菌株RF1-L3的核黄素滴度在48小时时增加59.27%,达到11.77g/L。(3) At the 5-L fermentation level, compared with the parental strain RF1, the riboflavin titer of the engineered strain RF1-L3 increased by 59.27% at 48 hours, reaching 11.77 g/L.

附图说明Description of drawings

图1为TIGR序列结构示意图;Fig. 1 is a schematic diagram of the TIGR sequence structure;

图2为TIGR报告基因文库示意图;Figure 2 is a schematic diagram of a TIGR reporter gene library;

图3为TIGR文库在枯草芽孢杆菌中调控能力分析;Fig. 3 is the regulation ability analysis of TIGR library in Bacillus subtilis;

图4为摇瓶发酵分析高产核黄素菌株合成核黄素能力;Fig. 4 is a shake flask fermentation analysis of the ability of high-producing riboflavin strain to synthesize riboflavin;

图5为5L发酵罐分析RF1和RF-L3合成核黄素能力。Figure 5 is the analysis of the riboflavin synthesis ability of RF1 and RF-L3 in a 5L fermenter.

具体实施方式Detailed ways

下述实施例中所涉及的培养基如下:The media involved in the following examples are as follows:

种子培养基:40g/L葡萄糖、5g/L酵母膏、10g/L蛋白胨、10g/L NaCl和10μg/m L氯霉素。Seed medium: 40 g/L glucose, 5 g/L yeast extract, 10 g/L peptone, 10 g/L NaCl and 10 μg/mL chloramphenicol.

摇瓶发酵培养基:20g/L葡萄糖,20g/L酵母粉,4g/L柠檬酸铵,1g/L K2HPO4,1g/LKH2PO4,2g/L MgSO4·7H2O,0.04g/L MnCl2,0.06g/L CaCl2,2g/L CuSO4,pH 6.8。Shake flask fermentation medium: 20g/L glucose, 20g/L yeast powder, 4g/L ammonium citrate, 1g/LK 2 HPO 4 , 1g/LKH 2 PO 4 , 2g/L MgSO 4 ·7H 2 O, 0.04g /L MnCl 2 , 0.06 g/L CaCl 2 , 2 g/L CuSO 4 , pH 6.8.

分批补料发酵培养基:20g/L葡萄糖,20g/L酵母粉,6g/L(NH4)2HPO4,5g/L K2HPO4,1.5g/L MgSO4·7H2O,0.03g/L ZnSO4·7H2O,0.05g/L MnCl2,0.02g/L FeSO4·7H2O。Fed-batch fermentation medium: 20 g/L glucose, 20 g/L yeast powder, 6 g/L (NH 4 ) 2 HPO 4 , 5 g/LK 2 HPO 4 , 1.5 g/L MgSO 4 ·7H 2 O, 0.03 g /L ZnSO 4 ·7H 2 O, 0.05 g/L MnCl 2 , 0.02 g/L FeSO 4 ·7H 2 O.

补料培养基:600g/L葡萄糖,10g/L酵母粉,6g/L(NH4)2HPO4,5g/L K2HPO4,0.5g/LMgSO4·7H2O。Feed medium: 600 g/L glucose, 10 g/L yeast powder, 6 g/L (NH 4 ) 2 HPO 4 , 5 g/LK 2 HPO 4 , 0.5 g/LMgSO 4 ·7H 2 O.

最低培养基含有葡萄糖:20.0g/L、(NH4)2SO4 2.0g/L、KH2PO4 13.1g/L、K2HPO46.0g/L、NaC6H5O7·2H2O 1.2g/L、MgSO4·7H2O 0.05g/L,并补充色氨酸、苯丙氨酸和酪氨酸(各25mg/L)。Minimum medium containing glucose: 20.0 g/L, (NH4) 2 SO 4 2.0 g/L, KH 2 PO 4 13.1 g/L, K 2 HPO 4 6.0 g/L, NaC 6 H 5 O 7 2H 2 O 1.2 g/L, MgSO 4 ·7H 2 O 0.05 g/L, and supplemented with tryptophan, phenylalanine and tyrosine (25 mg/L each).

下述实施例中所涉及的检测方法如下:The detection methods involved in the following examples are as follows:

测定EGFP和mCherry的荧光值,以评估pMTG文库的表达范围。将含有pMTG文库的大肠杆菌和枯草杆菌接种在含有200μl LB培养基的无菌96个黑孔板(康宁3603)中,并在37℃下培养10小时。此外,EGFP荧光(激发,490nm;发射,530nm)、mCherry荧光(激发,588nm;发射,633nm),光密度(600nm处的吸光度)在培养结束时用微孔板多模式读取器(BIOTEK,Cytation 3)测定。使用方程式(1)计算相对荧光密度。FPbg表示不含荧光蛋白的菌株的荧光值,ODbg表示培养基的吸光度。Fluorescence values of EGFP and mCherry were measured to assess the expression range of the pMTG library. E. coli and B. subtilis containing the pMTG library were inoculated into sterile 96 black well plates (Corning 3603) containing 200 μl of LB medium and incubated at 37°C for 10 hours. In addition, EGFP fluorescence (excitation, 490 nm; emission, 530 nm), mCherry fluorescence (excitation, 588 nm; emission, 633 nm), optical density (absorbance at 600 nm) were measured at the end of the incubation with a microplate multimode reader (BIOTEK, Cytation 3) Determination. The relative fluorescence density was calculated using equation (1). FPbg represents the fluorescence value of the strain without fluorescent protein, and ODbg represents the absorbance of the medium.

Figure BDA0003593882330000051
Figure BDA0003593882330000051

核黄素在440~500nm波长的光照射下发出黄绿色荧光,其荧光强度与其在稀溶液中的浓度成正比。对于核黄素标准曲线,将10mM核黄素母液稀释至不同浓度,包括10mM、5mM、2.5mM、1.25mM、0.625mM、0.313mM和0.1562mM。在激发波长444nm和吸收波长500nm处测量荧光值,并绘制标准曲线。将来自工程菌株库的克隆接种到含有200μl最低培养基的96孔板中,在37℃下以220rpm的转速振荡培养24小时。使用0.01MNaOH将细胞培养物稀释至适当浓度,并通过微孔板多模式读取器(BIOTEK,Cytation 3)测量荧光强度。用分光光度计监测OD600nm下细胞的生长。Riboflavin emits yellow-green fluorescence under the irradiation of light with wavelengths of 440-500 nm, and its fluorescence intensity is proportional to its concentration in dilute solution. For the riboflavin standard curve, 10 mM riboflavin stock solutions were diluted to various concentrations including 10 mM, 5 mM, 2.5 mM, 1.25 mM, 0.625 mM, 0.313 mM and 0.1562 mM. Fluorescence values were measured at excitation wavelength 444 nm and absorption wavelength 500 nm, and a standard curve was drawn. Clones from the engineered strain library were inoculated into 96-well plates containing 200 μl of minimal medium and cultured at 37°C with shaking at 220 rpm for 24 hours. Cell cultures were diluted to appropriate concentrations using 0.01 M NaOH, and fluorescence intensity was measured by a multi-mode microplate reader (BIOTEK, Cytation 3). Cell growth at OD 600 nm was monitored with a spectrophotometer.

将制备得到的发酵液用0.01M NaOH稀释,然后在12000rpm下离心2min,取上清液测定核黄素浓度。将上清液转移到新的EP管中,并稀释至合适的浓度范围(0.3-0.8),使用分光光度计在OD444nm处测量吸光度值。核黄素浓度根据核黄素浓度标准曲线计算。按照核黄素标准曲线计算公式为:OD444*稀释倍数*30/1000。The prepared fermentation broth was diluted with 0.01M NaOH, then centrifuged at 12,000 rpm for 2 min, and the supernatant was taken to measure the riboflavin concentration. Transfer the supernatant to a new EP tube and dilute to the appropriate concentration range (0.3-0.8) and measure the absorbance value at OD 444 nm using a spectrophotometer. Riboflavin concentration was calculated from a standard curve of riboflavin concentration. According to the riboflavin standard curve, the calculation formula is: OD 444 * dilution factor * 30/1000.

使用Glucose analysis(Model-SBA40,Shandong,China)测量葡萄糖浓度。Glucose concentration was measured using Glucose analysis (Model-SBA40, Shandong, China).

下述实施例中所使用的对照菌株RF1-aPaGaTgV、RF1均公开于公开号为CN104531745A的专利文献中。The control strains RF1-aPaGaTgV and RF1 used in the following examples are disclosed in the patent document with publication number CN104531745A.

下述实施例中所涉及的引物序列如表1所示:The primer sequences involved in the following examples are shown in Table 1:

表1引物序列Table 1 Primer sequences

Figure BDA0003593882330000052
Figure BDA0003593882330000052

Figure BDA0003593882330000061
Figure BDA0003593882330000061

Figure BDA0003593882330000071
Figure BDA0003593882330000071

实施例1:在枯草芽孢杆菌中异源表达基因rneExample 1: Heterologous expression of the gene rne in Bacillus subtilis

利用同源重组的方式将来源于大肠杆菌的RNase E基因rne整合到枯草芽孢杆菌168的基因组上的基因amyE(Gene ID:938356)处。The RNase E gene rne from Escherichia coli was integrated into the gene amyE (Gene ID: 938356) in the genome of Bacillus subtilis 168 by means of homologous recombination.

具体步骤如下:Specific steps are as follows:

(1)按照表1的引物序列扩增基因amyE上游同源臂(1000bp)和下游同源臂(1000bp),分别获得amyE上游、下游同源臂片段;并通过琼脂糖凝胶电泳分离PCR产物,并切胶回收目的PCR产物。然后将上下游同源臂、Pveg-rne片段(片段核苷酸序列如SEQ ID NO.1所示)与抗性Marker(博来霉素抗性基因,核苷酸序列如SEQ ID NO.2所示)通过融合PCR的策略进行融合。(1) Amplify the upstream homology arm (1000bp) and the downstream homology arm (1000bp) of the gene amyE according to the primer sequences in Table 1 to obtain the upstream and downstream homology arm fragments of amyE respectively; and separate the PCR products by agarose gel electrophoresis , and cut the gel to recover the target PCR product. Then, the upstream and downstream homology arms, the Pveg-rne fragment (the nucleotide sequence of the fragment is shown in SEQ ID NO.1) and the resistance Marker (bleomycin resistance gene, the nucleotide sequence is shown in SEQ ID NO.2) shown) fusions were performed by the strategy of fusion PCR.

首先将上下游同源臂、Pveg-rne片段与抗性Marker片段按体积比1:1混合,加入等体积的PCR酶进行融合PCR反应(条件为98℃3min,98℃8s,61℃5s,72℃2min,扩增13个循环),以该步反应后的产物为模板,使用引物amyE-veg-rne-F1和amyE-veg-rne-R3扩增融合片段(反应条件为:98℃3min,98℃10s,58℃15s,72℃1min,扩增34个循环)。将PCR产物纯化回收用于敲除反应,融合后的片段含有博来霉素抗性基因和lox66-lox71重组位点,便于后期抗性Marker的消除。First, the upstream and downstream homology arms, the Pveg-rne fragment and the resistance Marker fragment were mixed in a volume ratio of 1:1, and an equal volume of PCR enzyme was added to carry out a fusion PCR reaction (conditions were 98°C for 3 min, 98°C for 8s, 61°C for 5s, 72°C for 2min, amplification for 13 cycles), using the product after this step as a template, use primers amyE-veg-rne-F1 and amyE-veg-rne-R3 to amplify the fusion fragment (reaction conditions: 98°C for 3min , 98°C for 10s, 58°C for 15s, 72°C for 1min, and 34 cycles of amplification). The PCR product was purified and recovered for the knockout reaction. The fused fragment contained the bleomycin resistance gene and the lox66-lox71 recombination site, which facilitated the elimination of the later resistance Marker.

(2)将步骤(1)得到的融合PCR产物利用化转的方法化转至Bacillus subtilis168感受态细胞中,并涂布在含有博来霉素抗性的LB平板,37℃培养12h,抗性平板上生长的菌株使用菌落PCR方法验证整合是否成功,验证引物使用amyE-veg-rne-F1和amyE-veg-rne-R3,经PCR验证之后得到整合成功的阳性转化子。(2) The fusion PCR product obtained in step (1) was transformed into Bacillus subtilis168 competent cells using the transformation method, and spread on the LB plate containing bleomycin resistance, cultured at 37°C for 12 hours, and the resistance The colony PCR method was used to verify the successful integration of the strains grown on the plate. The primers used for verification were amyE-veg-rne-F1 and amyE-veg-rne-R3, and positive transformants with successful integration were obtained after PCR verification.

(3)将pDG148质粒化转至步骤(2)制备得到的正确的阳性转化子中,在180rpm、37℃震荡培养24h,然后取部分培养液涂布于LB平板上,37℃培养12h至长出单菌落,用无菌牙签将LB平板上的单菌落一一对应点到另一块含有博来霉素的抗性平板上,在37℃培养培养12h,在LB平板上可以生长且在博来霉素抗性平板上无法生长的菌落为消除博来霉素抗性的敲除菌株。(3) Plasmidize pDG148 and transfer it to the correct positive transformants prepared in step (2), and shake at 180 rpm and 37 °C for 24 hours, then take part of the culture solution and spread it on LB plates, and culture at 37 °C for 12 hours to a long time. A single colony was obtained, and the single colony on the LB plate was one-to-one corresponding to another plate containing bleomycin with a sterile toothpick, and cultured at 37 °C for 12 hours. Colonies that failed to grow on the bleomycin-resistant plates were knockout strains that eliminated bleomycin resistance.

将得到的敲除菌株在180rpm、42℃震荡培养24h用来消除pDG148质粒。将部分培养液涂布于LB固体培养基上,然后37℃培养培养12h后,用无菌牙签将LB平板上的菌落一一对应点到另一块含有氨苄青霉素的抗性平板上,37℃培养培养12h,在LB平板上可以生长,而在博来霉素抗性平板上无法生长的菌落为消除质pDG148粒的敲除菌株。最后得到的菌株为无痕敲除的目的菌株BSF01。The resulting knockout strain was shaken at 180rpm and 42°C for 24h to eliminate the pDG148 plasmid. Part of the culture solution was spread on LB solid medium, and then cultured at 37°C for 12 hours. Use sterile toothpicks to point the colonies on the LB plate to another resistant plate containing ampicillin, and culture at 37°C. After culturing for 12 hours, the colonies could grow on LB plates, but the colonies that could not grow on bleomycin-resistant plates were knockout strains that eliminated the plasmid pDG148. The final strain obtained is the target strain BSF01 with no trace knockout.

实施例2:含有双荧光报告基因的TIGR文库构建Example 2: Construction of TIGR library containing dual fluorescent reporter genes

TIGRs文库包括mRNA二级结构、RNase E切割位点和RBS序列控制元件。TIGRs文库利用mRNA的二级结构、RNase E酶切割位点和RBS序列控制mRNA的加工和稳定,从而影响操纵子上基因的表达(图1)。Libraries of TIGRs include mRNA secondary structures, RNase E cleavage sites, and RBS sequence control elements. Libraries of TIGRs utilize mRNA secondary structure, RNase E enzymatic cleavage sites, and RBS sequences to control mRNA processing and stabilization, thereby affecting gene expression on operons (Figure 1).

为了进一步扩增适用于枯草杆菌的合成生物工具,基于TIGR构建M-TIGR-G文库(图2),并将TIGRs文库导入菌株BSF01,该菌株在amyE位点过表达来源于大肠杆菌的基因rne。测定两个报告基因的荧光值,以评估枯草杆菌中TIGR文库的调节能力。In order to further amplify the synthetic biology tools suitable for B. subtilis, an M-TIGR-G library was constructed based on TIGR (Fig. 2), and the TIGRs library was introduced into strain BSF01, which overexpressed the gene rne derived from E. coli at the amyE site . The fluorescence values of the two reporter genes were determined to assess the regulatory capacity of the TIGR library in B. subtilis.

具体步骤如下:Specific steps are as follows:

1、TIGR文库的制备1. Preparation of TIGR library

(1)使用PCR合成TIGR,将寡核苷酸序列TIGR-A、TIGR-B、TIGR-C和TIGR-D(核苷酸序列分别如SEQ ID NO.3~6所示)组装成嵌合DNA序列(核苷酸序列如SEQ ID NO.7所示)。将每个寡核苷酸序列中的五个核苷酸替换为随机核苷酸“N”,以合成多样性序列。通过融合PCR整合mCherry基因、TIGR序列(嵌合DNA序列)和GFP基因构建融合片段M-TIGRs-G。然后,通过Gibson组装将融合PCR片段M-TIGRs-G插入质粒pP43NMK中,构建用于筛选TIGR的报告质粒pMTG,使得报告操纵子的转录由强启动子P43控制。将质粒pMTG转化到有活性的大肠杆菌JM109细胞中,并用氨苄青霉素筛选转化子。刮取大肠杆菌文库菌落并提取质粒,从三个单独的平板上收集,并转化到BSF01中。(1) Use PCR to synthesize TIGR, and assemble the oligonucleotide sequences TIGR-A, TIGR-B, TIGR-C and TIGR-D (the nucleotide sequences are shown in SEQ ID NO. 3 to 6, respectively) into a chimera DNA sequence (nucleotide sequence is shown in SEQ ID NO. 7). The five nucleotides in each oligonucleotide sequence were replaced with random nucleotides "N" to synthesize diverse sequences. The fusion fragment M-TIGRs-G was constructed by integrating mCherry gene, TIGR sequence (chimeric DNA sequence) and GFP gene by fusion PCR. Then, the fusion PCR fragment M-TIGRs-G was inserted into the plasmid pP43NMK by Gibson assembly to construct the reporter plasmid pMTG for screening TIGR, so that the transcription of the reporter operon was controlled by the strong promoter P43. Plasmid pMTG was transformed into viable E. coli JM109 cells and transformants were selected with ampicillin. E. coli library colonies were scraped and plasmids were extracted, collected from three separate plates, and transformed into BSF01.

(2)将步骤(1)得到的多克隆文库接种到96孔板中,测定GFP和mCherry荧光值,构建TIGR文库。(2) Inoculate the polyclonal library obtained in step (1) into a 96-well plate, measure the fluorescence values of GFP and mCherry, and construct a TIGR library.

结果显示:操纵子中第二个基因的表达明显高于第一个基因的表达,根据基因间区域的不同,红色和绿色的相对荧光比变化超过70倍(从mCherry/EGFP=4:1到EGFP/mCherry=18:1;图3)。The results showed that the expression of the second gene in the operon was significantly higher than that of the first gene, and the relative fluorescence ratio of red and green changed more than 70-fold depending on the intergenic region (from mCherry/EGFP=4:1 to EGFP/mCherry=18:1; Figure 3).

实施例3:构建TIGR文库筛选高产核黄素工程菌株Example 3: Construction of TIGR library to screen high-yielding riboflavin engineered strains

按照实施例1的方式,在核黄素生产菌株RF1的基因amyE处整合来源于大肠杆菌的RNase E基因rne,构建得到菌株RF1-R。According to the method of Example 1, the RNase E gene rne derived from Escherichia coli was integrated into the gene amyE of the riboflavin-producing strain RF1, and the strain RF1-R was constructed.

使用TIGR文库来产生一系列包含zwf、ribBA和ywlf基因的合成操纵子,这些操纵子随后筛选出增加核黄素产量的最优组合。使用巨引物PCR方法,在操纵子的第一个和第二个基因以及第二个和第三个基因之间同时引入TIGR文库。基因zwf被用作操纵子的第一个基因,ribBA和ywlf被用作操纵子的第二和第三个基因。The TIGR library was used to generate a series of synthetic operons containing the zwf, ribBA and ywlf genes, which were then screened for the optimal combination to increase riboflavin production. Using the macroprimer PCR method, the TIGR library was introduced simultaneously between the first and second genes and the second and third genes of the operon. The gene zwf was used as the first gene of the operon, and ribBA and ywf were used as the second and third genes of the operon.

具体步骤如下:Specific steps are as follows:

(1)通过融合PCR构建含有TIGR文库的基因片段。首先,设计引物ZRY-F2/ZRY-R2、ZRY-F4/ZRY-R4,以实施例2中的TIGR文库(核苷酸序列如SEQ ID NO.7所示的嵌合DNA序列)为模板,扩增基因zwf、ribBA和ywlf之间的TIGR文库。将PCR片段zwf、TIGR文库进行融合PCR,获得zwf-TIGR(核苷酸序列如SEQ ID NO.8所示)。根据上述方法获得了ribBA-TIGR的PCR片段(核苷酸序列如SEQ ID NO.9所示)。将质粒pMA5-sat使用限制性内切酶EcoRI和KpnI在37℃处理30min并纯化回收,然后将纯化的PCR片段zwf-TIGR、ribBA-TIGR和ywlf通过融合PCR方法连接成一条PCR片段,并插入质粒pMA5-sat,使用Gibson组装获得zwf-TIGR-ribBA-TIGR-ywlf文库,并转化到大肠杆菌DH5α感受态中,37℃培养16h,并通过菌落PCR筛选正确转化子。将得到的转化子混合提取质粒得到文库并转化到RF1-R中构建工程菌株文库,将来自工程菌株库的克隆接种到含有200μl最低培养基的96孔板中,在37℃下以220rpm的转速振荡培养24小时。使用0.01M NaOH将细胞培养物稀释至适当浓度,并通过微孔板多模式读取器(BIOTEK,Cytation 3)测量荧光强度,筛选荧光强度最高的突变株。(1) Construct gene fragments containing TIGR library by fusion PCR. First, the primers ZRY-F2/ZRY-R2 and ZRY-F4/ZRY-R4 were designed, and the TIGR library in Example 2 (the chimeric DNA sequence whose nucleotide sequence was shown in SEQ ID NO. 7) was used as a template, Amplify the TIGR library between the genes zwf, ribBA and ywlf. The PCR fragment zwf and TIGR library were subjected to fusion PCR to obtain zwf-TIGR (the nucleotide sequence is shown in SEQ ID NO. 8). The PCR fragment of ribBA-TIGR was obtained according to the above method (the nucleotide sequence is shown in SEQ ID NO. 9). Plasmid pMA5-sat was treated with restriction enzymes EcoRI and KpnI at 37°C for 30 min and purified and recovered. Then the purified PCR fragments zwf-TIGR, ribBA-TIGR and ywlf were ligated into a PCR fragment by fusion PCR method and inserted into The plasmid pMA5-sat was assembled using Gibson to obtain the zwf-TIGR-ribBA-TIGR-ywlf library, which was transformed into E. coli DH5α competent cells, cultured at 37°C for 16 hours, and the correct transformants were screened by colony PCR. The resulting transformants were mixed and extracted with plasmids to obtain a library and transformed into RF1-R to construct an engineering strain library. The clones from the engineering strain library were inoculated into a 96-well plate containing 200 μl of minimal medium at 37°C at a speed of 220 rpm. Shake culture for 24 hours. The cell culture was diluted to the appropriate concentration with 0.01M NaOH, and the fluorescence intensity was measured by a multi-mode microplate reader (BIOTEK, Cytation 3), and the mutant with the highest fluorescence intensity was screened.

实施例4:摇瓶阶段采用基因工程菌株发酵生产核黄素Example 4: Fermentation production of riboflavin using genetically engineered strains in shake flask stage

使用摇瓶发酵对实施例3中筛选得到的荧光强度最高的突变株菌株进行复筛。The mutant strain with the highest fluorescence intensity screened in Example 3 was re-screened using shake flask fermentation.

将单个菌落接种在10ml-LB培养基中,并在37℃下以180rpm的转速摇动培养。16小时后,按照1%(v/v)接种量将培养物转移至含有50ml LBG培养基(40g/L葡萄糖、5g/L酵母提取物、10g/L蛋白胨和10g/L NaCl)的250ml挡板摇瓶中,并在41℃下以220rpm的转速振荡24小时得到种子培养物。种子培养物(OD600=25.21)转移至含有50ml发酵培养基(3%(v/v)接种量)的500ml挡板摇瓶中,然后在41℃下以220rpm的转速振荡培养48小时。在摇瓶发酵期间,每12小时取样1毫升细胞悬浮液,以测量OD600和核黄素浓度。A single colony was inoculated in 10 ml-LB medium and incubated at 37°C with shaking at 180 rpm. After 16 hours, the culture was transferred to a 250ml block containing 50ml LBG medium (40g/L glucose, 5g/L yeast extract, 10g/L peptone and 10g/L NaCl) at 1% (v/v) inoculum size. Plate in shake flasks and shake at 220 rpm for 24 hours at 41 °C to obtain seed cultures. The seed culture ( OD600 = 25.21) was transferred to a 500 ml baffled shake flask containing 50 ml of fermentation medium (3% (v/v) inoculum) and incubated at 41°C with shaking at 220 rpm for 48 hours. During shake flask fermentation, 1 ml of cell suspension was sampled every 12 hours to measure OD600 and riboflavin concentration.

结果表明,五株工程菌的核黄素效价均显著提高,其中以工程菌RF1-L3的效价优势最为明显。工程菌RF1-L3的核黄素效价达到2.7g/L,比亲本的1.67g/L提高了64.35%(图4为发酵48h结束后各菌株的核黄素产量),工程菌RF1-L1、RF1-L2、RF1-L4、RF1-L5的核黄素效价分别为1.94g/L、2.01g/L、2.16g/L、2.24g/L。The results showed that the riboflavin titers of the five engineered strains were significantly increased, and the titer advantage of the engineered strain RF1-L3 was the most obvious. The riboflavin titer of the engineered bacteria RF1-L3 reached 2.7 g/L, which was 64.35% higher than that of the parental 1.67 g/L (Figure 4 shows the riboflavin yield of each strain after 48 hours of fermentation). The engineered bacteria RF1-L1, RF1 The riboflavin titers of -L2, RF1-L4 and RF1-L5 were 1.94g/L, 2.01g/L, 2.16g/L and 2.24g/L, respectively.

表2菌株RF1-L1~RF1-L5的TIGR序列Table 2 TIGR sequences of strains RF1-L1~RF1-L5

Figure BDA0003593882330000091
Figure BDA0003593882330000091

Figure BDA0003593882330000101
Figure BDA0003593882330000101

Figure BDA0003593882330000111
Figure BDA0003593882330000111

实施例5:发酵罐水平采用基因工程菌株发酵生产核黄素Example 5: Fermentation production of riboflavin using genetically engineered strains at the fermenter level

具体步骤如下:Specific steps are as follows:

(1)分别将在10mL LB培养基中培养24h的枯草芽孢杆菌菌株RF1-aPaGaTgV、RF1按照体积比3%(v/v)的接种量接种到100mL种子培养基中(种子培养基包括20g/L葡萄糖,20g/L酵母粉,4g/L柠檬酸铵,1g/L K2HPO4,1g/L KH2PO4,,2g/L MgSO4·7H2O,0.04g/LMnCl2,0.06g/L CaCl2,2g/L CuSO4),温度为41℃,转速为180rpm,培养16h后,制备得到种子液(OD600=23.5);(1) Bacillus subtilis strains RF1-aPaGaTgV and RF1 cultured in 10 mL LB medium for 24 h were inoculated into 100 mL of seed medium at an inoculum of 3% (v/v) by volume (the seed medium included 20 g/v/v). L glucose, 20g/L yeast powder, 4g/L ammonium citrate, 1g/LK 2 HPO 4 , 1g/L KH 2 PO 4 , 2g/L MgSO 4 ·7H 2 O, 0.04g/LMnCl 2 , 0.06g /L CaCl 2 , 2g/L CuSO 4 ), the temperature was 41°C, the rotation speed was 180rpm, and after culturing for 16h, the seed solution (OD 600 =23.5) was prepared;

(2)将制备得到的100mL种子液全部接种到含有1900mL的发酵培养基的5L发酵罐中,进行分批补料发酵。(2) All 100 mL of the prepared seed solution was inoculated into a 5 L fermentor containing 1900 mL of fermentation medium, and fed-batch fermentation was performed.

通过控制补料培养基流量,使发酵液中的剩余葡萄糖浓度保持在不低于5g/L。发酵过程中,使用1M H2SO4和50%氨水保持发酵液pH为6.8。在开始分批进料前,转速保持在400rpm,然后逐渐将转速提高到900rpm直到发酵结束,温度始终保持在41℃。The residual glucose concentration in the fermentation broth was maintained at not less than 5 g/L by controlling the flow rate of the feed medium. During the fermentation, the pH of the fermentation broth was maintained at 6.8 using 1M H2SO4 and 50% ammonia . The rotation speed was maintained at 400 rpm before starting the batch feed, and then gradually increased to 900 rpm until the end of the fermentation, and the temperature was maintained at 41°C throughout.

结果显示:在5L生物反应器中进行补料分批发酵,以验证工程菌枯草杆菌RF1-L3在核黄素生产中的大规模发酵性能。在补料分批发酵中,工程菌和亲本菌株的生长没有明显差异。与亲本菌株RF1(7.39g/L)及RF1-aPaGaTgV(10.71g/L)相比,工程菌株RF1-L3的核黄素滴度在48h时增加了59.27%,达到11.77g/L(图5A和图5B)。The results showed that fed-batch fermentation was carried out in a 5L bioreactor to verify the large-scale fermentation performance of engineered bacteria Bacillus subtilis RF1-L3 in riboflavin production. In fed-batch fermentation, there was no significant difference in growth between the engineered and parental strains. Compared with the parental strains RF1 (7.39g/L) and RF1-aPaGaTgV (10.71g/L), the riboflavin titer of the engineered strain RF1-L3 increased by 59.27% at 48h, reaching 11.77g/L (Fig. 5A). and Figure 5B).

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> BAA220441A<120> BAA220441A

<130> 一种基于平衡基因表达高效合成核黄素的方法<130> A method for efficient synthesis of riboflavin based on balanced gene expression

<160> 22<160> 22

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 3263<211> 3263

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 1<400> 1

cgttgatata atttaaattt tatttgacaa aaatgggctc gtgttgtaca ataaatgtgt 60cgttgatata atttaaattt tatttgacaa aaatgggctc gtgttgtaca ataaatgtgt 60

aagagaggaa tgtacacatg aaaagaatgt taatcaacgc aactcagcag gaagagttgc 120aagagaggaa tgtacacatg aaaagaatgt taatcaacgc aactcagcag gaagagttgc 120

gcgttgccct tgtagatggg cagcgtctgt atgacctgga tatcgaaagt ccagggcacg 180gcgttgccct tgtagatggg cagcgtctgt atgacctgga tatcgaaagt ccagggcacg 180

agcagaaaaa ggcaaacatc tacaaaggta aaatcacccg cattgaaccg agtctggaag 240agcagaaaaa ggcaaacatc tacaaaggta aaatcacccg cattgaaccg agtctggaag 240

ctgcttttgt tgattacggc gctgaacgtc acggtttcct cccactaaaa gaaattgccc 300ctgcttttgt tgattacggc gctgaacgtc acggtttcct cccactaaaa gaaattgccc 300

gcgaatattt ccctgctaac tacagtgctc atggtcgtcc caacattaaa gatgtgttgc 360gcgaatattt ccctgctaac tacagtgctc atggtcgtcc caacattaaa gatgtgttgc 360

gtgaaggtca ggaagtcatt gttcagatcg ataaagaaga gcgcggcaac aaaggcgcgg 420gtgaaggtca ggaagtcatt gttcagatcg ataaagaaga gcgcggcaac aaaggcgcgg 420

cattaaccac ctttatcagt ctggcgggta gctatctggt tctgatgccg aacaacccgc 480cattaaccac ctttatcagt ctggcgggta gctatctggt tctgatgccg aacaacccgc 480

gcgcgggtgg catttctcgc cgtatcgaag gcgacgaccg taccgaatta aaagaagcac 540gcgcgggtgg catttctcgc cgtatcgaag gcgacgaccg taccgaatta aaagaagcac 540

tggcaagcct tgaactgccg gaaggcatgg ggcttatcgt gcgcaccgct ggcgtcggca 600tggcaagcct tgaactgccg gaaggcatgg ggcttatcgt gcgcaccgct ggcgtcggca 600

aatctgctga ggcgctgcaa tgggatttaa gcttccgtct gaaacactgg gaagccatca 660aatctgctga ggcgctgcaa tgggatttaa gcttccgtct gaaacactgg gaagccatca 660

aaaaagccgc tgaaagccgc ccggccccgt tcctgattca tcaggagagc aacgtaatcg 720aaaaagccgc tgaaagccgc ccggccccgt tcctgattca tcaggagagc aacgtaatcg 720

ttcgcgcatt ccgcgattac ttacgtcagg acatcggcga aatccttatc gataacccga 780ttcgcgcatt ccgcgattac ttacgtcagg acatcggcga aatccttatc gataacccga 780

aagtgctcga actggcacgt cagcatatcg ctgcattagg tcgcccggat ttcagcagca 840aagtgctcga actggcacgt cagcatatcg ctgcattagg tcgcccggat ttcagcagca 840

aaatcaaact gtacaccggc gagatcccgc tgttcagcca ctaccagatc gagtcacaga 900aaatcaaact gtacaccggc gagatcccgc tgttcagcca ctaccagatc gagtcacaga 900

tcgagtccgc cttccagcgt gaagttcgtc tgccgtctgg tggttccatt gttatcgaca 960tcgagtccgc cttccagcgt gaagttcgtc tgccgtctgg tggttccatt gttatcgaca 960

gcaccgaagc gttaacggcc atcgacatca actccgcacg cgcgacccgc ggcggcgata 1020gcaccgaagc gttaacggcc atcgacatca actccgcacg cgcgacccgc ggcggcgata 1020

tcgaagaaac cgcgtttaac actaacctcg aagctgccga tgagattgct cgtcagctgc 1080tcgaagaaac cgcgtttaac actaacctcg aagctgccga tgagattgct cgtcagctgc 1080

gcctgcgtga cctcggcggc ctgattgtta tcgacttcat cgacatgacg ccagtacgcc 1140gcctgcgtga cctcggcggc ctgattgtta tcgacttcat cgacatgacg ccagtacgcc 1140

accagcgtgc ggtagaaaac cgtctgcgtg aagcggtgcg tcaggaccgt gcgcgtattc 1200accagcgtgc ggtagaaaac cgtctgcgtg aagcggtgcg tcaggaccgt gcgcgtattc 1200

aaatcagcca tatttctcgc tttggcctgc tggaaatgtc ccgtcagcgc ctgagcccat 1260aaatcagcca tatttctcgc tttggcctgc tggaaatgtc ccgtcagcgc ctgagcccat 1260

cactgggtga atccagtcat cacgtttgtc cgcgttgttc tggtactggc accgtgcgtg 1320cactgggtga atccagtcat cacgtttgtc cgcgttgttc tggtactggc accgtgcgtg 1320

acaacgaatc gctgtcgctc tctattctgc gtctgatcga agaagaagcg ctgaaagaga 1380acaacgaatc gctgtcgctc tctattctgc gtctgatcga agaagaagcg ctgaaagaga 1380

acacccagga agttcacgcc attgttcctg tgccaatcgc ttcttacctg ctgaatgaaa 1440acacccagga agttcacgcc attgttcctg tgccaatcgc ttcttacctg ctgaatgaaa 1440

aacgttctgc ggtaaatgcc attgaaactc gtcaggacgg tgtgcgctgt gtaattgtgc 1500aacgttctgc ggtaaatgcc attgaaactc gtcaggacgg tgtgcgctgt gtaattgtgc 1500

caaacgatca gatggaaacc ccgcactacc acgtgctgcg cgtgcgtaaa ggggaagaaa 1560caaacgatca gatggaaacc ccgcactacc acgtgctgcg cgtgcgtaaa ggggaagaaa 1560

ccccaacctt aagctacatg ctgccgaagc tgcatgaaga agcgatggcg ctgccgtctg 1620ccccaacctt aagctacatg ctgccgaagc tgcatgaaga agcgatggcg ctgccgtctg 1620

aagaagagtt cgctgaacgt aagcgtccgg aacaacctgc gctggcaacc tttgccatgc 1680aagaagagtt cgctgaacgt aagcgtccgg aacaacctgc gctggcaacc tttgccatgc 1680

cggatgtgcc gcctgcgcca acgccagctg aacctgccgc gcctgttgta gctccagcac 1740cggatgtgcc gcctgcgcca acgccagctg aacctgccgc gcctgttgta gctccagcac 1740

cgaaagctgc accggcaaca ccagcagctc ctgcacaacc tgggctgttg agccgcttct 1800cgaaagctgc accggcaaca ccagcagctc ctgcacaacc tgggctgttg agccgcttct 1800

tcggcgcact gaaagcgctg ttcagcggtg gtgaagaaac caaaccgacc gagcaaccag 1860tcggcgcact gaaagcgctg ttcagcggtg gtgaagaaac caaaccgacc gagcaaccag 1860

caccgaaagc agaagcgaaa ccggaacgtc aacaggatcg tcgcaagcct cgtcagaaca 1920caccgaaagc agaagcgaaa ccggaacgtc aacaggatcg tcgcaagcct cgtcagaaca 1920

accgccgtga ccgtaatgag cgccgcgaca cccgtagtga acgtactgaa ggcagcgata 1980accgccgtga ccgtaatgag cgccgcgaca cccgtagtga acgtactgaa ggcagcgata 1980

atcgcgaaga aaaccgtcgt aatcgtcgcc aggcacagca gcagactgcc gagacgcgtg 2040atcgcgaaga aaaccgtcgt aatcgtcgcc aggcacagca gcagactgcc gagacgcgtg 2040

agagccgtca gcaggctgag gtaacggaaa aagcgcgtac cgccgacgag cagcaagcgc 2100agagccgtca gcaggctgag gtaacggaaa aagcgcgtac cgccgacgag cagcaagcgc 2100

cgcgtcgtga acgtagccgc cgccgtaatg atgataaacg tcaggcgcaa caagaagcga 2160cgcgtcgtga acgtagccgc cgccgtaatg atgataaacg tcaggcgcaa caagaagcga 2160

aggcgctgaa tgttgaagag caatctgttc aggaaaccga acaggaagaa cgtgtacgtc 2220aggcgctgaa tgttgaagag caatctgttc aggaaaccga acaggaagaa cgtgtacgtc 2220

cggttcagcc gcgtcgtaaa cagcgtcagc tcaatcagaa agtgcgttac gagcaaagcg 2280cggttcagcc gcgtcgtaaa cagcgtcagc tcaatcagaa agtgcgttac gagcaaagcg 2280

tagccgaaga agcggtagtc gcaccggtgg ttgaagaaac tgtcgctgcc gaaccaattg 2340tagccgaaga agcggtagtc gcaccggtgg ttgaagaaac tgtcgctgcc gaaccaattg 2340

ttcaggaagc gccagctcca cgcacagaac tggtgaaagt cccgctgcca gtcgtagcgc 2400ttcaggaagc gccagctcca cgcacagaac tggtgaaagt cccgctgcca gtcgtagcgc 2400

aaactgcacc agaacagcaa gaagagaaca atgctgataa ccgtgacaac ggtggcatgc 2460aaactgcacc agaacagcaa gaagagaaca atgctgataa ccgtgacaac ggtggcatgc 2460

cgcgtcgttc tcgccgctcg cctcgtcacc tgcgcgtaag tggtcagcgt cgtcgtcgct 2520cgcgtcgttc tcgccgctcg cctcgtcacc tgcgcgtaag tggtcagcgt cgtcgtcgct 2520

atcgtgacga gcgttatcca acccagtcgc caatgccgtt gaccgtagcg tgcgcgtctc 2580atcgtgacga gcgttatcca acccagtcgc caatgccgtt gaccgtagcg tgcgcgtctc 2580

cggaactggc ctctggcaaa gtctggatcc gctatccaat tgtacgtccg caagatgtac 2640cggaactggc ctctggcaaa gtctggatcc gctatccaat tgtacgtccg caagatgtac 2640

aggttgaaga gcagcgcgaa caggaagaag tacatgtgca gccgatggtg actgaggtcc 2700aggttgaaga gcagcgcgaa caggaagaag tacatgtgca gccgatggtg actgaggtcc 2700

ctgtcgccgc cgctatcgaa ccggttgtta gcgcgccagt tgttgaagaa gtggccggtg 2760ctgtcgccgc cgctatcgaa ccggttgtta gcgcgccagt tgttgaagaa gtggccggtg 2760

tcgtagaagc ccccgttcag gttgccgaac cgcaaccgga agtggttgaa acgacgcatc 2820tcgtagaagc ccccgttcag gttgccgaac cgcaaccgga agtggttgaa acgacgcatc 2820

ctgaagtgat cgctgccgcg gtaactgaac agccgcaggt gattaccgag tctgatgttg 2880ctgaagtgat cgctgccgcg gtaactgaac agccgcaggt gattaccgag tctgatgttg 2880

ccgtagccca ggaagttgca gaacaagcag aaccggtggt tgaaccgcag gaagagacgg 2940ccgtagccca ggaagttgca gaacaagcag aaccggtggt tgaaccgcag gaagagacgg 2940

cagatattga agaagttgtc gaaactgctg aggttgtagt tgctgaacct gaagttgttg 3000cagatattga agaagttgtc gaaactgctg aggttgtagt tgctgaacct gaagttgttg 3000

ctcaacctgc cgcgccagta gtcgctgaag tcgcagcaga agttgaaacg gtagctgcgg 3060ctcaacctgc cgcgccagta gtcgctgaag tcgcagcaga agttgaaacg gtagctgcgg 3060

tcgaacctga ggtcaccgtt gagcataacc acgctaccgc gccaatgacg cgcgctccag 3120tcgaacctga ggtcaccgtt gagcataacc acgctaccgc gccaatgacg cgcgctccag 3120

caccggaata tgttccggag gcaccgcgtc acagtgactg gcagcgccct acttttgcct 3180caccggaata tgttccggag gcaccgcgtc acagtgactg gcagcgccct acttttgcct 3180

tcgaaggtaa aggtgccgca ggtggtcata cggcaacaca tcatgcctct gccgctcctg 3240tcgaaggtaa aggtgccgca ggtggtcata cggcaacaca tcatgcctct gccgctcctg 3240

cgcgtccgca acctgttgag taa 3263cgcgtccgca acctgttgag taa 3263

<210> 2<210> 2

<211> 497<211> 497

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 2<400> 2

taccgttcgt atagcataca ttatacgaag ttatcttgat atggcttttt atatgtgtta 60taccgttcgt atagcataca ttatacgaag ttatcttgat atggcttttt atatgtgtta 60

ctctacatac agaaaggagg aactaaatat ggccaagttg accagtgccg ttccggtgct 120ctctacatac agaaaggagg aactaaatat ggccaagttg accagtgccg ttccggtgct 120

caccgcgcgc gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg 180caccgcgcgc gacgtcgccg gagcggtcga gttctggacc gaccggctcg ggttctcccg 180

ggacttcgtg gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag 240ggacttcgtg gaggacgact tcgccggtgt ggtccgggac gacgtgaccc tgttcatcag 240

cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 300cgcggtccag gaccaggtgg tgccggacaa caccctggcc tgggtgtggg tgcgcggcct 300

ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 360ggacgagctg tacgccgagt ggtcggaggt cgtgtccacg aacttccggg acgcctccgg 360

gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 420gccggccatg accgagatcg gcgagcagcc gtgggggcgg gagttcgccc tgcgcgaccc 420

ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgaataactt cgtatagcat 480ggccggcaac tgcgtgcact tcgtggccga ggagcaggac tgaataactt cgtatagcat 480

acattatacg aacggta 497acattatacg aacggta 497

<210> 3<210> 3

<211> 70<211> 70

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (32)..(36)<222> (32)..(36)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 3<400> 3

gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60

gcatagtctg 70gcatagtctg 70

<210> 4<210> 4

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (31)..(35)<222> (31)..(35)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 4<400> 4

aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct cagactatgc 60aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct cagactatgc 60

agatgt 66agatgt 66

<210> 5<210> 5

<211> 65<211> 65

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (31)..(35)<222> (31)..(35)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 5<400> 5

gccttgaatt tacagtattt tagtggcctt nnnnnatact attcggtcac cttatccgct 60gccttgaatt tacagtattt tagtggcctt nnnnnnatact attcggtcac cttatccgct 60

caaga 65caaga 65

<210> 6<210> 6

<211> 71<211> 71

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (39)..(42)<222> (39)..(42)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 6<400> 6

ggatacagta tctgcggtac cctagattta gtggccttnn nnatactact cggtctcttg 60ggatacagta tctgcggtac cctagattta gtggccttnn nnatactact cggtctcttg 60

agcggataag g 71agcggataag g 71

<210> 7<210> 7

<211> 272<211> 272

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (32)..(36)<222> (32)..(36)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (101)..(105)<222> (101)..(105)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (167)..(171)<222> (167)..(171)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (240)..(243)<222> (240)..(243)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 7<400> 7

gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca annnnnaagg tcattgcagc tcagacatct 60

gcatagtctg aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct 120gcatagtctg aaatactgta aattcaaggc agaaggtcaa nnnnnaaggc cactgcagct 120

cagactatgc agatgtgcct tgaatttaca gtattttagt ggccttnnnn natactattc 180cagactatgc agatgtgcct tgaatttaca gtattttagt ggccttnnnn natactattc 180

ggtcacctta tccgctcaag aggatacagt atctgcggta ccctagattt agtggccttn 240ggtcacctta tccgctcaag aggatacagt atctgcggta ccctagattt agtggccttn 240

nnnatactac tcggtctctt gagcggataa gg 272nnnatactac tcggtctctt gagcggataa gg 272

<210> 8<210> 8

<211> 1762<211> 1762

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (1528)..(1532)<222> (1528)..(1532)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1582)..(1586)<222> (1582)..(1586)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1627)..(1631)<222> (1627)..(1631)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1675)..(1678)<222> (1675)..(1678)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 8<400> 8

gcatcgcgcg cggggaattc tgataggtga aaacaaacca acaaccaaaa gcagtaattg 60gcatcgcgcg cggggaattc tgataggtga aaacaaacca acaaccaaaa gcagtaattg 60

tcatattcgg tgcaactgga gatttagcaa aacgaaaatt gtatccgtct attcaccgtt 120tcatattcgg tgcaactgga gatttagcaa aacgaaaatt gtatccgtct attcaccgtt 120

tatatcaaaa cggacaaatc ggagaagagt ttgcagtggt aggagttgga agaagacctt 180tatatcaaaa cggacaaatc ggagaagagt ttgcagtggt aggagttgga agaagacctt 180

ggtctaatga ggatcttcgc caaactgtta aaacatccat ttcctcatct gcagataagc 240ggtctaatga ggatcttcgc caaactgtta aaacatccat ttcctcatct gcagataagc 240

atatagatga tttcacgtct catttttact atcacccgtt tgacgtgaca aaccctggtt 300atatagatga tttcacgtct catttttact atcacccgtt tgacgtgaca aaccctggtt 300

cttatcaaga gctaaacgta ttgcttaacc agctggaaga tacatatcaa attcctaaca 360cttatcaaga gctaaacgta ttgcttaacc agctggaaga tacatatcaa attcctaaca 360

acagaatgtt ctacttggca atggctcctg aattcttcgg aacgattgca aaaacattaa 420acagaatgtt ctacttggca atggctcctg aattcttcgg aacgattgca aaaacattaa 420

aatcagaggg tgtaacagct acaaccggct ggtcccgcct tgtcatcgaa aaaccgttcg 480aatcagaggg tgtaacagct acaaccggct ggtcccgcct tgtcatcgaa aaaccgttcg 480

gccatgatct gccaagcgca caggcattga ataaagaaat ccgcgaagca tttacggaag 540gccatgatct gccaagcgca caggcattga ataaagaaat ccgcgaagca tttacggaag 540

atcaaattta cagaatcgac cattatctag gcaaacaaat ggttcagaac attgaagtga 600atcaaattta cagaatcgac cattatctag gcaaacaaat ggttcagaac attgaagtga 600

ttcgatttgc caatgcgatt ttcgaaccgc tttggacaaa ccgctacatt tcaaacattc 660ttcgatttgc caatgcgatt ttcgaaccgc tttggacaaa ccgctacatt tcaaacattc 660

aaatcacatc tagcgaatca ctaggcgttg aagaccgcgc aagatattac gaaaaatcag 720aaatcacatc tagcgaatca ctaggcgttg aagacgcgc aagatattac gaaaaatcag 720

gcgcccttcg cgacatggtg caaaaccata ttatgcagat ggttgccctt cttgcaatgg 780gcgcccttcg cgacatggtg caaaaccata ttatgcagat ggttgccctt cttgcaatgg 780

agccgcctat caaattgaac acagaagaaa tccgcagcga gaaagtgaag gtgctgagag 840agccgcctat caaattgaac acagaagaaa tccgcagcga gaaagtgaag gtgctgagag 840

cactgcgtcc tattgcaaaa gacgaagtgg atgaatactt tgtgcgcgga caatatcatg 900cactgcgtcc tattgcaaaa gacgaagtgg atgaatactt tgtgcgcgga caatatcatg 900

ctggtgaaat tgacggtgta ccggttcctg cttatacaga tgaagataat gtcgctcctg 960ctggtgaaat tgacggtgta ccggttcctg cttatacaga tgaagataat gtcgctcctg 960

actccaatac agaaaccttt gttgccggca agctcttgat cgacaacttc agatgggctg 1020actccaatac agaaaccttt gttgccggca agctcttgat cgacaacttc agatgggctg 1020

gtgttccatt ctacatcaga accggaaaac gaatgaaaga aaagtccaca aaaattgtcg 1080gtgttccatt ctacatcaga accggaaaac gaatgaaaga aaagtccaca aaaattgtcg 1080

ttcaatttaa ggacattccg atgaacctgt actacggtaa tgaaaacaac atgaatccga 1140ttcaatttaa ggacattccg atgaacctgt actacggtaa tgaaaacaac atgaatccga 1140

acttgcttgt cattcatatt cagcctgacg aaggcattac gctttactta aatgctaaaa 1200acttgcttgt cattcatatt cagcctgacg aaggcattac gctttactta aatgctaaaa 1200

agcttggcgg agcagcacac gcacagccaa tcaaactcga ttattgcagc aattgcaatg 1260agcttggcgg agcagcacac gcacagccaa tcaaactcga ttattgcagc aattgcaatg 1260

acgagttgaa cacccctgaa gcatatgaaa aactaattca cgactgtctt cttggcgatg 1320acgagttgaa cacccctgaa gcatatgaaa aactaattca cgactgtctt cttggcgatg 1320

caacaaactt tgcacactgg gatgaagttg ccctttcttg gagctttgtc gactctattt 1380caacaaactt tgcacactgg gatgaagttg ccctttcttg gagctttgtc gactctattt 1380

ctgaaacatg ggcagcaaac aaaaccttat ctcctaacta cgaatcaggc tcaatgggac 1440ctgaaacatg ggcagcaaac aaaaccttat ctcctaacta cgaatcaggc tcaatgggac 1440

cgaaagaatc tgatgatctt ttggtgaaag acggcttaca ctggtggaac atataagcct 1500cgaaagaatc tgatgatctt ttggtgaaag acggcttaca ctggtggaac atataagcct 1500

agcaagatct cctgatcaga gggacaannn nnaaggtcat tgcagctcag acatctgcat 1560agcaagatct cctgatcaga gggacaannn nnaaggtcat tgcagctcag acatctgcat 1560

agtctgagct gcagtggcct tnnnnnttga ccttctgcct tgaatttaca gtattttagt 1620agtctgagct gcagtggcct tnnnnnttga ccttctgcct tgaatttaca gtattttagt 1620

ggccttnnnn natactattc ggtcacctta tccgctcaag agaccgagta gtatnnnnaa 1680ggccttnnnn natactattc ggtcacctta tccgctcaag agaccgagta gtatnnnnaa 1680

ggccactaaa tctagggtac cgcagatact gtatccgtaa gagaggaatg tacacatgtt 1740ggccactaaa tctagggtac cgcagatact gtatccgtaa gagaggaatg tacacatgtt 1740

tcatccgata gaagaagcac tg 1762tcatccgata gaagaagcac tg 1762

<210> 9<210> 9

<211> 1463<211> 1463

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (1229)..(1233)<222> (1229)..(1233)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1283)..(1287)<222> (1283)..(1287)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1328)..(1332)<222> (1328)..(1332)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (1376)..(1379)<222> (1376)..(1379)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 9<400> 9

atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60

gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120

ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180

gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240

cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300

gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360

cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420

catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480

tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540

aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600

acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660

gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720

gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780

gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840

gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900

atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960

gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020

gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080

gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140

aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaagcc 1200aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaagcc 1200

tagcaagatc tcctgatcag agggacaann nnnaaggtca ttgcagctca gacatctgca 1260tagcaagatc tcctgatcag agggacaann nnnnaaggtca ttgcagctca gacatctgca 1260

tagtctgagc tgcagtggcc ttnnnnnttg accttctgcc ttgaatttac agtattttag 1320tagtctgagc tgcagtggcc ttnnnnnttg accttctgcc ttgaatttac agtattttag 1320

tggccttnnn nnatactatt cggtcacctt atccgctcaa gagaccgagt agtatnnnna 1380tggccttnnn nnatactatt cggtcacctt atccgctcaa gagaccgagt agtatnnnna 1380

aggccactaa atctagggta ccgcagatac tgtatccgta agagaggaat gtacacatga 1440aggccactaa atctagggta ccgcagatac tgtatccgta agagaggaat gtacacatga 1440

aagtagccat tgcatcggat cat 1463aagtagccat tgcatcggat cat 1463

<210> 10<210> 10

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (131)..(131)<222> (131)..(131)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 10<400> 10

gcctagcaag atctcctgat cagagggaca aaatcaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaatcaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttccgac ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttccgac ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt nacagatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt nacagatact attcggtcac cttatccgct caagagaccg agtagtatga 180

ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 11<210> 11

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 11<400> 11

gcctagcaag atctcctgat cagagggaca attcgcaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca attcgcaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttgatta ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgatta ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt gtcctatact attcggtcac cttatccgct caagagaccg agtagtatca 180tagtggcctt gtcctatact attcggtcac cttatccgct caagagaccg agtagtatca 180

aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 12<210> 12

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 12<400> 12

gcctagcaag atctcctgat cagagggaca aaacgcaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaacgcaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttctaat ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttctaat ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt gaaccatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt gaaccatact attcggtcac cttatccgct caagagaccg agtagtatga 180

ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 13<210> 13

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 13<400> 13

gcctagcaag atctcctgat cagagggaca ataaacaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca ataaacaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttgctta ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgctta ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt cgaatatact attcggtcac cttatccgct caagagaccg agtagtattc 180tagtggcctt cgaatatact attcggtcac cttatccgct caagagaccg agtagtattc 180

caaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239caaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 14<210> 14

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 14<400> 14

gcctagcaag atctcctgat cagagggaca accattaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca accattaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttgttat ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgttat ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt gcccaatact attcggtcac cttatccgct caagagaccg agtagtattt 180tagtggcctt gcccaatact attcggtcac cttatccgct caagagaccg agtagtattt 180

aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 15<210> 15

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 15<400> 15

gcctagcaag atctcctgat cagagggaca aaatgaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca aaatgaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gcctttacgc ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gcctttacgc ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt ttagaatact attcggtcac cttatccgct caagagaccg agtagtattt 180tagtggcctt ttagaatact attcggtcac cttatccgct caagagaccg agtagtattt 180

aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 16<210> 16

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 16<400> 16

gcctagcaag atctcctgat cagagggaca agccgaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca agccgaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttgtaag ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgtaag ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt gattaatact attcggtcac cttatccgct caagagaccg agtagtatca 180tagtggcctt gattaatact attcggtcac cttatccgct caagagaccg agtagtatca 180

ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ccaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 17<210> 17

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 17<400> 17

gcctagcaag atctcctgat cagagggaca attagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca attagaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttatccg ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttatccg ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt aagatatact attcggtcac cttatccgct caagagaccg agtagtatgg 180tagtggcctt aagatatact attcggtcac cttatccgct caagagaccg agtagtatgg 180

aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 18<210> 18

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 18<400> 18

gcctagcaag atctcctgat cagagggaca acgagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca acgagaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttgagac ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttgagac ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt attgaatact attcggtcac cttatccgct caagagaccg agtagtatgg 180tagtggcctt attgaatact attcggtcac cttatccgct caagagaccg agtagtatgg 180

aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239aaaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 19<210> 19

<211> 239<211> 239

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 19<400> 19

gcctagcaag atctcctgat cagagggaca acaagaaagg tcattgcagc tcagacatct 60gcctagcaag atctcctgat cagagggaca acaagaaagg tcattgcagc tcagacatct 60

gcatagtctg agctgcagtg gccttttacc ttgaccttct gccttgaatt tacagtattt 120gcatagtctg agctgcagtg gccttttacc ttgaccttct gccttgaatt tacagtattt 120

tagtggcctt aagaaatact attcggtcac cttatccgct caagagaccg agtagtatga 180tagtggcctt aagaaatact attcggtcac cttatccgct caagagaccg agtagtatga 180

ctaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239ctaaggccac taaatctagg gtaccgcaga tactgtatcc gtaagagagg aatgtacac 239

<210> 20<210> 20

<211> 1470<211> 1470

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 20<400> 20

gtgaaaacaa accaacaacc aaaagcagta attgtcatat tcggtgcaac tggagattta 60gtgaaaacaa accaacaacc aaaagcagta attgtcatat tcggtgcaac tggagattta 60

gcaaaacgaa aattgtatcc gtctattcac cgtttatatc aaaacggaca aatcggagaa 120gcaaaacgaa aattgtatcc gtctattcac cgtttatatc aaaacggaca aatcggagaa 120

gagtttgcag tggtaggagt tggaagaaga ccttggtcta atgaggatct tcgccaaact 180gagtttgcag tggtaggagt tggaagaaga ccttggtcta atgaggatct tcgccaaact 180

gttaaaacat ccatttcctc atctgcagat aagcatatag atgatttcac gtctcatttt 240gttaaaacat ccatttcctc atctgcagat aagcatatag atgatttcac gtctcatttt 240

tactatcacc cgtttgacgt gacaaaccct ggttcttatc aagagctaaa cgtattgctt 300tactatcacc cgtttgacgt gacaaaccct ggttcttatc aagagctaaa cgtattgctt 300

aaccagctgg aagatacata tcaaattcct aacaacagaa tgttctactt ggcaatggct 360aaccagctgg aagatacata tcaaattcct aacaacagaa tgttctactt ggcaatggct 360

cctgaattct tcggaacgat tgcaaaaaca ttaaaatcag agggtgtaac agctacaacc 420cctgaattct tcggaacgat tgcaaaaaca ttaaaatcag agggtgtaac agctacaacc 420

ggctggtccc gccttgtcat cgaaaaaccg ttcggccatg atctgccaag cgcacaggca 480ggctggtccc gccttgtcat cgaaaaaccg ttcggccatg atctgccaag cgcacaggca 480

ttgaataaag aaatccgcga agcatttacg gaagatcaaa tttacagaat cgaccattat 540ttgaataaag aaatccgcga agcatttacg gaagatcaaa tttacagaat cgaccattat 540

ctaggcaaac aaatggttca gaacattgaa gtgattcgat ttgccaatgc gattttcgaa 600ctaggcaaac aaatggttca gaacattgaa gtgattcgat ttgccaatgc gattttcgaa 600

ccgctttgga caaaccgcta catttcaaac attcaaatca catctagcga atcactaggc 660ccgctttgga caaaccgcta catttcaaac attcaaatca catctagcga atcactaggc 660

gttgaagacc gcgcaagata ttacgaaaaa tcaggcgccc ttcgcgacat ggtgcaaaac 720gttgaagacc gcgcaagata ttacgaaaaa tcaggcgccc ttcgcgacat ggtgcaaaac 720

catattatgc agatggttgc ccttcttgca atggagccgc ctatcaaatt gaacacagaa 780catattatgc agatggttgc ccttcttgca atggagccgc ctatcaaatt gaacacagaa 780

gaaatccgca gcgagaaagt gaaggtgctg agagcactgc gtcctattgc aaaagacgaa 840gaaatccgca gcgagaaagt gaaggtgctg agagcactgc gtcctattgc aaaagacgaa 840

gtggatgaat actttgtgcg cggacaatat catgctggtg aaattgacgg tgtaccggtt 900gtggatgaat actttgtgcg cggacaatat catgctggtg aaattgacgg tgtaccggtt 900

cctgcttata cagatgaaga taatgtcgct cctgactcca atacagaaac ctttgttgcc 960cctgcttata cagatgaaga taatgtcgct cctgactcca atacagaaac ctttgttgcc 960

ggcaagctct tgatcgacaa cttcagatgg gctggtgttc cattctacat cagaaccgga 1020ggcaagctct tgatcgacaa cttcagatgg gctggtgttc cattctacat cagaaccgga 1020

aaacgaatga aagaaaagtc cacaaaaatt gtcgttcaat ttaaggacat tccgatgaac 1080aaacgaatga aagaaaagtc cacaaaaatt gtcgttcaat ttaaggacat tccgatgaac 1080

ctgtactacg gtaatgaaaa caacatgaat ccgaacttgc ttgtcattca tattcagcct 1140ctgtactacg gtaatgaaaa caacatgaat ccgaacttgc ttgtcattca tattcagcct 1140

gacgaaggca ttacgcttta cttaaatgct aaaaagcttg gcggagcagc acacgcacag 1200gacgaaggca ttacgcttta cttaaatgct aaaaagcttg gcggagcagc acacgcacag 1200

ccaatcaaac tcgattattg cagcaattgc aatgacgagt tgaacacccc tgaagcatat 1260ccaatcaaac tcgattattg cagcaattgc aatgacgagt tgaacacccc tgaagcatat 1260

gaaaaactaa ttcacgactg tcttcttggc gatgcaacaa actttgcaca ctgggatgaa 1320gaaaaactaa ttcacgactg tcttcttggc gatgcaacaa actttgcaca ctgggatgaa 1320

gttgcccttt cttggagctt tgtcgactct atttctgaaa catgggcagc aaacaaaacc 1380gttgcccttt cttggagctt tgtcgactct atttctgaaa catgggcagc aaacaaaacc 1380

ttatctccta actacgaatc aggctcaatg ggaccgaaag aatctgatga tcttttggtg 1440ttatctccta actacgaatc aggctcaatg ggaccgaaag aatctgatga tcttttggtg 1440

aaagacggct tacactggtg gaacatataa 1470aaagacggct tacactggtg gaacatataa 1470

<210> 21<210> 21

<211> 1197<211> 1197

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 21<400> 21

atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60atgtttcatc cgatagaaga agcactggac gctttaaaaa aaggcgaagt catcatcgtt 60

gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120gtagatgatg aagacagaga aaatgaagga gactttgtgg ctcttgccga gcatgcaacg 120

ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180ccggaagtca ttaactttat ggcgacacat gggagaggac tgatctgcac gccgctcagt 180

gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240gaggaaatcg cagacaggct tgatcttcac cctatggttg agcataatac agactctcac 240

cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300cacactgcat ttaccgtaag catagaccat cgtgaaacga agacaggtat cagcgctcaa 300

gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360gaaagatctt ttaccgttca agcattgctg gacagcaaat ccgtgccatc tgattttcag 360

cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420cgtccggggc acatttttcc actgattgcg aaaaaaggag gtgtcctgaa aagagcgggc 420

catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480catacagaag ctgctgttga tcttgctgaa gcttgcggat ctccaggagc cggcgtcatt 480

tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540tgtgaaatta tgaatgaaga cggaacgatg gcgagagtgc ctgagctcat tgaaattgcg 540

aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600aaaaagcatc aattaaaaat gatcaccatt aaggatttga ttcaataccg ttacaatctg 600

acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660acaacacttg tcgagcgtga agttgacatt acgctgccta ctgattttgg gacatttaag 660

gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720gtttatggat acacaaatga ggtagatgga aaagagcatg tcgcatttgt gatgggagat 720

gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780gtgccgttcg gagaagaacc ggtattggtc cgggtgcatt cagaatgtct cacaggtgac 780

gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840gtgtttggct ctcatcgctg tgattgcgga ccgcagctgc acgccgcgct gaaccaaatt 840

gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900gccgcagaag gccgtggagt gctcctgtac ttgcgccaag aaggacgagg catcggttta 900

atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960atcaataaat taaaagctta taagcttcag gaacaaggct atgacaccgt agaagccaat 960

gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020gaggcgcttg gattcttgcc ggatcttcgc aactatggca tcggagcaca aattttacgc 1020

gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080gacctcggtg tccggaatat gaagcttttg acgaataatc cgcgaaaaat cgcaggcctt 1080

gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140gaaggctacg gactcagtat ttcagaaaga gtgccgcttc aaatggaggc gaaagaacac 1140

aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaa 1197aataaaaaat atttgcaaac caaaatgaac aagctaggtc atttacttca tttctaa 1197

<210> 22<210> 22

<211> 450<211> 450

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 22<400> 22

atgaaagtag ccattgcatc ggatcatggc ggcgttcaca ttcgaaatga aatcaaagag 60atgaaagtag ccattgcatc ggatcatggc ggcgttcaca ttcgaaatga aatcaaagag 60

ttaatggacg aattgcaaat tgaatatatt gatatgggct gtgactgcgg cagcggctct 120ttaatggacg aattgcaaat tgaatatatt gatatgggct gtgactgcgg cagcggctct 120

gtcgattatc cggattatgc ttttccggtg gccgaaaaag tggttagcgg cgaagttgac 180gtcgattatc cggattatgc ttttccggtg gccgaaaaag tggttagcgg cgaagttgac 180

agaggcattt taatttgcgg gacaggcatc ggcatgagca tttccgctaa taaagtaaaa 240agaggcattt taatttgcgg gacaggcatc ggcatgagca tttccgctaa taaagtaaaa 240

gggattcgct gcgcgctggc gcacgatacc ttcagcgcga aggcgacgag ggagcataat 300gggattcgct gcgcgctggc gcacgatacc ttcagcgcga aggcgacgag ggagcataat 300

gacacaaaca tccttgcgat gggtgaacgg gtgatcggac ctggtttggc tcgggaaatc 360gacacaaaca tccttgcgat gggtgaacgg gtgatcggac ctggtttggc tcgggaaatc 360

gcaaaaatct ggctgactac tgagtttacc gggggaagac accaaacgcg tattggaaaa 420gcaaaaatct ggctgactac tgagtttacc gggggaagac accaaacgcg tattggaaaa 420

atctccgatt atgaagagaa aaacctgtag 450atctccgatt atgaagagaa aaacctgtag 450

Claims (10)

1. An element for regulating gene expression level, which is characterized by consisting of mRNA secondary structure, RNase E cleavage site and RBS sequence, wherein the nucleotide sequence of the element is shown as SEQ ID NO. 7.
2. A method for regulating the expression of genes, wherein the expression of two or more genes is regulated by using the element of claim 1;
the method comprises the following steps:
(1) connecting genes by using the element of claim 1, and integrating the genes on an expression vector to construct a recombinant plasmid;
(2) transferring the recombinant plasmid into a microbial cell integrated with an RNase E gene, and screening a positive transformant by using a resistance gene on an expression vector;
(3) extracting plasmid from the positive transformant, transferring the plasmid into an expression host cell to obtain a recombinant cell, culturing the recombinant cell, detecting fluorescence intensity, and screening the corresponding recombinant cell according to the positive correlation between the fluorescence intensity and the gene expression intensity.
3. The genetic engineering bacteria for producing the riboflavin is characterized in that the expression of zwf, ribBA and ywlf genes is regulated by utilizing the expression element, and the genome of the genetic engineering bacteria is also integrated with an RNase E gene derived from escherichia coli.
4. The genetically engineered bacterium of claim 3, wherein the zwf gene and the ribBA gene are linked by SEQ ID No.10, 12, 14, 16 or 18; the ribBA and ywlf genes are linked by SEQ ID NO.11, 13, 15, 17 or 18.
5. The genetically engineered bacterium of claim 3, wherein the genetically engineered bacterium uses plasmid pMA5-sat as an expression vector.
6. The genetically engineered bacterium of claim 3, wherein the genetically engineered bacterium uses Bacillus subtilis RF1 as a host cell.
7. A method for producing riboflavin by fermentation using the genetically engineered bacterium according to any one of claims 3 to 6.
8. The method of claim 7, wherein the method is performed byCulturing the genetically engineered bacteria to OD 600 Adding the 24-26 of the strain into a shake flask fermentation system in an amount of 1-5% (v/v), and fermenting at 37-45 ℃ and 150-250 rpm for not less than 24 h.
9. The method of claim 7, wherein the genetically engineered bacteria are cultured to OD 600 Adding the medium into a fed-batch fermentation system in an amount of 1-5% (v/v) at 20-25, adding a fed-batch culture medium, keeping the glucose concentration not lower than 5g/L, and fermenting at 37-45 ℃ and 400-800 rpm for not less than 24 h.
10. Use of the genetically engineered bacterium of any one of claims 3 to 6 for the production of riboflavin or derivatives thereof.
CN202210386334.1A 2022-04-13 2022-04-13 Method for efficiently synthesizing riboflavin based on balanced gene expression Pending CN114854780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210386334.1A CN114854780A (en) 2022-04-13 2022-04-13 Method for efficiently synthesizing riboflavin based on balanced gene expression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210386334.1A CN114854780A (en) 2022-04-13 2022-04-13 Method for efficiently synthesizing riboflavin based on balanced gene expression

Publications (1)

Publication Number Publication Date
CN114854780A true CN114854780A (en) 2022-08-05

Family

ID=82631687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210386334.1A Pending CN114854780A (en) 2022-04-13 2022-04-13 Method for efficiently synthesizing riboflavin based on balanced gene expression

Country Status (1)

Country Link
CN (1) CN114854780A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531745A (en) * 2014-12-09 2015-04-22 江南大学 Construction of novel plasmid with resistance and application of plasmid to riboflavin producing strain
CN107190004A (en) * 2016-03-14 2017-09-22 辛珉 A kind of mevalonate pathway of TIGR regulation and control
CN110591990A (en) * 2019-07-05 2019-12-20 中国科学院天津工业生物技术研究所 A high-yielding riboflavin engineering strain and its application
CN113073074A (en) * 2021-04-12 2021-07-06 江南大学 Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof
CN114181963A (en) * 2021-12-07 2022-03-15 上海市农业科学院 Method for improving riboflavin production capacity of escherichia coli engineering bacteria by DNA shuffling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531745A (en) * 2014-12-09 2015-04-22 江南大学 Construction of novel plasmid with resistance and application of plasmid to riboflavin producing strain
CN107190004A (en) * 2016-03-14 2017-09-22 辛珉 A kind of mevalonate pathway of TIGR regulation and control
CN110591990A (en) * 2019-07-05 2019-12-20 中国科学院天津工业生物技术研究所 A high-yielding riboflavin engineering strain and its application
CN113073074A (en) * 2021-04-12 2021-07-06 江南大学 Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof
CN114181963A (en) * 2021-12-07 2022-03-15 上海市农业科学院 Method for improving riboflavin production capacity of escherichia coli engineering bacteria by DNA shuffling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尤甲甲: "代谢工程改造枯草芽孢杆菌高效合成核黄素", 《中国博士学位论文全文数据库(电子期刊) 工程科技I辑》 *

Similar Documents

Publication Publication Date Title
CN115806926B (en) Gene engineering strain for producing pseudouridine and construction method and application thereof
CN112877270B (en) Genetic engineering bacterium for producing hydroxyl tetrahydropyrimidine and application thereof
CN111393515B (en) Ribonucleotide reductase transcription repressor mutant, mutant gene and its application in the preparation of vitamin B2
CN102165056A (en) Microorganism for producing L-amino acids and method for producing L-amino acids using same
CN113897382B (en) Coenzyme self-sufficient escherichia coli and construction method and application thereof
CN114015632A (en) L-threonine-producing genetically engineered bacteria and its construction method and application
CN116555145A (en) Recombinant Escherichia coli and its construction method and method for producing 2′-fucosyllactose
CN109666617B (en) L-homoserine production strain and construction method and application thereof
CN113583929B (en) Recombinant bacterium for producing purine nucleoside by fermentation and construction method and application thereof
CN115029289B (en) Genetically engineered bacterium for high-yield L-threonine and construction method and application thereof
Zhang et al. De novo 2′-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis
CN115873852A (en) Recombinant nucleic acid sequence, genetic engineering bacteria and method for producing 1,5-pentanediamine
CN114277046A (en) A three-gene tandem expression vector for synthesizing tetrahydropyrimidine and its application
CN102304490B (en) Recombinant bacterium for efficiently expressing orotate phosphoribosyl transferase and orotidylic acid decarboxylase and construction method thereof
CN116004489B (en) Recombinant escherichia coli for producing NMN and application thereof
CN115197954A (en) Recombinant DNA for fermentation production of 1, 5-pentanediamine, strain and application thereof
CN114854780A (en) Method for efficiently synthesizing riboflavin based on balanced gene expression
CN116478894B (en) Genetically engineered bacterium for improving sialyllactose yield and production method thereof
CN114410561B (en) A genetically engineered strain producing thymidine and its construction method and application
CN113604413B (en) A kind of recombinant bacterial strain and preparation method and application
CN113025550B (en) High yield of vitamin B2Bacillus subtilis engineering strain, construction and application thereof
CN116121160A (en) Genetically engineered bacteria overexpressing pyrB gene and method for producing L-arginine
CN114480461A (en) Recombinant microorganism for producing beta-nicotinamide mononucleotide and construction method and application thereof
CN110656074B (en) A kind of recombinant bacteria for synthesizing hypoxanthine and its construction method and application
CN112375725A (en) Metabolic engineering strain for producing vitamin B6 and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220805

RJ01 Rejection of invention patent application after publication