CN114851196B - Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode - Google Patents
Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode Download PDFInfo
- Publication number
- CN114851196B CN114851196B CN202210501704.1A CN202210501704A CN114851196B CN 114851196 B CN114851196 B CN 114851196B CN 202210501704 A CN202210501704 A CN 202210501704A CN 114851196 B CN114851196 B CN 114851196B
- Authority
- CN
- China
- Prior art keywords
- sliding mode
- fuzzy
- mechanical arm
- adaptive
- designing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000003044 adaptive effect Effects 0.000 title claims description 28
- 238000013178 mathematical model Methods 0.000 claims description 4
- 238000004088 simulation Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 244000145845 chattering Species 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于非线性系统控制领域,涉及一种机械臂轨迹跟踪控制算法,具体涉及一种基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法。The invention belongs to the field of nonlinear system control, and relates to a trajectory tracking control algorithm of a mechanical arm, in particular to a trajectory tracking control method of a mechanical arm based on a fuzzy self-adaptive global sliding mode.
背景技术Background technique
机械臂是一个高度非线性、难以精确建模的系统,加上机械臂在工作时还存在一些其他的外界未知扰动,这些都给机械臂的轨迹跟踪控制问题带来巨大的困难。The manipulator is a highly nonlinear system that is difficult to accurately model. In addition, there are other unknown external disturbances when the manipulator is working, which brings great difficulties to the trajectory tracking control of the manipulator.
滑模控制被广泛地应用在非线性系统的控制当中。传统的固定参数滑模面结构一经确定,系统在滑模面上的收敛过程为在固定平面上的运动,系统难以保证误差在平面的不同位置、区域都具备较快的收敛速度。Sliding mode control is widely used in the control of nonlinear systems. Once the traditional fixed parameter sliding mode surface structure is determined, the convergence process of the system on the sliding mode surface is a movement on a fixed plane, and it is difficult for the system to ensure that the error has a fast convergence speed in different positions and regions of the plane.
由于考虑到机械臂工作时的模型不确定性和外界干扰这些不确定性,对系统的鲁棒性提高了要求。Considering the uncertainties of the model and external disturbances when the manipulator is working, the requirements for the robustness of the system are increased.
发明内容Contents of the invention
本发明的目的是提供一种基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法,该方法采用机械臂的拉格朗日动力学模型,考虑机械臂的模型参数不确定性和外部环境干扰,设计一种基于模糊控制的时变参数动态滑模面和积分形式的全局滑模面,进一步设计得出控制律和自适应律,实现机械臂的轨迹跟踪控制。The purpose of the present invention is to provide a method for tracking control of manipulator trajectory based on fuzzy adaptive global sliding mode, which adopts the Lagrangian dynamics model of manipulator and considers the model parameter uncertainty and external environment disturbance of manipulator , design a time-varying parameter dynamic sliding surface based on fuzzy control and global sliding surface in integral form, and further design the control law and adaptive law to realize the trajectory tracking control of the manipulator.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法,包括如下步骤:A method for tracking control of manipulator trajectory based on fuzzy adaptive global sliding mode, comprising the following steps:
步骤1、针对考虑模型不确定性、外界干扰的刚性机械臂的轨迹跟踪控制问题,设计基于模糊控制的实变参数滑模面结构:
s(t)=f(x(t),k(t));s(t)=f(x(t),k(t));
k(t)=α(t)k;k(t)=α(t)k;
其中,α(t)为时变系数,k为固定参数;Among them, α(t) is a time-varying coefficient, and k is a fixed parameter;
步骤2、针对步骤1中的时变参数滑模面结构,结合机械臂数学模型,设计滑模变量s,其参数通过模糊控制器的输出自适应调节,具体形式如下所示:
K1(t)=α1(t)K1;K 1 (t) = α 1 (t)K 1 ;
K2(t)=α2(t)K2;K 2 (t)=α 2 (t)K 2 ;
其中,K1,K2>0,λ2>1,0<α1(t),α2(t)<1;qe为机械臂的角位置误差;Among them, K 1 , K 2 >0, λ 2 >1, 0<α 1 (t), α 2 (t)<1; q e is the angular position error of the mechanical arm;
步骤3、设计模糊控制器的输入为误差qe,输出为时变系数α1(t)、α2(t),并设计相应的隶属度函数和模糊逻辑,其中:
模糊逻辑为:当输入qe较大时,输出α2(t)为较大值、α1(t)为较小值;当输入qe大小适中时,输出α2(t)为适中值、α1(t)为适中值;当输入qe较小时,输出α2(t)为较小值、α1(t)为较大值;The fuzzy logic is: when the input q e is large, the output α 2 (t) is a large value, and α 1 (t) is a small value; when the input q e is moderate, the output α 2 (t) is a moderate value , α 1 (t) is a moderate value; when the input q e is small, the output α 2 (t) is a small value, and α 1 (t) is a large value;
步骤4、针对步骤2中设计的滑模变量,设计积分形式的全局滑模变量σ:
其中,K3>0,γ<1;Wherein, K 3 >0, γ<1;
步骤5、针对步骤2、步骤3和步骤4中设计的滑模变量、模糊控制器、全局滑模变量,设计基于模糊自适应滑模的机械臂轨迹跟踪控制律和自适应律,实现轨迹跟踪控制,其中:
基于模糊自适应滑模的机械臂轨迹跟踪控制律为:The trajectory tracking control law of the manipulator based on fuzzy adaptive sliding mode is:
其中,k>0,qd为机械臂的期望轨迹,为自适应律。Among them, k>0, q d is the expected trajectory of the manipulator, for adaptive law.
自适应律为:The adaptive law is:
其中,λ0,λ1,λ2>0,q为机械臂的角位置。Wherein, λ 0 , λ 1 , λ 2 >0, and q is the angular position of the mechanical arm.
相比于现有技术,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
本发明针对机械臂的轨迹跟踪问题设计了一种基于模糊自适应全局滑模的控制器,其控制对象的模型为一考虑模型不确定性和外界干扰的刚性机械臂,采用自适应滑模控制的方法设计控制律和自适应律,实现轨迹跟踪控制。同时引入模糊控制,根据系统的状态变量距离平衡点的距离实时调节滑模参数,使得系统在滑模面上的整个收敛过程都具备较快的收敛速度,并减少力矩浪费,全局滑模提高了系统的鲁棒性,使得系统能够能够有效的克服模型不确定性和外界干扰,同时不需要知道不确定性项的上界具体值,有利于机械臂系统在不同的老化程度下和不同环境下正常工作。The present invention designs a kind of controller based on the fuzzy self-adaptive global sliding mode for the trajectory tracking problem of the manipulator, and the model of its control object is a rigid manipulator considering model uncertainty and external interference, adopts self-adaptive sliding mode control The control law and adaptive law are designed by the method, and the trajectory tracking control is realized. At the same time, fuzzy control is introduced, and the sliding mode parameters are adjusted in real time according to the distance from the state variable of the system to the equilibrium point, so that the entire convergence process of the system on the sliding mode surface has a faster convergence speed, and the waste of torque is reduced. The global sliding mode improves The robustness of the system enables the system to effectively overcome model uncertainty and external interference, and does not need to know the upper bound specific value of the uncertainty item, which is beneficial to the manipulator system under different aging degrees and different environments. normal work.
附图说明Description of drawings
图1为基于模糊自适应滑模的机械臂轨迹跟踪控制系统框图;Figure 1 is a block diagram of the trajectory tracking control system of the manipulator based on fuzzy adaptive sliding mode;
图2为模糊控制输入的隶属度函数;Fig. 2 is the membership function of fuzzy control input;
图3为模糊控制输出的隶属度函数;Fig. 3 is the membership function of fuzzy control output;
图4为d=0.1时角位置误差收敛曲线;Figure 4 is the angular position error convergence curve when d=0.1;
图5为d=0.1时角速度误差收敛曲线;Figure 5 is the angular velocity error convergence curve when d=0.1;
图6为d=0.1时力矩曲线;Fig. 6 is moment curve when d=0.1;
图7为d=0.1、d=0.2时角位置误差收敛曲线;Figure 7 is the angular position error convergence curve when d=0.1 and d=0.2;
图8为d=0.3、d=0.4时角位置误差收敛曲线;Figure 8 is the angular position error convergence curve when d=0.3 and d=0.4;
图9为d=0.1、d=0.2时角速度误差收敛曲线;Fig. 9 is the angular velocity error convergence curve when d=0.1 and d=0.2;
图10为d=0.3、d=0.4时角速度误差收敛曲线;Figure 10 is the angular velocity error convergence curve when d=0.3 and d=0.4;
图11为固定扰动加正弦扰动时的角位置、角速度误差收敛曲线;Figure 11 is the angular position and angular velocity error convergence curves when a fixed disturbance is added to a sinusoidal disturbance;
图12为固定扰动加白噪声时的角位置、角速度误差收敛曲线;Figure 12 is the angular position and angular velocity error convergence curve when the fixed disturbance is added to the white noise;
图13为固定参数滑模结构的角位置、角速度误差收敛曲线;Figure 13 is the angular position and angular velocity error convergence curve of the fixed parameter sliding mode structure;
图14为时变参数滑模结构的角位置、角速度误差收敛曲线;Figure 14 is the angular position and angular velocity error convergence curve of the time-varying parameter sliding mode structure;
图15为固定参数(左)和时变参数(右)滑模结构的力矩曲线。Figure 15 shows the moment curves of the sliding mode structure with fixed parameters (left) and time-varying parameters (right).
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings, but it is not limited thereto. Any modification or equivalent replacement of the technical solution of the present invention without departing from the spirit and scope of the technical solution of the present invention should be covered by the present invention. within the scope of protection.
本发明提供了一种基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法,所述方法包括如下步骤:The invention provides a method for tracking and controlling the trajectory of a manipulator based on a fuzzy adaptive global sliding mode. The method includes the following steps:
步骤1、针对考虑模型不确定性、外界干扰的刚性机械臂的轨迹跟踪控制问题,设计基于模糊控制的实变参数滑模面结构。
在滑模控制中,滑模面的结构将决定系统在滑模面上的运动。对于固定参数滑模面结构的设计,可以写成如下形式:In sliding mode control, the structure of the sliding surface will determine the motion of the system on the sliding surface. For the design of fixed parameter sliding surface structure, it can be written as follows:
s(t)=f(x(t),k);s(t)=f(x(t),k);
其中,s(t)为滑模变量,x(t)为系统的状态,k为滑模面的参数。Among them, s(t) is the sliding mode variable, x(t) is the state of the system, and k is the parameter of the sliding mode surface.
当系统状态收敛至滑模面s(t)=0=0上时,系统的动力学方程为:When the system state converges to the sliding surface s(t)=0=0, the dynamic equation of the system is:
f(x(t),k)=0。f(x(t),k)=0.
将在固定的滑模面上收敛至平衡点。传统的固定参数滑模面结构,往往只能保证系统状态在某些范围内具备较快的收敛速度,从而限制了在滑模面上的整体收敛过程。will converge to an equilibrium point on a fixed sliding surface. The traditional fixed-parameter sliding mode surface structure often only guarantees that the system state has a faster convergence speed in a certain range, thus limiting the overall convergence process on the sliding mode surface.
将滑模面的固定参数时变化,滑模面的结构变为:When the fixed parameters of the sliding mode surface are changed, the structure of the sliding mode surface becomes:
s(t)=f(x(t),k(t));s(t)=f(x(t),k(t));
k(t)=α(t)k;k(t)=α(t)k;
其中,α(t)为时变系数,k为固定参数。滑模面结构随着系统的收敛而不断改变,从而起到加快收敛速度的作用。时变系数α(t)由模糊控制器输出。Among them, α(t) is a time-varying coefficient, and k is a fixed parameter. The structure of the sliding surface changes continuously with the convergence of the system, thereby speeding up the convergence speed. The time-varying coefficient α(t) is output by the fuzzy controller.
步骤2、针对步骤1中的时变参数滑模面结构,结合机械臂数学模型,设计具体的滑模面。
设计滑模变量s,其形式如下所示:Design the sliding mode variable s, whose form is as follows:
K1(t)=α1(t)K1;K 1 (t) = α 1 (t)K 1 ;
K2(t)=α2(t)K2;K 2 (t)=α 2 (t)K 2 ;
其中,K1,K2>0,λ2>1,0<α1(t),α2(t)<1为模糊控制器的输出;qe为机械臂的角位置误差。Among them, K 1 , K 2 >0, λ 2 >1, 0<α 1 (t), α 2 (t)<1 is the output of the fuzzy controller; q e is the angular position error of the mechanical arm.
当系统处于滑模面s=0上,系统状态动力学方程如下式所示:When the system is on the sliding surface s=0, the dynamic equation of the system state is as follows:
当系统误差qe较大时,对误差的收敛起到主导作用;当系统误差qe接近于0时,对误差的收敛起到主导作用。When the systematic error q e is large, Play a leading role in the convergence of the error; when the system error q e is close to 0, Play a leading role in the convergence of errors.
步骤3、针对步骤2中的时变参数,设计模糊控制器。
在步骤2中,系统在滑模面上的收敛主导项受误差qe的影响。设计模糊控制器的输入为误差qe,输出为时变系数α1(t)、α2(t),并设计相应的隶属度函数,具体表达式如下:In
输入的隶属度函数:Enter the membership function:
输出的隶属度函数:Output membership function:
其中,i=1,2。Among them, i=1,2.
模糊控制器的模糊逻辑为:The fuzzy logic of the fuzzy controller is:
当输入qe较大时,输出α2(t)为较大值、α1(t)为较小值;当输入qe大小适中时,输出α2(t)为适中值、α1(t)为适中值;当输入qe较小时,输出α2(t)为较小值、α1(t)为较大值。When the input q e is large, the output α 2 (t) is a large value, and α 1 (t) is a small value; when the input q e is moderate, the output α 2 (t) is a moderate value, and α 1 ( t) is a moderate value; when the input q e is small, the output α 2 (t) is a small value, and α 1 (t) is a large value.
上述模糊控制器起到进一步加强主导项、减弱非主导项的作用,使得系统的收敛速度加快。同时由于各参数影响控制力矩的输出,也能减小力矩的浪费。The above-mentioned fuzzy controller plays the role of further strengthening the dominant term and weakening the non-dominant term, so that the convergence speed of the system is accelerated. At the same time, because each parameter affects the output of the control torque, the waste of torque can also be reduced.
步骤4、针对步骤2中设计的时变参数滑模面结构,设计全局滑模变量。
在滑模控制系统中,系统收敛过程分为两个阶段,一个是到达段,即系统从初始位置到达滑模面上的阶段;第二个是滑动阶段,即系统处于滑模面上,收敛只受滑模面本身限制,沿着滑模面收敛至平衡点。全局滑模使得系统从一开始就在滑模面上,使原来的到达段也具备滑模控制所具有的强鲁棒性。In the sliding mode control system, the system convergence process is divided into two stages, one is the arrival stage, that is, the stage when the system reaches the sliding surface from the initial position; the second is the sliding stage, that is, the system is on the sliding surface, and the convergence Only limited by the sliding surface itself, it converges to the equilibrium point along the sliding surface. The global sliding mode makes the system on the sliding mode surface from the beginning, so that the original arrival segment also has the strong robustness of the sliding mode control.
设计全局滑模变量:Design global sliding mode variables:
其中,K3>0,γ<1。Wherein, K 3 >0, γ<1.
同时,由于引进了积分器,滑模变量σ的变化比变量s更加平缓,将其作为控制量时能够减小控制力矩的抖振。At the same time, due to the introduction of the integrator, the change of the sliding mode variable σ is more gentle than that of the variable s, which can reduce the chattering of the control torque when it is used as the control variable.
步骤5、针对步骤2、步骤3和步骤4中设计的滑模变量、模糊控制器,设计机械臂轨迹跟踪控制律和自适应律。
设计基于模糊自适应滑模的机械臂轨迹跟踪控制律为:The trajectory tracking control law of the manipulator based on fuzzy adaptive sliding mode is designed as follows:
其中,k>0,qd为机械臂的期望轨迹,为自适应律。Among them, k>0, q d is the expected trajectory of the manipulator, for adaptive law.
设计自适应律为:The adaptive law is designed as:
其中,λ0,λ1,λ2>0,q为机械臂的角位置。Wherein, λ 0 , λ 1 , λ 2 >0, and q is the angular position of the mechanical arm.
实施例:Example:
对于一个一般的刚性机械臂,其拉格朗日动力学模型可以由以下二阶非线性微分方程表示:For a general rigid manipulator, its Lagrangian dynamics model can be expressed by the following second-order nonlinear differential equation:
其中,分别表示关节的角位置,角速度和角加速度;M(q)∈Rn×n,是一个对称正定矩阵,表示惯性;表示离心力和科里奥利力转矩;G(q)∈Rn,表示重力转矩;τ∈Rn,表示控制转矩。in, respectively represent the angular position, angular velocity and angular acceleration of the joint; M(q)∈R n×n is a symmetric positive definite matrix representing inertia; Represents the centrifugal force and Coriolis force torque; G(q)∈R n represents the gravitational torque; τ∈R n represents the control torque.
将上述方程写成误差的形式:Write the above equation in error form:
其中,qd为期望关节的角位置,qe=q-qd为关节角位置误差。Wherein, q d is the angular position of the desired joint, and q e =qq d is the error of the joint angular position.
考虑机械臂的模型不确定性,在方程中表示为参数的不确定。考虑机械臂的外加扰动和摩擦力矩,设为τd和动力学方程变为:Consider the model uncertainty of the manipulator, expressed as parameter uncertainty in Eq. Considering the external disturbance and friction torque of the manipulator, set τ d and The kinetic equation becomes:
其中,M0(q)、G0(q)为已知的名义部分,ΔM(q)、ΔG(q)为模型不确定性,τd和分别为固定扰动和时变扰动。Among them, M 0 (q), G 0 (q) is the known nominal part, Δ M (q), Δ G (q) is the model uncertainty, τ d and are fixed and time-varying disturbances, respectively.
进一步化简为:This further simplifies to:
其中,ρ0、ρ1、ρ2为大于0的常数,||·||表示向量的二范数,满足假设: Among them, ρ 0 , ρ 1 , and ρ 2 are constants greater than 0, and ||·|| represents the two-norm of the vector, which satisfies the assumption:
考虑摩擦转矩使得下式成立:Considering the friction torque makes the following equation hold:
其中,γ0、γ1、γ2为大于0的常数,满足假设: Among them, γ 0 , γ 1 , and γ 2 are constants greater than 0, which satisfy the assumption:
最后写成误差的形式为:The final form of writing the error is:
设计滑模变量s,其形式如下所示:Design the sliding mode variable s, whose form is as follows:
其中,K1,K2>0,λ2>1,0<α1(t),α2(t)<1为模糊控制器的输出;qe为机械臂的角位置误差。Among them, K 1 , K 2 >0, λ 2 >1, 0<α 1 (t), α 2 (t)<1 is the output of the fuzzy controller; q e is the angular position error of the mechanical arm.
当系统处于滑模面s=0上,系统状态动力学方程如下式所示:When the system is on the sliding surface s=0, the dynamic equation of the system state is as follows:
当系统误差qe较大时,对误差的收敛起到主导作用;当系统误差qe接近于0时,对误差的收敛起到主导作用。When the systematic error q e is large, Play a leading role in the convergence of the error; when the system error q e is close to 0, Play a leading role in the convergence of errors.
根据上述主导控制的逻辑思路,将系统状态误差的二范数||qe||作为模糊控制的输入,以此来衡量系统和平衡点的距离。模糊控制器设计如下:According to the logic idea of the above-mentioned dominant control, the two-norm ||q e || of the system state error is used as the input of the fuzzy control to measure the distance between the system and the equilibrium point. The fuzzy controller is designed as follows:
模糊控制输入||qe||的隶属度函数如图2所示,模糊控制输出α0(t),α1(t),α2(t)的隶属度函数如图3所示,模糊规则如表1所示,去模糊化采用重心法。The membership function of fuzzy control input ||q e || is shown in Fig. 2, and the membership function of fuzzy control output α 0 (t), α 1 (t), α 2 (t) is shown in Fig. 3. Fuzzy control The rules are shown in Table 1, and the center of gravity method is used for defuzzification.
表1模糊规则Table 1 Fuzzy rules
注:S、B、M是模糊集,代表小、大、中。Note: S, B, and M are fuzzy sets, representing small, large, and medium.
通过模糊自适应控制,使得滑模面参数在系统的收敛过程中,根据距离平衡点的位置自适应调节。当系统离平衡点较远时,||qe||较大,项对误差收敛起到主导作用,此时模糊自适应控制器输出系数α2(t)较大,α1(t)较小,以此增强该项的主导作用。同理,当系统离平衡点距离适中时,输出α2(t)为适中值、α1(t)为适中值,和共同作为主导项;当系统离平衡点距离较小时,输出α2(t)为较小值、α1(t)为较大值,增强项的主导作用。通过模糊控制器增强不同阶段的主导项作用,以此提高收敛速度。由于这些参数直接影响控制力矩的大小,这种自适应控制的引入也可以减少控制力矩的浪费。Through fuzzy self-adaptive control, the parameters of the sliding surface can be adjusted adaptively according to the distance from the equilibrium point during the convergence process of the system. When the system is far away from the equilibrium point, ||q e || is larger, The term plays a leading role in the error convergence. At this time, the output coefficient of the fuzzy adaptive controller α 2 (t) is larger, and α 1 (t) is smaller, so as to enhance the leading role of this term. Similarly, when the system is at a moderate distance from the equilibrium point, the output α 2 (t) is a moderate value, and α 1 (t) is a moderate value, and Together as the dominant item; when the distance from the system to the equilibrium point is small, the output α 2 (t) is a small value, α 1 (t) is a large value, and the enhanced item's dominance. The fuzzy controller is used to enhance the role of the leading term in different stages, so as to improve the convergence speed. Since these parameters directly affect the size of the control torque, the introduction of this adaptive control can also reduce the waste of control torque.
为了进一步提高系统的鲁棒性、减小控制力矩的抖振,设计全局滑模变量:In order to further improve the robustness of the system and reduce the chattering of the control torque, the global sliding mode variable is designed as follows:
其中,K3>0,γ<1。Wherein, K 3 >0, γ<1.
由于积分器的引入,系统从一开始就处于滑模面σ=0上,通过设计控制律,使得系统一直处于σ=0上(附近),从而使滑模变量s按照下式规律运动:Due to the introduction of the integrator, the system is on the sliding mode surface σ=0 from the beginning, and the system is always on (near) σ=0 by designing the control law, so that the sliding mode variable s moves according to the following formula:
其中,||ε||有限且非常小。Among them, ||ε|| is finite and very small.
根据上述方法,可设计得到的控制律:According to the above method, the control law can be designed as follows:
其中,k>0,为自适应律。Among them, k>0, for adaptive law.
设计自适应律为:The adaptive law is designed as:
其中,λ0,λ1,λ2>0,|·|为向量的一范数。Wherein, λ 0 , λ 1 , λ 2 >0, and |·| is a norm of the vector.
下面对所设计的控制律和自适应律进行稳定性分析:The following is the stability analysis of the designed control law and adaptive law:
由式(7)可得:From formula (7) can get:
将式(11)、(12)带入式(6)中可得变量s的动力学方程为:Putting equations (11) and (12) into equation (6), the kinetic equation of the variable s can be obtained as:
由式(9)可得:From formula (9) can get:
将式(16)带入式(15)中可得变量σ的动力学方程为:Putting Equation (16) into Equation (15), the kinetic equation of variable σ can be obtained as:
考虑Lyapunov函数V,其形式如下:Consider the Lyapunov function V, which has the following form:
对其求导可得:It can be derived from:
将(17)带入(19)中可得:Put (17) into (19) to get:
由机械臂的性质中为反对称矩阵,进一步可得:by the nature of the robotic arm As an anti-symmetric matrix, it can be further obtained:
综上所述,所设计的基于模糊自适应全局滑模的控制律能够使得系统一直处于滑模面σ=0上,从而系统状态误差在滑模面上运动收敛至平衡点。In summary, the designed control law based on fuzzy adaptive global sliding mode can keep the system on the sliding mode surface σ=0, so that the system state error converges to the equilibrium point when moving on the sliding mode surface.
选取二自由度刚性机械臂仿真,数学模型如式(21)所示:Select a two-degree-of-freedom rigid manipulator for simulation, and the mathematical model is shown in formula (21):
其中,各矩阵的形式为: Among them, the form of each matrix is:
系数矩阵中各参数表达式如下:The expression of each parameter in the coefficient matrix is as follows:
考虑d倍的模型不确定性参数,即:m1=(1+d)m10,m2=(1+d)m20,l1=(1+d)l10,l2=(1+d)l20,J1=(1+d)J10,J2=(1+d)J20。Consider d times the model uncertainty parameters, namely: m 1 =(1+d)m 10 , m 2 =(1+d)m 20 , l 1 =(1+d)l 10 , l 2 =(1 +d)l 20 , J 1 =(1+d)J 10 , J 2 =(1+d)J 20 .
机械臂各物理量参数如下:The physical parameters of the robotic arm are as follows:
质量:m10=0.5kg,m20=1.5kg。Mass: m 10 =0.5 kg, m 20 =1.5 kg.
长度:l10=1m,l20=0.8m。Length: l 10 =1 m, l 20 =0.8 m.
转动惯量:J10=J20=5kg·m2。Moment of inertia: J 10 =J 20 =5kg·m 2 .
重力加速度:g=9.8N/kg。Gravity acceleration: g=9.8N/kg.
设置期望轨迹: Set desired trajectory:
设置式(4)中的不确定性干扰为:τd=5, The uncertainty interference in formula (4) is set as: τ d =5,
设置式(7)、(9)中滑模变量的参数为:K1=5,K2=2,K3=10,λ1=0.6,λ2=2,γ=0.7。The parameters for setting the sliding mode variables in formulas (7) and (9) are: K 1 =5, K 2 =2, K 3 =10, λ 1 =0.6, λ 2 =2, γ=0.7.
设置式(11)、(12)所示的控制律和自适应律参数为:k=5,λ0=λ1=λ2=1,并对控制力矩的最大值限制为150N·m。Set the control law and adaptive law parameters shown in formulas (11) and (12) as: k=5, λ 0 =λ 1 =λ 2 =1, and limit the maximum control torque to 150N·m.
d取值0.1的仿真结果如图4~6所示。从图4~6中可以看出,所设计的控制器能够使系统在较短时间内收敛至平衡点,同时控制力矩的大小在合适的范围内。为了进一步说明本发明的优越性,进行了以下对比仿真实验。The simulation results of d taking a value of 0.1 are shown in Fig. 4-6. It can be seen from Figures 4 to 6 that the designed controller can make the system converge to the equilibrium point in a short period of time, while controlling the torque within an appropriate range. In order to further illustrate the superiority of the present invention, the following comparative simulation experiments were carried out.
不同程度不确定性下的收敛曲线如图7~10所示,从图7~10中可以看出,随着不确定性程度增大,角位置、角速度误差的收敛曲线并无明显变化,收敛速度基本不变,验证了系统对模型不确定性的强鲁棒性。The convergence curves under different degrees of uncertainty are shown in Figures 7 to 10. It can be seen from Figures 7 to 10 that as the degree of uncertainty increases, the convergence curves of angular position and angular velocity errors do not change significantly. The speed is basically unchanged, which verifies the strong robustness of the system to model uncertainty.
重新将模型不确定性系数设为0.1,对不同类型环境干扰进行仿真实验,结果如下:Set the model uncertainty coefficient to 0.1 again, and conduct simulation experiments on different types of environmental disturbances. The results are as follows:
外界扰动设置为以下形式:τd=5,为固定扰动和正弦扰动的叠加,收敛曲线如图11所示。The external disturbance is set as the following form: τ d =5, For the superposition of fixed disturbance and sinusoidal disturbance, the convergence curve is shown in Figure 11.
外界扰动设置为以下形式:τd=5,为一均值为0,方差为1的高斯白噪声信号,为固定扰动加白噪声的叠加,收敛曲线如图12所示。从图12中可以看出,系统在不同环境干扰下,仿真曲线没有明显变化,收敛速度基本不变,验证了系统对环境干扰的强鲁棒性。The external disturbance is set as the following form: τ d =5, is a Gaussian white noise signal with a mean value of 0 and a variance of 1, which is a superposition of fixed disturbance and white noise, and the convergence curve is shown in Figure 12. It can be seen from Figure 12 that under different environmental disturbances, the simulation curve does not change significantly, and the convergence speed is basically unchanged, which verifies the strong robustness of the system to environmental disturbances.
重新将外界扰动设置为固定扰动和正弦扰动叠加的形式,并将模糊控制器的输出设置为:α1=α2=0.55,此时系统将退化为固定参数滑模结构,对比其与时变参数滑模结构下的收敛过程,结果如图13~14所示。Re-set the external disturbance as the superimposed form of fixed disturbance and sinusoidal disturbance, and set the output of the fuzzy controller as: α 1 =α 2 =0.55. At this time, the system will degenerate into a fixed parameter sliding mode structure. Compare it with the time-varying The results of the convergence process under the parametric sliding mode structure are shown in Figures 13-14.
收敛速度的快慢直接受控制力矩的大小影响,在考虑收敛速度的同时,对比力矩曲线如图15所示。从图15中的收敛曲线可以直接看出,时变参数滑模结构下的收敛速度较固定参数滑模结构快,力矩的大小无法直接从曲线当中得出。定义收敛过程t时间内的平均力矩指标为:The speed of convergence is directly affected by the magnitude of the control torque. While considering the convergence speed, the comparison torque curve is shown in Figure 15. From the convergence curve in Figure 15, it can be seen directly that the convergence speed under the time-varying parameter sliding mode structure is faster than that under the fixed parameter sliding mode structure, and the magnitude of the moment cannot be directly obtained from the curve. Define the average moment index of the convergence process t time as:
其中,I(τ)∈Rn,τ∈[τ1 τ2 … τn]T∈Rn。Among them, I(τ)∈R n , τ∈[τ 1 τ 2 … τ n ] T ∈ R n .
固定参数滑模结构下各关节的平均力矩指标为:时变参数滑模结构下各关节的平均力矩指标为:可以得出时变参数滑模结构下,收敛过程中各关节的平均力矩均小于固定参数滑模结构,验证了基于模糊控制的时变参数滑模结构的优越性,即加快收敛速度、减少力矩浪费。The average moment index of each joint under the fixed parameter sliding mode structure is: The average moment index of each joint under the time-varying parameter sliding mode structure is: It can be concluded that under the time-varying parameter sliding mode structure, the average moment of each joint during the convergence process is smaller than the fixed parameter sliding mode structure, which verifies the superiority of the time-varying parameter sliding mode structure based on fuzzy control, that is, to speed up the convergence speed and reduce the torque waste.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210501704.1A CN114851196B (en) | 2022-05-09 | 2022-05-09 | Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210501704.1A CN114851196B (en) | 2022-05-09 | 2022-05-09 | Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114851196A CN114851196A (en) | 2022-08-05 |
CN114851196B true CN114851196B (en) | 2023-03-10 |
Family
ID=82636935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210501704.1A Active CN114851196B (en) | 2022-05-09 | 2022-05-09 | Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114851196B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102393639A (en) * | 2011-10-18 | 2012-03-28 | 河海大学常州校区 | Micro-gyroscope tracking control method based on adaptive fuzzy sliding mode |
CN105242531A (en) * | 2015-08-07 | 2016-01-13 | 安徽农业大学 | Adaptive steering sliding model control method of tracked robot as WSN mobile node |
CN109240083A (en) * | 2018-09-28 | 2019-01-18 | 河海大学常州校区 | The adaptive fuzzy super-twisting sliding mode control method of gyroscope system |
CN110181510A (en) * | 2019-05-21 | 2019-08-30 | 南京航空航天大学 | A kind of mechanical arm Trajectory Tracking Control method based on time delay estimation and fuzzy logic |
CN111618858A (en) * | 2020-06-02 | 2020-09-04 | 台州学院 | Manipulator robust tracking control algorithm based on self-adaptive fuzzy sliding mode |
CN112091976A (en) * | 2020-09-17 | 2020-12-18 | 哈尔滨工程大学 | Task space control method for underwater mechanical arm |
CN114265318A (en) * | 2022-03-02 | 2022-04-01 | 北京航空航天大学 | Cooperative robot trajectory tracking method based on sliding mode control and fuzzy algorithm |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111230911B (en) * | 2020-03-20 | 2021-05-04 | 燕山大学 | A 4D printing flexible finger joint gripper and its trajectory tracking control method |
-
2022
- 2022-05-09 CN CN202210501704.1A patent/CN114851196B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102393639A (en) * | 2011-10-18 | 2012-03-28 | 河海大学常州校区 | Micro-gyroscope tracking control method based on adaptive fuzzy sliding mode |
CN105242531A (en) * | 2015-08-07 | 2016-01-13 | 安徽农业大学 | Adaptive steering sliding model control method of tracked robot as WSN mobile node |
CN109240083A (en) * | 2018-09-28 | 2019-01-18 | 河海大学常州校区 | The adaptive fuzzy super-twisting sliding mode control method of gyroscope system |
CN110181510A (en) * | 2019-05-21 | 2019-08-30 | 南京航空航天大学 | A kind of mechanical arm Trajectory Tracking Control method based on time delay estimation and fuzzy logic |
CN111618858A (en) * | 2020-06-02 | 2020-09-04 | 台州学院 | Manipulator robust tracking control algorithm based on self-adaptive fuzzy sliding mode |
CN112091976A (en) * | 2020-09-17 | 2020-12-18 | 哈尔滨工程大学 | Task space control method for underwater mechanical arm |
CN114265318A (en) * | 2022-03-02 | 2022-04-01 | 北京航空航天大学 | Cooperative robot trajectory tracking method based on sliding mode control and fuzzy algorithm |
Non-Patent Citations (2)
Title |
---|
吴爱国 ; 吴绍华 ; 董娜 ; .机械臂非奇异快速终端滑模模糊控制.2019,(第05期),全文. * |
穆效江 ; 陈阳舟 ; .多关节机器人的自适应模糊滑模控制.2008,(第05期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN114851196A (en) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110262255B (en) | A Robotic Arm Trajectory Tracking Control Method Based on Adaptive Terminal Sliding Mode Controller | |
CN108008720B (en) | Fuzzy sliding mode trajectory tracking control and method for wheeled mobile robot | |
CN112817231B (en) | A high-precision tracking control method for robotic arms with strong robustness | |
CN111618858B (en) | A Robust Tracking Control Algorithm for Manipulator Based on Adaptive Fuzzy Sliding Mode | |
CN106094530B (en) | The Design of non-linear controllers method of inverted pendulum | |
CN111941432B (en) | A high-performance robotic arm artificial intelligence output feedback control method | |
CN107662208A (en) | Flexible joint mechanical arm finite time self-adaptive backstepping control method based on neural network | |
CN108557664B (en) | Enhanced Coupling Nonlinear PD Type Sliding Mode Controller and Method for Overhead Crane System | |
CN104808487A (en) | Neural network adaptive robust trajectory tracking method and controller | |
CN104950678A (en) | Neural network inversion control method for flexible manipulator system | |
CN107544256A (en) | Underwater robot sliding-mode control based on adaptive Backstepping | |
CN108594837A (en) | Model-free quadrotor drone contrail tracker and method based on PD-SMC and RISE | |
CN109857100B (en) | Composite track tracking control algorithm based on inversion method and fast terminal sliding mode | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN107160398A (en) | The safe and reliable control method of Rigid Robot Manipulator is limited based on the total state for determining study | |
CN109085749A (en) | A kind of non-linear remote operating bilateral control method based on adaptive fuzzy inverting | |
CN107263483B (en) | The control method for coordinating of two degrees of freedom articulated robot track | |
CN114265318A (en) | Cooperative robot trajectory tracking method based on sliding mode control and fuzzy algorithm | |
CN112904726B (en) | Neural network backstepping control method based on error reconstruction weight updating | |
CN114578697B (en) | A multi-constraint adaptive control method for a motor-driven manipulator | |
CN110440778B (en) | MEMS gyroscope non-overshoot protection performance fuzzy wavelet neural control method | |
CN114851196B (en) | Trajectory tracking control method of manipulator based on fuzzy adaptive global sliding mode | |
CN107263455B (en) | The Position Tracking Control method of two degrees of freedom SCARA robot | |
CN109176529B (en) | Self-adaptive fuzzy control method for coordinated movement of space robot | |
CN115338871B (en) | A constrained adaptive robust control method and system for a two-degree-of-freedom robotic arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |