CN114848843A - 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用 - Google Patents

一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用 Download PDF

Info

Publication number
CN114848843A
CN114848843A CN202210431378.1A CN202210431378A CN114848843A CN 114848843 A CN114848843 A CN 114848843A CN 202210431378 A CN202210431378 A CN 202210431378A CN 114848843 A CN114848843 A CN 114848843A
Authority
CN
China
Prior art keywords
nano
drug
ptx
hinp
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210431378.1A
Other languages
English (en)
Other versions
CN114848843B (zh
Inventor
高识
马庆杰
陈明龙
朱雷
葛晓光
张文惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210431378.1A priority Critical patent/CN114848843B/zh
Publication of CN114848843A publication Critical patent/CN114848843A/zh
Application granted granted Critical
Publication of CN114848843B publication Critical patent/CN114848843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6939Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being a polysaccharide, e.g. starch, chitosan, chitin, cellulose or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Cell Biology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种纳米药物粒子,其包括纳米载体、载入载体内的化疗药物,以及结合于载体表面的靶向分子,所述纳米载体具有透明质酸(HA)形成的亲水性外壳,荧光分子形成的疏水内核,所述靶向分子为靶向HER2的单抗药物。本申请构建的协同靶向化疗药物不仅对HER2高表达肿瘤细胞具有良好的杀伤作用,而且可以降低传统化疗药物对正常组织器官的毒副作用,从而实现更精准的治疗,达到更理想的治疗效果。

Description

一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的 应用
技术领域
本发明涉及一种协同靶向化疗药物,尤其涉及一种协同靶向化疗纳米药物递送系统。
背景技术
目前恶性肿瘤治疗的主要方法仍然是手术治疗和化疗。化疗使用具有广泛细胞毒性效应的药物,主要通过破坏DNA诱导细胞凋亡和抑制细胞周期进程及DNA修复来破坏恶性肿瘤细胞,从而达到治疗的目的。然而,化疗药物优先但不仅限于靶向快速分裂的恶性肿瘤细胞,对正常的组织细胞也具有一定的杀伤作用。目前仍然需要有选择性地摧毁癌细胞的药物,能够在不受化疗耐药性机制影响的情况下,有效地治疗生长缓慢和休眠的细胞。
纳米医学是结合了纳米生物技术和纳米药物的医学应用。基本上,纳米医学的特征在于纳米生物技术在医学中的应用,其或多或少地依赖于在诊断和药物输送中使用纳米材料和装置来改善药物。纳米粒子被用作纳米医学,参与包括癌症在内的各种疾病的诊断和治疗。近年来,人们对纳米药物进行了广泛的评估,包括脂质体、聚合物、分子和抗体,并且有大量证据表明,这些亚微米尺寸的载体纳米材料能够增强治疗干预的有效性和毒性之间的平衡。此外,纳米医学传递巨大有效载荷的能力和多价配体靶向在癌症治疗中起着关键作用。纳米材料结合药物在靶向肿瘤部位的递送依赖于生物相容性纳米系统的开发,例如纳米晶体、强脂质纳米颗粒、纳米结构脂质载体、脂质药物结合物、纳米脂质体、树枝状聚合物、纳米壳、乳液、纳米管、量子点等。
目前癌症仍然是世界范围内影响人类健康的主要问题。现有的策略,如化疗、放疗和抗血管增生疗法,可适度提高无进展生存期。然而,由于靶向的非特异性导致它们带来了降低生活质量的各种副作用。因此,协同治疗在癌症治疗中是一种突破,特别是将传统的治疗方法与新颖的治疗方法如免疫疗法和纳米疗法联合的治疗。
发明内容
本发明将传统的化疗与纳米材料及靶向分子相结合,制备出一种联合用药、协同靶向的新型靶向化疗药物以提高化疗药物的生物相容性、靶向性及水溶性,实现从不同抑瘤途径对肿瘤进行联合干预的同时,实现靶向作用的互补,减少耐药发生,增进治疗效果并减少毒副作用,改善患者生存率及生活质量,以实现个体化、最优化的治疗目的。
本发明的技术方案如下所述:
一种纳米药物粒子,其包括纳米载体、载入载体内的化疗药物,以及结合于载体表面的靶向分子,所述纳米载体具有透明质酸(HA)形成的亲水性外壳,荧光分子形成的疏水内核,所述靶向分子为靶向HER2的单抗药物。
根据本发明的实施方案,所述化疗药物选自如下脂溶性药物:紫杉醇(PTX)、阿霉素(DOX)、顺铂、SN-38、10-羟喜树碱。
根据本发明的实施方案,所述荧光分子选自多甲川染料,例如IR-26、IR-1061和IR-1048等。
根据本发明的实施方案,所述靶向HER2的单抗药物为曲妥珠单抗、帕妥珠单抗、伊尼妥单抗等。
根据本发明的实施方案,所述化疗药物为紫杉醇,其载药量为25%-45%,优选30-40%,包封率至少为65%以上,优选75%以上。
根据本发明的实施方案,所述单抗药物为曲妥珠单抗(Herceptin),其抗体偶联率为20-30%,优选25-28%,载药率为5-15%,优选8-12%。
根据本发明的实施方案,所述纳米药物粒子是一种粒径为140-180nm的球形纳米粒子。
一种用于治疗癌症的药物组合物,其包括如上的纳米药物粒子和药学上可接受的辅料。
根据本发明的实施方案,所述药物组合物是一种静脉注射制剂。
本发明如上所述的纳米药物粒子在制备用于治疗癌症的药物组合物中的用途。
根据本发明的实施方案,所述癌症包括卵巢癌、乳腺癌,肺癌、胃癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤。
发明详述
人类表皮生长因子受体(HER;EGFR)家族有4位成员——HER1(EGFR)、HER2、HER3和HER4。HER2受体(以前称为HER2/Neu)是一种具有酪氨酸激酶活性的跨膜糖蛋白。它属于表皮生长因子受体家族(EGFR/ErbB)。这些受体在控制上皮细胞的生长和分化中是必不可少的。研究表明,HER2蛋白异常过表达与一些腺癌相关,包括乳腺、卵巢、子宫内膜、子宫颈以及肺癌、食管癌、胃食管癌、胃癌和膀胱癌等。乳腺癌是当今女性发病率最高的恶性肿瘤,而HER2基因的扩增是乳腺癌癌变的早期事件。在乳腺癌患者中,大概有20%-30%的患者是HER2阳性。HER2阳性,意味着该基因发挥作用,抑制细胞凋亡,促进增殖,大大增加癌细胞的侵染力,同样的也意味着HER2阳性的乳腺癌恶性程度会更高、更容易出现疾病进展,也更容易复发和转移。因此,HER2成为热门靶点之一,自HER2靶向制剂问世后,极大改变了HER2阳性的乳腺癌患者的治疗格局。其中一些单抗药物是靶向HER2的抗癌剂,例如曲妥珠单抗(Herceptin)、帕妥珠单抗(Pertuzumab)、伊尼妥单抗(Inetetamab)。曲妥珠单抗
Figure BDA0003610719880000031
与HER2的胞外结构域IV结合,从而抑制与细胞增殖、存活、运动和粘附有关的下游细胞信号传导。
透明质酸(HA)是一种天然的多糖,由D-葡萄糖醛酸及N-乙酰葡糖胺交替重复组成。HA在肿瘤微环境中过表达,表现出复杂的生物活性。分化蛋白簇CD44被认为是HA的主要受体,CD44受体在多种肿瘤细胞表面过表达,包括乳腺癌和肺癌。CD44与HA的相互作用在许多信号通路中被激活,并参与许多生物过程,如炎症、伤口愈合、形态形成和癌症。CD44在癌症中显示出很高的HA结合能力,导致肿瘤的发生增加。CD44与HA结合后,CD44可介导透明质酸的内吞,然后被透明质酸酶(hyaluronidase,HAase)水解。而HAase是能使透明质酸产生低分子化作用酶的总称,是一类主要降解HA的酶,可以实现HA形成的纳米药物颗粒在肿瘤部位的酶响应性释放。
在抗癌治疗中,治疗方法多种多样,最基本的是使用抗癌药物进行化疗,如紫杉醇(PTX)、阿霉素(DOX)、顺铂(cis-diamminedichloroplatinum(II)or CDDP)、SN-38等。这些药物注入体内作用于癌细胞或组织,通过降低细胞活力或加速消灭癌细胞组织的特异性免疫反应阻断癌变。然而,这些效应不仅会对癌细胞造成损害,而且对正常细胞也有杀伤作用,因此导致各种副作用。此外,它们很容易被体内的生理或免疫反应所消除。因此,有必要使药物作用于癌变组织而不引起其他正常细胞的损害,并在体内微环境中保持稳定状态直到药物被传递。其中,紫杉醇(PTX)是最著名的抗癌药物,用于治疗许多肿瘤,如乳腺癌、卵巢癌和黑色素瘤。然而,由于水溶性差、非选择性毒性和对耐药细胞系无活性,使得它用于肿瘤的治疗有一些局限性。
在研究和临床应用中,荧光成像是改善疾病检测和引导手术的显著成像方式。与放射成像技术相比,荧光成像在检测的安全性和分辨率方面具有很大的优势。NIR-II(发射波长1000–1700nm)生物荧光成像技术是近年来发展起来的一种新型成像技术,它为无创活体生物成像提供了一个高度通用的平台,可以更清晰地探测生物组织/器官的深层次。具有高消光系数和量子产率的全类多甲川染料具有很大的临床应用潜力。通过延长共轭结构长度和调整化学取代,一些多甲川结构,如IR-26、IR-1061和IR-1048可以在NIR-II发出荧光,发射峰超过1000nm。在体内生物成像中显示出优异的性能,检测深度、分辨率和灵敏度有了前所未有的提高。
本发明所述的癌症(也称恶性肿瘤)这类疾病,几乎可以发生在身体的任何器官和组织。它是机体在各种致瘤因素的长期作用下,局部组织的某一个细胞在基因水平上失去对其生长的正常调控,导致其克隆性异常增生而形成的异常病变。这种现象一旦形成,具有向周围组织乃至全身侵袭和转移的特性。所述身体的任何器官和组织的癌症(或恶性肿瘤)例如可以是血液、肝、腺体(例如乳腺、前列腺、胰腺)、肠(例如结肠直肠)、肾、胃、脾、肺、肌肉、骨头等部位的恶性肿瘤。例如具体为如下疾病:卵巢癌、乳腺癌,肺癌、胃癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤等。
有益效果:
本发明制得的HA-IR-1048复合物,能够自组装成壳外亲水,核内疏水的纳米颗粒,所述纳米颗粒内部的疏水核心可用于封装疏水性的抗肿瘤药物以用于肿瘤的治疗;在其表面亦能提供修饰位点以引入不同的功能基团进而实现肿瘤靶向作用。
本发明通过HA纳米载体将单克隆抗体与传统化疗药物结合,通过单抗药物对HER2,HA对CD44的主动靶向作用,构建了一种双重靶向的协同靶向纳米抗癌药物,本发明的纳米抗癌药物在上述协同靶向以及纳米材料的被动靶向EPR效应作用下,所述药物到达肿瘤所在位置并被肿瘤细胞摄取,提高药物在肿瘤组织内的聚积,从而提高抑制肿瘤生长的治疗效果。本发明通过透明质酸酶响应性药物释放,而单克隆抗体与传统化疗药物的结合,进一步实现减少联合治疗的毒副作用,从而达到精准联合治疗的目的。此外,本发明在构建HA纳米载体中引入了NIR-II荧光染料,通过酶响应性荧光成像实现对协同靶向化疗药物早期抗肿瘤效果的评估以及后续抗肿瘤治疗的指导。
本发明的纳米抗癌药物,具有较高的载药率,良好的水溶性、稳定性及分散性,不受血清环境的影响。
本发明在HAase的生物相关浓度0.1mg/mL下,对协同靶向化疗药物的体外酶响应性进行了研究。由于荧光染料(例如IR-1048)的强自猝灭作用,在水中NIR-II荧光发射非常微弱。而本发明的纳米药物颗粒在HAase作用下的有效解离会减弱荧光分子在纳米粒子中的聚集程度,因此其荧光强度会被HAase处理放大。与PBS对照组相比,结果显示,HAase响应后的荧光强度大约为PBS组的3倍,响应后的荧光信号强度明显增强。本发明的纳米药物颗粒在PBS环境中与HAase孵育后,粒径分布发生了较明显的变化,由单分散变为多分散性,并且粒度从169.1±5.5nm显著变化到58nm和255nm,这证实了纳米药物颗粒在HAase的作用下的解离。纳米药物的尺寸分析也在37℃的含10%胎牛血清的培养基中进行。在HAase刺激下,其在血清环境中的尺寸变化与在PBS中相似,单分散的纳米药物尺寸由141.8±1.71nm变化到52.26nmh和184.8nm,这也说明血清环境几乎不影响我们的纳米药物对HAase的刺激响应。并且通过透射电镜观察到,纳米药物颗粒具有较大的形态学变化,其球状形态转变为不规则形态。这些结果表明,用HAase断裂透明质酸链可以有效地进行纳米药物的解离,本发明的纳米药物颗粒具有良好的HAase响应性。
本发明研究表明,所述纳米药物颗粒Her-HINP/PTX在0.1mg/mL HAase缓冲液中可以有效地释放PTX,72小时后达到平衡,其释放率可达81.89%甚至更高。
本发明通过溶血实验研究了纳米药物颗粒的生物相容性,与阳性对照组水中红细胞发生完全溶血现象不同,本发明的纳米药物颗粒,在不同浓度下,即使是1600μg/mL的浓度下也未观察到明显的溶血反应,说明我们的协同靶向化疗药物具有良好的生物相容性。
本发明还研究了不同纳米药物颗粒的体外毒性试验。对比本发明的纳米药物颗粒Her-HINP/PTX实验组、对比例HINP/PTX、Her-HINP、游离Herceptin,在100μg/mL(等量的PTX)和/或100μg/mL(等量的Herceptin)的浓度下,分别有23.96%±2.59%、47.44%±6.22%、59.75%±5.85%和72.28%±5.28%的SK-BR-3细胞(乳腺癌细胞,HER2高表达)存活。可见,本发明的纳米药物颗粒对肿瘤细胞的杀伤作用显著高于单独负载PTX或Herceptin的纳米颗粒对比例,其提高程度并非后两者的简单叠加,而是达到了协同增效的程度。
此外,本发明还对比了不同纳米药物在100μg/mL(等量的PTX及Herceptin)的浓度下与三种细胞乳腺癌细胞SK-BR-3(HER2高表达)和MDA-MB-232(HER2阴性)及正常肝脏细胞(L02)孵育后的结果,Her-HINP/PTX孵育后的细胞存活率分别为23.96%±2.59%、61.30%±2.92%和67.34%±12.85%。HINP/PTX实验组的细胞存活率分别为47.44%±6.22%、56.83%±4.03%、74.15%±4.79%。游离PTX实验组的细胞存活率分别为46.13%±4.81%、54.07%±3.64%和44.33%±4.85%。可见,游离PTX实验组对正常细胞的毒性作用明显高于Her-HINP/PTX和HINP/PTX实验组。因此,我们构建的协同靶向化疗药物Her-HINP/PTX不仅对HER2高表达肿瘤细胞具有良好的杀伤作用,而且可以降低传统化疗药物对正常组织器官的毒副作用,从而实现更精准的治疗,达到更理想的治疗效果。
附图说明
附图1:聚合物HA-IR-1048的简易合成路线。化合物1:HA-TBA化合物2:HA-SH化合物3:HA-IR-1048。
附图2:a)HINP TEM图b)HINP/PTX TEM图c)动态光散射(DLS)测定HINP、HINP/PTX、Her-HINP/PTX的粒径分布d)HINP、HINP/PTX、Her-HINP/PTX的电位变化。
附图3:a)通过紫外分光光度计(UV-Vis)测定游离IR-1048、HA-IR-1048、Her-HINP/PTX的吸收光谱b)通过FLS980荧光光谱仪在808nm激光激发下测得IR-1048、HA-IR-1048、Her-HINP/PTX的发射光谱c)Her-HINP/PTX和IR-1048在808nm激光照射下的光稳定性。
附图4:HPLC测得PTX标准曲线。
附图5:蛋白测定标准曲线。
附图6:a)在不同缓冲液中分散的Her-HAINP/PTX第1和15天的数码拍照,三种介质中均未观察到可见的沉淀b)动态光散射(DLS)测得Her-HAINP/PTX在不同缓冲溶液中不同时间的粒径变化c)动态光散射(DLS)测得Her-HAINP/PTX在不同缓冲溶液中不同时间溶液的PDI值。
附图7:HER2高表达SK-BR-3乳腺癌荷瘤裸鼠经尾静脉给药后的荧光成像示意图。
附图8:a)Her-HINP/PTX和HINP/PTX处理的SK-BR-3荷瘤小鼠不同时间体内荧光成像,圆圈表示肿瘤部位b)经Her-HINP/PTX和HINP/PTX处理的SK-BR-3荷瘤小鼠不同时间体内肿瘤部位荧光强度(**P<0.01)
附图9:不同治疗组肿瘤生长曲线。
附图10:荧光成像与体内抗肿瘤效果。
具体实施方式
下文将结合具体实施例对本发明的药物及其制备方法和应用做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1纳米药物的制备
(1)聚合物HA-IR-1048
为了得到纯度更好的透明质酸钠,我们对其在超纯水中进行了1天的透析处理(MWCO:8-12kDa),并冷冻干燥备用。由于透明质酸(HA)不能溶解于有机溶剂中,为了后续反应的进行,我们将透明质酸钠与四丁基氢氧化铵结合,从而使透明质酸可以溶解于有机溶剂中用于后续反应。透析后的透明质酸钠1g溶解于50mL超纯水中,然后与过量的25%四丁基氢氧化铵水溶液(Tetrabutylammonium hydroxide,TBA)13mL在50℃下搅拌过夜。反应降至室温后用0.22μm的膜过滤溶液,然后在超纯水中透析(MWCO:8-12kDa)3天,去除未反应的化学物质,并冷冻干燥,得到化合物HA-TBA。
将冻干后的HA-TBA 600mg溶解于50mL DMSO中,加热到50℃并搅拌辅助使其充分溶解,然后加入含有过量1-乙基-(3-二甲基氨基丙基)碳二亚胺(EDC)的DMSO溶液以及含有N-羟基琥珀酰亚胺(NHS)的DMF溶液,搅拌反应30分钟。HA-TBA与EDC、NHS反应后,加入溶解于DMSO中的半胱胺盐酸盐113.6096mg,常温搅拌过夜,使HA-TBA的羧基与半胱胺盐酸盐的氨基连接。反应后用0.22μm的膜过滤溶液,反应混合物在超纯水中透析(MWCO:8-12kDa)3天,去除未反应的化学物质及有机溶剂,并冷冻干燥,得到化合物HA-SH。HA-SH在使用前用TCEP处理,以完全减少二硫键,用PD-10脱盐柱洗脱去除TCEP。通过1HNMR测定每个聚合物分子中硫醇基团的数量。得到HA-SH后,我们又将其与NIR II荧光染料IR-1048结合。称取200mg HA-SH溶解于10mL DMSO溶液中,加热搅拌辅助其充分溶解。充分溶解后加入溶解于DMSO溶液中的73.991mg IR-1048,室温搅拌反应2天,得到聚合物HA-IR-1048(图1)。
(2)装载PTX的靶向性纳米化疗药物HINP/PTX
HA-1048溶解于有机溶剂DMSO中,终浓度为10mg/mL,加入溶解在三氯甲烷中的PTX(紫杉醇)溶液,并加入乳化剂PVA水溶液(1.5mg/mL)。在超声条件下乳化:功率60W,时间2分钟(超声5s,停2s),温度4-7℃。超声完毕待三氯甲烷挥发后转移至超滤离心管中超滤3次(MWCO:100kDa),去除游离的PTX及有机溶剂,即可得到装载PTX(紫杉醇)的靶向性纳米化疗药物HINP/PTX。
(3)协同靶向纳米化疗药物
向超滤后的15mg HINP/PTX中加入过量的EDC/NHS,在常温下活化30min后加入2.4mg溶解于500μL稀释液中的Herceptin,常温搅拌过夜反应。反应液转移至超滤离心管中(MWCO:100kDa)超滤3次,去除游离的Herceptin。冻干即得到协同靶向纳米化疗药物Her-HINP/PTX。
实施例2纳米药物的表征
(1)纳米粒子的微观形态、粒径、Zeta电位
纳米粒子的微观形态特征通过HT7700透射电镜进行观察,测试电压为100KV。样品制备方法如下:将纳米材料HINP和HINP/PTX分别溶解于超纯水中,选择合适的浓度。然后使用移液器吸取8.0μL样品,滴加于电镜专用铜网表面,自然风干后,待拍摄。
纳米材料的粒径及电位利用动态光散射(Dynamic light scattering,DLS),使用Malvern Zeta sizer Nano ZS仪器测得。样品制备方法如下:将纳米材料HINP、HINP/PTX和Her-HINP/PTX分别溶解于超纯水中,浓度为0.0375-0.1mg/mL。然后用移液器吸取1.0ml上述样品分别置于DLS或电位专用测试瓶中,测定各纳米粒子的粒径大小情况及Zeta电位的变化。
结论:
实验中我们通过透射电镜(TEM)观察了纳米粒子的形态(如图2a、2b)。如图所示在TEM下可以观察到HA-IR-1048在水中可以自组装成均匀的球形纳米粒子结构,HINP直径为64.7±5.5nm,HINP/PTX直径为82.3±5.9nm。此外,通过动态光散射(DLS)测定HINP、HINP/PTX和Her-HINP/PTX的粒径大小。如图2c所示,HINP的粒径从PTX包封前的110.1±0.68nm增加到131.2±1.3nm,增加的21nm说明PTX成功载入HINP中。装载PTX的纳米粒子与Herceptin偶联后,粒径进一步增加到了169.1±5.5nm。说明Herceptin的偶联使得纳米粒子的水合粒径进一步增加。
HINP的电位由-12.5±0.6mv变为PTX包封后的-13.9±1.2mv,装载PTX后纳米粒子的电位变化不大,而共价偶联Herceptin后的电位为21.4±1.2mv(图2d),电位由负值变为正值,进一步说明了带正电荷的Herceptin成功偶联到纳米粒子中从而导致了纳米粒子电位的明显变化。
(2)吸收及发射光谱
我们通过紫外分光光度计和荧光光谱仪扫描了游离IR-1048、HA-IR-1048和组装后纳米粒子Her-HINP/PTX的吸收及发射光谱(图3a、b)。如图a所示:游离的IR-1048在800-1200nm之间有明显的吸收峰,主峰在1070nm,肩峰在940nm。我们合成的两亲性聚合物HA-IR-1048的吸收峰与游离IR-1048相吻合,进一步证明了含IR-1048的两亲性聚合物的成功合成。而组装后的协同靶向化疗药物Her-HINP/PTX同样在800-1200nm之间有类似于游离IR-1048的宽的吸收带,吸收峰分别在930nm和1090nm。
光稳定性研究表明,在功率密度为0.2W/cm2的808nm激光连续照射40min以上时,Her-HINP/PTX在水中的吸收强度衰减几乎可以忽略。比游离IR-1048在二甲基亚砜(DMSO)中更稳定(图3c),显示IR-1048分子在聚集态时的光稳定性增强。综上结果可知,协同靶向化疗药物Her-HINP/PTX在808nm激光激发下,呈现典型的NIR-II发射波段,且具有良好的光稳定性,可进行后续的响应性研究及NIR-II荧光成像。
实施例3PTX载药率和包封率的确定
采用高效液相色谱法(HPLC)测定PTX不同浓度(0.03125mg/ml,0.0625mg/ml,0.125mg/ml,0.25mg/ml、0.5mg/ml和1mg/ml)时的峰面积,以PTX的浓度为横坐标,峰面积为纵坐标作图,可以观察到峰面积与PTX浓度呈线性关系,从而获得PTX标准曲线(图4)。回归方程为y=1.78493 107x-67603.2272(R2=0.99988)。为了确定最佳负载量,我们评估了当PTX:HINP不同比例时的包封率与载药率(表3.2)。因此我们最终选用PTX:HINP 30%作为后续实验中载药比例。
表3.2不同PTX:HINP比例的包封率和载药率
Figure BDA0003610719880000091
实施例4确定Her-HINP/PTX中偶联抗体量
我们应用BCA蛋白定量法获得了蛋白标准曲线,如图5。由图可知,标准蛋白的紫外吸收值与其浓度呈线性关系。回归方程为y=1.56423X+0.02876,R2=0.99839。应用BCA蛋白定量法测得Her-HINP/PTX中Herceptin在562nm处的紫外吸收值,根据标准曲线获得其浓度,从而得到Her-HINP/PTX中Herceptin抗体偶联量。通过计算得到Her-HINP/PTX抗体偶联率为27.5%,载药率为9.8%。
实施例5纳米药物稳定性研究
将组装后的终产物Her-HINP/PTX分别分散到超纯水、PBS和含10%热灭活胎牛血清的DMEM培养液中,然后在37℃下保存。在分散后的第1、3、5、7、9、10、15、20、25和第30天,通过动态光散射测得的纳米颗粒的大小变化来评估其稳定性。在超纯水、PBS和含10%热灭活胎牛血清的DMEM培养液中都显示出良好的溶解性及稳定性(图6a)。结果如图6b,不同时间不同介质中Her-HAINP/PTX的粒径变化不大,说明其稳定性较好。如图6c所示,不同时间不同介质中测得的PDI值无明显变化,说明其分散性较好。综上可知,协同靶向化疗药物Her-HAINP/PTX具有良好的稳定性及分散性,并不受血清环境的影响。
实施例6Her-HINP/PTX的体内抗肿瘤效果及荧光成像
(1)体内荧光成像(生物分布)
用HER2高表达SK-BR-3乳腺癌荷瘤裸鼠模型对协同靶向化疗药物的体内生物分布进行研究。当荷瘤小鼠肿瘤体积生长至约80mm3后随机分为两组,Her-HINP/PTX和HINP/PTX实验组(每组n=3)。两组荷瘤裸鼠分别经尾静脉注射分散在PBS溶液中的Her-HINP/PTX及HINP/PTX(PTX 5mg/kg)200uL。并在尾静脉注射后的不同时间点:2h、6h、12h、24h、36h、48h在异氟醚麻醉下应用近红外二区小动物活体成像系统In-vivo Master进行体内荧光信号的监测,观察两组化疗药物在荷瘤小鼠体内的全身分布和瘤内药物累积情况。
HER2高表达SK-BR-3乳腺癌荷瘤裸鼠经尾静脉给药后进行荧光成像(图7)。对药物在体内的分布情况及在肿瘤部位的积累情况进行评估。
两组荷瘤小鼠经尾静脉注射Her-HINP/PTX和HINP/PTX 200uL(PTX 5mg/kg),不同时间进行荧光显像,结果如图8a所示。全身给药后Her-HINP/PTX在肿瘤及肝脏部位均呈现强的荧光信号。而HINP/PTX组在肝脏部位有强的荧光信号,而在肿瘤部位的荧光信号明显弱于协同靶向组。我们进一步对肿瘤部位的荧光强度进行了半定量分析(图8b),两组肿瘤部位的荧光信号强度均在静脉注射药物后24h达峰值。肿瘤区域静脉注射协同靶向化疗药物Her-HINP/PTX 24h的荧光强度ROI值约为HINP/PTX组肿瘤部位荧光强度的2.5倍。且两实验组在静脉注射后不同时间点获得肿瘤部位荧光强度值在12、24h均有显著差异(**P<0.05)。综上,协同靶向化疗药物可以更好的在肿瘤部位富集,从而可以获得更好的治疗效果。
(2)荷瘤小鼠体内抗肿瘤效果评估
体内抗肿瘤实验利用成功构建的SK-BR-3乳腺癌肿瘤模型进行的。荷瘤模型构建2周后,当瘤体积生长至约80mm3时,将荷瘤小鼠随机分为7组:Her-HINP/PTX、HINP/PTX、Her-HINP、Herceptin、PTX、HINP、生理盐水对照组,每组5只,开始治疗。同天各组每只裸鼠分别通过尾静脉注射给予等量的PTX(5mg/kg)、Herceptin(10mg/kg)以及含等量PTX的Her-HINP/PTX,隔天治疗,共治疗五次,对照组以相同方式给予生理盐水。
实验结果如图9所示,生理盐水处理组中SK-BR-3肿瘤的生长没有受到影响,肿瘤的生长速度较快,治疗20天后肿瘤的相对体积为15.13±1.10。HINP载体组,肿瘤的生长速度与对照组基本一致,肿瘤相对体积为14.65±0.79。因此,单纯纳米药物载体在体内并不能抑制肿瘤的生长。游离PTX、Herceptin、Her-HINP组中肿瘤的生长速度较对照组有所下降,肿瘤相对体积分别为7.13±0.49、11.51±0.56、10.34±0.47。PTX治疗组较其他两组肿瘤的相对体积明显下降。Her-HINP/PTX和HINP/PTX治疗组肿瘤生长速度明显降低,治疗后相对肿瘤体积分别为1.92±0.12、3.75±0.26,协同靶向治疗组Her-HINP/PTX与对照组比较差异具有显著的统计学意义(**P<0.01)。其与PTX治疗组比较差异也具有统计学意义(**P<0.01)。说明协同靶向化疗药物Her-HINP/PTX可以明显抑制SK-BR-3肿瘤的生长,其治疗效果明显优于单纯化疗或单纯靶向治疗(图9)。我们还发现,相对于对照组和游离PTX治疗组,Her-HINP/PTX治疗组在治疗后的第8天开始显示出优势,肿瘤相对体积分别为4.79±0.22、2.28±0.38、1.22±0.11,Her-HINP/PTX治疗组与对照组及游离PTX治疗组差异均有统计学意义(***P<0.001、***P<0.01)。
(3)荧光成像早期评估协同靶向化疗药物体内抗肿瘤效果
利用在HER2高表达肿瘤模型SK-BR-3荷瘤小鼠中协同靶向化疗药物Her-HINP/PTX及HINP/PTX荧光成像的半定量分析与其体内抗肿瘤治疗后肿瘤相对体积的变化相结合,从而间接对早期抗肿瘤效果进行评估,用HER2高表达SK-BR-3乳腺癌荷瘤裸鼠模型对协同靶向化疗药物的体内生物分布进行研究。
实验过程:荷瘤小鼠肿瘤体积生长至约80mm3后随机分为两组,Her-HINP/PTX和HINP/PTX实验组(每组n=3)。两组荷瘤裸鼠分别经尾静脉注射分散在PBS溶液中的Her-HINP/PTX及HINP/PTX(PTX 5mg/kg)200uL。并在尾静脉注射后的不同时间点:2h、6h、12h、24h、36h、48h在异氟醚麻醉下应用近红外二区小动物活体成像系统In-vivo Master进行体内荧光信号的监测,观察两组化疗药物在荷瘤小鼠体内的全身分布和瘤内药物累积情况。并对小鼠肿瘤区域勾画感兴趣区(Region of Interest,ROI)进行半定量分析,进而评价其肿瘤内药物富集效果。初步评估靶向药物在化疗过程中的抗肿瘤效果。为了进一步研究药物在体内的生物分布情况,在注射药物48小时后,处死不同处理组的荷瘤小鼠,收集肿瘤和其他主要器官,包括心脏、肝脏、脾脏、肺脏、肾脏,并应用In-vivo Master进行体外的荧光显像。
结果如图10所示:协同靶向Her-HINP/PTX药物尾静脉注射24h后体内荧光强度明显高于HINP/PTX,分别为5336.00±876.73、2293.67±476.61。而其治疗20天后的肿瘤相对体积明显小于HINP/PTX治疗组,分别为1.92±0.12、3.75±0.26。综上可知,早期肿瘤部位荧光强度可以反映药物在肿瘤部位的积累情况,协同靶向化疗药物Her-HINP/PTX通过纳米材料的被动靶向作用、HA对肿瘤细胞过表达CD44的主动靶向作用及Herceptin对HER2的主动靶向作用,使得肿瘤部位有更多的药物积累,从而实现更好的治疗效果及对其他正常组织器官更低的毒副作用。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种纳米药物粒子,其包括纳米载体、载入载体内的化疗药物,以及结合于载体表面的靶向分子,所述纳米载体具有透明质酸(HA)形成的亲水性外壳,荧光分子形成的疏水内核,所述靶向分子为靶向HER2的单抗药物。
2.根据权利要求1的纳米药物粒子,所述化疗药物选自如下脂溶性药物:紫杉醇(PTX)、阿霉素(DOX)、顺铂、SN-38、10-羟喜树碱;
所述荧光分子选自多甲川染料,例如IR-26、IR-1061、IR-1064和IR-1048;
所述靶向HER2的单抗药物为曲妥珠单抗、帕妥珠单抗、伊尼妥单抗。
3.根据权利要求1的纳米药物粒子,所述化疗药物为紫杉醇,其载药量为25%-45%,优选30-40%,包封率至少为65%以上,优选75%以上。
4.根据权利要求1的纳米药物粒子,所述单抗药物为曲妥珠单抗(Herceptin),其抗体偶联率为20-30%,优选25-28%,载药率为5-15%,优选8-12%。
5.根据权利要求1的纳米药物粒子,其是一种粒径为140-180nm的球形纳米粒子。
6.一种用于治疗癌症的药物组合物,其包括权利要求1-5任一项所述的纳米药物粒子和药学上可接受的辅料。
7.根据权利要求6的药物组合物,其是一种静脉注射制剂。
8.权利要求1-5任一项所述的纳米药物粒子在制备用于治疗癌症的药物组合物中的用途。
9.根据权利要求8的用途,所述癌症包括卵巢癌、乳腺癌,肺癌、胃癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤。
CN202210431378.1A 2022-04-22 2022-04-22 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用 Active CN114848843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210431378.1A CN114848843B (zh) 2022-04-22 2022-04-22 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210431378.1A CN114848843B (zh) 2022-04-22 2022-04-22 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用

Publications (2)

Publication Number Publication Date
CN114848843A true CN114848843A (zh) 2022-08-05
CN114848843B CN114848843B (zh) 2023-09-29

Family

ID=82633735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210431378.1A Active CN114848843B (zh) 2022-04-22 2022-04-22 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用

Country Status (1)

Country Link
CN (1) CN114848843B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117442789A (zh) * 2022-11-11 2024-01-26 凯诺威医疗科技(武汉)有限公司 一种药涂球囊涂覆液、涂层材料、药涂球囊、制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143027A (zh) * 2013-02-28 2013-06-12 厦门大学 一种基于透明质酸的双靶向纳米复合物药物制备及其应用
US20170058011A1 (en) * 2015-08-27 2017-03-02 National Yang-Ming Univeristy Dual targeting drug carrier and application thereof
CN108210938A (zh) * 2017-12-26 2018-06-29 南京邮电大学 一种多功能靶向纳米荧光探针及其制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143027A (zh) * 2013-02-28 2013-06-12 厦门大学 一种基于透明质酸的双靶向纳米复合物药物制备及其应用
US20170058011A1 (en) * 2015-08-27 2017-03-02 National Yang-Ming Univeristy Dual targeting drug carrier and application thereof
CN108210938A (zh) * 2017-12-26 2018-06-29 南京邮电大学 一种多功能靶向纳米荧光探针及其制备与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117442789A (zh) * 2022-11-11 2024-01-26 凯诺威医疗科技(武汉)有限公司 一种药涂球囊涂覆液、涂层材料、药涂球囊、制备方法及应用

Also Published As

Publication number Publication date
CN114848843B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
Li et al. Bio-based nanomaterials for cancer therapy
Madamsetty et al. Chitosan: A versatile bio-platform for breast cancer theranostics
Akbarzadeh et al. Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system
US9132098B2 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Wang et al. Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug delivery of liver cancer therapy
WO2010048623A9 (en) Medical and imaging nanoclusters
Xie et al. Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy
EP2860193B1 (en) Polypeptide with function of targeted diagnosis and therapy of nasopharyngeal carcinoma, nanoparticles carrying same and use thereof
Grumezescu et al. Nanostructures for Cancer Therapy
US9675714B1 (en) Graphene based theranostics for tumor targeted drug/gene delivery and imaging
Invernici et al. Nanotechnology advances in brain tumors: the state of the art
Bhaskaran et al. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems
Khan et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer
Hu et al. Biodegradable polydopamine and tetrasulfide bond co-doped hollowed mesoporous silica nanospheres as GSH-triggered nanosystem for synergistic chemo-photothermal therapy of breast cancer
Aghda et al. Design of smart nanomedicines for effective cancer treatment
Saharkhiz et al. A new theranostic pH-responsive niosome formulation for doxorubicin delivery and bio-imaging against breast cancer
US20140296173A1 (en) Stable nanocomposition comprising epirubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Raheem et al. Advances in nanoparticles-based approaches in cancer theranostics
Agwa et al. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review
Soni et al. Nano‐biotechnology in tumour and cancerous disease: A perspective review
CN114848843B (zh) 一种化疗协同靶向联合治疗纳米药物及其在肿瘤治疗中的应用
Fan et al. Lignin-assisted construction of sub-10 nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors
WO2014155144A1 (en) Stable nanocomposition comprising docetaxel, process for the preparation thereof, its use and pharmaceutical compositions containing it
Rohtagi et al. Chitosan and hyaluronic acid-based nanocarriers for advanced cancer therapy and intervention
Sun et al. Pharmaceutical Nanotechnology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant