CN114832510A - Gas-liquid separator and water electrolysis hydrogen production system - Google Patents
Gas-liquid separator and water electrolysis hydrogen production system Download PDFInfo
- Publication number
- CN114832510A CN114832510A CN202210640014.4A CN202210640014A CN114832510A CN 114832510 A CN114832510 A CN 114832510A CN 202210640014 A CN202210640014 A CN 202210640014A CN 114832510 A CN114832510 A CN 114832510A
- Authority
- CN
- China
- Prior art keywords
- gas
- liquid separator
- liquid separation
- catalyst
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 178
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 75
- 239000001257 hydrogen Substances 0.000 title claims abstract description 68
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 68
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 13
- 239000007789 gas Substances 0.000 claims abstract description 159
- 238000000926 separation method Methods 0.000 claims abstract description 90
- 238000007872 degassing Methods 0.000 claims abstract description 63
- 239000012535 impurity Substances 0.000 claims abstract description 30
- 239000003054 catalyst Substances 0.000 claims description 106
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 238000006392 deoxygenation reaction Methods 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 17
- 238000009434 installation Methods 0.000 abstract description 9
- 230000009977 dual effect Effects 0.000 abstract description 3
- 238000003795 desorption Methods 0.000 abstract 2
- 239000012071 phase Substances 0.000 description 40
- 239000007791 liquid phase Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000006356 dehydrogenation reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000005484 gravity Effects 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/02—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及气液分离技术领域,更具体地说,涉及一种气液分离器及电解水制氢系统。The invention relates to the technical field of gas-liquid separation, and more particularly, to a gas-liquid separator and an electrolysis water hydrogen production system.
背景技术Background technique
对于电解水制氢工艺中,目前现有的技术方案中,气液分离和脱氧过程是完全独立设计的两套设备来完成,分别是在气液分离器和脱氧器中进行,并且还需要配备冷却器等设备。整个制氢系统的工艺流程较长,设备数目较多,继而设备整体成本高且安装空间需求较大。For the electrolytic water hydrogen production process, in the current technical solution, the gas-liquid separation and deoxygenation processes are completed by two sets of equipment designed completely independently, which are carried out in the gas-liquid separator and the deaerator respectively, and also need to be equipped with coolers and other equipment. The process flow of the entire hydrogen production system is long, and the number of equipment is large, and then the overall cost of the equipment is high and the installation space requirement is large.
综上所述,如何解决电解水制氢系统的整体设备成本高和安装空间需求大的问题已经成为本领域技术人员亟待解决的问题。To sum up, how to solve the problems of high overall equipment cost and large installation space requirements of the electrolyzed water hydrogen production system has become an urgent problem to be solved by those skilled in the art.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种气液分离器及电解水制氢系统,以解决电解水制氢系统的整体设备成本高和安装空间需求大的问题。In view of this, the present invention provides a gas-liquid separator and an electrolytic water hydrogen production system to solve the problems of high overall equipment cost and large installation space requirements of the electrolytic water hydrogen production system.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种气液分离器,用于安装至电解水制氢系统的对应制气侧,包括:A gas-liquid separator for installing to the corresponding gas production side of an electrolyzed water hydrogen production system, comprising:
罐体,具有沿高度方向依次布置的粗气入口和气相出口;The tank body has a crude gas inlet and a gas outlet arranged in sequence along the height direction;
气液分离部及脱气部,设置于所述罐体内,且位于所述粗气入口与所述气相出口的流经路径上;The gas-liquid separation part and the degassing part are arranged in the tank and are located on the flow path of the crude gas inlet and the gas phase outlet;
其中,所述气液分离部用于对进入所述罐体内的粗气进行气液分离;所述脱气部用于脱除所述粗气中的杂质气体。Wherein, the gas-liquid separation part is used for gas-liquid separation of the crude gas entering the tank; the degassing part is used for removing impurity gas in the crude gas.
可选地,所述气液分离部包括自下而上依次布置的第一气液分离件和第二气液分离件,所述脱气部位于所述第一气液分离件与所述第二气液分离件之间。Optionally, the gas-liquid separation part includes a first gas-liquid separation member and a second gas-liquid separation member arranged in sequence from bottom to top, and the degassing part is located between the first gas-liquid separation member and the second gas-liquid separation member. between the two gas-liquid separation parts.
可选地,所述脱气部为装载于所述第一气液分离件与所述第二气液分离件之间的脱气催化剂,其中,所述脱气催化剂用于与所述杂质气体反应生成水。Optionally, the degassing part is a degassing catalyst loaded between the first gas-liquid separation member and the second gas-liquid separation member, wherein the degassing catalyst is used to interact with the impurity gas The reaction produces water.
可选地,所述罐体的外侧还设置有催化剂填装口和催化剂卸料口;Optionally, the outside of the tank body is further provided with a catalyst filling port and a catalyst discharge port;
其中,所述催化剂填装口靠近所述第二气液分离件的下表面布置,所述催化剂卸料口靠近所述第一气液分离件的上表面布置。Wherein, the catalyst filling port is arranged close to the lower surface of the second gas-liquid separation member, and the catalyst discharge port is arranged close to the upper surface of the first gas-liquid separation member.
可选地,所述罐体上设置内筒体,所述内筒体的底部与所述气液分离部所在的腔体连通,所述内筒体与所述罐体的内壁围设形成有载体腔,所述内筒体的筒壁上设置有与所述载体腔连通的通气口,所述气相出口与所述载体腔连通;Optionally, an inner cylinder body is arranged on the tank body, the bottom of the inner cylinder body is communicated with the cavity where the gas-liquid separation part is located, and the inner cylinder body and the inner wall of the tank body are formed with a surrounding area. a carrier cavity, the cylinder wall of the inner cylinder is provided with a ventilation port communicating with the carrier cavity, and the gas-phase outlet communicates with the carrier cavity;
其中,所述脱气部装载于所述载体腔内。Wherein, the degassing part is loaded in the carrier cavity.
可选地,所述内筒体内设置有电加热器。Optionally, an electric heater is provided in the inner cylinder.
可选地,所述电加热器配备有加热控制器,所述加热控制器用于调节所述电加热器的加热温度。Optionally, the electric heater is equipped with a heating controller for adjusting the heating temperature of the electric heater.
可选地,所述载体腔内设置有支托部件,所述支托部件将所述载体腔分隔成自上而下分布的催化剂装载腔和排气腔,所述脱气部为装载于所述催化剂装载腔的脱气催化剂,所述气相出口与所述排气腔连通。Optionally, a support member is arranged in the carrier cavity, and the support member divides the carrier cavity into a catalyst loading cavity and an exhaust cavity distributed from top to bottom, and the degassing part is loaded on the carrier cavity. the degassing catalyst of the catalyst loading chamber, and the gas phase outlet communicates with the exhaust chamber.
可选地,所述罐体的外侧还设置有与所述催化剂装载腔连通的催化剂填装口和催化剂卸料口;Optionally, the outer side of the tank body is further provided with a catalyst filling port and a catalyst discharge port communicating with the catalyst loading chamber;
其中,所述催化剂填装口靠近所述催化剂装载腔的顶部布置,所述催化剂卸料口靠近所述催化剂装载腔的底部布置。Wherein, the catalyst filling port is arranged near the top of the catalyst loading chamber, and the catalyst discharge port is arranged near the bottom of the catalyst loading chamber.
可选地,所述排气腔内还设置有冷却器,且所述罐体的外侧设置有与所述排气腔连通的所述排液口,所述排液口连通于所述排气腔的底部布置,且所述气相出口在所述排气腔上的布置位置高于所述排液口。Optionally, a cooler is also arranged in the exhaust chamber, and the liquid discharge port communicated with the exhaust chamber is provided on the outer side of the tank body, and the liquid discharge port is communicated with the exhaust gas The bottom of the cavity is arranged, and the arrangement position of the gas phase outlet on the exhaust cavity is higher than the liquid outlet.
可选地,所述冷却器还配备有流量调节器,所述流量调节器用于调节所述冷却器的冷却量。Optionally, the cooler is further equipped with a flow regulator for adjusting the cooling amount of the cooler.
可选地,所述气液分离部所对应的罐段与所述脱氧部所对应的罐段之间通过膨胀节连接。Optionally, the tank section corresponding to the gas-liquid separation part and the tank section corresponding to the deoxygenation part are connected by an expansion joint.
可选地,所述罐体的外侧还设置有保温层。Optionally, a thermal insulation layer is further provided on the outer side of the tank body.
可选地,当所述制气侧为制氢侧时,所述粗气为粗氢,所述杂质气体为氧气;当所述制气侧为制氧侧时,所述粗气为粗氧,所述杂质气体为氢气。Optionally, when the gas production side is the hydrogen production side, the crude gas is crude hydrogen, and the impurity gas is oxygen; when the gas production side is the oxygen production side, the crude gas is crude oxygen , the impurity gas is hydrogen.
相比于背景技术介绍内容,上述气液分离器,用于安装至电解水制氢系统的对应制气侧,包括罐体、气液分离部及脱气部,其中,罐体具有沿高度方向依次布置的粗气入口和气相出口;气液分离部及脱气部,均设置于罐体内,且位于粗气入口与气相出口的流经路径上,气液分离部用于对进入罐体内的粗气进行气液分离,脱气部用于脱除粗气中的杂质气体。该气液分离器,应用至电解水制氢系统的对应制气侧时,通过气液分离部可以对进入罐体内的粗气进行气液分离,同时通过脱气部能够脱除粗气中的杂质气体,使得气液分离器集成了气液分离和脱除粗气中的杂质气体的双重功能,减少了电解水制氢系统的设备数量,缩短了整个制氢系统的工艺流程,因此,降低了电解水制氢系统的整体设备成本和安装空间需求。Compared with the description of the background technology, the above-mentioned gas-liquid separator, which is used to be installed on the corresponding gas production side of the electrolyzed water hydrogen production system, includes a tank body, a gas-liquid separation part and a degassing part, wherein the tank body has a height along the height direction. The crude gas inlet and the gas-phase outlet are arranged in sequence; the gas-liquid separation part and the degassing part are all arranged in the tank and are located on the flow path of the crude gas inlet and the gas-phase outlet. The crude gas is subjected to gas-liquid separation, and the degassing part is used to remove the impurity gas in the crude gas. When the gas-liquid separator is applied to the corresponding gas production side of the electrolyzed water hydrogen production system, the gas-liquid separation part can separate the crude gas entering the tank from gas and liquid, and at the same time, the degassing part can remove the crude gas in the crude gas. The impurity gas makes the gas-liquid separator integrate the dual functions of gas-liquid separation and removal of impurity gas in the crude gas, reducing the number of equipment in the electrolysis water hydrogen production system and shortening the process flow of the entire hydrogen production system. The overall equipment cost and installation space requirements of the electrolyzed water hydrogen production system are discussed.
另外,本发明还提供了一种电解水制氢系统,包括气液分离器,该气液分离器为上述任一方案所描述的气液分离器。由于上述气液分离器具有上述技术效果,因此具有该气液分离器的电解水制氢系统也应具有相应的技术效果。In addition, the present invention also provides an electrolysis water hydrogen production system, including a gas-liquid separator, and the gas-liquid separator is the gas-liquid separator described in any of the above solutions. Since the above-mentioned gas-liquid separator has the above-mentioned technical effects, the electrolysis water hydrogen production system having the above-mentioned gas-liquid separator should also have corresponding technical effects.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的气液分离器的第一种结构示意图;1 is a first structural schematic diagram of a gas-liquid separator provided by an embodiment of the present invention;
图2为本发明实施例提供的气液分离器的第二种结构示意图;Fig. 2 is the second structural schematic diagram of the gas-liquid separator provided by the embodiment of the present invention;
图3为本发明实施例提供的气液分离器的第三种结构示意图;Fig. 3 is the third structural schematic diagram of the gas-liquid separator provided by the embodiment of the present invention;
图4为本发明实施例提供的气液分离部所对应的罐段与脱氧部所对应的罐段之间通过膨胀节连接的结构示意图。FIG. 4 is a schematic structural diagram of the connection between the tank section corresponding to the gas-liquid separation part and the tank section corresponding to the deoxygenation part provided by an embodiment of the present invention through an expansion joint.
其中,图1-图4中:Among them, in Figure 1-Figure 4:
罐体1、粗气入口11、气相出口12、液相出口13、催化剂填装口14、催化剂卸料口15、弯管16、排液口17、保温层18、外筒体18a、保温材料18b、测温探头19;
气液分离部2、第一气液分离件21、第二气液分离件22;Gas-
脱气部3;
内筒体4、电加热器40、电加热管40a、温度检测器40b、通气口41;
载体腔5、催化剂装载腔5a、排气腔5b、脱气催化剂51、支托部件52;
冷却器6、冷却液入口61、冷却液出口62;Cooler 6,
安装支架7;mounting
膨胀节8。Expansion joint 8.
具体实施方式Detailed ways
本发明的核心在于提供一种气液分离器及电解水制氢系统,以解决电解水制氢系统的整体设备成本高和安装空间需求大的问题。The core of the present invention is to provide a gas-liquid separator and an electrolytic water hydrogen production system to solve the problems of high overall equipment cost and large installation space requirements of the electrolytic water hydrogen production system.
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1-图4,其中,图1为本发明实施例提供的气液分离器的第一种结构示意图;图2为本发明实施例提供的气液分离器的第二种结构示意图;图3为本发明实施例提供的气液分离器的第三种结构示意图;图4为本发明实施例提供的气液分离部所对应的罐段与脱氧部所对应的罐段之间通过膨胀节连接的结构示意图。Please refer to FIG. 1-FIG. 4, wherein, FIG. 1 is a first structural schematic diagram of a gas-liquid separator provided by an embodiment of the present invention; FIG. 2 is a second structural schematic diagram of the gas-liquid separator provided by an embodiment of the present invention; FIG. 3 is a schematic diagram of the third structure of the gas-liquid separator provided by the embodiment of the present invention; FIG. 4 is the expansion between the tank section corresponding to the gas-liquid separation section and the tank section corresponding to the deoxygenation section provided by the embodiment of the present invention. Schematic diagram of the connection structure.
本发明实施例提供了一种气液分离器,用于安装至电解水制氢系统的对应制气侧,包括罐体1、气液分离部2及脱气部3,其中,罐体1具有沿高度方向依次布置(比如,参照图1-图3,采用自下而上依次布置的方式;也可以参照图4,采用自上而下依次布置的方式)的粗气入口11和气相出口12;气液分离部2及脱气部3均设置于罐体1内,且位于粗气入口11与气相出口12的流经路径上;且气液分离部2用于对进入罐体1内的粗气进行气液分离,脱气部3用于脱除粗气中的杂质气体。The embodiment of the present invention provides a gas-liquid separator, which is used to be installed on the corresponding gas production side of an electrolyzed water hydrogen production system, and includes a
该气液分离器,应用至电解水制氢系统的对应制气侧时,通过气液分离部2可以对进入罐体1内的粗气进行气液分离,同时通过脱气部3能够脱除粗气中的杂质气体,使得气液分离器集成了气液分离和脱除粗气中的杂质气体的双重功能,减少了电解水制氢系统的设备数量,缩短了整个制氢系统的工艺流程,因此,降低了电解水制氢系统的整体设备成本和安装空间需求。When the gas-liquid separator is applied to the corresponding gas production side of the electrolyzed water hydrogen production system, the gas-
需要说明的是,本领域技术人员都应该能够理解,对于气液分离器来说,其罐体1的底部一般应该设置有液相出口13,以便气液分离后的液相流走,一般是流至电解水制氢系统的电解槽或集水器内。气液分离部的具体结构形式不限,其工作原理是将粗气(粗氢或粗氢)中含有的微量水分进行脱除,依靠气液两相的重力差异进行分离,从而获得低含液量的气相。比如,气液分离部具体可以是通过冷却机构对粗气进行冷却,继而使得粗气中的微量水分冷凝成液体而脱除;又比如,通过液滴捕捉构件、丝网除沫构件、折流板等部件实现气液分离,实际应用过程中,可以根据实际需求进行选择布置。It should be noted that those skilled in the art should be able to understand that for the gas-liquid separator, the bottom of the
另外需要说明的是,该气液分离器,具体可以应用至电解水制氢系统的制氢侧,也可以应用于制氧侧。其中,当气液分离器应用于制氢侧(也即前述制气侧为制氢侧)时,粗气为粗氢,杂质气体为氧气,此时的脱气操作为脱氧;当气液分离器应用于制氧侧(也即前述制气侧为制氧侧)时,粗气为粗氧,杂质气体为氢气,此时的脱气操作为脱氢。其中,脱氧是指将粗氢中少量的氧气在脱氧催化剂的作用下反应生成水分,从而达到脱除其中含有的少量氧气;其中脱氢是指将粗氧中少量的氢气在脱氢催化剂的作用下反应生成水分,从而达到脱除其中含有的少量氢气。In addition, it should be noted that the gas-liquid separator can be specifically applied to the hydrogen production side of the electrolysis water hydrogen production system, and can also be applied to the oxygen production side. Wherein, when the gas-liquid separator is applied to the hydrogen production side (that is, the aforementioned gas production side is the hydrogen production side), the crude gas is crude hydrogen, the impurity gas is oxygen, and the degassing operation at this time is deoxygenation; when the gas-liquid separation When the device is applied to the oxygen production side (that is, the aforementioned gas production side is the oxygen production side), the crude gas is crude oxygen, the impurity gas is hydrogen, and the degassing operation at this time is dehydrogenation. Among them, deoxygenation refers to the reaction of a small amount of oxygen in crude hydrogen under the action of a deoxygenation catalyst to generate water, so as to remove a small amount of oxygen contained in it; wherein dehydrogenation refers to the action of a small amount of hydrogen in crude oxygen on the dehydrogenation catalyst. The lower reaction generates moisture, so as to achieve the removal of a small amount of hydrogen contained in it.
在一些具体的实施方案中,参照图1本发明实施例提供的气液分离器的第一种结构示意图,上述气液分离部2具体可以包括自下而上依次布置的第一气液分离件21和第二气液分离件22,脱气部3位于第一气液分离件21与第二气液分离件22之间。该第一种结构形式,主要依靠常温脱除杂质气体,具体地,粗气原料通过粗气入口11进入气液分离器内部,然后依次经过第一气液分离件21、脱气部3和第二气液分离件22,从而能够依次完成气液分离—脱除杂质气体—再气液分离的处理过程,这样能够使得粗气脱除杂质气体时所产生的水得到进一步脱除,以保证由气相出口12导出的气体的纯净度。In some specific embodiments, referring to the first structural schematic diagram of the gas-liquid separator provided in the embodiment of the present invention in FIG. 1 , the above-mentioned gas-
需要说明的是,该气液分离部2的第一气液分离件21和第二气液分离件22具体可以采用丝网除沫器的结构,也可以采用本领域技术人员常用的其他能够实现气液分离的结构形式,在此不做更具体的限定。It should be noted that, the first gas-
进一步的实施方案中,该脱气部3具体可以设计成装载于第一气液分离件21与第二气液分离件22之间的脱气催化剂,其中,脱气催化剂用于与杂质气体反应生成水,具体地,当杂质气体为氢气时,脱气催化剂为脱氢催化剂,当杂质气体为氧气时,脱气催化剂为脱氧催化剂。通过脱气催化剂的方式进行去除杂质气体能够满足高效脱除杂质气体,并且更换维护更加方便,仅需更换新的脱气催化剂即可。In a further embodiment, the
具体的技术方案中,为了方便更换脱气催化剂,上述罐体1的外侧还可以设置有催化剂填装口14和催化剂卸料口15;其中,催化剂填装口14靠近第二气液分离件22的下表面布置,催化剂卸料口15靠近第一气液分离件21的上表面布置。通过催化剂卸料口15能够将旧的脱气催化剂卸载,并且靠近第一气液分离件21的上表面布置,有利于将旧的脱气催化剂卸载干净;通过催化剂填装口14能够填装新的脱气催化剂,并且靠近第二气液分离件22的下表面布置,能够方便将第一气液分离件21与第二气液分离件22之间的空间填充满。In a specific technical solution, in order to facilitate the replacement of the degassing catalyst, the outer side of the
当然可以理解的是,采用脱气催化剂的方式去除杂质气体的方式,仅仅是本发明实施例的举例而已,实际应用过程中,还可以采用本领域技术人员常用的其他脱气材料,在此不做更具体的限定。Of course, it can be understood that the method of removing impurity gas by means of degassing catalyst is only an example of the embodiment of the present invention. In the actual application process, other degassing materials commonly used by those skilled in the art can also be used. make more specific restrictions.
为了本领域技术人员更好的理解本发明所提供的第一种结构形式的气液分离器,下面以该气液分离器应用至电解水制氢侧为例,结合图1对该第一种结构形式的气液分离器的工作过程进行简要说明:In order for those skilled in the art to better understand the gas-liquid separator of the first structural form provided by the present invention, the following takes the application of the gas-liquid separator to the hydrogen production side of electrolyzed water as an example. The working process of the gas-liquid separator in the structural form is briefly explained:
粗氢原料从粗气入口11进入,在罐体1的底部空间依靠重力作用初步分离成气液两相,液相进入罐体1的最底部,并从罐体1的液相出口13流出,上升的气相在经过第一气液分离件21(比如,丝网除沫器)时,气液进一步得到分离,分离后的液相进入罐体1的底部并由液相出口13流出,气相继续上升至脱气部3(也即脱氧催化剂),在此处发生脱氧反应,反应后得到的气水混合物进入上部的第二气液分离件22中,将其中的液相进一步分离,得到的气相由罐体1的气相出口12流出,而分离的液相向下流至罐体1的底部从液相出口13流出罐体1。The crude hydrogen raw material enters from the
在一些更具体的实施方案中,参照图2本发明实施例提供的气液分离器的第二种结构示意图,上述罐体1上具体可以设置有竖向布置的内筒体4,内筒体4至少部分位于罐体1的内部且位于气液分离部2上方,内筒体4与罐体1的内壁围设形成有载体腔5,内筒体4内设置有电加热器40,内筒体4的底部与气液分离部2所在的腔体连通,内筒体4的筒壁上设置有与载体腔5连通的通气口41,气相出口12与载体腔5连通;其中,脱气部3装载于载体腔5内,且脱气部3具体可以是用于与杂质气体反应生成水的脱气催化剂51。具体的工作过程为:粗气原料经粗气入口11进入罐体1内部,然后经过气液分离部2,再由内筒体4上的通气口41进入载体腔5内,在载体腔5内与脱气催化剂51反应完成脱除杂质气体,最终由气相出口12输出提纯后的气体。通过将罐体1设计成该第二种结构形式,内筒体4能够使得气液分离部2和脱气部3在罐体1内的布置位置互不干扰且互不影响,在进行脱气催化剂51的卸载和填装操作时更加方便。并且通过布置电加热器40,使得气液分离器的工作环境为高温环境下,即温度是在工作压力下水分的露点温度以上。其中,电加热器40具体可以包括电加热管40a和温度检测器40b(比如热电偶),通过该电加热器40对流经内筒体4的气流进行加热。In some more specific embodiments, referring to the second structural schematic diagram of the gas-liquid separator provided by the embodiment of the present invention in FIG. 2 , the above-mentioned
进一步的实施方案中,上述电加热器40还可以配备有加热控制器,该加热控制器用于调节电加热器40的加热温度。具体的调节方式,比如在电解水制氢系统中,由于电解水制氢系统在工作过程中存在变功率/功率波动的特点,容易造成产气不稳定的问题。因此通过配置加热控制器,在电解水制氢系统处于低功率或者产气量少(具体数值可以根据实际工况需求设定)时,通过加热控制器降低加热器温度,从而满足制氢侧的脱氧(制氧侧的脱氢)需求;在电解水制氢系统处于高功率或产气量多(具体数值可以根据实际工况需求设定)时,通过加热控制器增加电加热器的加热温度,从而能够增加制氢侧的脱氧效果或制氧侧的脱氢效果。需要说明的是,上述加热控制器具体可以采用用户手动操控,也可以是程度自动控制,在此不做更具体的限定。In a further embodiment, the above-mentioned
进一步的实施方案中,载体腔5内设置有支托部件52,支托部件52将载体腔5分隔成自上而下分布的催化剂装载腔5a和排气腔5b,脱气部3为装载于催化剂装载腔5a的脱气催化剂51,气相出口12与排气腔5b连通。通过设置支托部件52将载体腔5分隔成催化剂装载腔5a和排气腔5b,使得排气相关器件的布置更加方便,因为排气腔5b与催化剂装载腔5a不存在相互干扰。需要说明的是,该支托部件52应当具有透气性(比如具有孔道结构的支撑层),以允许脱除杂质气体的纯净气体自催化剂装载腔5a进入排气腔5b。In a further embodiment, a
另外,为了方便对催化剂装载腔5a内脱气催化剂进行填装和卸载,在罐体1的外侧还可以设置有与催化剂装载腔5a连通的催化剂填装口14和催化剂卸料口15;其中,催化剂填装口14靠近催化剂装载腔5a的顶部布置,催化剂卸料口15靠近催化剂装载腔5a的底部布置。通过催化剂卸料口15能够将旧的脱气催化剂卸载,并且靠近催化剂装载腔5a的底部布置,有利于将旧的脱气催化剂卸载干净;通过催化剂填装口14能够填装新的脱气催化剂,并且靠近催化剂装载腔5a的顶部布置,能够方便将催化剂装载腔5a的空间填充满。In addition, in order to facilitate the filling and unloading of the degassed catalyst in the
为了本领域技术人员更好的理解本发明所提供的第二种结构形式的气液分离器,下面以该气液分离器应用于电解水制氢系统的制氢侧为例,并结合图2对气液分离器的具体工作过程进行简要说明:In order for those skilled in the art to better understand the gas-liquid separator of the second structural form provided by the present invention, the application of the gas-liquid separator to the hydrogen production side of the electrolysis water hydrogen production system is taken as an example, and with reference to FIG. 2 Briefly describe the specific working process of the gas-liquid separator:
具体的分离脱氧过程如下:首先粗氢从罐体1的粗气入口11进入罐体1的下端的分离空间,气液两相由于重力差在罐体1的底部空间经过初步分离后,夹带微量水分的气体在气液分离部2(比如丝网除沫器)中使气水两相得到进一步的分离,分离后的所有液相通过重力下降至罐体1的最底部,并从液相出口13中流出罐体1,而上升的气相进入到电加热器40的内筒体4的底部,在电加热器40的加热下,上升的气相温度不断升高,并从内筒体4的通气口41进入催化剂装载腔5a中,气相由上而下流动穿过催化剂装载腔5a内装载的脱氧催化剂,在脱氧催化剂上发生脱氧反应,并从气相出口12离开罐体1。The specific separation and deoxygenation process is as follows: first, crude hydrogen enters the separation space at the lower end of the
在一些具体的实施方案中,参照图3,上述排气腔5b内还可以设置有冷却器6,且罐体的外侧设置有与排气腔5b连通的排液口17,排液口17连通于排气腔5b的底部布置,且气相出口12在排气腔5b上的布置位置高于排液口17。通过在排气腔5b内布置冷却器6,能够将脱气后的气水混合物经冷却器6冷却使气相中的水分冷却析出,析出的水分由于重力作用流至排气腔5b的底部,最终由排液口17排走,通过设计冷却器6,使得气液分离器具有了冷却功能,同时也使得排出的气体更加纯净。需要说明的是,该冷却器,具体可以采用盘管、列管等形式的换热结构,使脱气后的气相充分冷却,并让其中的水分析出分离。具体地,该冷却器6一般具有伸出至罐体1外侧的冷却液进口61和冷却器出口62,并且优选将冷却液进口61和冷却器出口62的排布方式设计成自下而上的方式,这样更加利于充分换热冷却。In some specific embodiments, referring to FIG. 3 , a cooler 6 may also be provided in the above-mentioned
进一步的实施方案中,上述冷却器6还可以配备有流量调节器,通过该流量调节器可以调节冷却器6的冷却量。具体地,可以根据电解水制氢系统的制氢(制氧)功率,调节冷却器6的流量,从而提高冷却和气液分离的效果。比如,当电解水制氢系统处于低功率/产气低(具体数值可以根据实际需求设定)时,可以通过流量调节器减少冷却量;当电解水制氢系统处于高功率/产气高(具体数值可以根据实际需求设定)时,可以通过流量调节器增大冷却量。In a further embodiment, the above cooler 6 may also be equipped with a flow regulator, through which the cooling amount of the cooler 6 can be adjusted. Specifically, the flow rate of the cooler 6 can be adjusted according to the hydrogen production (oxygen production) power of the electrolyzed water hydrogen production system, thereby improving the cooling and gas-liquid separation effects. For example, when the electrolytic water hydrogen production system is at low power/low gas production (the specific value can be set according to actual needs), the cooling amount can be reduced through the flow regulator; when the electrolytic water hydrogen production system is at high power/high gas production ( When the specific value can be set according to the actual demand), the cooling capacity can be increased through the flow regulator.
一般来说,脱气部3进行脱气反应(催化剂脱氧反应或催化剂脱氢反应),会产生较高的热量,温度相对较高,而气液分离部2的工作环境温度相对较低,因此,为了提升整个罐体的稳定性,避免硬连接可能引起罐体损坏的问题,参照图4,气液分离部2所对应的罐段(也即用于围成气液分离部2的罐体1的罐壁)与脱氧部3所对应的罐段(也即用于围成脱氧部3的罐体1的罐壁)之间可以通过膨胀节8连接。其中,粗气入口11和气相出口12可采用自上而下的布置方式,也可以采用自下而上的布置方式,在此不做具体的限定。通过设计膨胀节8,能够吸收气液分离部2所对应的罐段与脱氧部3所对应的罐段由于热胀冷缩产生的位移量,避免了硬连接导致罐体容易损坏的问题,提升了整个罐体的稳定性。Generally speaking, the degassing reaction (catalyst deoxygenation reaction or catalyst dehydrogenation reaction) in the
需要说明的是,当罐体1内具有竖向布置的内筒体4,内筒体4至少部分位于罐体1的内部且位于气液分离部2上方,内筒体4与罐体1的内壁围设形成有载体腔5,载体腔5内设置有支托部件52,支托部件52将载体腔5分隔成自上而下分布的催化剂装载腔5a和排气腔5b,脱气部3为装载于催化剂装载腔5a的脱气催化剂51,气相出口12与排气腔5b连通,排气腔5b内还可以设置有冷却器6,且罐体的外侧设置有与排气腔5b连通的排液口17,排液口17连通于排气腔5b的底部布置,且气相出口12在排气腔5b上的布置位置高于排液口17时,上述排气腔5b所对应的罐段(也即用于围成排气腔5b的罐体1的罐壁)与催化剂装载腔5a所对应的罐段(也即用于围成催化剂装载腔5a的罐体1的罐壁)之间,及排气腔5b所对应的内筒段(也即用于围成排气腔5b的内筒体18a的筒壁)与催化剂装载腔5a所对应的内筒段(也即用于围成催化剂装载腔5a的内筒体18a的筒壁)之间均优选通过膨胀节连接。因为催化剂装载腔5a在进行脱气反应(比如脱氧反应)时催化剂装载腔5a的温度会相对较高,而排气腔5b内由于布置冷却器6,排气腔5b的温度相对较低,通过设计膨胀节,能够吸收排气腔5b的内外腔壁与催化剂装载腔5a的内外腔壁之间由于热胀冷缩产生的位移量,避免了硬连接导致罐体容易损坏的问题,提升了整个罐体的稳定性。It should be noted that when the
此外,为了避免排液口17排液过程中,外界环境中的气体进入罐体内部,排气腔5b的底部与排液口17之间通过弯管16连接。In addition, in order to prevent the gas in the external environment from entering the inside of the tank during the liquid discharge process of the
为了本领域技术人员更好的理解本发明所提供的第三种结构形式的气液分离器,下面以该气液分离器安装至电解水制氢系统的制氢侧为例,结合图3对气液分离器的具体工作过程进行说明:In order for those skilled in the art to better understand the gas-liquid separator of the third structural form provided by the present invention, the following takes the installation of the gas-liquid separator on the hydrogen production side of the electrolyzed water hydrogen production system as an example. The specific working process of the gas-liquid separator is explained:
粗氢原料从罐体的粗气入口11进入罐体1下端的分离空间,气液两相由于重力差异在罐体1的底部空间经过初步分离后,夹带微量水分的气体在气液分离部2(比如丝网除沫器)中使气水两相得到进一步的分离,分离后的所有液相通过重力下降至罐体1的最底部,并从液相出口13中流出罐体1,而上升的气相进入到电加热器40的内筒体4的底部,在电加热器40的加热下,上升的气相温度不断升高,当达到预定温度以后,高温气体从内筒体4的气相引出口41离开进入载体腔5的催化剂装载腔5a中,气相由上而下流动不断穿过催化剂装载腔5a内的脱氧催化剂,在脱氧催化剂上发生脱氧反应,经过脱氧后会产生少量的分水,此时脱氧后的气水混合物经过冷却器6使气相中的水分冷却析出,析出的水分由于重力作用进入到弯管16(比如U型弯),并最终由排水口17离开罐体1,从而实现脱氧后的气水分离作用,而经过冷却后的气相从气相出口12离开设备。The crude hydrogen raw material enters the separation space at the lower end of the
进一步的实施方案中,参照图3所示,为了避免电加热器40的热量损耗,罐体1的外侧还可以设置有保温层18。其中,该保温层18的具体结构形式可以包括套设于罐体1的外侧的外筒体18a,外筒体18a与罐体1的外壁之间的围设空间内填充有保温材料18b。其中,外筒体18a具体可以是包裹在罐体1的外部的铁皮桶,并且在其之间填充有保温材料18b以减少电加热器产生的热量损失。需要说明的是,当排气腔5b所对应的罐段(也即用于围成排气腔5b的罐体1的罐壁)与催化剂装载腔5a所对应的罐段(也即用于围成催化剂装载腔5a的罐体1的罐壁)之间,及排气腔5b所对应的内筒段(也即用于围成排气腔5b的内筒体18a的筒壁)与催化剂装载腔5a所对应的内筒段(也即用于围成催化剂装载腔5a的内筒体18a的筒壁)之间均通过膨胀节连接时,对应的保温层18的相对位置也应具有膨胀节,以保证整个罐体与保温层稳定连接。In a further embodiment, as shown in FIG. 3 , in order to avoid heat loss of the
另外在电加热器40启动加热时,为了监控气体的加热温度以及控制电加热器的加热功率,可以在对应载体腔5的罐体壁上设置伸入至催化剂装载腔5a的测温探头19,并且一般优选设计成上下两个,这样更加准确检测气体温度变化。实际应用过程中,具体可以设置金属套管以便测温探头19的安装。In addition, when the
另外,本发明还提供了一种电解水制氢系统,包括气液分离器,该气液分离器为上述任一方案所描述的气液分离器。由于上述气液分离器具有上述技术效果,因此具有该气液分离器的电解水制氢系统也应具有相应的技术效果。In addition, the present invention also provides an electrolysis water hydrogen production system, including a gas-liquid separator, and the gas-liquid separator is the gas-liquid separator described in any of the above solutions. Since the above-mentioned gas-liquid separator has the above-mentioned technical effects, the electrolysis water hydrogen production system having the above-mentioned gas-liquid separator should also have corresponding technical effects.
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。It should be noted that the various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. For the same and similar parts among the various embodiments, refer to each other Can.
应当理解,本申请中如若使用了“系统”、“装置”、“单元”和/或“模块”,仅是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换该词语。It should be understood that if "system", "device", "unit" and/or "module" are used in this application, it is only one way to distinguish different components, elements, parts, parts or assemblies at different levels. However, other words may be replaced by other expressions if they serve the same purpose.
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。As shown in this application and in the claims, unless the context clearly dictates otherwise, the words "a", "an", "an" and/or "the" are not intended to be specific in the singular and may include the plural. Generally speaking, the terms "comprising" and "comprising" only imply that the clearly identified steps and elements are included, and these steps and elements do not constitute an exclusive list, and the method or apparatus may also include other steps or elements. The inclusion of an element by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article of manufacture or apparatus that includes the element.
其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。Wherein, in the description of the embodiments of the present application, unless otherwise stated, “/” means or means, for example, A/B can mean A or B; “and/or” in this document is only a description of the associated object The association relationship of , indicates that there can be three kinds of relationships, for example, A and/or B, can indicate that A exists alone, A and B exist at the same time, and B exists alone. In addition, in the description of the embodiments of the present application, "plurality" refers to two or more than two.
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。Hereinafter, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature.
本申请中如若使用了流程图,则该流程图是用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。If a flow chart is used in the present application, the flow chart is used to describe the operations performed by the system according to the embodiment of the present application. It should be understood that the preceding or following operations are not necessarily performed in the exact order. Instead, the various steps can be processed in reverse order or simultaneously. At the same time, other actions can be added to these procedures, or a step or steps can be removed from these procedures.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The principles and implementations of the present invention are described herein by using specific examples, and the descriptions of the above embodiments are only used to help understand the core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210640014.4A CN114832510B (en) | 2022-06-08 | 2022-06-08 | A gas-liquid separator and water electrolysis hydrogen production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210640014.4A CN114832510B (en) | 2022-06-08 | 2022-06-08 | A gas-liquid separator and water electrolysis hydrogen production system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114832510A true CN114832510A (en) | 2022-08-02 |
CN114832510B CN114832510B (en) | 2024-05-14 |
Family
ID=82574495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210640014.4A Active CN114832510B (en) | 2022-06-08 | 2022-06-08 | A gas-liquid separator and water electrolysis hydrogen production system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114832510B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114000171A (en) * | 2021-10-21 | 2022-02-01 | 中国华能集团清洁能源技术研究院有限公司 | A kind of electrolytic hydrogen production system and method with hydrogen-oxygen recombination reactor |
WO2024250842A1 (en) * | 2023-06-07 | 2024-12-12 | 阳光氢能科技有限公司 | Hydrogen production system |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269305A (en) * | 1992-03-24 | 1993-10-19 | Kurita Water Ind Ltd | Deoxidation method and device |
JP2003267725A (en) * | 2002-03-15 | 2003-09-25 | Hitachi Zosen Corp | Method and apparatus for producing ammonia and flue gas denitrification method using ammonia produced thereby |
JP2005335962A (en) * | 2004-05-24 | 2005-12-08 | Matsushita Electric Works Ltd | Hydrogen production apparatus |
JP2006170567A (en) * | 2004-12-17 | 2006-06-29 | Jipangu Energy:Kk | Clean steam producing method and producing system |
CN1903703A (en) * | 2006-08-04 | 2007-01-31 | 四川亚联高科技有限责任公司 | Technological method of purifying hydrogen of hydrogen enriched gas source |
CN103834433A (en) * | 2012-11-21 | 2014-06-04 | 中国石油化工集团公司 | Upstroke reaction separator and hydrogenation method |
CN204494430U (en) * | 2015-03-16 | 2015-07-22 | 天津滨海新区大港汇丰汽车装饰有限公司 | A kind of vulcanization of rubber smoke catalytic incinerator |
CN105001930A (en) * | 2015-08-12 | 2015-10-28 | 苏州苏净保护气氛有限公司 | Methane purification deoxidization system and methane purification deoxidization method |
WO2018025282A1 (en) * | 2016-08-01 | 2018-02-08 | Luigi Patron | Hydroconversion system and method for heavy oils using a dispersed catalyst reactor in a single reaction stage with recycling, with double extraction of reaction liquid from the reactor |
CN110540173A (en) * | 2018-05-28 | 2019-12-06 | 上海米素环保科技有限公司 | method and device suitable for purifying reformed hydrogen |
CN111717891A (en) * | 2020-06-23 | 2020-09-29 | 广东鑫国源能源有限公司 | Novel hydrogen deoxygenator |
WO2020241059A1 (en) * | 2019-05-24 | 2020-12-03 | 株式会社辰巳菱機 | Dehydrogenation system and catalyst-holding device |
CN212492844U (en) * | 2020-05-06 | 2021-02-09 | 杭州快凯高效节能新技术有限公司 | Multi-section heat exchanger de-hydrocarbon comprehensive tower |
CN112961712A (en) * | 2021-02-08 | 2021-06-15 | 赛鼎工程有限公司 | System and method for preparing LNG (liquefied Natural gas) and hydrogen by deeply purifying coke oven gas |
CN113479905A (en) * | 2021-06-29 | 2021-10-08 | 福州大学化肥催化剂国家工程研究中心 | Self-deoxidization ammonia synthesis tower and renewable energy source ammonia synthesis system |
CN114000171A (en) * | 2021-10-21 | 2022-02-01 | 中国华能集团清洁能源技术研究院有限公司 | A kind of electrolytic hydrogen production system and method with hydrogen-oxygen recombination reactor |
CN114180521A (en) * | 2022-01-04 | 2022-03-15 | 西安交通大学 | Biomass hydrogen production system and method |
CN114345123A (en) * | 2022-01-10 | 2022-04-15 | 中国华能集团清洁能源技术研究院有限公司 | Hydrogen deoxidation and drying integrated tower and control method |
CN114534418A (en) * | 2022-02-18 | 2022-05-27 | 阳光氢能科技有限公司 | Gas-liquid separator and hydrogen production system |
CN114592199A (en) * | 2022-03-03 | 2022-06-07 | 上海丹通新材料有限公司 | A system for preparing high-purity hydrogen by pressure swing adsorption |
-
2022
- 2022-06-08 CN CN202210640014.4A patent/CN114832510B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269305A (en) * | 1992-03-24 | 1993-10-19 | Kurita Water Ind Ltd | Deoxidation method and device |
JP2003267725A (en) * | 2002-03-15 | 2003-09-25 | Hitachi Zosen Corp | Method and apparatus for producing ammonia and flue gas denitrification method using ammonia produced thereby |
JP2005335962A (en) * | 2004-05-24 | 2005-12-08 | Matsushita Electric Works Ltd | Hydrogen production apparatus |
JP2006170567A (en) * | 2004-12-17 | 2006-06-29 | Jipangu Energy:Kk | Clean steam producing method and producing system |
CN1903703A (en) * | 2006-08-04 | 2007-01-31 | 四川亚联高科技有限责任公司 | Technological method of purifying hydrogen of hydrogen enriched gas source |
CN103834433A (en) * | 2012-11-21 | 2014-06-04 | 中国石油化工集团公司 | Upstroke reaction separator and hydrogenation method |
CN204494430U (en) * | 2015-03-16 | 2015-07-22 | 天津滨海新区大港汇丰汽车装饰有限公司 | A kind of vulcanization of rubber smoke catalytic incinerator |
CN105001930A (en) * | 2015-08-12 | 2015-10-28 | 苏州苏净保护气氛有限公司 | Methane purification deoxidization system and methane purification deoxidization method |
WO2018025282A1 (en) * | 2016-08-01 | 2018-02-08 | Luigi Patron | Hydroconversion system and method for heavy oils using a dispersed catalyst reactor in a single reaction stage with recycling, with double extraction of reaction liquid from the reactor |
CN110540173A (en) * | 2018-05-28 | 2019-12-06 | 上海米素环保科技有限公司 | method and device suitable for purifying reformed hydrogen |
WO2020241059A1 (en) * | 2019-05-24 | 2020-12-03 | 株式会社辰巳菱機 | Dehydrogenation system and catalyst-holding device |
CN212492844U (en) * | 2020-05-06 | 2021-02-09 | 杭州快凯高效节能新技术有限公司 | Multi-section heat exchanger de-hydrocarbon comprehensive tower |
CN111717891A (en) * | 2020-06-23 | 2020-09-29 | 广东鑫国源能源有限公司 | Novel hydrogen deoxygenator |
CN112961712A (en) * | 2021-02-08 | 2021-06-15 | 赛鼎工程有限公司 | System and method for preparing LNG (liquefied Natural gas) and hydrogen by deeply purifying coke oven gas |
CN113479905A (en) * | 2021-06-29 | 2021-10-08 | 福州大学化肥催化剂国家工程研究中心 | Self-deoxidization ammonia synthesis tower and renewable energy source ammonia synthesis system |
CN114000171A (en) * | 2021-10-21 | 2022-02-01 | 中国华能集团清洁能源技术研究院有限公司 | A kind of electrolytic hydrogen production system and method with hydrogen-oxygen recombination reactor |
CN114180521A (en) * | 2022-01-04 | 2022-03-15 | 西安交通大学 | Biomass hydrogen production system and method |
CN114345123A (en) * | 2022-01-10 | 2022-04-15 | 中国华能集团清洁能源技术研究院有限公司 | Hydrogen deoxidation and drying integrated tower and control method |
CN114534418A (en) * | 2022-02-18 | 2022-05-27 | 阳光氢能科技有限公司 | Gas-liquid separator and hydrogen production system |
CN114592199A (en) * | 2022-03-03 | 2022-06-07 | 上海丹通新材料有限公司 | A system for preparing high-purity hydrogen by pressure swing adsorption |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114000171A (en) * | 2021-10-21 | 2022-02-01 | 中国华能集团清洁能源技术研究院有限公司 | A kind of electrolytic hydrogen production system and method with hydrogen-oxygen recombination reactor |
WO2024250842A1 (en) * | 2023-06-07 | 2024-12-12 | 阳光氢能科技有限公司 | Hydrogen production system |
Also Published As
Publication number | Publication date |
---|---|
CN114832510B (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114832510A (en) | Gas-liquid separator and water electrolysis hydrogen production system | |
CN101959585B (en) | Method and reactor for preparation of methanol | |
JP5648575B2 (en) | Polycrystalline silicon production equipment | |
CN111334672B (en) | Energy-saving magnesium purification device and purification process thereof | |
CN203687669U (en) | Acid gas condenser | |
CN116315268A (en) | Immersion cooled energy storage battery cabinet | |
CN218465958U (en) | Alkaline water electrolysis hydrogen production waste heat utilization equipment | |
CN218478535U (en) | Hydrogen purification tower and water electrolysis hydrogen production system | |
CN213067182U (en) | Gas-liquid heat exchanger in methanol hydrogen production equipment | |
CN107670592B (en) | Shell-and-tube reactor and methanol synthesis process | |
CN212769860U (en) | Mixed gas separation device | |
CN205925652U (en) | DMO reactor | |
CN221131682U (en) | Reaction adsorption tower and desorption system having the same | |
CN103216809B (en) | Circulating fluidized bed boiler with at least one centralized downcomer arranged in hearth | |
CN206444581U (en) | A kind of methyl alcohol synthetic reactor | |
CN109225072B (en) | A kind of synthesis reaction system and synthesis reaction method | |
CN222034670U (en) | Sectional deoxidizing reactor | |
CN107570088B (en) | Catalyst unloading system and method for shell-and-tube reactor | |
CN217745958U (en) | Boiler sample water recovery equipment | |
CN222411889U (en) | Hydrogen separation device | |
CN215538441U (en) | Reboiler | |
CN214701378U (en) | Water cooling device in horizontal tank of dewaxing equipment | |
JP3618166B2 (en) | High purity hydrogen oxygen generator | |
CN220126178U (en) | Cold hydrogenation fluidized bed reactor and cold hydrogenation fluidized bed reaction system | |
CN221897637U (en) | Liquid chlorine unloading system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |