CN114839244B - 基于共价有机骨架-多壁碳纳米管的过氧化氢电化学传感器 - Google Patents
基于共价有机骨架-多壁碳纳米管的过氧化氢电化学传感器 Download PDFInfo
- Publication number
- CN114839244B CN114839244B CN202210478346.7A CN202210478346A CN114839244B CN 114839244 B CN114839244 B CN 114839244B CN 202210478346 A CN202210478346 A CN 202210478346A CN 114839244 B CN114839244 B CN 114839244B
- Authority
- CN
- China
- Prior art keywords
- hydrogen peroxide
- mwcnts
- electrochemical sensor
- cof
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Catalysts (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明属于功能复合材料的制备和应用技术领域,提供一种共价有机骨架‑多壁碳纳米管复合材料及基于该复合材料的电化学传感器的制备方法和应用。首先通过原位生长法制备共价有机骨架‑多壁碳纳米管复合材料,该复合材料具有良好的导电性、大比表面积、高电子传输效率以及较多活性位点。然后将其涂覆在电极上形成工作电极,用于构建过氧化氢电化学传感器,该电化学传感器对过氧化氢具有极好的电催化活性,线性响应范围为0.008‑8μM,检测限低至2 nM,抗干扰能力强。本发明提供了一种复合材料的制备方法,该方法操作简单且成本低廉,而且基于此复合材料制备的电化学传感器性能稳定,在实时监测过氧化氢方面具有广阔的应用前景。
Description
技术领域
本发明涉及功能复合材料的制备和应用技术领域,特别涉及一种基于共价有机骨架-多壁碳纳米管复合材料(COF-366-Mn/Fe@MWCNTs)的电化学传感器的制备和检测过氧化氢的应用。
背景技术
过氧化氢通过调节许多不同类型的细胞功能和生理过程在细胞信号传导中起关键作用。例如,过氧化氢与细胞损伤、免疫反应、细胞信号转导和病原体入侵有关。以往的研究已经证实,刺激可以诱导活细胞分泌过氧化氢,这些过氧化氢穿透细胞膜以保持细胞内氧化还原稳态,并且在相同条件下肿瘤细胞会分泌更多的过氧化氢。因此,过氧化氢可作为早期癌症治疗的有效分子生物标志物。然而,检测组织中的过氧化氢水平受到其低浓度、短半衰期和高化学活性的限制。迄今为止,常用的过氧化氢检测技术有比色法、高效液相色谱法、荧光法和电化学法等。其中,电化学技术由于操作简单、测定快速、灵敏度高和选择性好等固有优势备受关注。
传统的过氧化氢电化学传感器是基于酶的生物传感器,通过将酶固定在电极的表面上构建而成。尽管这类传感器对过氧化氢表现出较优异的选择性和较高灵敏度,但由于其不稳定性、操作条件苛刻、酶纯化困难和酶固定化过程复杂,限制了实际应用。最近,为了克服酶基生物传感器的内在缺陷,开发了许多可以替代酶的稳定的纳米材料,包括石墨烯、金属二硫化物、纳米颗粒和金属卟啉。其中,基于金属卟啉的传感器已得到深入研究,并且由于其能够经历快速氧化还原过程,因此对过氧化氢具有可接受的电化学灵敏度。共价有机框架因其在二维平面中的扩展共轭和在垂直方向上以原子精度排列的周期性柱状π阵列,可以提高电荷转移能力。因此,采用金属卟啉作为结构基序来制备共价有机框架可以提供一种新的理想体系来提高电催化性能。然而,由于共价有机框架的聚集经常发生,因此很难避免层之间的π−π相互作用。聚集效应使它们的活性位点被覆盖,导致电子传输效率变差,限制了其潜在的应用。为了解决这个问题,具有大比表面积和高电导率的多壁碳纳米管(MWCNTs)常被用作生长或负载电催化材料来制造电化学传感器。
发明内容
针对目前存在的问题,本发明提供一种COF-366-Mn/Fe@MWCNTs的制备方法,其特征在于,包括以下步骤:
(1)将5,10,15,20-四(4-氨基苯基)卟啉锰(MnTAPP)、5,10,15,20-四(4-氨基苯基)卟啉铁(FeTAPP)、2,5-二甲氧基苯-1,4-二甲醛、MWCNTs、均三甲苯、乙醇和6 M的乙酸水溶液加入到耐热玻璃管中,超声分散2-5 h,然后进行三次循环的脱气处理,封管,在110-130 °C加热70-76 h;其中MnTAPP、FeTAPP、2,5-二甲氧基苯-1,4-二甲醛和MWCNTs的质量比为1:1.01:1.04:0.83,总质量为14.6-43.7 mg;均三甲苯、无水乙醇和乙酸水溶液的体积比为1:1:0.2,总体积为0.55-1.65 mL;
(2)反应完成后,在管底部产生深紫色沉淀,通过离心得到产物,然后依次用1,4-二氧六环、四氢呋喃和丙酮洗涤至无色后,在60-80 °C下真空干燥10-16 h,得紫黑色粉末,即为COF-366-Mn/Fe@MWCNTs。
将上述制备的COF-366-Mn/Fe@MWCNTs用于构建过氧化氢电化学传感器。
一种用于检测过氧化氢的电化学传感器制备方法如下:首先用0.05 μm氧化铝浆将裸玻碳电极抛光成镜面状,然后用乙醇、超纯水和萘酚将制备的COF-366-Mn/Fe@MWCNTs配制成浓度为4 mg/mL的均匀的悬浮液,最后将4-6 μL的悬浮液涂覆到玻碳电极上,待溶剂挥发后,得到涂覆有COF-366-Mn/Fe@MWCNTs的电化学传感器;其中乙醇、水和萘酚的体积比为1:0.5:0.01。
本发明制备的一种用于测定过氧化氢的电化学传感器,所用的复合材料是由共价有机骨架和MWCNTs所构筑而成的新型复合材料COF-366-Mn/Fe@MWCNTs,且COF-366-Mn/Fe@MWCNTs具有良好的导电性、大比表面积、高电子传输效率和较多活性位点,将其涂覆在电极上形成工作电极,用于构建过氧化氢电化学传感器,该电化学传感器的线性响应范围宽、检测限低以及抗干扰性能良好,对过氧化氢具有极好的电催化还原活性。
与现有的技术相比,本发明的有益效果:
(1)本发明提供一种COF-366-Mn/Fe@MWCNTs的制备方法,该制备方法操作简单且成本低廉,制备的COF-366-Mn/Fe@MWCNTs具有良好的导电性、大的比表面积、高电子传输效率以及较多活性位点;
(2)基于COF-366-Mn/Fe@MWCNTs制备的电化学传感器,该电化学传感器性能稳定,线性响应范围为0.008-8 μM,检测限低至2 nM,抗干扰能力强,对过氧化氢具有极好的催化活性,可用于对过氧化氢的实时测定;
(3)COF-366-Mn/Fe@MWCNTs中MWCNTs和COF-366-Mn/Fe之间的强载体相互作用不仅促进了电子转移,而且增强了协同效应,且由于活性位点Mn和Fe间距小,可以通过共反应增强电催化还原过氧化氢。
附图说明
图1是COF-366-Mn/Fe@MWCNTs的扫描电子显微镜图;
图2是COF-366-Mn/Fe@MWCNTs的透射电子显微镜图;
图3是COF-366-Mn/Fe@MWCNTs的元素分析图;
图4是COF-366-Mn/Fe@MWCNTs的X射线光电子能谱图;
图5是过氧化氢电化学传感器对不同浓度过氧化氢的CV曲线图,插图为电流响应与不同浓度过氧化氢的线性关系图;
图6是(A)过氧化氢电化学传感器计时电流响应曲线图以及(B)过氧化氢浓度与响应电流之间的线性关系图;
图7是H2O2电化学传感器对H2O2和各种干扰物的电流曲线。
具体实施方式
下面将结合本发明中的附图说明,对本发明实施例中的技术方案进行清楚、完整地描述,但本发明的内容不仅仅局限于下面的实施例,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
应当理解,本发明实例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围,下列实施例中未注明具体条件的方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出的数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间的任何一个数值均可选用,除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
实施例1 COF-366-Mn/Fe@MWCNTs的制备
(1)将7.5 mg的MnTAPP、7.6 mg的FeTAPP、7.8 mg的2,5-二甲氧基苯-1,4-二甲醛、6.25 mg的MWCNTs、0.5 mL的均三甲苯、0.5 mL的乙醇和0.1 mL 6 M的乙酸水溶液加入到耐热玻璃管中,超声分散3 h,然后进行三次循环的脱气处理,封管,在120 °C加热72 h;
(2)反应完成后,在管底部产生深紫色沉淀,通过离心得到产物,然后依次用1,4-二氧六环、四氢呋喃和丙酮洗涤至无色后,在60 °C下真空干燥12 h,得紫黑色粉末,即为COF-366-Mn/Fe@MWCNTs。
实施例2 COF-366-Mn/Fe@MWCNTs的表征测试
(1)图1和图2分别是COF-366-Mn/Fe@MWCNTs的扫描电子显微镜图和透射电子显微镜图,从图1和图2中可以看出COF-366-Mn/Fe@MWCNTs呈现出管状结构编织而成的网络形态,平均直径为15-24 nm,这种网络形态确保电子传导能力,从而实现高效的电催化还原过氧化氢;
(2)图3和图4分别是COF-366-Mn/Fe@MWCNTs的元素分析图和X射线光电子能谱图,从图3中可以看出COF-366-Mn/Fe@MWCNTs含有C、N、O、Mn、Fe五种元素,X射线光电子能谱图显示COF-366-Mn/Fe@MWCNTs在283.6、398.2、532.1、642.2和710.8 eV处对应于C 1s、N 1s、O 1s、Mn 2p和Fe 2p的结合能;
(5)以上表征的结果证实COF-366-Mn/Fe成功的附着MWCNTs表面,合成了COF-366-Mn/Fe@MWCNTs。
实施例3 过氧化氢电化学传感器的构建
首先用0.05 μm氧化铝浆将裸玻碳电极抛光成镜面状,然后用500 μL的乙醇、250μL的的超纯水和5 μL的萘酚将制备的COF-366-Mn/Fe@MWCNTs配制成浓度为4 mg/mL的均匀的悬浮液,最后将5 μL的悬浮液涂覆到玻碳电极上,待溶剂挥发之后,得到涂覆有COF-366-Mn/Fe@MWCNTs的电化学传感器。
实施例4 过氧化氢电化学传感器的性能测试
(1)过氧化氢电化学传感器对不同浓度过氧化氢的测定:采用循环伏安法,设置扫描速率为50 mV/s,扫描范围为−0.6-0.5 V,在不同浓度的过氧化氢溶液中测试COF-366-Mn/Fe@MWCNTs修饰的玻碳电极的CV曲线;图5是过氧化氢电化学传感器对不同浓度过氧化氢的CV曲线图,插图为电流响应与不同浓度过氧化氢的线性关系图,从图中可以看出,在0-6 μM浓度范围内,随着过氧化氢浓度的升高,响应电流逐渐增大,且过氧化氢浓度与电流响应之间呈线性关系;
(2)过氧化氢电化学传感器工作曲线的测定:采用计时电流法,电位施加−0.4 V,在不断搅拌的0.1 M pH = 7.4氮气饱和的磷酸缓冲盐溶液中累积注入过氧化氢;图6是(A)过氧化氢电化学传感器计时电流响应曲线图以及(B)过氧化氢浓度与响应电流之间的线性关系图,随着过氧化氢的不断注入,该传感器响应电流不断增加并在较快时间内达到稳态,从而可以实现对过氧化氢的实时监测,且过氧化氢浓度与电流响应之间的存在良好的关系,线性响应范围为0.008-8 μM,检测限低至2 nM;
(3)过氧化氢电化学传感器的抗干扰测试:在稳态电流-时间测试期间,将4 μM的干扰物质抗坏血酸、尿酸、多巴胺、葡萄糖和氯化钠添加到0.1 M pH = 7.4 N2饱和的PBS中;图7是过氧化氢电化学传感器对过氧化氢和各种干扰物的电流曲线,与添加0.8 μM的过氧化氢相比,干扰物质仅引起轻微的电流增加,再次加入0.8 μM的过氧化氢时仍存在明显的电流响应,这说明干扰物质与过氧化氢共存不会干扰过氧化氢的测定,表明该电化学传感器对过氧化氢表现出良好的抗干扰性;
(4)综上可知,COF-366-Mn/Fe@MWCNTs电化学传感器用于过氧化氢的测定具有宽线性响应范围、低检测限和良好的抗干扰能力,对过氧化氢具有极好的催化活性,可实现实时监测过氧化氢。
上述实施例仅示例性说明本发明的原理及功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (5)
1.一种共价有机骨架-多壁碳纳米管复合材料COF-366-Mn/Fe@MWCNTs的制备方法,其特征在于,包括以下步骤:
(1)将5,10,15,20-四(4-氨基苯基)卟啉锰MnTAPP、5,10,15,20-四(4-氨基苯基)卟啉铁FeTAPP、2,5-二甲氧基苯-1,4-二甲醛、多壁碳纳米管MWCNTs、均三甲苯、乙醇和6 M的乙酸水溶液加入到耐热玻璃管中,超声分散2-5 h,然后进行三次循环的脱气处理,封管,在110-130 °C加热70-76 h;其中MnTAPP、FeTAPP、2,5-二甲氧基苯-1,4-二甲醛和MWCNTs的质量比为1:1.01:1.04:0.83,总质量为14.6-43.7 mg;均三甲苯、无水乙醇和乙酸水溶液的体积比为1:1:0.2,总体积为0.55-1.65 mL;
(2)反应完成后,在管底部产生深紫色沉淀,通过离心得到产物,然后依次用1,4-二氧六环、四氢呋喃和丙酮洗涤至无色后,在60-80 °C下真空干燥10-16 h,得紫黑色粉末,即为COF-366-Mn/Fe@MWCNTs。
2. 根据权利要求1所述的一种COF-366-Mn/Fe@MWCNTs的制备方法,其特征在于:COF-366-Mn/Fe@MWCNTs呈现出管状结构编织而成的网络形态,平均直径为15-24 nm,这种网络形态确保电子传导能力。
3. 一种用于检测过氧化氢的电化学传感器,其特征在于,制备方法如下:首先用0.05μm氧化铝浆将裸玻碳电极抛光成镜面状,然后用乙醇、超纯水和萘酚将权利要求1制备的COF-366-Mn/Fe@MWCNTs配制成浓度为4 mg/mL的均匀的悬浮液,最后将4-6 μL的悬浮液涂覆到玻碳电极上,待溶剂挥发后,得到涂覆有COF-366-Mn/Fe@MWCNTs的电化学传感器;其中乙醇、水和萘酚的体积比为1:0.5:0.01。
4. 根据权利要求3所述的一种用于检测过氧化氢的电化学传感器的用途,其特征在于:采用循环伏安法,在0-6 μM浓度范围内,随着过氧化氢浓度的升高,响应电流逐渐增大,且过氧化氢浓度与电流响应之间呈线性关系。
5. 根据权利要求3所述的一种用于检测过氧化氢的电化学传感器的用途,其特征在于:采用计时电流法,随着过氧化氢的不断注入,响应电流不断增加并在较快的时间内达到稳态,从而可以实现对过氧化氢的实时监测,该电化学传感器线性响应范围为0.008-8 μM,检测限低至2 nM,且干扰物质仅引起轻微的电流增加。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210478346.7A CN114839244B (zh) | 2022-05-05 | 2022-05-05 | 基于共价有机骨架-多壁碳纳米管的过氧化氢电化学传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210478346.7A CN114839244B (zh) | 2022-05-05 | 2022-05-05 | 基于共价有机骨架-多壁碳纳米管的过氧化氢电化学传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114839244A CN114839244A (zh) | 2022-08-02 |
CN114839244B true CN114839244B (zh) | 2023-09-15 |
Family
ID=82568369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210478346.7A Active CN114839244B (zh) | 2022-05-05 | 2022-05-05 | 基于共价有机骨架-多壁碳纳米管的过氧化氢电化学传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114839244B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108362750A (zh) * | 2018-03-07 | 2018-08-03 | 扬州大学 | 一种基于金纳米粒子掺杂共价有机骨架复合材料电极的制备方法 |
CN108760851A (zh) * | 2018-07-30 | 2018-11-06 | 江南大学 | 一种CuS/GO/MWCNTs复合纳米粒子修饰电极的制备方法及其产品、应用 |
CN109342530A (zh) * | 2018-10-12 | 2019-02-15 | 阜阳师范学院 | 卟啉敏化剂与多壁碳纳米管纳米复合材料制备方法及非酶电化学传感器检测抗坏血酸的方法 |
US10895552B1 (en) * | 2018-11-05 | 2021-01-19 | Qingdao University | Method for preparing ratiometric electrochemical aptasensor for Vaniline based on nanocomposite modified electrode |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105403604B (zh) * | 2015-12-17 | 2018-04-10 | 河南省科学院能源研究所有限公司 | 基于金属纳米颗粒/纳米纤维素复合物的无酶葡萄糖电化学传感器 |
-
2022
- 2022-05-05 CN CN202210478346.7A patent/CN114839244B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108362750A (zh) * | 2018-03-07 | 2018-08-03 | 扬州大学 | 一种基于金纳米粒子掺杂共价有机骨架复合材料电极的制备方法 |
CN108760851A (zh) * | 2018-07-30 | 2018-11-06 | 江南大学 | 一种CuS/GO/MWCNTs复合纳米粒子修饰电极的制备方法及其产品、应用 |
CN109342530A (zh) * | 2018-10-12 | 2019-02-15 | 阜阳师范学院 | 卟啉敏化剂与多壁碳纳米管纳米复合材料制备方法及非酶电化学传感器检测抗坏血酸的方法 |
US10895552B1 (en) * | 2018-11-05 | 2021-01-19 | Qingdao University | Method for preparing ratiometric electrochemical aptasensor for Vaniline based on nanocomposite modified electrode |
Also Published As
Publication number | Publication date |
---|---|
CN114839244A (zh) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiu et al. | An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine | |
Hira et al. | Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor | |
Le Goff et al. | Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose bio-sensing | |
Gong et al. | Microperoxidase-11@ PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide | |
Yang et al. | Three-dimensional gold nanoparticles/prussian blue-poly (3, 4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen | |
Li et al. | Hydrogen peroxide biosensor based on gold nanoparticles/thionine/gold nanoparticles/multi-walled carbon nanotubes–chitosans composite film-modified electrode | |
Liu et al. | Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film | |
Zhuang et al. | Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing | |
Zhang et al. | A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film | |
Haghighi et al. | Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode | |
Li et al. | Synthesis of palladium@ gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine | |
Savari et al. | High sensitivity amperometric and voltammetric determination of persulfate with neutral red/nickel oxide nanowires modified carbon paste electrodes | |
Hosseini et al. | Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@ Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine | |
Yang et al. | Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection | |
Haghighi et al. | Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate | |
Wang et al. | Magnetic Fe 3 O 4@ MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine | |
Liu et al. | Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode | |
Yu et al. | Electrocatalytical oxidation of nitrite and its determination based on Au@ Fe3O4 nanoparticles | |
Feng et al. | Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67 | |
Dong et al. | Exploiting multi-function metal-organic framework nanocomposite Ag@ Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing | |
Zhou et al. | Highly ordered mesoporous carbons-based glucose/O2 biofuel cell | |
Che et al. | Amperometric glucose biosensor based on Prussian blue–multiwall carbon nanotubes composite and hollow PtCo nanochains | |
Vilian et al. | Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2 | |
Peng et al. | One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum | |
Tian et al. | Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |