CN114853744A - 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法 - Google Patents

一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法 Download PDF

Info

Publication number
CN114853744A
CN114853744A CN202210560924.1A CN202210560924A CN114853744A CN 114853744 A CN114853744 A CN 114853744A CN 202210560924 A CN202210560924 A CN 202210560924A CN 114853744 A CN114853744 A CN 114853744A
Authority
CN
China
Prior art keywords
formula
heterocycle
substituted
catalysis
conjugated olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210560924.1A
Other languages
English (en)
Other versions
CN114853744B (zh
Inventor
毛斌
李蒙
王建飞
陈巍
俞传明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210560924.1A priority Critical patent/CN114853744B/zh
Publication of CN114853744A publication Critical patent/CN114853744A/zh
Application granted granted Critical
Publication of CN114853744B publication Critical patent/CN114853744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,它以手性磷酸为催化剂,在氧化剂、添加剂和有机溶剂存在下,如式I所示的含杂环共轭烯烃化合物在手性磷酸催化剂的催化作用下,被氧化剂氧化为如式II所示的含杂环手性环氧化合物,反应式如下:

Description

一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法
技术领域
本发明涉及一种有机小分子催化含杂环共轭烯烃的不对称环氧化反应方法。
背景技术
带有立体中心的芳香N-杂环结构片段普遍存在于天然产物和生物活性化合物中[Bagher Eftekhari-Sis.;Maryam,Zirak.;Ali Akbari.Chem.Rev.2013,113,2958–3043.],其不对称构建在合成界具有重要意义。前手性的杂环烯烃的直接对映选择性官能团化在原子经济性方面是一种有吸引力的策略[Daniel Best.;Hon WaiLam.J.Org.Chem.2014,79,831–845.]。
手性环氧化合物不仅是用途极为广泛的合成中间体,其结构单元也存在于大量的天然产物、药物和生物活性分子中[Jiayun He.;Jesse Ling.;PaulineChiu.Chem.Rev.2014,114,8037-8128.]。烯烃的不对称环氧化反应是合成手性环氧化物最直接有效的方法之一。金属催化烯烃的不对称环氧化取得了很大的成功,过渡金属催化的氧化体系实现了对烯丙醇[Giorgio De Faveri.;Gennadiy Ilyashenko.;MichaelWatkinson.Chem.Soc.Rev.2011,40,1722–1760.]含杂原子烯烃[Carlota Claraso.;LaiaVicens.;Alfonso Polo.;Miquel Costas.Org.Lett.2019,21,2430-2435.]、非官能团化烯烃[Konstantin P.Bryliakov.Chem.Rev.2017,117,11406-11459.]以及缺电子烯烃[OlafCusso.;Marco Cianfanelli.;Xavi Ribas.;Robertus J.M.Klein Gebbink.;MiquelCostas.J.Am.Chem.Soc.2016,138,2732-2738]的不对称环氧化反应。除此,烯烃的不对称环氧化反应利用有机催化剂也能很好的实现,1999年,Yian Shi等以果糖衍生的手性酮催化H2O2对某些烯烃进行不对称环氧化反应,ee值达73%[J.DavidWarren.;YianShi.J.Org.Chem.1999,64,7675–7677];1998年,Page等以手性亚胺盐和过氧单磺酸钾实现对某些烯烃的环氧化,ee值达73%[Philip C.Bulman Page.;Gerasimos A.Rassias.;Donald Bethell.;Mark B.Schilling.J.Org.Chem.1998,63,2774–2777];2014年,ScottJ.Miller等报道了多肽催化剂和过氧化氢对烯丙醇类化合物的区域选择性(>100:1:1)和对映选择性环氧化(86%ee)[Nadia C.Abascal.;Phillip A.Lichtor.;MichaelW.Giuliano.;Scott J.Miller.Chem.Sci.,2014,5,4504–4511];2008年,List等报道了手性离子对导向烯醛的不对称环氧化反应,TBHP作为氧化剂,其中含有手性磷酸盐的胺盐为最佳催化剂,ee值达96%[Manuel Mahlau.;Prof.Dr.BenjaminList.Angew.Chem.Int.Ed.2013,52,518–533.];2008年,List等使用包含手性二胺和手性或非手性酸的离子对催化剂,过氧化氢为氧化剂实现了对环烯酮的不对称环氧化(95:5e.r.)[Xingwang Wang.;Corinna M.Reisinger.;Benjamin List.J.Am.Chem.Soc.2008,130,6070–6071];2012年,Shibata等发现甲基肼、碱和金鸡纳碱的相转移催化剂组成的有机催化体系可以实现具有β-三氟甲基-β,β双取代烯酮的不对称氧化反应,ee值达99%[Hiroyuki Kawai.;Satoshi Okusu.;Zhe Yuan.;Etsuko Tokunaga.;Akihito Yamano.;Motoo Shiro.;Norio Shibata.Angew.Chem.Int.Ed.2013,52,2221–2225];2018年,Nagasawad等开发了一种胍-双脲双功能的肽类有机催化剂,实现了2-取代的1,4-萘醌与TBHP的对映选择性亲核环氧化,相应的环氧化合物以85:15-95:5er获得[MasakiKawaguchi.;Katsuhiro Nakano.;Keisuke Hosoya.;Tatsuya Orihara.;MasahiroYamanaka.;Minami Odagi.;Kazuo Nagasawa.Org.Lett.2018,20,2811-2815];2005年,
Figure BDA0003656549930000021
报道了第一个手性脯氨酸衍生的催化剂催化的烯基醛的不对称环氧化反应,对映体过量值达到96%[Mauro Marigo.;Johan Franze′n.;Thomas B.Poulsen.;Wei Zhuang.;Karl Anker
Figure BDA0003656549930000022
J.Am.Chem.Soc.2005,127,6964-6965.];2015年,AlessandraLattanz等报道了由多功能金鸡纳碱硫脲/CHP催化体系,实现了亚烷基丙二腈的首次不对称氧化[Sara Meninno.;Andreu Vidal-Albalat.;Alessandra Lattanzi.Org.Lett.2015,17,4348-4351.];2017年,Alessandra Lattanzi等以手性胺-硫脲作为催化剂,TBHP为氧化剂,实现了β,β’-取代的不饱和吡唑啉酮的非对映选择性和对映选择性环氧化[SaraMeninno.;Angelo Roselli.;Amedeo Capobianco.;Jacob Overgaard.;AlessandraLattanzi.Org.Lett.2017,19,5030-5033]。
综上文献调研发现,目前烯烃的不对称环氧化反应可通过过渡金属催化或者有机催化实现;高效的有机催化剂为烯烃的不对称环氧化提供了多种可能,主要包括α,β-不饱和羰基化合物、硝基烯烃、丙烯腈的不对称氧化,所适用的底物范围有限并且有机催化剂通常需要较高的催化剂负载量(5-20mol%)。此外,含氮杂芳基烯烃不对称环氧化反应进展缓慢,尽管该类产物在手性药物中间体的合成中具有潜在的应用前景。开发一种条件温和、催化体系适用范围广泛、廉价环保的不对称有机催化方法,实现各类芳杂环取代烯烃的高效对映选择性环氧化是本发明着力解决的技术问题。
发明内容
针对现有技术存在的上述技术问题,本发明的目的在于提供一种有机小分子催化的含氮杂芳环共轭烯烃的不对称环氧化方法,本发明利用过氧化氢为氧化剂,以手性磷酸为催化剂,以无水硫酸镁为添加剂,在较简单的条件下对含杂环共轭烯烃进行不对称催化环氧化反应,得到高光学活性和产率的手性环氧化合物。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化反应方法,其特征在于以手性磷酸为催化剂,在有机溶剂、氧化剂及添加剂存在下,如式I所示的含杂环共轭烯烃化合物在手性磷酸催化剂的催化作用下,被氧化剂氧化为如式II所示的含杂环手性环氧化合物,反应式如下:
Figure BDA0003656549930000031
X选自下列之一:NTs、NBoc、S、O;优选为NTs;
Y选自下列之一:C、N;
Z选自下列之一:C、N;
R1选自下列之一:氢原子、C1~C6烷烃基或取代烷烃基、C5~C6烯基、芳基或杂芳基;
R2选自下列之一:氢原子、C1~C6脂肪烃基或取代脂肪烃基、C1-C6烷氧基、C1-C6烯基、取代炔基、芳基或杂芳基、取代氨基、酯基、硝基、氰基、卤素;
R3选自下列之一:氢原子、甲基、骈环杂环基。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于所述R1中,C1~C6烷烃基或取代烷烃基为甲基、正丙基、异丙基、正己基、氯丙基、氯丁基、取代甲基或取代乙基,取代甲基的取代基为NPhth或OBn,取代乙基的取代基为OTBS、苯基或酯基;C5~C6烯基为戊烯基;芳基为苯基或对氯苯基;
所述R2中,C1~C6脂肪烃基或取代脂肪烃基为甲基或三氟甲基,C1-C6烷氧基为甲氧基,C1-C6烯基为戊烯基,TIPS炔基为TIPS取代的乙炔基,芳基或杂芳基为苯基或N-Boc-2-吡咯基,取代氨基为Ts保护的氨基,酯基为甲酸乙酯,卤素为F、Cl或Br;
所述R3中,骈环杂环基为骈环己基。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于式I所示的含杂环共轭烯烃化合物选自下列之一:
Figure BDA0003656549930000041
Figure BDA0003656549930000051
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于氧化剂为TBHP、m-CPBA、CHP或H2O2,优选为H2O2;氧化剂与式I所示化合物的物质的量比为1.2~2.5:1.0,优选为2.0:1.0。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于反应温度为0℃~50℃,优选为25℃~35℃;所述有机溶剂为苯、甲苯、三氟甲苯、氯苯、邻二甲苯、间二甲苯、对二甲苯、均三甲苯、二氯甲烷、氯仿、四氯化碳、正己烷、乙腈、甲基叔丁基醚、乙酸乙酯中的至少一种,优选为甲苯、乙酸乙酯或者甲苯-乙酸乙酯混合溶剂,甲苯-乙酸乙酯混合溶剂中甲苯与乙酸乙酯的体积比是1~3:1,优选为2:1。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于催化剂与式I所示化合物的物质的量比为5~20:100,优选为10:100;式I所示化合物的物质的量与有机溶剂的体积之比为0.025~0.5:1,优选为0.1:1,物质的量单位为mmol,体积单位为mL。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于所述添加剂为无水硫酸钠或无水硫酸镁,优选为无水硫酸镁;所述无水硫酸镁的质量与式I所示化合物的物质的量之比为0.3~2.4:1,优选为1.2:1,质量的单位为g,物质的量单位为mmol。
所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于手性磷酸催化剂选自下列之一:
Figure BDA0003656549930000071
与现有技术相比,本发明具有如下有益效果:
(1)本发明在一定程度上突破了现有技术的局限,相对于以过渡金属、手性离子对或相转移催化剂组成的有机催化体系,本发明单独利用手性磷酸作为催化剂,采用无水硫酸镁为添加剂,通过氧化可以实现含杂环手性环氧化合物高对映选择性的制备,避免了过渡金属以及其他碱等化学物质的使用。
(2)本发明采用过氧化氢为氧化剂,价格低廉,唯一副反应是水,环境友好,原子经济性好。其反应条件简单温和,具有经济、环保的优点,顺应绿色化学发展的大趋势。
(3)本发明扩大了烯烃的范围,报道了第一个手性磷酸催化的杂环烯烃对映选择性环氧化反应,底物范围可以进一步扩展到苯并咪唑、苯并噻唑、苯并恶唑取代的多种烯烃。
(4)本发明报道了一种高对映选择性合成含杂环手性环氧化合物方法,反应步骤简便,只需一步反应即可得到高光学活性的杂环手性环氧化合物,其经过开环或官能团化反应生成一系列生物活性化合物和医药的重要中间体,具有较好的应用前景和社会价值。总而言之,本发明在原子经济性、步骤经济性、高效性、绿色性和多样性导向合成等方面具有较大的优势。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
分析仪器:使用海能技术MP430视频熔点仪测定熔点。包括1H NMR,13C NMR光谱在内的NMR数据是在Bruker 400MHz或600MHz仪器上记录的。所有的13C NMR光谱都是宽带质子去耦的。1H NMR相对于溶剂的残留信号以ppm为单位报道化学位移。使用ESI或EI作为离子源,在Agilent 6210 TOF LC/MS上记录了高分辨率质(HRMS)。使用AUTOPOLV自动旋光仪测定旋光度。通过使用配备有Daicel Chiralpak IA,IB,IC,ID,IE,IF,IG,IJ色谱柱的Agilent 1100 HPLC分析确定对映体过量值(ee值)。
本发明催化剂中,除手性磷酸催化剂G、H、I以外,其余的催化剂A1~F9以及J~M均为现有技术,详见参考文献[1-19]:
文献[1]:Jie Yang See.,Hui Yang.,Yu Zhao.,Ming Wah Wong.,et alDesymmetrizing Enantio-and Diastereoselective Selenoetherification throughSupramolecular Catalysis[J].ACS Catal.2018,8(2):850–858.
文献[2]:Liangliang Zou.,Jiaying Huang.,Na Liao.,Yan Liu.,et alAsymmetric Three-Component Reaction of 2-Alkynylbenzaldehydes,Amines,andDimethylphosphonate[J].Org.Lett.2020,22(17):6932–6937.
文献[3]:Prof.Weiqing Xie.,Guangde Jiang.,Huan Liu.,Jiadong Hu et alHighly Enantioselective Bromocyclization of Tryptamines and Its Applicationin the Synthesis of(-)-Chimonanthine[J].Angew.Chem.Int.Ed.2013,52(49):12924–12927.
文献[4]:Manabu Hatano.,Takumi Ikeno.,Tokihiko Matsumura.,ShinobuTorii.,et al Chiral Lithium Salts of Phosphoric Acids as Lewis Acid–BaseConjugate Catalysts for the Enantioselective Cyanosilylation of Ketones[J].Adv.Synth.Catal.2008,350(11):1776–1780.
文献[5]:Jie Yang See.,Hui Yang.,Yu Zhao.,Ming Wah Wong.,et alDesymmetrizing Enantio-and Diastereoselective Selenoetherification throughSupramolecular Catalysis[J].ACS Catal.2018,8(2):850–858.
文献[6]:Ching-Nung Chen.,Wei-Min Cheng.,Jian-Kai Wang.,Tzu-HsuanChao.,et al Gold-Catalyzed[3+2]-Annulations ofα-Aryl Diazoketones with theTetrasubstitutedAlkenes ofCyclopentadienes:High Stereoselectivity andEnantioselectivity[J].Angew.Chem.Int.Ed.2021,60(9):4479-4484.
文献[7]:Lei Yang.,Romain Melot.,Markus Neuburger.,Olivier Baudoin.,Palladium(0)-catalyzed asymmetric C(sp3)–H arylation using a chiral binol-derived phosphate and an achiral ligand[J].Chem.Sci.2017,8(2):1344–1349.
文献[8]:南发俊,谢欣,肖瑜峰,张庆等,联苯磷酸酯类化合物作为GPR84拮抗剂的应用[P].CN,2020007342,2020.01.09
文献[9]:Scott E.Denmark.,Matthew T.Burk.,Development and Mechanism ofan Enantioselective Bromocycloetherification Reaction via Lewis Base/Chiral
Figure BDA0003656549930000091
Acid Cooperative Catalysis[J].Chirality 2014,26(7):344-355.
文献[10]:Fedor Romanov-Michailidis.,Maria Romanova-Michaelides.,Marion Pupier.,Alexandre Alexakis.,Enantioselective Halogenative Semi-PinacolRearrangement:Extension ofSubstrate Scope and Mechanistic Investigations[J].Chem.Eur.J.2015,21(14):5561–5583.
文献[11]:Guoqiang Yang.,Jiaoting Pan.,Ya-Ming Ke.,Yongbing Liu.,et alTandem Catalytic Indolization/Enantioconvergent Substitution ofAlcohols byBorrowing Hydrogen to Access Tricyclic Indoles[J].Angew.Chem.Int.Ed.2021,60(38):20689-20694.
文献[12]:Kodai Saito.,Takahiko Akiyama.,Chiral Phosphoric AcidCatalyzed Kinetic Resolution of Indolines Based on a Self-Redox Reaction[J].Angew.Chem.Int.Ed.2016,55(9):3148-3152.
文献[13]:Kosaku Horiguchi.,Eri Yamamoto.,Kodai Saito,Prof.,MasahiroYamanaka.,et al Dynamic Kinetic Resolution Approach for the AsymmetricSynthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by ChiralPhosphoric Acid[J].Chem.Eur.J.2016,22(24):8078-8083.
文献[14]:Sri Krishna Nimmagadda.,Mingyu Liu.,MalkanthiK.Karunananda.,De-Wei Gao.,Catalytic,et al Enantioselectiveα-AlkylationofAzlactones with Nonconjugated Alkenes by DirectedNucleopalladation[J].Angew.Chem.Int.Ed.2019,58(12):3923-3927.
文献[15]:毛斌,杜志乾,孟鑫,高庆等,一种手性磷酸催化的芳基烯丙基叔醇动力学拆分方法[P].CN,113979975,2022.01.28
文献[16]:Chenxiao Qian.,Pengfei Li.,Jianwei Sun.,CatalyticEnantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement ofIndoles[J].Angew.Chem.Int.Ed.2021,60(11):5871-5875.
文献[17]:Magnus Rueping.,Ming-Yuan Lin.,Catalytic Asymmetric Mannich–Ketalization Reaction:Highly Enantioselective Synthesis ofAminobenzopyrans[J].Chem.Eur.J.2010,16(14):4169-4172.
文献[18]:Liman Kong.,Xiaoyu Hana.,Peng Jiao.,Catalytic asymmetricDiels–Alder reactions involving aryl vinyl ketones[J].Chem.Commun.2014,50(91):14113-14116.
文献[19]:Ilija
Figure BDA0003656549930000101
Benjamin List.,Asymmetric spiroacetalizationcatalysed by confined
Figure BDA0003656549930000102
acids[J].Nature 2012,483(7389):315-319.
手性磷酸催化剂G是本申请自制,其合成路线如下:
Figure BDA0003656549930000103
手性磷酸催化剂G的1H NMR和13C NMR检测数据如下:
1H NMR(600MHz,CDCl3)δ8.42(s,2H),8.20(d,J=1.2Hz,2H),8.08–8.01(m,2H),7.94(s,2H),7.84(d,J=8.4Hz,2H),7.77–7.72(m,4H),7.69(ddd,J=8.0,2.4,1.4Hz,8H),7.53(dd,J=8.6,1.4Hz,2H),7.49–7.34(m,18H),7.28(d,J=1.8Hz,2H),7.15(d,J=1.8Hz,2H),6.79(t,J=7.6Hz,2H),6.76–6.71(m,2H),2.88(p,J=6.8Hz,2H),2.69(p,J=6.8Hz,2H),1.24(s,18H),1.13(d,J=6.8Hz,6H),1.01(d,J=6.8Hz,6H),0.94(d,J=6.8Hz,6H),0.72(d,J=6.8Hz,6H).
13C NMR(150MHz,CDCl3)δ148.6,147.9,146.5,138.5,138.0,137.8,136.7,136.7,134.6,134.6,133.6,133.1,133.0,132.9,132.1,131.5,131.4,130.6,130.3,130.1,129.5,128.5,123.0,127.9,127.9,127.2,126.8,126.4,125.8,125.7,125.2,125.0,122.2,31.4,30.9,29.0,26.3,25.3,23.7,23.1,19.0.HRMS(ESI)m/z calcd.forC104H96O4PSi2[M-H]-:1495.6590;found 1495.6663.
手性磷酸催化剂H是本申请自制,其合成路线如下:
Figure BDA0003656549930000111
手性磷酸催化剂H的1H NMR检测数据如下:
1HNMR(400MHz,CDCl3)δ8.12(s,2H),8.06(s,2H),7.85(s,2H),7.81(d,J=8.4Hz,2H),7.77–7.69(m,4H),7.68–7.60(m,8H),7.60(d,J=8.7Hz,2H),7.53(d,J=8.6Hz,2H),7.48–7.31(m,16H),7.24(d,J=8.8Hz,2H),7.06–6.86(m,4H),1.25(s,18H).
13C NMR(100MHz,CDCl3)δ138.2,136.7,136.7,134.6,134.5,134.2,133.4,133.1,133.0,131.4,131.3,131.0,130.8,130.4,129.5,128.6,128.0,127.9,127.8,127.8,127.4,126.4,126.3,126.0,125.1,125.0,122.4,29.1,19.1.HRMS(ESI)m/z calcd.forC80H64O4PSi2[M-H]-:1175.4086;found 1175.4122.
手性磷酸催化剂I是本申请自制,其合成路线如下:
Figure BDA0003656549930000121
手性磷酸催化剂I的1H NMR和13C NMR检测数据如下:
1H NMR(400MHz,CDCl3)δ8.15(s,2H),7.94(s,2H),7.82–7.72(m,6H),7.68(ddt,J=5.6,3.9,1.6Hz,8H),7.57(ddd,J=7.0,4.3,2.3Hz,4H),7.52(dd,J=7.3,1.6Hz,2H),7.52–7.30(m,22H),7.24–7.16(m,4H),7.14–7.01(m,4H),1.29(s,18H).
13C NMR(150MHz,CDCl3)δ147.1,147.0,138.9,138.2,138.0,136.7,136.7,134.7,134.5,134.4,133.5,133.2,133.1,131.6,131.4,131.2,131.1,130.9,130.4,130.2,129.8,129.7,129.5,128.5,128.3,127.9,127.5,127.2,126.6,126.3,126.2,125.8,125.0,124.7,124.5,122.3,29.1,19.1.HRMS(ESI)m/z calcd.for C92H72O4PSi2[M-H]-:1327.4712;found 1327.4715.
本发明以化合物I-1为底物,进行了大量手性磷酸催化剂的筛选。
Figure BDA0003656549930000122
实验步骤:在N2保护下,将反应体系密闭进行无水无氧处理,并调整温度为25℃,在10mL的反应瓶中依次加入化合物I-1(0.1mmol,1.0equiv)、手性催化剂A1-K(0.01mmol,0.1equiv)、添加剂无水硫酸镁(120mg)、溶剂为甲苯(1mL,0.1M),最后通过微量进样器逐滴加入H2O2(30%水溶液,0.2mmol,2.0equiv),进行反应。通过TLC分析监测反应直至反应完成后,将反应体系通过硅藻土过滤并浓缩,所得浓缩粗产品用柱层析分离纯化,洗脱剂为石油醚/乙酸乙酯=10/1(v/v),得到目标化合物II-1为白色固体。按照上述操作方式,手性催化剂分别选用A1-K时相对应的反应时间、目标化合物II-1的收率及ee值分别如下所示:
Figure BDA0003656549930000131
通过对比和筛选,最终确定(S)-J作为最优催化剂参与不对称环氧化反应。
实施例1:产物II-1的合成
Figure BDA0003656549930000141
实验步骤:在N2保护下,将反应体系密闭进行无水无氧处理,并调整温度为25℃,在10mL的反应瓶中依次加入化合物I-1(0.1mmol,1.0equiv)、手性螺环催化剂(S)-J(0.01mmol,0.1equiv)、添加剂无水硫酸镁(120mg)、溶剂为甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.033M),最后通过微量进样器逐滴加入H2O2(30%水溶液,0.2mmol,2.0equiv),进行反应。通过TLC分析监测反应直至反应完成后,将反应体系通过硅藻土过滤并浓缩,所得浓缩粗产品用柱层析分离纯化,洗脱剂为石油醚/乙酸乙酯=10/1(v/v),得到目标化合物II-1为白色固体,反应时间12h,收率94%,ee值为90%。[α]D 20=+125.6(c 1.0,CHCl3)。1HNMR(400MHz,CDCl3)δ8.00(dd,J=7.8,1.2Hz,1H),7.92(d,J=8.4Hz,2H),7.74–7.62(m,1H),7.43–7.26(m,4H),4.42(d,J=2.0Hz,1H),3.62(qd,J=5.2,2.0Hz,1H),2.38(s,3H),1.58(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ150.3,146.4,141.8,135.0,133.0,130.4,127.3,125.8,125.2,120.9,113.5,77.5,77.2,76.8,56.8,52.8,21.8,17.4.HRMS(ESI)m/zcalcd.for C17H17N2O3S[M+H]+:329.0954;found 329.0941.
对照例1:产物II-1的合成
将实施例1中的手性联萘酚催化剂(S)-J替换为同等摩尔量的手性联萘酚催化剂(R)-A1,混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为甲苯(1mL,0.1M),不添加无水硫酸镁,其余操作步骤同实施例1,最终得到相应的化合物II-1。
目标化合物II-1为白色固体,反应时间22h,收率84%,ee值为38%。
对照例2:产物II-1的合成
将实施例1中的H2O2替换为同等摩尔量的TBHP,手性联萘酚催化剂(S)-J替换为同等摩尔量的手性联萘酚催化剂(R)-A1,混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为甲苯(1mL,0.1M),不添加无水硫酸镁,其余操作步骤同实施例1,最终得到相应的化合物II-1。
目标化合物II-1为白色固体,反应时间36h,收率70%,ee值为44%。
对照例3:产物II-1的合成
将实施例1中的H2O2替换为同等摩尔量的m-CPBA,手性联萘酚催化剂(S)-J替换为同等摩尔量的手性联萘酚催化剂(R)-A1,混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为甲苯(1mL,0.1M),不添加无水硫酸镁,其余操作步骤同实施例1,最终得到相应的化合物II-1。
目标化合物II-1为白色固体,反应时间24h,收率81%,ee值为3%。
对照例4:产物II-1的合成
将实施例1中的H2O2替换为同等摩尔量的CHP,手性联萘酚催化剂(S)-J替换为同等摩尔量的手性联萘酚催化剂(R)-A1,混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为甲苯(1mL,0.1M),其余操作步骤同实施例1,最终得到相应的化合物II-1。
目标化合物II-1为白色固体,反应时间36h,收率46%,ee值为11%。
对照例5:产物II-1的合成
将实施例1中的无水硫酸镁替换为同等质量的无水硫酸钠,手性联萘酚催化剂(S)-J替换为同等摩尔量的手性联萘酚催化剂(R)-A1,混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为甲苯(1mL,0.1M),其余操作步骤同实施例1,最终得到相应的化合物II-1。
目标化合物II-1为白色固体,反应时间24h,收率57%,ee值为41%。
实施例2:产物II-2的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-2所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-2。
Figure BDA0003656549930000151
得到产物II-2为黄色固体,反应时间24h,产率47%,ee值为82%。[α]D 20=–11.2(c1.0,CHCl3)。1H NMR(400MHz,CDCl3)δ7.97–7.84(m,1H),7.76–7.65(m,1H),7.37–7.28(m,2H),4.35(d,J=2.0Hz,1H),3.50(qd,J=5.2,2.0Hz,1H),1.72(s,9H),1.54(d,J=5.2Hz,3H).13C NMR(100MHz,CDCl3)δ151.9,148.7,142.0,132.9,125.2,124.6,120.5,114.8,86.3,57.1,54.2,28.2,17.7.HRMS(ESI)m/z calcd.for C15H18N2NaO3[M+Na]+:297.1210;found 297.1210.
实施例3:II-3的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-3所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-3。
Figure BDA0003656549930000161
得到产物II-3为白色固体,反应时间10h,产率82%,ee值为94%。[α]D 20=–201.7(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ8.13(d,J=1.4Hz,1H),7.99–7.86(m,2H),7.75(d,J=1.2Hz,1H),7.35(d,J=8.2Hz,2H),4.36(t,J=1.6Hz,1H),3.64–3.52(m,1H),2.41(s,3H),1.57(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ152.2,147.1,141.2,134.5,132.1,130.7,130.1,129.6,127.4,122.0,115.0,57.0,52.4,21.0,17.4.HRMS(ESI)m/zcalcd.forC17H15Cl2N2O3S[M+H]+:397.0175;found 397.0189.
实施例4:产物II-4的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-4所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-4。
Figure BDA0003656549930000162
得到产物II-4为白色固体,反应时间16h,产率95%,ee值为88%。[α]D 20=-192.7(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ7.93–7.87(m,2H),7.76(s,1H),7.41(s,1H),7.29(d,J=8.0Hz,2H),4.38(s,1H),3.64–3.57(m,1H),2.39(s,3H),2.37(s,3H),2.31(s,3H),1.56(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ149.4,146.2,140.3,135.2,134.3,131.5,130.3,127.2,120.9,113.7,56.7,52.9,21.8,20.9,20.3,17.4.HRMS(ESI)m/zcalcd.forC19H21N2O3S[M+H]+:357.1267;found 357.1278.
实施例5:产物II-5的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-5所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-5。
Figure BDA0003656549930000171
得到产物II-5为无色油状液体,反应时间10h,产率75%,ee值为91%。[α]D 20=–132.3(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ8.18(d,J=1.8Hz,1H),7.91(d,J=8.6Hz,2H),7.53(d,J=8.6Hz,1H),7.45(dd,J=8.6,1.8Hz,1H),7.34(d,J=8.2Hz,2H),4.37(d,J=2.0Hz,1H),3.59(qd,J=5.2,2.0Hz,1H),2.40(s,3H),1.56(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ150.9,146.8,140.8,134.7,134.0,130.6,128.7,127.4,122.0,119.3,116.6,56.9,52.6,21.9,17.4.HRMS(ESI)m/z calcd.for C17H15BrN2NaO3S[M+Na]+:428.9879;found 428.9879.
实施例6:产物II-6的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-6所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-6。
Figure BDA0003656549930000172
得到产物II-6为无色油状液体,反应时间8h,产率84%,ee值为92%。[α]D 20=–135.1(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ7.88(dd,J=10.2,8.6Hz,3H),7.81(d,J=2.0Hz,1H),7.49(dd,J=8.8,2.0Hz,1H),7.31(d,J=8.2Hz,2H),4.39(d,J=2.0Hz,1H),3.59(qd,J=5.2,2.0Hz,1H),2.39(s,3H),1.57(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ151.5,146.8,143.1,134.7,132.1,130.5,128.8,127.3,123.8,118.3,114.7,57.0,52.6,21.9,17.4.HRMS(ESI)m/z calcd.for C17H15BrN2NaO3S[M+Na]+:428.9879;found428.9891.
实施例7:产物II-7的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-7所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-7。
Figure BDA0003656549930000181
得到产物II-7为无色油状液体,反应时间20h,产率78%,ee值为90%。[α]D 20=–95.7(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ7.89(d,J=8.4Hz,2H),7.87(d,J=9.0Hz,1H),7.29(d,J=8.2Hz,2H),7.13(d,J=2.6Hz,1H),6.99(dd,J=9.0,2.6Hz,1H),4.39(d,J=2.0Hz,1H),3.80(s,3H),3.61(qd,J=5.2,2.0Hz,1H),2.38(s,3H),1.56(d,J=5.2Hz,3H).13C NMR(150MHz,CDCl3)δ157.9,150.8,146.3,143.0,135.0,130.4,127.2,115.1,114.0,103.2,56.8,55.8,52.7,21.8,17.5.HRMS(ESI)m/z calcd.for C18H18N2NaO4S[M+Na]+:381.0879;found 381.0894.
实施例8:产物II-8的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-8所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-8。
Figure BDA0003656549930000182
得到产物II-8为无色油状液体,反应时间36h,产率71%,ee值为75%。[α]D20=–68.9(c 1.0,CHCl3)。1H NMR(400MHz,CDCl3)δ7.92(d,J=8.4Hz,2H),7.82(d,J=8.4Hz,1H),7.32–7.22(m,3H),7.12(d,J=7.4Hz,1H),4.43(d,J=2.0Hz,1H),3.68(qd,J=5.2,2.0Hz,1H),2.55(s,3H),2.36(s,3H),1.58(d,J=5.2Hz,3H).13C NMR(100MHz,CDCl3)δ149.3,146.2,141.0,135.0,132.7,131.1,130.3,127.3,125.6,125.6,110.9,56.6,52.9,21.8,17.4,16.7.HRMS(ESI)m/z calcd.for C18H18N2NaO3S[M+Na]+:365.0930;found365.0930.
实施例9:产物II-9的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-9所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-9。
Figure BDA0003656549930000191
得到产物II-9为无色油状液体,反应时间18h,产率78%,ee值为88%。[α]D 20=–299.8(c 1.0,CHCl3)。1H NMR(600MHz,CDCl3)δ7.94–7.88(m,3H),7.57(d,J=8.4Hz,1H),7.37(dd,J=8.4,1.6Hz,1H),7.30(d,J=8.2Hz,2H),6.50(d,J=15.8Hz,1H),6.30(dt,J=15.8,6.8Hz,1H),4.39(d,J=2.0Hz,1H),3.61(qd,J=5.2,2.0Hz,1H),2.38(s,3H),2.23(qd,J=7.2,1.6Hz,2H),1.56(d,J=5.2Hz,3H),1.55–1.50(m,2H),0.98(t,J=7.4Hz,3H).13C NMR(150MHz,CDCl3)δ150.2,146.4,140.9,136.3,135.1,133.6,132.1,130.4,129.8,127.3,123.3,120.7,110.8,56.7,52.8,35.3,22.6,21.8,17.4,13.9.HRMS(ESI)m/zcalcd.for C22H25N2O3S[M+H]+:397.1580;found 397.1593.
实施例10:产物II-10的合成
将实施例1中的如式I-1所示的化合物替换为同等摩尔量的如式I-10所示化合物,其余操作步骤同实施例1,最终得到相应的化合物II-10。
Figure BDA0003656549930000192
得到产物II-10为无色油状液体,反应时间24h,产率85%,ee值为95%。[α]D 20=–153.4(c 1.0,CHCl3)。1H NMR(400MHz,CDCl3)δ7.99(dd,J=7.8,1.2Hz,1H),7.95–7.88(m,2H),7.72–7.65(m,1H),7.42–7.32(m,2H),7.30(d,J=8.4Hz,2H),5.83(ddt,J=16.8,10.2,6.6Hz,1H),5.06(dq,J=17.2,1.6Hz,1H),5.00(ddt,J=10.2,2.2,1.2Hz,1H),4.47(d,J=2.0Hz,1H),3.57(ddd,J=6.6,4.4,2.0Hz,1H),2.38(s,3H),2.19(q,J=7.2Hz,2H),1.99–1.82(m,1H),1.81–1.59(m,3H).13C NMR(100MHz,CDCl3)δ150.4,146.4,141.8,138.2,134.9,133.0,130.4,127.3,125.7,125.2,120.9,115.3,113.5,60.8,51.8,33.5,31.2,25.2,21.8.HRMS(ESI)m/z calcd.for C21H22N2NaO3S[M+Na]+:405.1243;found 405.1251.
实施例11-46
本发明具有广泛的底物实用性,按照实施例1中的反应条件,多种底物能参与该反应,高收率、高立体选择性地获得含杂环手性环氧化合物。
实施例11-46中未作特殊说明的实验方法重复实施例1,不同之处仅在于“将实施例1中的如式I-1所示的化合物替换为同等摩尔量的式I所示的含杂环共轭烯烃化合物”,其余操作步骤同实施例1,最终得到相应的式II所示的含杂环手性环氧化合物,反应式如下:
Figure BDA0003656549930000201
上述反应式中,式II结构式中的取代基R1、R2、R3均与式I结构式中相同。其中,实施例11-46中使用的含杂环共轭烯烃化合物的分子结构式分别如I-11~I-46所示,反应结果见表1中。
表1
Figure BDA0003656549930000202
Figure BDA0003656549930000211
表1中,a表示反应的混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯0.33mL,0.33M)替换为甲苯(1mL,0.1M),温度25℃替换为35℃。b表示反应的手性催化剂J替换为同等摩尔量的G。c表示反应的温度25℃替换为35℃。d表示反应的混合溶剂甲苯(0.66mL,0.066M)和乙酸乙酯(0.33mL,0.33M)替换为乙酸乙酯(1mL,0.1M),温度25℃替换为35℃。e表示反应的H2O2替换为同等摩尔量的m-CPBA。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (8)

1.一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于以手性磷酸为催化剂,在氧化剂、添加剂和有机溶剂存在下,如式I所示的含杂环共轭烯烃化合物在手性磷酸催化剂的催化作用下,被氧化剂氧化为如式II所示的含杂环手性环氧化合物,反应式如下:
Figure FDA0003656549920000011
X选自下列之一:NTs、NBoc、S、O;优选为NTs;
Y选自下列之一:C、N;
Z选自下列之一:C、N;
R1选自下列之一:氢原子、C1~C6烷烃基或取代烷烃基、C5~C6烯基、芳基;
R2选自下列之一:氢原子、C1~C6脂肪烃基或取代脂肪烃基、C1-C6烷氧基、C1-C6烯基、TIPS炔基、芳基或杂芳基、取代氨基、酯基、硝基、氰基、卤素;
R3选自下列之一:氢原子、甲基、骈环杂环基。
2.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于所述R1中,C1~C6烷烃基或取代烷烃基为甲基、正丙基、异丙基、正己基、氯丙基、氯丁基、取代甲基或取代乙基,取代甲基的取代基为NPhth或OBn,取代乙基的取代基为OTBS、苯基或酯基;C5~C6烯基为戊烯基;芳基为苯基或对氯苯基;
所述R2中,C1~C6脂肪烃基或取代脂肪烃基为甲基或三氟甲基,C1-C6烷氧基为甲氧基,C1-C6烯基为戊烯基,TIPS炔基为TIPS取代的乙炔基,芳基或杂芳基为苯基或N-Boc-2-吡咯基,取代氨基为Ts保护的氨基,酯基为甲酸乙酯,卤素为F、Cl或Br;
所述R3中,骈环杂环基为骈环己基。
3.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于式I所示的含杂环共轭烯烃化合物选自下列之一:
Figure FDA0003656549920000021
Figure FDA0003656549920000031
4.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于氧化剂为TBHP、m-CPBA、CHP或H2O2,优选为H2O2;氧化剂与式I所示化合物的物质的量比为1.2~2.5:1.0,优选为2.0:1.0。
5.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于反应温度为0℃~50℃,优选为25℃~35℃;所述有机溶剂为苯、甲苯、三氟甲苯、氯苯、邻二甲苯、间二甲苯、对二甲苯、均三甲苯、二氯甲烷、氯仿、四氯化碳、正己烷、乙腈、甲基叔丁基醚、乙酸乙酯中的至少一种,优选为甲苯、乙酸乙酯或者甲苯-乙酸乙酯混合溶剂,甲苯-乙酸乙酯混合溶剂中甲苯与乙酸乙酯的体积比是1~3:1,优选为2:1。
6.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于催化剂与式I所示化合物的物质的量比为5~20:100,优选为10:100;式I所示化合物的物质的量与有机溶剂的体积之比为0.025~0.5:1,优选为0.1:1,物质的量单位为mmol,体积单位为mL。
7.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于所述添加剂为无水硫酸钠或无水硫酸镁,优选为无水硫酸镁;所述无水硫酸镁的质量与式I所示化合物的物质的量之比为0.3~2.4:1,优选为1.2:1,质量的单位为g,物质的量单位为mmol。
8.如权利要求1所述的一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法,其特征在于手性磷酸催化剂选自下列之一:
Figure FDA0003656549920000051
CN202210560924.1A 2022-05-23 2022-05-23 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法 Active CN114853744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210560924.1A CN114853744B (zh) 2022-05-23 2022-05-23 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210560924.1A CN114853744B (zh) 2022-05-23 2022-05-23 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法

Publications (2)

Publication Number Publication Date
CN114853744A true CN114853744A (zh) 2022-08-05
CN114853744B CN114853744B (zh) 2023-07-04

Family

ID=82638605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210560924.1A Active CN114853744B (zh) 2022-05-23 2022-05-23 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法

Country Status (1)

Country Link
CN (1) CN114853744B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284704A (en) * 1976-08-13 1981-08-18 Eastman Kodak Company Photographic elements with incorporated hydrogen source photoreductant and tetrazolium salt
CN101787020A (zh) * 2010-03-24 2010-07-28 吉林大学 一种可溶液加工的有机共轭分子及在太阳能电池中的应用
CN106831658A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 一种烯烃的不对称环氧化方法
CN113979975A (zh) * 2021-11-05 2022-01-28 浙江工业大学 一种手性磷酸催化的芳基烯丙基叔醇动力学拆分方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284704A (en) * 1976-08-13 1981-08-18 Eastman Kodak Company Photographic elements with incorporated hydrogen source photoreductant and tetrazolium salt
CN101787020A (zh) * 2010-03-24 2010-07-28 吉林大学 一种可溶液加工的有机共轭分子及在太阳能电池中的应用
CN106831658A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 一种烯烃的不对称环氧化方法
CN113979975A (zh) * 2021-11-05 2022-01-28 浙江工业大学 一种手性磷酸催化的芳基烯丙基叔醇动力学拆分方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FABIAN SCHARINGER等: "Sterically Demanding Flexible Phosphoric Acids for Constructing Efficient and Multi-Purpose Asymmetric Organocatalysts", ANGEW. CHEM., vol. 134, pages 202202189 *
GAO, ZHENHUA等: "Eight-step total synthesis of (+)-crambescin A", RSC ADVANCES, vol. 10, no. 64, pages 39266 - 39270 *
LIFCHITS, OLGA等: "Catalytic Asymmetric Epoxidation of α-Branched Enals", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 30, pages 10227 - 10229 *
MAIOR, OVIDIU等: "Synthesis of intensely colored 2,4,6-trisubstituted pyrylium salts possessing bulky groups", 《REVUE ROUMAINE DE CHIMIE》, vol. 36, no. 11, pages 1315 - 1320 *
XINGWANG WANG等: "Journal of the American Chemical Society", ANGEW. CHEM. INT. ED., vol. 47, no. 6, pages 1119 *

Also Published As

Publication number Publication date
CN114853744B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
Cui et al. C, O‐Chelated BINOL/Gold (III) Complexes: Synthesis and Catalysis with Tunable Product Profiles
Akiyama et al. Enantioselective aza-Diels-Alder reaction catalyzed by a chiral Brønsted acid: effect of the additive on the enantioselectivity
Salomó et al. P-stereogenic and non-P-Stereogenic Ir–maxPHOX in the asymmetric hydrogenation of N-aryl imines. isolation and x-ray analysis of imine iridacycles
Bhadury et al. Organocatalytic asymmetric hydrophosphonylation/Mannich reactions using thiourea, cinchona and Brønsted acid catalysts
Kojima et al. Enantioselective Intramolecular Hydroamination of N-Alkenyl Ureas Catalyzed by tropos BIPHEP-Gold (I) Complexes with Au-Au Interaction
Yu et al. Toward a predictive understanding of phosphine-catalyzed [3+ 2] annulation of allenoates with acrylate or imine
Fernández-Pérez et al. Stereoselective catalytic synthesis of P-stereogenic oxides via hydrogenative kinetic resolution
Chai et al. Synthesis and Application of Substituted 1, 16-Dihydroxytetraphenylenes in Catalytic Asymmetric Allylboration of Ketones
US8975269B2 (en) Six-membered N-heterocyclic carbene-based catalysts for asymmetric reactions
CN112694376B (zh) 一种手性磷酸催化的烯丙基叔醇动力学拆分方法
Noji et al. Asymmetric Epoxidation of Allylic Alcohols Catalyzed by Vanadium–Binaphthylbishydroxamic Acid Complex
Ošeka et al. Two catalytic methods of an asymmetric wittig [2, 3]-rearrangement
Lebee et al. Highly enantioselective intermolecular iodo-and chloroamination of enecarbamates catalyzed by chiral phosphoric acids or calcium phosphate salts
Ruan et al. Catalytic Asymmetric Alkynylation and Arylation of Aldehydes by an H8‐Binaphthyl‐Based Amino Alcohol Ligand
Tanaka et al. Modular Construction of Protected 1, 2/1, 3-Diols,-Amino Alcohols, and-Diamines via Catalytic Asymmetric Dehydrative Allylation: An Application to Synthesis of Sphingosine
Xie et al. Ligand-Controlled NiH-Catalyzed Regiodivergent and Enantioselective Hydroamination of Alkenyl Amides
Jiang et al. α, β-Unsaturated N-Acylindoles: An Alternative Class of Michael Acceptors and Their Application in Asymmetric Borylation
Miyabe et al. Palladium-or iridium-catalyzed allylic substitution of guanidines: convenient and direct modification of guanidines
CN114853744B (zh) 一种有机小分子催化含杂环共轭烯烃的不对称环氧化方法
Zou et al. New bis (1-ferrocenylethyl) amine-derived monodentate phosphoramidite ligands for highly enantioselective copper-catalyzed 1, 4-conjugate addition
Sugiura et al. Conjugate Addition of Diboron Catalyzed by O-Monoacyltartaric Acids
Simonini et al. A new class of chiral Lewis basic metal-free catalysts for stereoselective allylations of aldehydes
Yasumoto et al. Synthesis of Electron-Deficient Chiral Biphenols and Their Applications in Catalytic Asymmetric Reactions
Terada et al. Asymmetric direct Mannich reaction catalyzed by chiral Brønsted acid via activation of enecarbamate as an aliphatic imine alternative
Kato et al. Catalytic asymmetric synthesis of nitrogen-containing gem-bisphosphonates using a dinuclear Ni2-Schiff base complex

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant