CN114841021A - Modification method, device, electronic device and storage medium for digital twin model - Google Patents

Modification method, device, electronic device and storage medium for digital twin model Download PDF

Info

Publication number
CN114841021A
CN114841021A CN202210776233.5A CN202210776233A CN114841021A CN 114841021 A CN114841021 A CN 114841021A CN 202210776233 A CN202210776233 A CN 202210776233A CN 114841021 A CN114841021 A CN 114841021A
Authority
CN
China
Prior art keywords
space data
data
virtual space
physical space
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210776233.5A
Other languages
Chinese (zh)
Other versions
CN114841021B (en
Inventor
牟许东
王瑞
刘重伟
郭晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210776233.5A priority Critical patent/CN114841021B/en
Publication of CN114841021A publication Critical patent/CN114841021A/en
Application granted granted Critical
Publication of CN114841021B publication Critical patent/CN114841021B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请实施例提出一种数字孪生模型的修正方法、装置、电子设备和存储介质,涉及数字孪生技术领域。通过按照预设时序长度,对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;将目标虚拟空间数据输入到事先训练好的重构模型中,利用重构模型对目标虚拟空间数据进行重构,获得目标虚拟空间数据对应的物理空间下的重构数据;根据重构数据和目标物理空间数据确定误差指数,并在误差指数满足修正条件的情况下,对数字孪生模型进行修正,从而提高了误差精度,进而可及时对数字孪生模型进行修正,提升数字孪生模型的准确性。

Figure 202210776233

The embodiments of the present application provide a method, device, electronic device and storage medium for revising a digital twin model, which relate to the technical field of digital twins. By intercepting the physical space data and virtual space data obtained at the current moment and before the current moment according to the preset time sequence length, the target physical space data and target virtual space data are obtained; In the construction model, the reconstruction model is used to reconstruct the target virtual space data, and the reconstruction data in the physical space corresponding to the target virtual space data is obtained; the error index is determined according to the reconstructed data and the target physical space data, and the error index satisfies In the case of correction conditions, the digital twin model is corrected to improve the error accuracy, and then the digital twin model can be corrected in time to improve the accuracy of the digital twin model.

Figure 202210776233

Description

数字孪生模型的修正方法、装置、电子设备和存储介质Modification method, device, electronic device and storage medium for digital twin model

技术领域technical field

本申请涉及数字孪生技术领域,具体而言,涉及一种数字孪生模型的修正方法、装置、电子设备和存储介质。The present application relates to the technical field of digital twins, and in particular, to a method, apparatus, electronic device and storage medium for revising a digital twin model.

背景技术Background technique

目前,可以利用数字孪生技术对工业设备进行故障诊断以及预测性维护的业务,过程包括数字孪生模型建模、数字孪生模型修正和数字孪生模型应用,而数字孪生模型的准确性对于工业设备的正常运行具有重要的意义,因此,数字孪生模型的修正则起着至关重要的作用。At present, digital twin technology can be used for fault diagnosis and predictive maintenance of industrial equipment. The process includes digital twin model modeling, digital twin model correction, and digital twin model application. The accuracy of the digital twin model is important for the normal operation of industrial equipment. Operation is of great significance, therefore, the revision of the digital twin model plays a crucial role.

现有技术中,往往可通过对数字孪生模型对应的虚拟数据,以及工业设备对应的物理数据进行原始数据级的误差计算,从而获得数字孪生模型与工业设备之间的误差,并根据该误差确定是否对数字孪生模型进行修正,但原始数据级的误差计算存在误差精度较差的问题,因此会导致无法及时对数字孪生模型进行修正,使得数字孪生模型不够准确。In the prior art, it is often possible to obtain the error between the digital twin model and the industrial equipment by performing original data-level error calculation on the virtual data corresponding to the digital twin model and the physical data corresponding to the industrial equipment, and determine the error based on the error. Whether to correct the digital twin model, but the error calculation at the original data level has the problem of poor error accuracy, so the digital twin model cannot be corrected in time, making the digital twin model inaccurate.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请的目的在于提供一种数字孪生模型的修正方法、装置、电子设备和存储介质,以提高误差精度,进而可及时对数字孪生模型进行修正,提升数字孪生模型的准确性。In view of this, the purpose of the present application is to provide a correction method, device, electronic device and storage medium for a digital twin model, so as to improve the error accuracy, and then the digital twin model can be corrected in time to improve the accuracy of the digital twin model.

为了实现上述目的,本申请实施例采用的技术方案如下:In order to achieve the above purpose, the technical solutions adopted in the embodiments of the present application are as follows:

第一方面,本申请提供一种数字孪生模型的修正方法,所述方法包括:In a first aspect, the present application provides a method for revising a digital twin model, the method comprising:

按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;所述物理空间数据为工业设备上各个部件的运行数据,所述虚拟空间数据为所述工业设备对应的数字孪生模型中的各个部件的运行数据;According to the preset time sequence length, intercept the physical space data and virtual space data obtained at the current moment and before the current moment to obtain target physical space data and target virtual space data; the physical space data is each component on the industrial equipment operation data, the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment;

将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据;Input the target virtual space data into the pre-trained reconstruction model, use the reconstruction model to reconstruct the target virtual space data, and obtain the reconstruction in the physical space corresponding to the target virtual space data data;

根据所述重构数据和所述目标物理空间数据确定误差指数,并在所述误差指数满足修正条件的情况下,对所述数字孪生模型进行修正。An error index is determined according to the reconstructed data and the target physical space data, and when the error index satisfies a correction condition, the digital twin model is corrected.

在可选的实施方式中,所述重构模型通过以下步骤训练获得:In an optional embodiment, the reconstructed model is obtained by training in the following steps:

获取多个预设时序长度的训练样本;每个所述训练样本包括所述预设时序长度内每个时刻对应的物理空间数据样本以及虚拟空间数据样本;Acquiring a plurality of training samples of preset time series lengths; each of the training samples includes physical space data samples and virtual space data samples corresponding to each moment in the preset time series length;

将所有的虚拟空间数据样本输入预先构建的重构模型,利用所述重构模型对每个所述虚拟空间数据样本进行重构,获得每个所述虚拟空间数据样本对应的物理空间下的重构数据;Input all virtual space data samples into a pre-built reconstruction model, use the reconstruction model to reconstruct each virtual space data sample, and obtain the weight in the physical space corresponding to each virtual space data sample. structure data;

分别根据每个所述虚拟空间数据样本对应的物理空间下的重构数据,以及每个所述虚拟空间数据样本对应的物理空间数据样本,计算每个训练样本对应的误差指数;Calculate the error index corresponding to each training sample according to the reconstructed data in the physical space corresponding to each of the virtual space data samples, and the physical space data samples corresponding to each of the virtual space data samples;

在所述误差指数不满足模型收敛条件的情况下,对所述重构模型的参数进行迭代优化,获得训练好的重构模型。When the error index does not meet the model convergence condition, iterative optimization is performed on the parameters of the reconstructed model to obtain a trained reconstructed model.

在可选的实施方式中,所述按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据,包括:In an optional implementation manner, according to the preset time sequence length, the current moment and the physical space data and virtual space data obtained before the current moment are intercepted to obtain the target physical space data and the target virtual space data, including :

对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行去噪,获得去噪后的物理空间数据和虚拟空间数据;Perform denoising on the physical space data and virtual space data obtained at the current moment and before the current moment to obtain denoised physical space data and virtual space data;

按照所述预设时序长度对所述去噪后的物理空间数据和虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据。The denoised physical space data and virtual space data are intercepted according to the preset time sequence length to obtain target physical space data and target virtual space data.

在可选的实施方式中,所述将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据,包括:In an optional implementation manner, the target virtual space data is input into a pre-trained reconstruction model, and the target virtual space data is reconstructed by using the reconstruction model to obtain the target virtual space Reconstructed data in physical space corresponding to spatial data, including:

将所述目标虚拟空间数据输入所述事先训练好的重构模型的编码层,获得所述目标虚拟空间数据对应的上下文向量;Inputting the target virtual space data into the coding layer of the pre-trained reconstruction model to obtain a context vector corresponding to the target virtual space data;

将所述上下文向量以及所述目标虚拟空间数据输入到所述重构模型的解码层,获得所述目标虚拟空间数据对应的物理空间下的初始重构数据;Inputting the context vector and the target virtual space data into the decoding layer of the reconstruction model to obtain initial reconstruction data in the physical space corresponding to the target virtual space data;

将所述初始重构数据输入到所述重构模型的非线性投影层,获得所述目标虚拟空间数据对应的物理空间下的重构数据。The initial reconstruction data is input into the nonlinear projection layer of the reconstruction model to obtain reconstruction data in the physical space corresponding to the target virtual space data.

在可选的实施方式中,所述根据所述重构数据和所述目标物理空间数据确定误差指数,包括:In an optional implementation manner, the determining an error index according to the reconstructed data and the target physical space data includes:

根据所述重构数据和所述目标物理空间数据,计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异;According to the reconstructed data and the target physical space data, calculate the shape difference and the distortion difference between the target virtual space data and the target physical space data;

根据所述形状差异和所述扭曲差异,计算所述误差指数。The error index is calculated from the shape difference and the twist difference.

在可选的实施方式中,所述根据所述重构数据和所述目标物理空间数据,计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异,包括:In an optional implementation manner, calculating the shape difference and distortion difference between the target virtual space data and the target physical space data according to the reconstructed data and the target physical space data includes:

通过以下公式计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异:The shape difference and distortion difference between the target virtual space data and the target physical space data are calculated by the following formulas:

Figure P_220628105357183_183665001
Figure P_220628105357183_183665001

Figure P_220628105357214_214894001
Figure P_220628105357214_214894001

其中,

Figure P_220628105357246_246194001
表征目标虚拟空间数据对应的物理空间下的重构数据,
Figure P_220628105357261_261740002
表征目标物理空间数据,
Figure P_220628105357294_294479003
表征形状差异,
Figure P_220628105357310_310100004
表征扭曲差异,
Figure P_220628105357325_325740005
表征大于等于0的平滑指数,
Figure P_220628105357356_356986006
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据之间的规整路径,
Figure P_220628105357372_372606007
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据的规整开销矩阵。in,
Figure P_220628105357246_246194001
Represents the reconstructed data in the physical space corresponding to the target virtual space data,
Figure P_220628105357261_261740002
Characterize the target physical space data,
Figure P_220628105357294_294479003
to characterize shape differences,
Figure P_220628105357310_310100004
Representation Distortion Differences,
Figure P_220628105357325_325740005
represents a smoothing exponent greater than or equal to 0,
Figure P_220628105357356_356986006
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular path between the target physical space data,
Figure P_220628105357372_372606007
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular cost matrix of the target physical space data.

在可选的实施方式中,所述根据所述形状差异和所述扭曲差异,计算所述误差指数,包括:通过以下公式计算所述误差指数:In an optional implementation manner, the calculating the error index according to the shape difference and the distortion difference includes: calculating the error index by the following formula:

Figure P_220628105357403_403845001
Figure P_220628105357403_403845001

其中,

Figure P_220628105357435_435117001
表征所述误差指数,
Figure P_220628105357450_450716002
表征超参数,
Figure P_220628105357467_467294003
表征所述形状差异,
Figure P_220628105357499_499084004
表征所述扭曲差异。in,
Figure P_220628105357435_435117001
characterizing the error index,
Figure P_220628105357450_450716002
Characterization hyperparameters,
Figure P_220628105357467_467294003
to characterize the shape difference,
Figure P_220628105357499_499084004
Characterize the twist difference.

第二方面,本申请提供一种数字孪生模型的修正装置,所述装置包括:In a second aspect, the present application provides a device for correcting a digital twin model, the device comprising:

获取模块,用于按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;所述物理空间数据为工业设备上各个部件的运行数据,所述虚拟空间数据为所述工业设备对应的数字孪生模型中的各个部件的运行数据;The acquisition module is used for intercepting the physical space data and virtual space data obtained at the current moment and before the current moment according to the preset time sequence length to obtain target physical space data and target virtual space data; the physical space data is: The operation data of each component on the industrial equipment, the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment;

处理模块,用于将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据;The processing module is used to input the target virtual space data into the pre-trained reconstruction model, and use the reconstruction model to reconstruct the target virtual space data to obtain the physical data corresponding to the target virtual space data. Reconstructed data in space;

修正模块,用于根据所述重构数据和所述目标物理空间数据确定误差指数,并在所述误差指数满足修正条件的情况下,对所述数字孪生模型进行修正。A correction module, configured to determine an error index according to the reconstructed data and the target physical space data, and correct the digital twin model when the error index satisfies a correction condition.

第三方面,本申请提供一种电子设备,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机程序,所述处理器可执行所述计算机程序以实现前述实施方式任一项所述的方法。In a third aspect, the present application provides an electronic device, including a processor and a memory, where the memory stores a computer program that can be executed by the processor, and the processor can execute the computer program to implement any of the foregoing embodiments. one of the methods described.

第四方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前述实施方式任一项所述的方法。In a fourth aspect, the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the method according to any one of the foregoing embodiments.

本申请实施例提供的数字孪生模型的修正方法、装置、电子设备和存储介质,结合时序信息获得目标物理空间数据和目标虚拟空间数据,通过对目标虚拟空间数据进行重构,以获得该目标虚拟空间数据对应的物理空间下的重构数据,并根据该重构数据和目标物理空间数据确定误差指数,从而避免了仅根据虚拟空间数据和物理空间数据进行原始数据级的误差计算所导致的误差精度较低的问题,提高了误差精度,进而可及时对数字孪生模型进行修正,提升了数字孪生模型的准确性。The digital twin model correction method, device, electronic device, and storage medium provided by the embodiments of the present application obtain target physical space data and target virtual space data in combination with timing information, and reconstruct the target virtual space data to obtain the target virtual space data. The reconstructed data in the physical space corresponding to the spatial data, and the error index is determined according to the reconstructed data and the target physical space data, thereby avoiding the error caused by the error calculation of the original data level only based on the virtual space data and the physical space data. The problem of low accuracy improves the error accuracy, and then the digital twin model can be corrected in time, which improves the accuracy of the digital twin model.

为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, the preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.

图1示出了物理数据和虚拟数据的时序自相关性的示意图;Fig. 1 shows the schematic diagram of the time series autocorrelation of physical data and virtual data;

图2示出了未考虑物理数据和虚拟数据的时序自相关性的示意图;Fig. 2 shows the schematic diagram that does not consider the time series autocorrelation of physical data and virtual data;

图3示出了本申请实施例提供的电子设备的方框示意图;FIG. 3 shows a schematic block diagram of an electronic device provided by an embodiment of the present application;

图4示出了本申请实施例提供的数字孪生模型的修正方法的一种流程示意图;4 shows a schematic flowchart of a method for revising a digital twin model provided by an embodiment of the present application;

图5示出了本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图;FIG. 5 shows another schematic flowchart of the method for revising a digital twin model provided by an embodiment of the present application;

图6示出了滑动窗口截取训练样本的示意图;Figure 6 shows a schematic diagram of a sliding window intercepting training samples;

图7示出了本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图;FIG. 7 shows another schematic flowchart of the method for revising a digital twin model provided by an embodiment of the present application;

图8示出了本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图;FIG. 8 shows another schematic flowchart of the method for revising a digital twin model provided by an embodiment of the present application;

图9示出了本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图;FIG. 9 shows another schematic flowchart of the method for correcting the digital twin model provided by the embodiment of the present application;

图10示出了本申请实施例提供的数字孪生模型的修正装置的一种功能模块图;FIG. 10 shows a functional block diagram of the device for correcting the digital twin model provided by the embodiment of the present application;

图11示出了本申请实施例提供的数字孪生模型的修正装置的另一种功能模块图。FIG. 11 shows another functional block diagram of the apparatus for correcting the digital twin model provided by the embodiment of the present application.

图标:100-电子设备;110-存储器;120-处理器;130-通信模块;200-获取模块;210-处理模块;220-修正模块;230-模型训练模块。Icons: 100-electronic device; 110-memory; 120-processor; 130-communication module; 200-acquisition module; 210-processing module; 220-correction module; 230-model training module.

具体实施方式Detailed ways

下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application.

需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that relational terms such as the terms "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

目前,可以利用数字孪生技术对工业设备进行故障诊断以及预测性维护的业务,过程包括数字孪生模型建模、数字孪生模型修正和数字孪生模型应用,而数字孪生模型的准确性对于工业设备的正常运行具有重要的意义,因此,数字孪生模型的修正则起着至关重要的作用。At present, digital twin technology can be used for fault diagnosis and predictive maintenance of industrial equipment. The process includes digital twin model modeling, digital twin model correction, and digital twin model application. The accuracy of the digital twin model is important for the normal operation of industrial equipment. Operation is of great significance, therefore, the revision of the digital twin model plays a crucial role.

现有技术中,一般可计算数字孪生模型的虚拟数据与工业设备的物理数据之间的误差,从而在误差满足预设条件的时候,进行聚类的误差学习,并提取数字孪生模型对应的虚拟空间以及工业设备对应的物理空间的特征数据,对数字孪生模型进行修正。可以理解地,现有技术中实际上仅针对数字孪生模型的虚拟数据与工业设备的物理数据,进行了原始数据级的误差计算,即直接通过数字孪生模型的虚拟数据和工业设备的物理数据计算误差,在此基础上,现有技术主要存在以下问题:In the prior art, the error between the virtual data of the digital twin model and the physical data of the industrial equipment can generally be calculated, so that when the error meets the preset condition, the error learning of the clustering is performed, and the virtual data corresponding to the digital twin model is extracted. The characteristic data of the physical space corresponding to the space and the industrial equipment is used to correct the digital twin model. It is understandable that in the prior art, only the virtual data of the digital twin model and the physical data of the industrial equipment are actually calculated at the original data level, that is, the virtual data of the digital twin model and the physical data of the industrial equipment are directly calculated. error, on this basis, the existing technology mainly has the following problems:

1.设备在运行时产生的时序数据往往存在时间序列的自相关性,随着时间的变化,数据会具有一定的前后关联性,例如呈现出单调变化的特点。请参见图1,可以看出,随着时间的递增,物理数据和虚拟数据会呈现单调递增的特点。因此现有技术中仅进行原始数据级的误差计算,并未考虑到数据随时间的单调变化特点,请参见图2,虽然相较于图1中虚拟空间数据与物理空间数据之间的误差变小,但随着时间的变化,该虚拟数据呈现出递增后递减的趋势,显然并不满足时间序列上的自相关性,现有技术进行误差计算时,显然无法考虑到这种情况,因此会导致数字孪生模型无法及时修正该问题。1. The time series data generated by the equipment during operation often has time series autocorrelation. With the change of time, the data will have a certain contextual correlation, such as showing the characteristics of monotonic changes. Referring to Figure 1, it can be seen that with the increase of time, the physical data and virtual data will show the characteristics of monotonous increase. Therefore, in the prior art, only the error calculation at the original data level is performed, and the monotonic variation characteristics of data over time are not considered. Please refer to FIG. 2, although the error variation between the virtual space data and the physical space data in FIG. Small, but with the change of time, the virtual data shows a trend of increasing and then decreasing, which obviously does not satisfy the autocorrelation on the time series. The existing technology obviously cannot take this situation into account when calculating the error, so it will As a result, the digital twin model cannot correct the problem in time.

2.工业设备在运行时,其各个部件,各类运行状态之间也可能存在一定的相关性,例如,机器人的各轴位置之间存在一定的依赖与限制关系、力矩与电流之间存在一定的依赖关系。可以理解的,该相关性主要体现在,在一个整体运行过程中,同一时刻下各个部件之间可能存在一定的相关性,不同时刻下各个部件也可能存在一定的相关性,而现有技术中的原始数据级的误差计算显然也并未将其考虑在内。2. When industrial equipment is running, there may also be a certain correlation between its various components and various operating states. For example, there is a certain dependence and restriction relationship between the positions of each axis of the robot, and there is a certain relationship between torque and current. dependencies. It can be understood that the correlation is mainly reflected in the fact that in an overall operation process, there may be a certain correlation between the various components at the same time, and there may also be a certain correlation between the various components at different times. The error calculation at the raw data level obviously does not take it into account.

综上,现有技术中原始数据级的误差计算无法考虑到数据在时间序列上的自相关性,以及各个部件各个设备在运行过程中的相关性,因此存在误差精度较差的问题,从而会导致无法及时基于该误差对数字孪生模型进行修正,导致数字孪生模型不够准确。To sum up, the error calculation at the original data level in the prior art cannot take into account the autocorrelation of the data in the time series and the correlation of each component and each device during the operation process, so there is a problem of poor error accuracy, which will lead to As a result, the digital twin model cannot be corrected based on the error in time, resulting in an inaccurate digital twin model.

基于此,本申请实施例提供一种数字孪生模型的修正方法,以解决以上问题。Based on this, the embodiments of the present application provide a method for revising a digital twin model to solve the above problems.

请参照图3,是电子设备100的方框示意图,该电子设备100可以是终端设备,例如PC端、移动终端等。该电子设备100还需要与工业设备通信连接,用于获取工业设备发送的物理空间数据。Please refer to FIG. 3 , which is a schematic block diagram of an electronic device 100 . The electronic device 100 may be a terminal device, such as a PC terminal, a mobile terminal, and the like. The electronic device 100 also needs to be communicatively connected with the industrial device, so as to obtain the physical space data sent by the industrial device.

可选地,该工业设备可以是从事工业生产的设备,例如工业机器人、工业机床等。Optionally, the industrial equipment may be equipment engaged in industrial production, such as industrial robots, industrial machine tools, and the like.

在一种可能实现的方式中,该电子设备100上还可以事先设置有工业设备对应的数字孪生模型,从而可直接获取该数字孪生模型的模拟空间数据;在另一种可能实现的方式中,该电子设备100可以与设置有工业设备对应的数字孪生模型的其他电子设备通信连接,从而从该其他电子设备中获取数字孪生模型的模拟空间数据。In a possible implementation manner, the electronic device 100 may also be pre-set with a digital twin model corresponding to the industrial equipment, so that the simulated spatial data of the digital twin model can be directly obtained; in another possible implementation manner, The electronic device 100 may be connected in communication with other electronic devices provided with a digital twin model corresponding to the industrial device, so as to acquire simulated spatial data of the digital twin model from the other electronic devices.

所述电子设备100包括存储器110、处理器120及通信模块130。所述存储器110、处理器120以及通信模块130各元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。The electronic device 100 includes a memory 110 , a processor 120 and a communication module 130 . The elements of the memory 110 , the processor 120 and the communication module 130 are directly or indirectly electrically connected to each other to realize data transmission or interaction. For example, these elements may be electrically connected to each other through one or more communication buses or signal lines.

其中,存储器110用于存储程序或者数据。所述存储器110可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(ErasableProgrammable Read-Only Memory,EPROM),电可擦除只读存储器(Electric ErasableProgrammable Read-Only Memory,EEPROM)等。The memory 110 is used for storing programs or data. The memory 110 may be, but is not limited to, a random access memory (Random Access Memory, RAM), a read only memory (Read Only Memory, ROM), a programmable read only memory (Programmable Read-Only Memory, PROM), which can be Erasable Read-Only Memory (ErasableProgrammable Read-Only Memory, EPROM), Electrical Erasable Programmable Read-Only Memory (EEPROM), etc.

处理器120用于读/写存储器中存储的数据或程序,并执行相应地功能。The processor 120 is used to read/write data or programs stored in the memory, and perform corresponding functions.

通信模块130用于通过所述网络建立所述服务器与其它通信终端之间的通信连接,并用于通过所述网络收发数据。The communication module 130 is configured to establish a communication connection between the server and other communication terminals through the network, and to send and receive data through the network.

应当理解的是,图3所示的结构仅为电子设备100的结构示意图,所述电子设备100还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。图3中所示的各组件可以采用硬件、软件或其组合实现。It should be understood that the structure shown in FIG. 3 is only a schematic structural diagram of the electronic device 100 , and the electronic device 100 may further include more or less components than those shown in FIG. 3 , or have different components from those shown in FIG. 3 . Configuration. Each component shown in FIG. 3 can be implemented in hardware, software, or a combination thereof.

本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时可以实现本申请实施例提供的数字孪生模型的修正方法。Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the method for revising the digital twin model provided by the embodiments of the present application can be implemented.

接下来以电子设备100为执行主体,结合流程示意图对本申请实施例提供数字孪生模型的修正方法进行详细介绍,具体的,请参见图4,为本申请实施例提供的数字孪生模型的修正方法的一种流程示意图,该方法包括:Next, the electronic device 100 is used as the main body of execution, and the method for revising the digital twin model provided by the embodiment of the present application will be described in detail in conjunction with the schematic flowchart. For details, please refer to FIG. 4 . A schematic flow chart, the method includes:

步骤S20,按照预设时序长度,对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;Step S20, according to the preset time sequence length, intercept the physical space data and virtual space data obtained at the current moment and before the current moment, and obtain target physical space data and target virtual space data;

其中,物理空间数据为工业设备上各个部件的运行数据,虚拟空间数据为工业设备对应的数字孪生模型中的各个部件的运行数据;Among them, the physical space data is the operation data of each component on the industrial equipment, and the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment;

可选地,该物理空间数据可以是从工业设备中获取的数据,包括该工业设备上各个部件的运行数据;该虚拟空间数据可以是从该工业设备对应的数字孪生模型中获得的数据,包括各个部件的运行数据。Optionally, the physical space data may be data obtained from industrial equipment, including operating data of various components on the industrial equipment; the virtual space data may be data obtained from a digital twin model corresponding to the industrial equipment, including Operating data of individual components.

可以理解的,该物理空间数据为工业设备实际运行过程中获得的实际数据,而该虚拟空间数据为通过数字孪生模型进行模拟运行从而获得的虚拟数据。It can be understood that the physical space data is the actual data obtained during the actual operation of the industrial equipment, and the virtual space data is the virtual data obtained through the simulation operation of the digital twin model.

可选地,该数字孪生模型可与其对应的工业设备同步运行,在此情况下,同一时刻下获得的物理空间数据和虚拟空间数据对应。Optionally, the digital twin model can run synchronously with its corresponding industrial equipment. In this case, the physical space data and virtual space data obtained at the same time correspond.

在一种可能实现的情况下,该电子设备可实时获取物理空间数据和虚拟空间数据并进行存储,在需要确定误差的情况下再对其进行截取;在另一种可能实现的情况下,电子设备可按照预设的时间间隔从工业设备和虚拟空间数据中采集物理空间数据以及虚拟空间数据。In one possible implementation, the electronic device can acquire and store physical space data and virtual space data in real time, and then intercept them when errors need to be determined; in another possible implementation, the electronic device The device can collect physical space data and virtual space data from industrial equipment and virtual space data at preset time intervals.

可选地,该预设时序长度为对物理空间数据和虚拟空间数据进行截取的长度,例如,若该预设时序长度为两分钟,则可截取当前时刻至距当前时刻两分钟的时刻内,每一时刻对应的物理空间数据和虚拟空间数据。Optionally, the preset time sequence length is the length of intercepting the physical space data and the virtual space data. For example, if the preset time sequence length is two minutes, the current time can be intercepted to within two minutes from the current time, The physical space data and virtual space data corresponding to each moment.

可选地,该目标物理空间数据为按照预设时序长度对该物理空间数据截取后,每个时刻对应的物理空间数据的集合,可以理解的,该目标物理空间数据包括多个时刻下对应的物理空间数据,且每个时刻对应的物理空间数据包括工业设备的各个部件在该时刻下的运行数据。Optionally, the target physical space data is a collection of physical space data corresponding to each moment after the physical space data is intercepted according to a preset time sequence length. It can be understood that the target physical space data includes corresponding data at multiple moments. Physical space data, and the physical space data corresponding to each moment includes the operation data of each component of the industrial equipment at that moment.

可选地,该目标虚拟空间数据为按照预设时序长度对该虚拟空间数据截取后,每个时刻对应的虚拟空间数据的集合,可以理解的,该目标虚拟空间数据包括多个时刻下对应的虚拟空间数据,且每个时刻对应的虚拟空间数据包括数字孪生模型中的各个部件在该时刻下的运行数据。Optionally, the target virtual space data is a collection of virtual space data corresponding to each moment after the virtual space data is intercepted according to a preset time sequence length. It can be understood that the target virtual space data includes corresponding data at multiple moments. Virtual space data, and the virtual space data corresponding to each moment includes the operation data of each component in the digital twin model at that moment.

可选地,电子设备可通过滑动窗口的方式对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取。例如,将当前时刻以及在当前时刻之前获得的物理数据、虚拟数据按照时间序列放置,通过滑动窗口的方式可直接根据预设时序长度截取到目标物理空间数据以及目标虚拟空间数据。Optionally, the electronic device may intercept the physical space data and virtual space data obtained at the current moment and before the current moment in a sliding window manner. For example, the physical data and virtual data obtained at the current time and before the current time are placed in a time series, and the target physical space data and the target virtual space data can be directly intercepted according to the preset time sequence length by means of a sliding window.

步骤S21,将目标虚拟空间数据输入到事先训练好的重构模型中,利用重构模型对目标虚拟空间数据进行重构,获得目标虚拟空间数据对应的物理空间下的重构数据;Step S21, input the target virtual space data into the pre-trained reconstruction model, use the reconstruction model to reconstruct the target virtual space data, and obtain the reconstruction data in the physical space corresponding to the target virtual space data;

可选地,该电子设备中可设置有事先训练好的重构模型,在获得目标虚拟空间数据之后,可将该目标虚拟空间数据输入到该重构模型中,利用该重构模型对目标虚拟空间数据进行处理,最终获得目标虚拟空间数据对应的物理空间下的重构数据。Optionally, a pre-trained reconstruction model may be set in the electronic device, after obtaining the target virtual space data, the target virtual space data may be input into the reconstruction model, and the target virtual space may be reconstructed by using the reconstruction model. The spatial data is processed, and the reconstructed data in the physical space corresponding to the target virtual spatial data is finally obtained.

可选地,该重构数据表征根据目标虚拟空间数据对物理空间进行重构,所获得的数据。可以理解的,该重构数据为目标虚拟空间数据反馈到物理空间下的数据。Optionally, the reconstructed data represents data obtained by reconstructing the physical space according to the target virtual space data. It can be understood that the reconstructed data is the data fed back from the target virtual space data to the physical space.

步骤S22,根据重构数据和目标物理空间数据确定误差指数,并在误差指数满足修正条件的情况下,对数字孪生模型进行修正。Step S22, determining an error index according to the reconstructed data and the target physical space data, and correcting the digital twin model when the error index satisfies the correction condition.

可选地,该误差指数可以表征数字孪生模型与工业设备之间的误差,即反馈数字孪生模型是否可以较高的精度对物理空间进行重构。Optionally, the error index can characterize the error between the digital twin model and the industrial equipment, that is, feedback whether the digital twin model can reconstruct the physical space with high accuracy.

可选地,该修正条件包括误差指数大于第一阈值,或误差指数小于第二阈值,其中,该第一阈值大于第二阈值。可以理解的,该第一阈值和第二阈值分别为误差的上下阈值。在一种可能实现的方式中,该第一阈值和第二阈值可以是在对重构模型进行训练过程中,根据实际需求结合损失函数值所确定的值。Optionally, the correction condition includes that the error index is greater than a first threshold, or the error index is less than a second threshold, wherein the first threshold is greater than the second threshold. It can be understood that the first threshold and the second threshold are the upper and lower thresholds of the error, respectively. In a possible implementation manner, the first threshold and the second threshold may be values determined in combination with loss function values according to actual requirements during the training process of the reconstructed model.

可选地,电子设备可在误差指数满足修正条件的情况下,通过对数字孪生模型进行优化、或重新训练数字孪生模型的方式,实现对数字孪生模型的修正。在一种可能实现的方式中,可通过深度学习、机器视觉等人工智能技术实现数字孪生模型的修正。Optionally, the electronic device may correct the digital twin model by optimizing the digital twin model or retraining the digital twin model under the condition that the error index satisfies the correction condition. In a possible way, the correction of the digital twin model can be realized through artificial intelligence technologies such as deep learning and machine vision.

可选地,若工业设备为精度要求较高的设备,则可实时获取物理空间数据和虚拟空间数据,并实时计算该误差指数,以确保及时对数字孪生模型进行修正;若工业设备为精度要求较低的数据,则可在电子设备中设置预设时长,以便电子设备每隔预设时长计算误差指数。Optionally, if the industrial equipment is equipment with high precision requirements, the physical space data and virtual space data can be acquired in real time, and the error index can be calculated in real time to ensure timely correction of the digital twin model; if the industrial equipment is required for precision If the data is lower, a preset time period can be set in the electronic device, so that the electronic device can calculate the error index every preset time period.

本申请实施例提供的数字孪生模型的修正方法,按照预设时序长度对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据,之后利用事先训练好的重构模型对目标虚拟空间数据进行重构,从而获得目标虚拟空间数据对应的物理空间下的重构数据,之后可根据该重构数据和目标物理空间数据确定误差指数,从而确定是否对数字孪生模型进行修正。结合时序信息获得目标物理空间数据和目标虚拟空间数据,通过对目标虚拟空间数据进行重构,以获得该目标虚拟空间数据对应的物理空间下的重构数据,并根据该重构数据和目标物理空间数据确定误差指数,从而避免了仅根据虚拟空间数据和物理空间数据进行原始数据级的误差计算所导致的误差精度较低的问题,提高了误差精度,进而可及时对数字孪生模型进行修正,提升了数字孪生模型的准确性。The method for revising a digital twin model provided by the embodiment of the present application intercepts the physical space data and virtual space data obtained at the current moment and before the current moment according to a preset time sequence length to obtain target physical space data and target virtual space data, and then Use the pre-trained reconstruction model to reconstruct the target virtual space data, so as to obtain the reconstruction data in the physical space corresponding to the target virtual space data, and then determine the error index according to the reconstructed data and the target physical space data, thereby Determines whether to make corrections to the digital twin. The target physical space data and the target virtual space data are obtained in combination with the timing information, the reconstruction data in the physical space corresponding to the target virtual space data is obtained by reconstructing the target virtual space data, and the reconstruction data and the target physical space are obtained according to the reconstruction data and the target physical space. The spatial data determines the error index, thereby avoiding the problem of low error accuracy caused by the original data-level error calculation only based on virtual spatial data and physical spatial data, improving the error accuracy, and then correcting the digital twin model in time. Improved the accuracy of the digital twin model.

可选地,为了实现重构数据的获取,需要事先训练重构模型,具体地,在图4的基础上,图5本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图,请参见图5,该重构模型可通过以下训练步骤获得:Optionally, in order to realize the acquisition of reconstruction data, the reconstruction model needs to be trained in advance. Specifically, on the basis of FIG. 4 , FIG. 5 is another schematic flowchart of the modification method of the digital twin model provided by the embodiment of the present application, Referring to Figure 5, this reconstructed model can be obtained by the following training steps:

步骤S10,获取多个预设时序长度的训练样本;Step S10, acquiring a plurality of training samples of preset time sequence lengths;

其中,每个训练样本包括预设时序长度内每个时刻对应的物理空间数据样本以及虚拟空间数据样本;Wherein, each training sample includes a physical space data sample and a virtual space data sample corresponding to each moment within the preset time sequence length;

可选地,该训练样本为用于对重构模型进行训练的样本。Optionally, the training sample is a sample for training the reconstructed model.

可选地,电子设备可首先获取预设时间段内的工业设备对应的物理空间数据和孪生模型对应的虚拟空间数据,之后再按照预设时序长度获取训练样本。可以理解的,该物理空间数据为工业设备上各个部件的运行数据,虚拟空间数据为工业设备对应的数字孪生模型中的各个部件的运行数据。Optionally, the electronic device may first acquire physical space data corresponding to the industrial equipment and virtual space data corresponding to the twin model within a preset time period, and then acquire training samples according to a preset time sequence length. It can be understood that the physical space data is the operation data of each component on the industrial equipment, and the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment.

可选地,该预设时间段可以根据工业设备的运行周期事先设置到电子设备中,例如,该预设时间段可以是工业设备的一个运行周期所对应的时长,或者工业设备的运行周期的倍数对应的时长。Optionally, the preset time period may be set in advance in the electronic device according to the operation cycle of the industrial equipment, for example, the preset time period may be the time length corresponding to one operation cycle of the industrial equipment, or The duration corresponding to the multiple.

可选地,电子设备可通过滑动窗口的方式,按照该预设时序长度对预设时间段内的工业设备对应的物理空间数据和孪生模型对应的虚拟空间数据进行截取。Optionally, the electronic device may intercept the physical space data corresponding to the industrial equipment and the virtual space data corresponding to the twin model within the preset time period according to the preset time sequence length by means of a sliding window.

在一个示例中,请参见图6,可按照不同时刻将物理空间数据和虚拟空间数据进行对应,并通过滑动窗口的方式,按照预设时序长度对物理空间数据和虚拟空间数据同时进行截取,获得多个窗口,每个窗口对应的样本数据即为该预设时序长度训练样本,且该训练样本中包括各个时刻对应的物理空间数据样本以及虚拟空间数据样本。In an example, referring to FIG. 6 , the physical space data and the virtual space data can be corresponded at different times, and the physical space data and the virtual space data can be intercepted at the same time according to the preset time sequence length by means of a sliding window to obtain There are multiple windows, and the sample data corresponding to each window is the training sample of the preset time sequence length, and the training sample includes physical space data samples and virtual space data samples corresponding to each moment.

可以理解的,对于一个物理空间数据样本而言,其中包含有在预设时序长度中的各个时刻所对应的物理空间数据,且每个时刻对应的物理空间数据包括工业设备的各个部件在该时刻下的运行数据;对于一个虚拟空间数据样本而言,其中包含有在预设时序长度中的各个时刻所对应的虚拟空间数据,且每个时刻对应的虚拟空间数据包括数字孪生模型中的各个部件在该时刻下的运行数据。It can be understood that for a physical space data sample, it contains the physical space data corresponding to each moment in the preset time sequence length, and the physical space data corresponding to each moment includes the various components of the industrial equipment at that moment. For a virtual space data sample, it contains virtual space data corresponding to each moment in the preset time series length, and the virtual space data corresponding to each moment includes various components in the digital twin model Operational data at this moment.

可选地,为了保证训练的精度,电子设备还可以在对预设时间段内的物理空间数据和虚拟空间数据进行截取之前,对预设时间段内的物理空间数据和虚拟空间数据进行筛选,例如对其进行去噪处理,从而针对去噪后的预设时间段内的物理空间数据和虚拟空间数据进行截取。Optionally, in order to ensure the accuracy of the training, the electronic device may also screen the physical space data and the virtual space data within the preset time period before intercepting the physical space data and the virtual space data within the preset time period, For example, denoising is performed on it, so as to intercept the physical space data and the virtual space data within the denoised preset time period.

步骤S11,将所有的虚拟空间数据样本输入预先构建的重构模型,利用重构模型对每个虚拟空间数据样本进行重构,获得每个虚拟空间数据样本对应的物理空间下的重构数据;Step S11, input all virtual space data samples into a pre-built reconstruction model, use the reconstruction model to reconstruct each virtual space data sample, and obtain reconstructed data in the physical space corresponding to each virtual space data sample;

可选地,该重构模型可以包括编码层、解码层以及非线性投影层,将所有的虚拟空间数据样本输入到该预先构建的重构模型中后,可分别依次利用重构模型中的编码层、解码层以及非线性投影层对每个虚拟空间数据样本进行处理,从而获得每个虚拟空间数据样本对应的物理空间下的重构数据。Optionally, the reconstruction model may include an encoding layer, a decoding layer, and a nonlinear projection layer. After inputting all the virtual space data samples into the pre-built reconstruction model, the codes in the reconstruction model can be used in turn. The layer, the decoding layer, and the nonlinear projection layer process each virtual space data sample, thereby obtaining reconstructed data in the physical space corresponding to each virtual space data sample.

具体来说,该编码层可以是LSTM(Long Short-Term Memory,长短期记忆人工神经网络)单元,用于将虚拟空间数据样本中的多个数据作为一个整体,学习该虚拟空间数据样本的整体特征。Specifically, the coding layer may be an LSTM (Long Short-Term Memory, artificial neural network with long short-term memory) unit, which is used to learn the whole of the virtual spatial data sample by taking the plurality of data in the virtual spatial data sample as a whole feature.

可选地,该编码层可对虚拟空间数据样本中每个时刻对应的虚拟空间数据进行处理,并更新其隐状态,即,结合上一时刻的隐状态以及当前时刻的虚拟空间数据,获得下一时刻的隐状态。在此基础上,t时刻下该编码器所输出的隐状态可表现为以下公式:Optionally, the coding layer can process the virtual space data corresponding to each moment in the virtual space data sample, and update its hidden state, that is, combine the hidden state of the previous moment and the virtual space data of the current moment to obtain the following: A momentary hidden state. On this basis, the hidden state output by the encoder at time t can be expressed as the following formula:

Figure P_220628105357514_514702001
Figure P_220628105357514_514702001

其中,

Figure P_220628105357545_545961001
表征编码器所输出的t时刻下的隐状态,
Figure P_220628105357577_577188002
表征编码器所输出的t-1时刻下的隐状态,
Figure P_220628105357592_592809003
表征t时刻对应的虚拟空间数据。in,
Figure P_220628105357545_545961001
Represents the hidden state at time t output by the encoder,
Figure P_220628105357577_577188002
Represents the hidden state at time t-1 output by the encoder,
Figure P_220628105357592_592809003
Characterize the virtual space data corresponding to time t.

可选地,通过编码器对虚拟空间数据样本进行处理,可在该虚拟空间数据样本中的虚拟空间数据对应的最后一个时刻下,获得该虚拟空间数据样本的上下文向量,该上下文向量可表现为以下公式:Optionally, by processing the virtual space data sample by the encoder, the context vector of the virtual space data sample can be obtained at the last moment corresponding to the virtual space data in the virtual space data sample, and the context vector can be expressed as The following formula:

Figure P_220628105357624_624066001
Figure P_220628105357624_624066001

其中,

Figure P_220628105357655_655338001
表征上下文向量,
Figure P_220628105357674_674825002
表征虚拟空间数据样本中的虚拟空间数据对应的最后一个时刻,
Figure P_220628105357706_706602003
表征编码器所输出的
Figure P_220628105357737_737838004
时刻下的隐状态,
Figure P_220628105357753_753459005
表征
Figure P_220628105357784_784717006
时刻对应的虚拟空间数据。in,
Figure P_220628105357655_655338001
representing the context vector,
Figure P_220628105357674_674825002
represents the last moment corresponding to the virtual space data in the virtual space data sample,
Figure P_220628105357706_706602003
Characterize the output of the encoder
Figure P_220628105357737_737838004
the hidden state of the moment,
Figure P_220628105357753_753459005
representation
Figure P_220628105357784_784717006
The virtual space data corresponding to the time.

可以理解的,在将所有虚拟空间数据样本输入编码层后,可获得每个数据样本对应的上下文向量,且该上下文向量可反映该虚拟空间数据样本中所包含的,各个时刻下的虚拟空间数据整体之间的关系。It can be understood that after all the virtual space data samples are input into the coding layer, the context vector corresponding to each data sample can be obtained, and the context vector can reflect the virtual space data contained in the virtual space data sample at each moment. relationship between the whole.

可选地,该解码层也可以是LSTM单元,用于结合上下文向量和虚拟空间数据样本,重构该虚拟空间数据样本在物理空间下的数据。Optionally, the decoding layer may also be an LSTM unit, which is used to reconstruct the data of the virtual space data sample in the physical space by combining the context vector and the virtual space data sample.

在一个示例中,该解码层在解码时可以采用teacher-forcing模式,在该模式下,可结合上一时刻的隐状态、上一时刻的虚拟空间数据以及上下文向量,获得下一时刻的隐状态。在此基础上,t时刻下该解码器所输出的隐状态可表现为以下公式:In an example, the decoding layer can use a teacher-forcing mode when decoding. In this mode, the hidden state of the previous moment, the virtual space data of the previous moment, and the context vector can be combined to obtain the hidden state of the next moment. . On this basis, the hidden state output by the decoder at time t can be expressed as the following formula:

Figure P_220628105357815_815952001
Figure P_220628105357815_815952001

其中,

Figure P_220628105357831_831642001
表征解码器所输出的
Figure P_220628105357862_862833002
时刻下的隐状态,
Figure P_220628105357882_882825003
表征解码器所输出的
Figure P_220628105357914_914608004
时刻下的隐状态,
Figure P_220628105357945_945843005
表征
Figure P_220628105357977_977098006
时刻对应的虚拟空间数据,
Figure P_220628105357992_992707007
表征上下文向量。in,
Figure P_220628105357831_831642001
Characterize what the decoder outputs
Figure P_220628105357862_862833002
the hidden state of the moment,
Figure P_220628105357882_882825003
Characterize what the decoder outputs
Figure P_220628105357914_914608004
the hidden state of the moment,
Figure P_220628105357945_945843005
representation
Figure P_220628105357977_977098006
The virtual space data corresponding to the time,
Figure P_220628105357992_992707007
Represents the context vector.

在另一个示例中,该解码器在解码时可以不采用teacher-forcing模式,在此情况下,可结合上一时刻的隐状态、上一时刻下的虚拟空间数据对应的物理空间下的重构数据以及上下文向量,获得下一时刻的隐状态。在此基础上,t时刻下该解码器所输出的隐状态可表现为以下公式:In another example, the decoder may not use the teacher-forcing mode when decoding. In this case, the hidden state at the previous moment and the reconstruction in the physical space corresponding to the virtual space data at the previous moment may be combined. data and context vector to obtain the hidden state at the next moment. On this basis, the hidden state output by the decoder at time t can be expressed as the following formula:

Figure P_220628105358023_023969001
Figure P_220628105358023_023969001

其中,

Figure P_220628105358055_055219001
表征解码器所输出的
Figure P_220628105358071_071797002
时刻的隐状态,
Figure P_220628105358088_088204003
表征解码器所输出的
Figure P_220628105358119_119191004
时刻下的隐状态,
Figure P_220628105358134_134816005
表征
Figure P_220628105358150_150444006
时刻下的虚拟空间数据对应的物理空间下的重构数据,
Figure P_220628105358181_181710007
表征上下文向量。in,
Figure P_220628105358055_055219001
Characterize what the decoder outputs
Figure P_220628105358071_071797002
the hidden state of the moment,
Figure P_220628105358088_088204003
Characterize what the decoder outputs
Figure P_220628105358119_119191004
the hidden state of the moment,
Figure P_220628105358134_134816005
representation
Figure P_220628105358150_150444006
The reconstructed data in the physical space corresponding to the virtual space data at the moment,
Figure P_220628105358181_181710007
Represents the context vector.

在本实施例中,在将每个虚拟空间数据样本以及其对应的上下文向量输入到重构模型的解码层后,通过该解码层的处理,最终可获得每一个虚拟空间数据样本对应的物理空间下的初始重构数据。此时,对于任意初始重构数据而言,其数据维度可能与对应的虚拟空间数据样本的数据维度不同。In this embodiment, after each virtual space data sample and its corresponding context vector are input into the decoding layer of the reconstruction model, through the processing of the decoding layer, the physical space corresponding to each virtual space data sample can finally be obtained The initial reconstruction data below. At this time, for any initial reconstruction data, its data dimension may be different from the data dimension of the corresponding virtual space data sample.

可选地,为了将初始重构数据与其对应的虚拟空间数据样本的数据维度进行统一,可将每个初始重构数据输入到该非线性投影层中进行处理,从而获得每个虚拟空间数据样本对应的物理空间下的重构数据。可以理解的,对于任意重构数据而言,其包含有预设时序长度中每个时刻下的虚拟空间数据对应的物理空间下的重构数据,且该重构数据的数据维度也与对应的物理空间数据样本的数据维度相同。Optionally, in order to unify the data dimensions of the initial reconstructed data and its corresponding virtual spatial data samples, each initial reconstructed data can be input into the nonlinear projection layer for processing, thereby obtaining each virtual spatial data sample. Reconstructed data in the corresponding physical space. It can be understood that for any reconstructed data, it includes reconstructed data in the physical space corresponding to the virtual space data at each moment in the preset time series length, and the data dimension of the reconstructed data is also the same as the corresponding data. The data dimensions of the physical spatial data samples are the same.

步骤S12,分别根据每个虚拟空间数据样本对应的物理空间下的重构数据,以及每个虚拟空间数据样本对应的物理空间数据样本,计算每个训练样本对应的误差指数;Step S12, according to the reconstruction data in the physical space corresponding to each virtual space data sample, and the physical space data sample corresponding to each virtual space data sample, calculate the error index corresponding to each training sample;

可选地,可分别根据每个虚拟空间数据样本对应的物理空间下的重构数据,以及每个虚拟空间样本对应的物理空间数据样本,计算每个虚拟空间数据样本与其对应的物理空间数据样本之间的形状差异和扭曲差异,之后根据该形状差异和扭曲差异计算每个训练样本对应的误差指数。Optionally, each virtual space data sample and its corresponding physical space data sample can be calculated according to the reconstructed data in the physical space corresponding to each virtual space data sample and the physical space data sample corresponding to each virtual space data sample. shape difference and warp difference between, and then calculate the error index corresponding to each training sample according to the shape difference and warp difference.

可选地,可通过构建重构数据与对应的物理空间样本数据之间的规整路径,计算形状差异和扭曲差异。Optionally, shape differences and distortion differences can be calculated by constructing a regular path between the reconstructed data and the corresponding physical space sample data.

具体的,对于任意物理空间样本数据而言,若该物理空间样本数据包括n个部件在多个时刻下的物理空间数据,则可以理解的,其对应的重构数据也包括n个部件在多个时刻下的数据,在此基础上,可构建一个

Figure M_220628105358197_197342001
的规整矩阵,并将该重构数据与物理空间数据样本之间的规划路径的起点和终点,分别定义为该规整矩阵的左上角坐标(0,0),以及右下角坐标(n,n),并定义每次仅能沿着向右、向下或者向右下角方向移动。Specifically, for any physical space sample data, if the physical space sample data includes physical space data of n components at multiple times, it can be understood that the corresponding reconstruction data also includes n components at multiple times. On the basis of the data at this time, we can construct a
Figure M_220628105358197_197342001
The regular matrix of , and the starting point and end point of the planned path between the reconstructed data and the physical space data samples are defined as the coordinates of the upper left corner (0, 0) and the coordinates of the lower right corner (n, n) of the regular matrix, respectively. , and define that it can only move in the right, down or bottom right direction at a time.

在此基础上,误差指数可通过以下公式计算:On this basis, the error index can be calculated by the following formula:

Figure P_220628105358228_228656001
Figure P_220628105358228_228656001

其中,

Figure P_220628105358259_259896001
表征误差指数,
Figure P_220628105358276_276860002
表征超参数,
Figure P_220628105358308_308651003
表征形状差异,
Figure P_220628105358324_324263004
表征扭曲差异。in,
Figure P_220628105358259_259896001
Characterization Error Index,
Figure P_220628105358276_276860002
Characterization hyperparameters,
Figure P_220628105358308_308651003
to characterize shape differences,
Figure P_220628105358324_324263004
Characterization of distortion differences.

在该公式的基础上结合贝尔曼方程可得:Combining the Bellman equation on the basis of this formula, we can get:

Figure P_220628105358355_355507001
Figure P_220628105358355_355507001

其中,

Figure P_220628105358386_386771001
表征虚拟空间数据样本对应的物理空间下的重构数据,
Figure M_220628105358402_402391001
表征物理空间数据样本,
Figure P_220628105358433_433634002
表征对虚拟空间数据样本对应的物理空间下的重构数据,以及物理空间数据样本进行动态时间规整计算,
Figure P_220628105358449_449251003
表征形状差异,
Figure P_220628105358482_482465004
表征大于等于0的平滑指数,
Figure P_220628105358498_498106005
表征虚拟空间数据样本对应的物理空间下的重构数据,与物理空间数据样本之间的规整路径,
Figure P_220628105358529_529352006
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据的规整开销矩阵。in,
Figure P_220628105358386_386771001
Represents the reconstructed data in the physical space corresponding to the virtual space data sample,
Figure M_220628105358402_402391001
to characterize physical spatial data samples,
Figure P_220628105358433_433634002
Represents the reconstructed data in the physical space corresponding to the virtual space data samples, and the dynamic time warping calculation of the physical space data samples,
Figure P_220628105358449_449251003
to characterize shape differences,
Figure P_220628105358482_482465004
represents a smoothing exponent greater than or equal to 0,
Figure P_220628105358498_498106005
Represents the reconstructed data in the physical space corresponding to the virtual space data samples, and the regular path between the physical space data samples,
Figure P_220628105358529_529352006
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular cost matrix of the target physical space data.

可选地,可通过计算最优规整路径与惩罚方阵之间的差异计算扭曲差异,则该扭曲差异可通过以下公式获得:Optionally, the twist difference can be calculated by calculating the difference between the optimal regular path and the penalty square matrix, then the twist difference can be obtained by the following formula:

Figure P_220628105358544_544970001
Figure P_220628105358544_544970001

其中,

Figure P_220628105358576_576226001
表征扭曲差异,
Figure P_220628105358607_607502002
表征虚拟空间数据样本对应的物理空间下的重构数据,与物理空间数据样本之间的最优规整路径,
Figure P_220628105358638_638728003
是一个
Figure P_220628105358676_676763004
的惩罚方阵,其中的每个元素值表征该元素位置上的点到该方阵对角线上的距离。in,
Figure P_220628105358576_576226001
Representation Distortion Differences,
Figure P_220628105358607_607502002
Characterize the optimal regular path between the reconstructed data in the physical space corresponding to the virtual space data sample and the physical space data sample,
Figure P_220628105358638_638728003
Is an
Figure P_220628105358676_676763004
The penalty square matrix of , in which each element value represents the distance from the point on the element's position to the diagonal of the square matrix.

可选地,

Figure P_220628105358708_708550001
方阵中的每个元素值可以通过以下公式获得:Optionally,
Figure P_220628105358708_708550001
The value of each element in the square matrix can be obtained by the following formula:

Figure P_220628105358739_739806001
Figure P_220628105358739_739806001

其中,

Figure P_220628105358771_771048001
表征
Figure P_220628105358786_786697002
方阵中的行信息,
Figure P_220628105358817_817928003
表征
Figure P_220628105358849_849182004
方阵中的列信息,
Figure P_220628105358866_866717005
表征
Figure P_220628105358898_898492006
方阵中的元素位置。综上,结合该形状差异以及扭曲差异,该误差指数可通过以下公式最终确定:in,
Figure P_220628105358771_771048001
representation
Figure P_220628105358786_786697002
row information in a square matrix,
Figure P_220628105358817_817928003
representation
Figure P_220628105358849_849182004
column information in a square matrix,
Figure P_220628105358866_866717005
representation
Figure P_220628105358898_898492006
Element positions in a square matrix. To sum up, combining the shape difference and the distortion difference, the error index can be finally determined by the following formula:

Figure P_220628105358914_914127001
Figure P_220628105358914_914127001

在本实施例中,需要分别根据每一个重构数据,结合其对应的物理空间数据样本计算误差指数,从而获得每个训练样本对应的误差指数。In this embodiment, an error index needs to be calculated according to each reconstructed data and combined with its corresponding physical space data sample, so as to obtain an error index corresponding to each training sample.

步骤S13,在误差指数不满足模型收敛条件的情况下,对重构模型的参数进行迭代优化,获得训练好的重构模型。Step S13, in the case that the error index does not meet the model convergence condition, iteratively optimize the parameters of the reconstructed model to obtain a trained reconstructed model.

可选地,该收敛条件为确定停止对该重构模型进行迭代优化的条件,在一种可能实现的方式中,该收敛条件可以是每个训练样本对应的误差指数在多次训练中连续一致的次数达到预设次数。Optionally, the convergence condition is a condition for determining to stop the iterative optimization of the reconstructed model. In a possible implementation manner, the convergence condition may be that the error index corresponding to each training sample is consistent in multiple trainings. reaches the preset number of times.

可选地,该预设次数为根据实际需求事先设置在电子设备中的次数。Optionally, the preset number of times is the number of times preset in the electronic device according to actual needs.

可选地,若误差指数不满足模型收敛条件,则可基于各个样本对应的误差指数对重构模型的参数进行迭代优化,直到每个训练样本对应的误差指数在多次训练中连续一致的次数达到预设次数,则停止训练,获得训练好的重构模型。Optionally, if the error index does not meet the model convergence condition, the parameters of the reconstructed model can be iteratively optimized based on the error index corresponding to each sample, until the error index corresponding to each training sample is consistent in multiple training times. When the preset number of times is reached, the training is stopped and the trained reconstructed model is obtained.

可选地,在实际应用的过程中,为了提高误差的精度,也可以先对当前时刻以及当前时刻之前获得的物理空间数据和虚拟空间数据进行筛选,之后再对筛选后的物理空间数据和虚拟空间数据进行截取。具体的,在图4的基础上,图7为本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图,请参见图7,上述步骤S20还可以通过以下步骤获得:Optionally, in the process of practical application, in order to improve the accuracy of the error, the physical space data and virtual space data obtained at the current moment and before the current moment can also be screened first, and then the screened physical space data and virtual space data can be screened. Interception of spatial data. Specifically, on the basis of FIG. 4 , FIG. 7 is another schematic flowchart of a method for correcting a digital twin model provided by an embodiment of the present application. Referring to FIG. 7 , the above step S20 can also be obtained by the following steps:

步骤S20-1,对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行去噪,获得去噪后的物理空间数据和虚拟空间数据;Step S20-1, performing denoising on the physical space data and virtual space data obtained at the current moment and before the current moment, to obtain the denoised physical space data and virtual space data;

步骤S20-2,按照预设时序长度对去噪后的物理空间数据和虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据。Step S20-2, intercepting the denoised physical space data and virtual space data according to a preset time sequence length to obtain target physical space data and target virtual space data.

在本实施例中,可对获得的物理空间数据和虚拟空间数据进行去噪,从而实现对当前时刻以及在当前时刻之前获得的物理空间数据和虚拟空间数据的清洗,之后可按照预设时序长度对去噪后的物理空间数据和虚拟空间数据进行截取,从而获得目标物理空间数据以及目标虚拟空间数据。In this embodiment, the acquired physical space data and virtual space data can be denoised, so as to realize the cleaning of the physical space data and virtual space data obtained at the current moment and before the current moment, and then according to the preset time sequence length The denoised physical space data and virtual space data are intercepted to obtain target physical space data and target virtual space data.

可选地,该事先训练好的重构模型可以包括编码层、解码层以及非线性投影层,在此基础上,将目标虚拟空间数据输入到事先训练好的重构模型中之后,可分别利用编码层、解码层以及非线性投影层对目标虚拟空间数据进行处理,最终获得目标虚拟空间数据对应的物理空间下的重构数据。Optionally, the pre-trained reconstruction model may include an encoding layer, a decoding layer and a nonlinear projection layer. On this basis, after inputting the target virtual space data into the pre-trained reconstruction model, the The encoding layer, the decoding layer and the nonlinear projection layer process the target virtual space data, and finally obtain the reconstructed data in the physical space corresponding to the target virtual space data.

具体的,在图4的基础上,图8为本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图,请参见图8,上述步骤S21还可以通过以下步骤获得:Specifically, on the basis of FIG. 4 , FIG. 8 is another schematic flowchart of a method for correcting a digital twin model provided by an embodiment of the present application. Referring to FIG. 8 , the above step S21 can also be obtained by the following steps:

步骤S21-1,将目标虚拟空间数据输入事先训练好的重构模型的编码层,获得目标虚拟空间数据对应的上下文向量;Step S21-1, input the target virtual space data into the coding layer of the pre-trained reconstruction model to obtain the context vector corresponding to the target virtual space data;

可选地,将目标虚拟空间数据输入到事先训练好的重构模型中,可首先通过该重构模型的编码层对目标虚拟空间数据进行处理,结合上一时刻的隐状态、上一时刻的虚拟空间数据以及上下文向量,获得下一时刻的隐状态,最终获得该目标虚拟空间数据对应的上下文向量,且该上下文向量可反映该目标虚拟空间数据中所包含的,各个时刻下的虚拟空间数据整体之间的关系。Optionally, the target virtual space data is input into the pre-trained reconstruction model, the target virtual space data can be processed through the coding layer of the reconstruction model first, combined with the hidden state of the previous moment and the hidden state of the previous moment. Virtual space data and context vector, obtain the hidden state at the next moment, and finally obtain the context vector corresponding to the target virtual space data, and the context vector can reflect the virtual space data contained in the target virtual space data at each moment. relationship between the whole.

步骤S21-2,将上下文向量以及目标虚拟空间数据输入到重构模型的解码层,获得目标虚拟空间数据对应的物理空间下的初始重构数据;Step S21-2, input the context vector and the target virtual space data into the decoding layer of the reconstruction model, and obtain the initial reconstruction data in the physical space corresponding to the target virtual space data;

可选地,可将获得的上下文向量和目标虚拟空间数据输入到重构模型的解码层,结合上一时刻的隐状态、上一时刻的虚拟空间数据以及上下文向量,获得下一时刻的隐状态,或者结合上一时刻的隐状态、上一时刻的虚拟空间数据对应的物理空间下的重构数据以及上下文向量,获得下一时刻的隐状态,从而最终获得目标虚拟空间数据对应的物理空间下的初始重构数据。Optionally, the obtained context vector and target virtual space data can be input into the decoding layer of the reconstruction model, and the hidden state of the next moment can be obtained by combining the hidden state of the previous moment, the virtual space data of the previous moment, and the context vector. , or combine the hidden state of the previous moment, the reconstructed data in the physical space corresponding to the virtual space data of the previous moment, and the context vector to obtain the hidden state of the next moment, so as to finally obtain the physical space corresponding to the target virtual space data. the initial reconstruction data.

步骤S21-3,将初始重构数据输入到重构模型的非线性投影层,获得目标虚拟空间数据对应的物理空间下的重构数据。In step S21-3, the initial reconstruction data is input into the nonlinear projection layer of the reconstruction model to obtain reconstruction data in the physical space corresponding to the target virtual space data.

在本实施例中,可利用该非线性投影层对初始重构数据进行处理,从而获得与目标虚拟空间数据维度相同的,目标虚拟空间数据对应的物理空间下的重构数据。In this embodiment, the nonlinear projection layer can be used to process the initial reconstructed data, so as to obtain reconstructed data in the physical space corresponding to the target virtual space data with the same dimension as the target virtual space data.

可以理解的,此时的重构数据为目标虚拟空间数据中,每个时刻对应的虚拟空间数据在物理空间下的重构数据的集合。It can be understood that the reconstructed data at this time is the set of reconstructed data in the physical space of the virtual space data corresponding to each moment in the target virtual space data.

本申请实施例提供的数字孪生模型的修正方法,通过编码层、解码层以及非线性投影层,将目标虚拟空间数据中的每个时刻对应的虚拟空间数据作为一个整体,确定其整体特征并根据目标虚拟空间数据进行重构,获得目标虚拟空间数据对应的物理空间下的重构数据,在考虑了虚拟空间数据在时间序列上的自相关性,以及各个部件、各类运行状态之间的相关性的基础上,通过该重构模型尽可能的重构目标虚拟空间数据对应的物理空间下的数据,因此可在根据该重构数据和目标物理空间数据确定误差指数时,提高误差指数的精度。The method for correcting the digital twin model provided by the embodiment of the present application uses the encoding layer, the decoding layer and the nonlinear projection layer to take the virtual space data corresponding to each moment in the target virtual space data as a whole, determine its overall characteristics and determine the overall characteristics according to the The target virtual space data is reconstructed to obtain the reconstructed data in the physical space corresponding to the target virtual space data, taking into account the autocorrelation of the virtual space data in the time series, as well as the correlation between various components and various operating states. On the basis of the nature of the reconstruction model, the data in the physical space corresponding to the target virtual space data can be reconstructed as much as possible through the reconstruction model, so the accuracy of the error index can be improved when the error index is determined according to the reconstructed data and the target physical space data. .

可选地,在图4的基础上,图9为本申请实施例提供的数字孪生模型的修正方法的另一种流程示意图,请参见图9,上述步骤S22中的根据所述重构数据和所述目标物理空间数据确定误差指数,还可以通过如下步骤实现:Optionally, on the basis of FIG. 4 , FIG. 9 is another schematic flowchart of a method for revising a digital twin model provided by an embodiment of the present application. Referring to FIG. 9 , in the above step S22, according to the reconstructed data and The target physical space data determines the error index, which can also be achieved by the following steps:

步骤S22-1,根据重构数据和目标物理空间数据,计算目标虚拟空间数据与目标物理空间数据之间的形状差异以及扭曲差异;Step S22-1, according to the reconstructed data and the target physical space data, calculate the shape difference and the distortion difference between the target virtual space data and the target physical space data;

可选地,可通过以下公式计算该形状差异和扭曲差异:Optionally, the shape difference and twist difference can be calculated by the following formulas:

Figure P_220628105358960_960975001
Figure P_220628105358960_960975001

Figure P_220628105358992_992240001
Figure P_220628105358992_992240001

其中,

Figure P_220628105359023_023486001
表征目标虚拟空间数据对应的物理空间下的重构数据,
Figure P_220628105359039_039119002
表征目标物理空间数据,
Figure P_220628105359073_073235003
表征形状差异,
Figure P_220628105359089_089398004
表征扭曲差异,
Figure P_220628105359120_120185005
表征大于等于0的平滑指数,
Figure P_220628105359135_135803006
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据之间的规整路径,
Figure P_220628105359151_151424007
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据的规整开销矩阵。in,
Figure P_220628105359023_023486001
Represents the reconstructed data in the physical space corresponding to the target virtual space data,
Figure P_220628105359039_039119002
Characterize the target physical space data,
Figure P_220628105359073_073235003
to characterize shape differences,
Figure P_220628105359089_089398004
Representation Distortion Differences,
Figure P_220628105359120_120185005
represents a smoothing exponent greater than or equal to 0,
Figure P_220628105359135_135803006
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular path between the target physical space data,
Figure P_220628105359151_151424007
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular cost matrix of the target physical space data.

步骤S22-2,根据形状差异和扭曲差异,计算误差指数。In step S22-2, an error index is calculated according to the shape difference and the distortion difference.

在本实施例中,可通过以下公式计算误差指数:In this embodiment, the error index can be calculated by the following formula:

Figure P_220628105359183_183179001
Figure P_220628105359183_183179001

其中,

Figure P_220628105359214_214408001
表征误差指数,
Figure P_220628105359229_229566002
表征超参数,
Figure P_220628105359260_260810003
表征形状差异,
Figure P_220628105359277_277823004
表征扭曲差异。in,
Figure P_220628105359214_214408001
Characterization Error Index,
Figure P_220628105359229_229566002
Characterization hyperparameters,
Figure P_220628105359260_260810003
to characterize shape differences,
Figure P_220628105359277_277823004
Characterization of distortion differences.

可选地,在形状差异和扭曲差异表征为以上公式的情况下,该误差指数还可以通过如下公式获得:Optionally, in the case that the shape difference and the distortion difference are represented by the above formulas, the error index can also be obtained by the following formula:

Figure P_220628105359309_309613001
Figure P_220628105359309_309613001

可以理解的,在计算得到误差指数后,可根据该误差指数以及修正条件,确定是否对数字孪生模型进行修正。It can be understood that, after the error index is obtained by calculation, it can be determined whether to correct the digital twin model according to the error index and the correction conditions.

为了执行上述实施例及各个可能的方式中的相应步骤,下面给出一种数字孪生模型的修正装置的实现方式。进一步地,请参阅图10,图10为本申请实施例提供的数字孪生模型的修正装置的一种功能模块图。需要说明的是,本实施例所提供的数字孪生模型的修正装置,其基本原理及产生的技术效果和上述实施例相同,为简要描述,本实施例部分未提及之处,可参考上述的实施例中相应内容。该数字孪生模型的修正装置包括:获取模块200,处理模块210,修正模块220。In order to perform the corresponding steps in the foregoing embodiments and various possible manners, an implementation manner of an apparatus for correcting a digital twin model is given below. Further, please refer to FIG. 10 , which is a functional block diagram of the apparatus for correcting a digital twin model provided by an embodiment of the present application. It should be noted that the basic principle and the technical effect of the device for correcting the digital twin model provided in this embodiment are the same as those in the above-mentioned embodiment. Corresponding content in the examples. The device for correcting the digital twin model includes: an acquisition module 200 , a processing module 210 , and a correction module 220 .

该获取模块200,用于按照预设时序长度,对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;物理空间数据为工业设备上各个部件的运行数据,虚拟空间数据为工业设备对应的数字孪生模型中的各个部件的运行数据;The obtaining module 200 is used for intercepting the physical space data and virtual space data obtained at the current moment and before the current moment according to a preset time sequence length to obtain target physical space data and target virtual space data; the physical space data is industrial equipment The operation data of each component above, and the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment;

可以理解的,该获取模块200可以用于执行上述步骤S20;It can be understood that the obtaining module 200 can be used to perform the above step S20;

该处理模块210,用于将目标虚拟空间数据输入到事先训练好的重构模型中,利用重构模型对目标虚拟空间数据进行重构,获得目标虚拟空间数据对应的物理空间下的重构数据;The processing module 210 is configured to input the target virtual space data into the pre-trained reconstruction model, use the reconstruction model to reconstruct the target virtual space data, and obtain the reconstruction data in the physical space corresponding to the target virtual space data ;

可以理解的,该处理模块210可以用于执行上述步骤S21;It can be understood that the processing module 210 can be used to perform the above step S21;

该修正模块220,用于根据重构数据和目标物理空间数据确定误差指数,并在误差指数满足修正条件的情况下,对数字孪生模型进行修正。The correction module 220 is configured to determine an error index according to the reconstructed data and the target physical space data, and correct the digital twin model when the error index satisfies the correction condition.

可以理解的,该修正模块220可以用于执行上述步骤S22。It can be understood that the correction module 220 can be used to perform the above step S22.

可选地,图11为本申请实施例提供的数字孪生模型的修正装置的另一种功能模块图,请参阅图11,该数字孪生模型的修正装置还可以包括模型训练模块230。Optionally, FIG. 11 is another functional block diagram of the apparatus for correcting a digital twin model provided by an embodiment of the present application. Please refer to FIG. 11 , the apparatus for correcting a digital twin model may further include a model training module 230 .

该模型训练模块230,用于获取多个预设时序长度的训练样本;每个训练样本包括预设时序长度内每个时刻对应的物理空间数据样本以及虚拟空间数据样本;将所有的虚拟空间数据样本输入预先构建的重构模型,利用重构模型对每个虚拟空间数据样本进行重构,获得每个虚拟空间数据样本对应的物理空间下的重构数据;分别根据每个虚拟空间数据样本对应的物理空间下的重构数据,以及每个虚拟空间数据样本对应的物理空间数据样本,计算每个训练样本对应的误差指数;在误差指数不满足模型收敛条件的情况下,对重构模型的参数进行迭代优化,获得训练好的重构模型。The model training module 230 is used to obtain a plurality of training samples of preset time series length; each training sample includes physical space data samples and virtual space data samples corresponding to each moment in the preset time series length; The sample is input into a pre-built reconstruction model, and the reconstruction model is used to reconstruct each virtual space data sample, and the reconstruction data in the physical space corresponding to each virtual space data sample is obtained; The reconstructed data in the physical space, and the physical space data samples corresponding to each virtual space data sample, calculate the error index corresponding to each training sample; if the error index does not meet the model convergence conditions, the reconstruction model The parameters are iteratively optimized to obtain a trained reconstructed model.

可以理解的,该模型训练模块230可以用于执行上述步骤S10~步骤S13。It can be understood that the model training module 230 can be used to perform the above steps S10 to S13.

可选地,该获取模块200,还用于对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行去噪,获得去噪后的物理空间数据和虚拟空间数据;按照预设时序长度对去噪后的物理空间数据和虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据。Optionally, the obtaining module 200 is further configured to perform denoising on the physical space data and virtual space data obtained at the current moment and before the current moment, and obtain the denoised physical space data and virtual space data; Length intercepts the denoised physical space data and virtual space data to obtain target physical space data and target virtual space data.

可以理解的,该获取模块200还可以用于执行上述步骤S20-1~步骤S20-2。It can be understood that the obtaining module 200 can also be used to perform the above steps S20-1 to S20-2.

可选地,该处理模块210,还用于将目标虚拟空间数据输入事先训练好的重构模型的编码层,获得目标虚拟空间数据对应的上下文向量;将上下文向量以及目标虚拟空间数据输入到重构模型的解码层,获得目标虚拟空间数据对应的物理空间下的初始重构数据;将初始重构数据输入到重构模型的非线性投影层,获得目标虚拟空间数据对应的物理空间下的重构数据。Optionally, the processing module 210 is further configured to input the target virtual space data into the coding layer of the pre-trained reconstruction model to obtain a context vector corresponding to the target virtual space data; input the context vector and the target virtual space data into the reconfiguration model. The decoding layer of the reconstruction model is used to obtain the initial reconstruction data in the physical space corresponding to the target virtual space data; the initial reconstruction data is input into the nonlinear projection layer of the reconstruction model to obtain the reconstruction data in the physical space corresponding to the target virtual space data. structure data.

可以理解的,该处理模块210还可以用于执行上述步骤S21-1~步骤S21-3。It can be understood that the processing module 210 can also be used to execute the above steps S21-1 to S21-3.

可选地,该修正模块220,还用于根据重构数据和目标物理空间数据,计算目标虚拟空间数据与目标物理空间数据之间的形状差异以及扭曲差异;根据形状差异和扭曲差异,计算误差指数。Optionally, the correction module 220 is also used to calculate the shape difference and the distortion difference between the target virtual space data and the target physical space data according to the reconstructed data and the target physical space data; according to the shape difference and the distortion difference, calculate the error. index.

可以理解的,该修正模块220可以用于执行上述步骤S22-1~步骤S22-2。It can be understood that the correction module 220 can be used to execute the above steps S22-1 to S22-2.

可选地,该修正模块220,还用于通过以下公式计算目标虚拟空间数据与目标物理空间数据之间的形状差异以及扭曲差异:Optionally, the correction module 220 is further configured to calculate the shape difference and the distortion difference between the target virtual space data and the target physical space data by the following formula:

Figure P_220628105359340_340860001
Figure P_220628105359340_340860001

Figure P_220628105359372_372149001
Figure P_220628105359372_372149001

其中,

Figure P_220628105359403_403358001
表征目标虚拟空间数据对应的物理空间下的重构数据,
Figure P_220628105359434_434154002
表征目标物理空间数据,
Figure P_220628105359466_466538003
表征形状差异,
Figure P_220628105359483_483451004
表征扭曲差异,
Figure P_220628105359514_514704005
表征大于等于0的平滑指数,
Figure P_220628105359530_530325006
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据之间的规整路径,
Figure P_220628105359561_561595007
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据的规整开销矩阵。in,
Figure P_220628105359403_403358001
Represents the reconstructed data in the physical space corresponding to the target virtual space data,
Figure P_220628105359434_434154002
Characterize the target physical space data,
Figure P_220628105359466_466538003
to characterize shape differences,
Figure P_220628105359483_483451004
Representation Distortion Differences,
Figure P_220628105359514_514704005
represents a smoothing exponent greater than or equal to 0,
Figure P_220628105359530_530325006
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular path between the target physical space data,
Figure P_220628105359561_561595007
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular cost matrix of the target physical space data.

可选地,该修正模块220,还用于通过以下公式计算误差指数:Optionally, the correction module 220 is further configured to calculate the error index by the following formula:

Figure P_220628105359592_592853001
Figure P_220628105359592_592853001

其中,

Figure P_220628105359624_624087001
表征误差指数,
Figure P_220628105359639_639709002
表征超参数,
Figure P_220628105359672_672374003
表征形状差异,
Figure P_220628105359688_688517004
表征扭曲差异。in,
Figure P_220628105359624_624087001
Characterization Error Index,
Figure P_220628105359639_639709002
Characterization hyperparameters,
Figure P_220628105359672_672374003
to characterize shape differences,
Figure P_220628105359688_688517004
Characterization of distortion differences.

本申请实施例提供的数字孪生模型的修正装置,通过获取模块按照预设时序长度,对当前时刻以及在当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;物理空间数据为工业设备上各个部件的运行数据,虚拟空间数据为工业设备对应的数字孪生模型中的各个部件的运行数据;通过处理模块将目标虚拟空间数据输入到事先训练好的重构模型中,利用重构模型对目标虚拟空间数据进行重构,获得目标虚拟空间数据对应的物理空间下的重构数据;通过修正模块根据重构数据和目标物理空间数据确定误差指数,并在误差指数满足修正条件的情况下,对数字孪生模型进行修正。结合时序信息获得目标物理空间数据和目标虚拟空间数据,通过对目标虚拟空间数据进行重构,以获得该目标虚拟空间数据对应的物理空间下的重构数据,并根据该重构数据和目标物理空间数据确定误差指数,从而避免了仅根据虚拟空间数据和物理空间数据进行原始数据级的误差计算所导致的误差精度较低的问题,提高了误差精度,进而可及时对数字孪生模型进行修正,提升了数字孪生模型的准确性。The apparatus for correcting the digital twin model provided by the embodiment of the present application, through the acquisition module intercepts the physical space data and virtual space data obtained at the current moment and before the current moment according to the preset time sequence length, and obtains the target physical space data and the target virtual space data. Spatial data; physical space data is the operation data of each component on the industrial equipment, and virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment; the target virtual space data is input into the pre-trained data through the processing module. In the construction model, the reconstruction model is used to reconstruct the target virtual space data, and the reconstruction data in the physical space corresponding to the target virtual space data is obtained; When the error index satisfies the correction conditions, the digital twin model is corrected. The target physical space data and the target virtual space data are obtained in combination with the timing information, the reconstruction data in the physical space corresponding to the target virtual space data is obtained by reconstructing the target virtual space data, and the reconstruction data and the target physical space are obtained according to the reconstruction data and the target physical space. The spatial data determines the error index, thereby avoiding the problem of low error accuracy caused by the original data-level error calculation only based on virtual spatial data and physical spatial data, improving the error accuracy, and then correcting the digital twin model in time. Improved the accuracy of the digital twin model.

可选地,上述模块可以软件或固件(Firmware)的形式存储于图3所示的存储器中或固化于该电子设备的操作系统(Operating System,OS)中,并可由图3中的处理器执行。同时,执行上述模块所需的数据、程序的代码等可以存储在存储器中。Optionally, the above-mentioned modules may be stored in the memory shown in FIG. 3 in the form of software or firmware (Firmware) or solidified in the operating system (Operating System, OS) of the electronic device, and can be executed by the processor in FIG. 3 . . Meanwhile, data required to execute the above-mentioned modules, codes of programs, and the like may be stored in the memory.

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may also be implemented in other manners. The apparatus embodiments described above are merely illustrative, for example, the flowcharts and block diagrams in the accompanying drawings illustrate the architecture, functionality and possible implementations of apparatuses, methods and computer program products according to various embodiments of the present application. operate. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.

另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。In addition, each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.

所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.

Claims (10)

1.一种数字孪生模型的修正方法,其特征在于,所述方法包括:1. a correction method of digital twin model, is characterized in that, described method comprises: 按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;所述物理空间数据为工业设备上各个部件的运行数据,所述虚拟空间数据为所述工业设备对应的数字孪生模型中的各个部件的运行数据;According to the preset time sequence length, intercept the physical space data and virtual space data obtained at the current moment and before the current moment to obtain target physical space data and target virtual space data; the physical space data is each component on the industrial equipment operation data, the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment; 将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据;Input the target virtual space data into the pre-trained reconstruction model, use the reconstruction model to reconstruct the target virtual space data, and obtain the reconstruction in the physical space corresponding to the target virtual space data data; 根据所述重构数据和所述目标物理空间数据确定误差指数,并在所述误差指数满足修正条件的情况下,对所述数字孪生模型进行修正。An error index is determined according to the reconstructed data and the target physical space data, and when the error index satisfies a correction condition, the digital twin model is corrected. 2.根据权利要求1所述的方法,其特征在于,所述重构模型通过以下步骤训练获得:2. method according to claim 1, is characterized in that, described reconstruction model is obtained by following steps training: 获取多个预设时序长度的训练样本;每个所述训练样本包括所述预设时序长度内每个时刻对应的物理空间数据样本以及虚拟空间数据样本;Acquiring a plurality of training samples of preset time series lengths; each of the training samples includes physical space data samples and virtual space data samples corresponding to each moment in the preset time series length; 将所有的虚拟空间数据样本输入预先构建的重构模型,利用所述重构模型对每个所述虚拟空间数据样本进行重构,获得每个所述虚拟空间数据样本对应的物理空间下的重构数据;Input all virtual space data samples into a pre-built reconstruction model, use the reconstruction model to reconstruct each virtual space data sample, and obtain the weight in the physical space corresponding to each virtual space data sample. structure data; 分别根据每个所述虚拟空间数据样本对应的物理空间下的重构数据,以及每个所述虚拟空间数据样本对应的物理空间数据样本,计算每个训练样本对应的误差指数;Calculate the error index corresponding to each training sample according to the reconstructed data in the physical space corresponding to each of the virtual space data samples, and the physical space data samples corresponding to each of the virtual space data samples; 在所述误差指数不满足模型收敛条件的情况下,对所述重构模型的参数进行迭代优化,获得训练好的重构模型。When the error index does not meet the model convergence condition, iterative optimization is performed on the parameters of the reconstructed model to obtain a trained reconstructed model. 3.根据权利要求1所述的方法,其特征在于,所述按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据,包括:3. The method according to claim 1, wherein, according to the preset time sequence length, the current moment and the physical space data and virtual space data obtained before the current moment are intercepted to obtain target physical space data and target virtual space data, including: 对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行去噪,获得去噪后的物理空间数据和虚拟空间数据;Perform denoising on the physical space data and virtual space data obtained at the current moment and before the current moment to obtain denoised physical space data and virtual space data; 按照所述预设时序长度对所述去噪后的物理空间数据和虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据。The denoised physical space data and virtual space data are intercepted according to the preset time sequence length to obtain target physical space data and target virtual space data. 4.根据权利要求1所述的方法,其特征在于,所述将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据,包括:4. The method according to claim 1, wherein the target virtual space data is input into a pre-trained reconstruction model, and the target virtual space data is reconstructed by using the reconstruction model. to obtain the reconstructed data in the physical space corresponding to the target virtual space data, including: 将所述目标虚拟空间数据输入所述事先训练好的重构模型的编码层,获得所述目标虚拟空间数据对应的上下文向量;Inputting the target virtual space data into the coding layer of the pre-trained reconstruction model to obtain a context vector corresponding to the target virtual space data; 将所述上下文向量以及所述目标虚拟空间数据输入到所述重构模型的解码层,获得所述目标虚拟空间数据对应的物理空间下的初始重构数据;Inputting the context vector and the target virtual space data into the decoding layer of the reconstruction model to obtain initial reconstruction data in the physical space corresponding to the target virtual space data; 将所述初始重构数据输入到所述重构模型的非线性投影层,获得所述目标虚拟空间数据对应的物理空间下的重构数据。The initial reconstruction data is input into the nonlinear projection layer of the reconstruction model to obtain reconstruction data in the physical space corresponding to the target virtual space data. 5.根据权利要求1所述的方法,其特征在于,所述根据所述重构数据和所述目标物理空间数据确定误差指数,包括:5. The method according to claim 1, wherein the determining an error index according to the reconstructed data and the target physical space data comprises: 根据所述重构数据和所述目标物理空间数据,计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异;According to the reconstructed data and the target physical space data, calculate the shape difference and the distortion difference between the target virtual space data and the target physical space data; 根据所述形状差异和所述扭曲差异,计算所述误差指数。The error index is calculated from the shape difference and the twist difference. 6.根据权利要求5所述的方法,其特征在于,所述根据所述重构数据和所述目标物理空间数据,计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异,包括:6 . The method according to claim 5 , wherein calculating the shape difference between the target virtual space data and the target physical space data according to the reconstructed data and the target physical space data. 7 . and warping differences, including: 通过以下公式计算所述目标虚拟空间数据与所述目标物理空间数据之间的形状差异以及扭曲差异:The shape difference and distortion difference between the target virtual space data and the target physical space data are calculated by the following formulas:
Figure P_220628105354331_331113001
Figure P_220628105354331_331113001
Figure P_220628105354393_393596001
Figure P_220628105354393_393596001
其中,
Figure P_220628105354424_424851001
表征目标虚拟空间数据对应的物理空间下的重构数据,
Figure P_220628105354440_440470002
表征目标物理空间数据,
Figure P_220628105354473_473152003
表征形状差异,
Figure P_220628105354489_489303004
表征扭曲差异,
Figure P_220628105354520_520557005
表征大于等于0的平滑指数,
Figure P_220628105354551_551792006
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据之间的规整路径,
Figure P_220628105354567_567431007
表征目标虚拟空间数据对应的物理空间下的重构数据,与目标物理空间数据的规整开销矩阵。
in,
Figure P_220628105354424_424851001
Represents the reconstructed data in the physical space corresponding to the target virtual space data,
Figure P_220628105354440_440470002
Characterize the target physical space data,
Figure P_220628105354473_473152003
to characterize shape differences,
Figure P_220628105354489_489303004
Representation Distortion Differences,
Figure P_220628105354520_520557005
represents a smoothing exponent greater than or equal to 0,
Figure P_220628105354551_551792006
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular path between the target physical space data,
Figure P_220628105354567_567431007
Represents the reconstructed data in the physical space corresponding to the target virtual space data, and the regular cost matrix of the target physical space data.
7.根据权利要求5所述的方法,其特征在于,所述根据所述形状差异和所述扭曲差异,计算所述误差指数,包括:7. The method according to claim 5, wherein calculating the error index according to the shape difference and the distortion difference comprises: 通过以下公式计算所述误差指数:The error index is calculated by the following formula:
Figure P_220628105354598_598680001
Figure P_220628105354598_598680001
其中,
Figure P_220628105354629_629917001
表征所述误差指数,
Figure P_220628105354661_661184002
表征超参数,
Figure P_220628105354678_678723003
表征所述形状差异,
Figure P_220628105354710_710483004
表征所述扭曲差异。
in,
Figure P_220628105354629_629917001
characterizing the error index,
Figure P_220628105354661_661184002
Characterization hyperparameters,
Figure P_220628105354678_678723003
to characterize the shape difference,
Figure P_220628105354710_710483004
Characterize the twist difference.
8.一种数字孪生模型的修正装置,其特征在于,所述装置包括:8. A correction device for a digital twin model, wherein the device comprises: 获取模块,用于按照预设时序长度,对当前时刻以及在所述当前时刻之前获得的物理空间数据、虚拟空间数据进行截取,获得目标物理空间数据以及目标虚拟空间数据;所述物理空间数据为工业设备上各个部件的运行数据,所述虚拟空间数据为所述工业设备对应的数字孪生模型中的各个部件的运行数据;The acquisition module is used for intercepting the physical space data and virtual space data obtained at the current moment and before the current moment according to a preset time sequence length to obtain target physical space data and target virtual space data; the physical space data is The operation data of each component on the industrial equipment, the virtual space data is the operation data of each component in the digital twin model corresponding to the industrial equipment; 处理模块,用于将所述目标虚拟空间数据输入到事先训练好的重构模型中,利用所述重构模型对所述目标虚拟空间数据进行重构,获得所述目标虚拟空间数据对应的物理空间下的重构数据;The processing module is used to input the target virtual space data into the pre-trained reconstruction model, and use the reconstruction model to reconstruct the target virtual space data to obtain the physical data corresponding to the target virtual space data. Reconstructed data in space; 修正模块,用于根据所述重构数据和所述目标物理空间数据确定误差指数,并在所述误差指数满足修正条件的情况下,对所述数字孪生模型进行修正。A correction module, configured to determine an error index according to the reconstructed data and the target physical space data, and correct the digital twin model when the error index satisfies a correction condition. 9.一种电子设备,其特征在于,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机程序,所述处理器可执行所述计算机程序以实现权利要求1-7任一项所述的方法。9. An electronic device, comprising a processor and a memory, wherein the memory stores a computer program executable by the processor, and the processor can execute the computer program to implement claims 1-7 The method of any one. 10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述的方法。10. A computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the method according to any one of claims 1-7 is implemented.
CN202210776233.5A 2022-07-04 2022-07-04 Method and device for correcting digital twin model, electronic device and storage medium Active CN114841021B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210776233.5A CN114841021B (en) 2022-07-04 2022-07-04 Method and device for correcting digital twin model, electronic device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210776233.5A CN114841021B (en) 2022-07-04 2022-07-04 Method and device for correcting digital twin model, electronic device and storage medium

Publications (2)

Publication Number Publication Date
CN114841021A true CN114841021A (en) 2022-08-02
CN114841021B CN114841021B (en) 2022-10-11

Family

ID=82575031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210776233.5A Active CN114841021B (en) 2022-07-04 2022-07-04 Method and device for correcting digital twin model, electronic device and storage medium

Country Status (1)

Country Link
CN (1) CN114841021B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408890A (en) * 2022-11-02 2022-11-29 南京体育学院 Data processing method based on digital twin intelligent phase space multi-dimensional reconstruction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110851966A (en) * 2019-10-30 2020-02-28 同济大学 Digital twin model correction method based on deep neural network
CN112070279A (en) * 2020-08-19 2020-12-11 浙江工业大学 Product processing control method based on digital twinning technology
US20210262439A1 (en) * 2018-11-18 2021-08-26 Zhejiang University Method of identification and compensation of inherent deviation of yaw error of wind turbine based on true power curve
US20210319156A1 (en) * 2020-04-09 2021-10-14 Wuhan University Method and system for fault diagnosis with small samples of power equipment based on virtual and real twin spaces
CN113868898A (en) * 2021-11-29 2021-12-31 联想新视界(北京)科技有限公司 Data processing method and device based on digital twin model
CN114199156A (en) * 2021-12-15 2022-03-18 桂林航天工业学院 Wing profile curved surface shape reconstruction method based on double FBG shape sensors
CN114298443A (en) * 2022-03-03 2022-04-08 北京航空航天大学杭州创新研究院 Predictive maintenance method, device and electronic equipment for industrial equipment based on health state index

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210262439A1 (en) * 2018-11-18 2021-08-26 Zhejiang University Method of identification and compensation of inherent deviation of yaw error of wind turbine based on true power curve
CN110851966A (en) * 2019-10-30 2020-02-28 同济大学 Digital twin model correction method based on deep neural network
US20210319156A1 (en) * 2020-04-09 2021-10-14 Wuhan University Method and system for fault diagnosis with small samples of power equipment based on virtual and real twin spaces
CN112070279A (en) * 2020-08-19 2020-12-11 浙江工业大学 Product processing control method based on digital twinning technology
CN113868898A (en) * 2021-11-29 2021-12-31 联想新视界(北京)科技有限公司 Data processing method and device based on digital twin model
CN114199156A (en) * 2021-12-15 2022-03-18 桂林航天工业学院 Wing profile curved surface shape reconstruction method based on double FBG shape sensors
CN114298443A (en) * 2022-03-03 2022-04-08 北京航空航天大学杭州创新研究院 Predictive maintenance method, device and electronic equipment for industrial equipment based on health state index

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIN LI等: "Multisource Model-Driven Digital Twin System of Robotic Assembly", 《IEEE SYSTEMS JOURNAL》 *
林润泽等: "基于数字孪生的智能装配机械臂实验系统", 《实验室研究与探索》 *
谢红兰等: "X射线荧光全息术中消除光源偏振效应和孪生像的重构新算法", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115408890A (en) * 2022-11-02 2022-11-29 南京体育学院 Data processing method based on digital twin intelligent phase space multi-dimensional reconstruction
CN115408890B (en) * 2022-11-02 2023-03-24 南京体育学院 Data processing method based on digital twin intelligent phase space multi-dimensional reconstruction

Also Published As

Publication number Publication date
CN114841021B (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN110399238B (en) Disk failure early warning method, device, equipment and readable storage medium
WO2021126512A1 (en) Cooperative use of a genetic algorithm and an optimization trainer for autoencoder generation
CN112231582B (en) Website recommendation method and equipment based on variation self-coding data fusion
JP6994812B2 (en) Programs, devices and methods that complement missing values in time-series measurements of multiple sensors
CN113505830B (en) Rotary machine fault diagnosis method, system, equipment and storage medium
CN114841021B (en) Method and device for correcting digital twin model, electronic device and storage medium
CN111738435A (en) A mobile device-based online sparse training method and system
CN110874635B (en) Deep neural network model compression method and device
CN118520246A (en) Data processing method and device, electronic equipment and nonvolatile storage medium
CN114399901A (en) Method and equipment for controlling traffic system
CN115760918A (en) Map abnormal track detection method and system based on self-attention and unsupervised learning
CN114859231B (en) Battery Remaining Life Prediction Method Based on Wiener Process and Extreme Learning Machine
CN104933052B (en) The estimation method and data true value estimation device of data true value
CN110750536B (en) Vibration and noise smoothing method and system for attitude time series data
CN111738407B (en) Clock error prediction method, device, medium and terminal based on deep learning
CN118568896A (en) Door hinge subsystem determination method, device, electronic device and storage medium
CN118586297A (en) A coiled tubing fracturing process injection procedure, parameter optimization method and device
JP2021089711A (en) Video jitter detection method and apparatus
CN106293936A (en) A kind of determination method and device of the locally optimal solution of physical host virtual memory
CN116722653A (en) Dynamic state detection method and system for electric power system
CN114611673A (en) Neural network compression method, device, equipment and readable storage medium
CN111341362A (en) A decoding method and device, and storage medium
CN117151196B (en) An interpretable fault diagnosis attribution method based on layer-by-layer incremental expectation propagation
CN113886686A (en) Method, device, storage medium and program product for recommending item information to users
WO2021014746A1 (en) Information processing method, information processing device, and information processing program

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant