CN114826075A - Double-time-scale parallel double-ring control method for high-speed permanent magnet motor - Google Patents
Double-time-scale parallel double-ring control method for high-speed permanent magnet motor Download PDFInfo
- Publication number
- CN114826075A CN114826075A CN202210549465.7A CN202210549465A CN114826075A CN 114826075 A CN114826075 A CN 114826075A CN 202210549465 A CN202210549465 A CN 202210549465A CN 114826075 A CN114826075 A CN 114826075A
- Authority
- CN
- China
- Prior art keywords
- time
- slow
- model
- permanent magnet
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 7
- 238000004804 winding Methods 0.000 claims description 62
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000013178 mathematical model Methods 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims description 7
- 230000005624 perturbation theories Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 7
- 244000145845 chattering Species 0.000 abstract description 3
- 230000003993 interaction Effects 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 238000013461 design Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 238000011217 control strategy Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0007—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0017—Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本发明公开了一种针对高速永磁电机的双时间尺度并联式双环控制方法,考虑高速电机在运行过程中的转速跟踪问题,采集高速永磁电机的状态参数,针对高速永磁电机建立非线性奇异摄动模型,针对非线性奇异摄动模型,对高速永磁电机的d轴、q轴电流和转速进行解耦,获得快时间尺度的线性电流子模型和慢时间尺度的非线性转速子模型。基于线性的电流快子模型设计滑模控制律,提高电流环的响应速度和鲁棒性,基于非线性的转速慢子模型设计H∞鲁棒控制律,消除抖振现象,提高了转速环抗干扰能力。本发明采用双时间尺度并联式双环控制方法,有效地降低了内、外环的耦合度和交互度。
The invention discloses a dual-time-scale parallel double-loop control method for a high-speed permanent magnet motor. Considering the speed tracking problem of the high-speed motor in the running process, the state parameters of the high-speed permanent magnet motor are collected, and a nonlinear system is established for the high-speed permanent magnet motor. The singular perturbation model, for the nonlinear singular perturbation model, decouples the d-axis, q-axis current and rotational speed of the high-speed permanent magnet motor, and obtains a linear current sub-model on a fast time scale and a nonlinear rotational speed sub-model on a slow time scale. . The sliding mode control law is designed based on the linear current tachyon model to improve the response speed and robustness of the current loop, and the H ∞ robust control law is designed based on the nonlinear slow speed sub-model to eliminate chattering and improve the speed loop resistance Interference ability. The present invention adopts a double-time-scale parallel double-loop control method, which effectively reduces the coupling degree and interaction degree of the inner and outer loops.
Description
技术领域technical field
本发明涉及电力传动技术领域,尤其涉及一种针对高速永磁电机的双时间尺度并联式双环控制方法。The invention relates to the technical field of electric power transmission, in particular to a dual-time-scale parallel dual-loop control method for a high-speed permanent magnet motor.
背景技术Background technique
目前电机领域主流的控制方法多为串联结构的双环控制策略,电流环的输入为转速环的输出,两个子控制器为串联关系。串级双闭环控制策略缓解了控制指标相互矛盾、相互冲突的情况,提高了控制品质和控制精度。特别地,如果令内环的响应速度显著高于外环并且内环的控制器增益大于外环增益,那么可以有效地避免内、外环的共振。但是,串级控制策略也有不足:它要求内外环变量可测或者可观,增加额外辅助测量单元或计算复杂度,使得系统模型的复杂度和控制器设计成本大幅提高。而且,串级双闭环控制的内、外环具有交互性,内环的电流动态特性会极大地影响外环转速的跟踪性能,这导致控制性能良好的串联型内、外环控制器设计过程繁琐、困难。At present, the mainstream control methods in the motor field are mostly double-loop control strategies with a series structure. The input of the current loop is the output of the speed loop, and the two sub-controllers are connected in series. The cascade double closed-loop control strategy alleviates the contradictory and conflicting control indicators, and improves the control quality and control accuracy. In particular, if the response speed of the inner loop is significantly higher than that of the outer loop and the controller gain of the inner loop is greater than the gain of the outer loop, the resonance of the inner and outer loops can be effectively avoided. However, the cascade control strategy also has shortcomings: it requires measurable or appreciable internal and external loop variables, adding additional auxiliary measurement units or computational complexity, which greatly increases the complexity of the system model and the design cost of the controller. Moreover, the inner and outer loops of the cascade double closed-loop control are interactive, and the current dynamic characteristics of the inner loop will greatly affect the tracking performance of the outer loop speed, which leads to the complicated design process of the series inner and outer loop controllers with good control performance. ,difficulty.
此外,在高速电机驱动系统中电流环的动态变化速率为毫秒级,转速环的动态变化速率为秒级,两者的时间尺度差距很大。更具体的说,高速永磁同步电机的暂态过程中电流响应速度快,产生极大电流冲击,威胁系统可靠性,而转速提升缓慢。由于机电系统动态性能的固有特性,电气时间常数远远小于机械时间常数,尤其对于高速电机,电感参数很小(大约在10-4数量级),状态变量之间存在时间尺度差异,系统具有双时间尺度(Two TimeScale,TTS)特性。然而,在传统的电机串联双环控制算法中,对电磁状态、机械状态的采样、观测、控制信号计算以及参数修正等均采用相同的执行周期。对于双时间尺度系统的控制问题,若时间尺度以机械动态的慢尺度为基准,则很难对快时间尺度的电磁动态做出恰当、及时的响应;若以电磁动态的快时间尺度为基准,则慢时间尺度动态的差分几乎为零,导致有效数字损失严重,进而产生巨大的误差;而若以中间时间尺度为基准,则由于快慢时间尺度差距显著,快、慢动态的处理将同时遭遇类似的病态特性,即刚性特征。单一时间尺度的控制策略应用于双时间尺度的高速电机系统时,必然导致系统有效信息的丢失或数字化控制过程中的数值病态问题。In addition, in the high-speed motor drive system, the dynamic change rate of the current loop is on the order of milliseconds, and the dynamic change rate of the rotational speed loop is on the order of seconds. More specifically, in the transient process of the high-speed permanent magnet synchronous motor, the current response speed is fast, resulting in a huge current shock, threatening the reliability of the system, and the speed increase is slow. Due to the inherent characteristics of the dynamic performance of the electromechanical system, the electrical time constant is much smaller than the mechanical time constant, especially for high-speed motors, the inductance parameter is very small (about 10-4 order of magnitude), there are time scale differences between the state variables, and the system has a dual time Scale (Two TimeScale, TTS) characteristics. However, in the traditional motor series double-loop control algorithm, the same execution cycle is used for the sampling, observation, control signal calculation and parameter correction of the electromagnetic state and mechanical state. For the control problem of the dual time scale system, if the time scale is based on the slow scale of mechanical dynamics, it is difficult to make an appropriate and timely response to the electromagnetic dynamics on the fast time scale; if the time scale is based on the fast time scale of electromagnetic dynamics, Then the difference of the slow time scale dynamics is almost zero, resulting in a serious loss of significant digits, and then a huge error; and if the intermediate time scale is used as the benchmark, due to the significant difference between the fast and slow time scales, the processing of fast and slow dynamics will encounter similar problems at the same time. The ill-conditioned characteristic of , that is, the rigid characteristic. When a single time scale control strategy is applied to a dual time scale high-speed motor system, it will inevitably lead to the loss of effective information of the system or the numerical ill-conditioned problem in the process of digital control.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的问题,本发明提供了一种针对高速永磁电机的双时间尺度并联式双环控制方法,提出电机系统的并联型双环控制策略,突破已有的高速永磁同步电机的控制瓶颈,实现电流环和转速环的完全解耦,提高高速永磁电机控制的精确度和鲁棒性。In view of the problems existing in the prior art, the present invention provides a dual-time-scale parallel-type dual-loop control method for high-speed permanent magnet motors, proposes a parallel-type dual-loop control strategy for the motor system, and breaks through the existing high-speed permanent-magnet synchronous motors. Control the bottleneck, realize the complete decoupling of the current loop and the speed loop, and improve the accuracy and robustness of the high-speed permanent magnet motor control.
为实现上述技术目的,本发明采用如下技术方案:一种针对高速永磁电机的双时间尺度并联式双环控制方法,具体包括如下步骤:In order to achieve the above-mentioned technical purpose, the present invention adopts the following technical scheme: a dual-time-scale parallel dual-loop control method for a high-speed permanent magnet motor, which specifically includes the following steps:
步骤一:采集高速永磁电机的状态参数,并根据状态参数中d轴绕组等效电感和q轴绕组等效电感的数量级确定奇异摄动参数ε,建立奇异摄动非线性数学模型;Step 1: Collect the state parameters of the high-speed permanent magnet motor, and determine the singular perturbation parameter ε according to the magnitude of the equivalent inductance of the d-axis winding and the equivalent inductance of the q-axis winding in the state parameters, and establish a singular perturbation nonlinear mathematical model;
步骤二:将奇异摄动非线性数学模型利用奇异摄动理论进行降阶、解耦,获得非线性慢时间尺度子模型,并将非线性慢时间尺度子模型线性化,得到n个线性慢时不变子模型;Step 2: Use the singular perturbation theory to reduce the order and decouple the singular perturbation nonlinear mathematical model to obtain a nonlinear slow time scale sub-model, and linearize the nonlinear slow time scale sub-model to obtain n linear slow time scales. Invariant submodel;
步骤三:针对n个线性慢时不变子模型,结合噪声对状态影响程度阈值γ和每个操作点,得到H∞鲁棒控制律,计算慢时间尺度控制输入us(tk);Step 3: For n linear slow-time-invariant sub-models, combined with the threshold γ of the influence degree of noise on the state and each operating point, the H ∞ robust control law is obtained, and the slow time-scale control input u s (t k ) is calculated;
步骤四:计算快时间尺度参数τ,将奇异摄动非线性数学模型进行时间尺度更改,得到快时间尺度子模型,选择对角矩阵M求解第一正定矩阵O和第二正定矩阵Q,计算出快时间尺度子模型的控制输入uf(τ);Step 4: Calculate the fast time scale parameter τ, change the time scale of the singularly perturbed nonlinear mathematical model to obtain a fast time scale sub-model, select the diagonal matrix M to solve the first positive definite matrix O and the second positive definite matrix Q, and calculate control input u f (τ) of the fast time scale submodel;
步骤五:将计算出的慢时间尺度控制输入u(tk)和快时间尺度子模型的控制输入uf(τ)输入超高速永磁电机,进行双时间尺度并联式双环控制。Step 5: Input the calculated control input u(t k ) of the slow time scale and the control input u f (τ) of the fast time scale sub-model into the ultra-high-speed permanent magnet motor to perform dual-time-scale parallel dual-loop control.
进一步地,采集的高速永磁电机的状态参数包括:d轴绕组等效电感、q轴绕组等效电感、绕组等效电阻、永磁体磁链、电机的极对数、转动惯量、负载转矩。Further, the collected state parameters of the high-speed permanent magnet motor include: the equivalent inductance of the d-axis winding, the equivalent inductance of the q-axis winding, the equivalent resistance of the winding, the permanent magnet flux linkage, the number of pole pairs of the motor, the moment of inertia, and the load torque. .
进一步地,所述奇异摄动非线性数学模型为:Further, the singular perturbation nonlinear mathematical model is:
其中,id为d轴绕组电流,为d轴绕组电流导数,r为绕组等效电阻,ωe为角速度,Lq为q轴绕组等效电感,ud为d轴绕组电压,iq为q轴绕组电流,为q轴绕组电流导数,Ld为d轴绕线等效电感,uq为q轴绕组电压,为角速度导数,Pn为电机的极对数,J为转动惯量,ψf为永磁体磁链,Tl为负载转矩。where id is the d -axis winding current, is the d-axis winding current derivative, r is the winding equivalent resistance, ω e is the angular velocity, L q is the q-axis winding equivalent inductance, ud is the d-axis winding voltage, i q is the q-axis winding current, is the q-axis winding current derivative, L d is the equivalent inductance of the d-axis winding, u q is the q-axis winding voltage, is the angular velocity derivative, P n is the number of pole pairs of the motor, J is the moment of inertia, ψ f is the permanent magnet flux linkage, and T l is the load torque.
进一步地,所述非线性慢时间尺度子模型为:Further, the nonlinear slow time scale sub-model is:
其中,为角速度的慢分量,为角速度慢分量的导数,ud为d轴绕组电压,uq为q轴绕组电压,Tl为负载转矩,Pn为电机的极对数,J为转动惯量, in, is the slow component of the angular velocity, is the derivative of the slow component of the angular velocity, ud is the d -axis winding voltage, u q is the q-axis winding voltage, T l is the load torque, P n is the number of pole pairs of the motor, J is the moment of inertia,
进一步地,步骤二中将非线性慢时间尺度子模型线性化的过程具体为:将高速永磁电机的角速度顺序排列,进行角速度区间划分,划分处即为操作点,共有n个操作点,并在角速度区间划分处将非线性慢时间尺度子模型线性化,获得n个线性慢时不变子模型,每个线性慢时不变子模型为:Further, the process of linearizing the nonlinear slow time-scale sub-model in
其中,θj为操作点索引,δωe为当前角速度的慢分量测量值与对应角速度区间的操作点的误差,us(θj)为在θj处的慢子控制输入。Among them, θ j is the operating point index, δω e is the error between the measured value of the slow component of the current angular velocity and the operating point in the corresponding angular velocity interval, u s (θ j ) is the bradyron control input at θ j .
进一步地,步骤三包括如下子步骤:Further,
步骤3.1、噪声对状态影响程度阈值γ>0,如果存在正定矩阵P>0满足如下不等式条件求出H∞鲁棒控制律K(θj);Step 3.1. The threshold of the influence degree of noise on the state is γ > 0. If there is a positive definite matrix P > 0, the following inequality conditions are satisfied Find the H ∞ robust control law K(θ j );
步骤3.2、测量tk时刻的角速度ωe(tk),并根据角速度的划分区间计算第一权重系数α1(tk)和第二权重系数α2(tk):Step 3.2. Measure the angular velocity ω e (t k ) at time t k , and calculate the first weighting coefficient α 1 (t k ) and the second weighting coefficient α 2 (t k ) according to the divided interval of the angular velocity:
ωe(tk)=α1(tk)θm+α2(tk)θm+1 ω e (t k )=α 1 (t k )θ m +α 2 (t k )θ m+1
α1(tk)+α2(tk)=1,α 1 (t k )+α 2 (t k )=1,
其中,θm为第m个操作点,θm+1为第m+1个操作点,ωe(tk)∈[θm,θm+1];Among them, θ m is the mth operation point, θ m+1 is the m+1th operation point, ω e (t k )∈[θ m , θ m+1 ];
步骤3.3、根据第一权重系数α1(tk)和第二权重系数α2(tk),将tk时刻H∞鲁棒控制律K(θ(tk))描述成:K(θ(tk))=α1(tk)Km(θm)+α2(tk)Km+1(θm+1),再计算慢时间尺度控制输入us(tk)=K(θ(tk))δωe(tk)。Step 3.3. According to the first weight coefficient α 1 (t k ) and the second weight coefficient α 2 (t k ), describe the H ∞ robust control law K(θ(t k )) at time t k as: K(θ(t k )) (t k ))=α 1 (t k )K m (θ m )+α 2 (t k )K m+1 (θ m+1 ), and then calculate the slow time scale control input u s (t k )= K(θ(t k ))δω e (t k ).
进一步地,步骤四包括如下子步骤:Further,
步骤4.1、计算快时间尺度参数将奇异摄动非线性数学模型进行时间尺度更改,得到快时间尺度子模型:Step 4.1. Calculate fast time scale parameters Change the time scale of the singularly perturbed nonlinear mathematical model to get the fast time scale submodel:
其中,为d轴电流变量的快分量,为q轴电流变量的快分量,为d轴电压变量的快分量,为q轴电压变量的快分量,t为时间变量,t0初始时刻,为慢变量ωe的值。in, is the fast component of the d-axis current variable, is the fast component of the q-axis current variable, is the fast component of the d-axis voltage variable, is the fast component of the q -axis voltage variable, t is the time variable, and t is the initial moment, is the value of the slow variable ω e .
步骤4.2、选择对角矩阵M=diag{λ1λ2}>0求解第一正定矩阵O和第二正定矩阵Q,计算出快时间尺度子模型的控制输入其中,为快时间尺度子模型的控制输入中忽略不确定输入的标称输入,s(τ)为滑模函数,||s(τ)||2为滑模函数的二范数,h小正数。Step 4.2. Select the diagonal matrix M=diag{λ 1 λ 2 }>0 to solve the first positive definite matrix O and the second positive definite matrix Q, and calculate the control input of the fast time scale sub-model in, is the nominal input that ignores the uncertain input in the control input of the fast time scale sub-model, s(τ) is the sliding mode function, ||s(τ)|| 2 is the second norm of the sliding mode function, h is a small positive number .
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)传统的串联式双环控制策略,外环的控制效果极大地影响了内环的性能,控制器设计复杂,参数调整过程繁琐;而本发明双时间尺度并联式双环控制方法充分考虑高速永磁电动机的双时间尺度特征,采用奇异摄动方法,提出了并联式双环控制方法,将电磁动态部分和机械动态部分完全解耦,降低了模型阶次,削弱了内外环的交互度;(1) In the traditional series double-loop control strategy, the control effect of the outer loop greatly affects the performance of the inner loop, the controller design is complex, and the parameter adjustment process is cumbersome; while the dual-time-scale parallel double-loop control method of the present invention fully considers high-speed permanent For the dual time scale characteristics of the magnetic motor, the singular perturbation method is used, and a parallel dual loop control method is proposed, which completely decouples the electromagnetic dynamic part and the mechanical dynamic part, reduces the model order, and weakens the interaction between the inner and outer loops;
(2)本发明在快时间尺度子模型中设计滑模函数,以满足快时间尺度子模型中快速响应的需求,在线性慢时不变子模型中设计H∞鲁棒控制律,以消除滑模控制带来的“抖振”副作用,提高高速永磁电机的抗干扰能力,保证运行的安全性能;(2) The present invention designs the sliding mode function in the fast time scale sub-model to meet the requirement of fast response in the fast time scale sub-model, and designs the H ∞ robust control law in the linear slow time-invariant sub-model to eliminate the sliding mode The "chattering" side effect brought by the mode control improves the anti-interference ability of the high-speed permanent magnet motor and ensures the safe performance of the operation;
(3)本发明双时间尺度并联式双环控制方法不限于高速永磁电机的控制问题,可推广应用于其他的双时间尺度特性明显的机电一体的系统。(3) The dual-time-scale parallel dual-loop control method of the present invention is not limited to the control problem of high-speed permanent magnet motors, and can be applied to other electromechanical systems with obvious dual-time-scale characteristics.
附图说明Description of drawings
图1为本发明针对高速永磁电机的双时间尺度并联式双环控制方法流程图;Fig. 1 is the flow chart of the dual-time-scale parallel dual-loop control method for high-speed permanent magnet motor of the present invention;
图2为实施例针对高速永磁电机的双时间尺度并联式双环控制方法仿真原理图;Fig. 2 is the simulation schematic diagram of the dual-time-scale parallel dual-loop control method for the high-speed permanent magnet motor according to the embodiment;
图3为实施例中快时间尺度子模型的控制输入效果图,图3中的(a)为d轴绕组快子控制器的输入图,图3中的(b)为q轴绕组快子控制器的输入图;Fig. 3 is the control input effect diagram of the fast time scale sub-model in the embodiment, (a) in Fig. 3 is the input diagram of the d-axis winding tachyon controller, and (b) in Fig. 3 is the q-axis winding tachyon control the input graph of the device;
图4为实施例中慢时间尺度控制输入效果图,图4中的(a)d轴绕组慢子控制器的输入图,图4中的(b)为q轴绕组慢子控制器的输入图;Fig. 4 is an input effect diagram of slow time scale control in the embodiment, (a) the input diagram of the d-axis winding slow sub-controller in Fig. 4, and (b) in Fig. 4 is the input diagram of the q-axis winding slow sub-controller ;
图5为A相相电流图;Figure 5 is a phase current diagram of phase A;
图6为电机转速波形图;Figure 6 is a waveform diagram of the motor speed;
图7为q轴绕组电流图;Fig. 7 is the q-axis winding current diagram;
图8为d轴绕组电流图。Figure 8 is a d-axis winding current diagram.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步地解释说明。The technical solutions of the present invention will be further explained below with reference to the accompanying drawings.
如图1为本发明针对高速永磁电机的双时间尺度并联式双环控制方法流程图,该双时间尺度并联式双环控制方法具体包括如下步骤:Fig. 1 is the flow chart of the dual-time-scale parallel-type dual-loop control method for the high-speed permanent magnet motor of the present invention, and the dual-time-scale parallel-type dual-loop control method specifically includes the following steps:
步骤一:采集高速永磁电机的状态参数,包括:d轴绕组等效电感、q轴绕组等效电感、绕组等效电阻、永磁体磁链、电机的极对数、转动惯量、负载转矩;并根据状态参数中d轴绕组等效电感和q轴绕组等效电感的数量级确定奇异摄动参数ε,建立奇异摄动非线性数学模型,通过奇异摄动模型非线性数学模型可以有效地刻画工程系统的双时间尺度特性,奇异摄动方法的主要思想为:解耦-分别设计-组合,通过利用高速永磁电机动态的时间尺度差异,在不同时间尺度上实施强行解耦、达成快慢分解、实现高速永磁电机降阶,并分别设计快、慢子系统控制器,并组合构成高速永磁电机的控制器。奇异摄动非线性数学模型的建立充分考虑了高速电机内部的机械动态和电磁动态的时间尺度差异,可有有效提高动态响应性能。本发明中奇异摄动非线性数学模型为:Step 1: Collect the state parameters of the high-speed permanent magnet motor, including: the equivalent inductance of the d-axis winding, the equivalent inductance of the q-axis winding, the equivalent resistance of the winding, the permanent magnet flux linkage, the number of pole pairs of the motor, the moment of inertia, and the load torque ; And according to the order of magnitude of the equivalent inductance of the d-axis winding and the equivalent inductance of the q-axis winding in the state parameters, the singular perturbation parameter ε is determined, and the singular perturbation nonlinear mathematical model is established. The nonlinear mathematical model of the singular perturbation model can effectively describe The dual time scale characteristics of the engineering system, the main idea of the singular perturbation method is: decoupling-separate design-combination, by using the time scale difference of high-speed permanent magnet motor dynamics, implement forced decoupling on different time scales to achieve fast and slow decomposition 、Reduce the order of the high-speed permanent magnet motor, and design the fast and slow subsystem controllers separately, and combine them to form the controller of the high-speed permanent magnet motor. The establishment of the singular perturbation nonlinear mathematical model fully considers the time scale difference between the mechanical dynamics and the electromagnetic dynamics inside the high-speed motor, which can effectively improve the dynamic response performance. The singular perturbation nonlinear mathematical model in the present invention is:
其中,id为d轴绕组电流,为d轴绕组电流导数,r为绕组等效电阻,ωe为角速度,Lq为q轴绕组等效电感,ud为d轴绕组电压,iq为q轴绕组电流,为q轴绕组电流导数,Ld为d轴绕线等效电感,uq为q轴绕组电压,为角速度导数,Pn为电机的极对数,J为转动惯量,ψf为永磁体磁链,Tl为负载转矩。where id is the d -axis winding current, is the d-axis winding current derivative, r is the winding equivalent resistance, ω e is the angular velocity, L q is the q-axis winding equivalent inductance, ud is the d-axis winding voltage, i q is the q-axis winding current, is the q-axis winding current derivative, L d is the equivalent inductance of the d-axis winding, u q is the q-axis winding voltage, is the angular velocity derivative, P n is the number of pole pairs of the motor, J is the moment of inertia, ψ f is the permanent magnet flux linkage, and T l is the load torque.
步骤二:将奇异摄动非线性数学模型利用奇异摄动理论进行降阶、解耦,获得非线性慢时间尺度子模型,从而实现了慢状态与快状态的解耦。为了处理慢时间尺度子模型的非线性特点,利用线性变参数理论将非线性慢时间尺度子模型线性化,得到n个线性慢时不变子模型,大大降低了慢子系统的控制器设计难度;Step 2: The singular perturbation nonlinear mathematical model is reduced in order and decoupled by the singular perturbation theory, and the nonlinear slow time scale sub-model is obtained, thereby realizing the decoupling of the slow state and the fast state. In order to deal with the nonlinear characteristics of the slow time-scale sub-model, the nonlinear slow-time-scale sub-model is linearized by using the linear variable parameter theory, and n linear slow-time invariant sub-models are obtained, which greatly reduces the controller design difficulty of the slow sub-system. ;
具体地:令公式(1)-(2)中的ε=0,并反求出d轴绕组电流慢分量id s、q轴绕组电流慢分量iq s,Specifically: set ε=0 in formula (1)-(2), and inversely obtain the slow component id s of the d-axis winding current and the slow component i q s of the q -axis winding current,
代入公式(3)中,得到:Substituting into formula (3), we get:
记则本发明中非线性慢时间尺度子模型为:remember Then the nonlinear slow time scale sub-model in the present invention is:
其中,为角速度的慢分量,为角速度慢分量的导数,ud为d轴绕组电压,uq为q轴绕组电压,Tl为负载转矩,Pn为电机的极对数,J为转动惯量。in, is the slow component of the angular velocity, is the derivative of the slow component of the angular velocity, ud is the d -axis winding voltage, u q is the q-axis winding voltage, T l is the load torque, P n is the number of pole pairs of the motor, and J is the moment of inertia.
本发明中将非线性慢时间尺度子模型线性化的过程具体为:将高速永磁电机的角速度顺序排列,进行角速度区间划分,划分处即为操作点,共有n个操作点,并在角速度区间划分处将非线性慢时间尺度子模型线性化,获得n个线性慢时不变子模型,每个线性慢时不变子模型为:The process of linearizing the nonlinear slow time scale sub-model in the present invention is as follows: arranging the angular velocities of the high-speed permanent magnet motor in sequence, and dividing the angular velocity interval. The nonlinear slow-time-scale sub-model is linearized at the division, and n linear slow-time-invariant sub-models are obtained. Each linear slow-time-invariant sub-model is:
进一步假设模型中存在干扰信号δv,c为干扰信号的系数,考虑慢子系统的输出为转速本身,那么有It is further assumed that there is an interference signal δv in the model, c is the coefficient of the interference signal, and considering that the output of the slow subsystem is the rotational speed itself, then there are
y=δωe (10)y=δω e (10)
其中,θj为操作点索引,δωe为当前角速度的慢分量测量值与对应角速度区间的操作点的误差,us(θj)为在θj处的慢子控制输入。Among them, θ j is the operating point index, δω e is the error between the measured value of the slow component of the current angular velocity and the operating point in the corresponding angular velocity interval, u s (θ j ) is the bradyron control input at θ j .
本发明利用线性变参数理论实现了慢时间尺度子模型的非线性特点的简化处理,一方面降低了控制器的设计难度,节省了控制器设计算法的计算空间,另一方面避免在单个操作点处线性化,保存了高速电机非线性的动态变化特点。步骤三:考虑到系统必然存在外界干扰,本发明针对转速环设计H∞鲁棒控制律,以克服外界干扰对转速的影响,使得转速可以稳定地跟随理想转速。因此,针对n个线性慢时不变子模型,结合噪声对状态影响程度阈值γ和每个操作点,得到H∞鲁棒控制律,使得操作点θj处的闭环线性慢子模型是鲁棒稳定的,计算慢时间尺度控制输入us(tk);包括如下子步骤:The invention utilizes the linear variable parameter theory to realize the simplified processing of the nonlinear characteristics of the slow time scale sub-model. On the one hand, the design difficulty of the controller is reduced, and the calculation space of the controller design algorithm is saved; It is linearized at the high-speed motor and preserves the nonlinear dynamic characteristics of the high-speed motor. Step 3: Considering that there must be external interference in the system, the present invention designs H ∞ robust control law for the rotation speed loop to overcome the influence of external interference on the rotation speed, so that the rotation speed can stably follow the ideal rotation speed. Therefore, for n linear slow-time-invariant sub-models, the H ∞ robust control law is obtained by combining the threshold γ and each operating point of noise influence on the state, so that the closed-loop linear slow sub-model at the operating point θ j is robust Stable, computes the slow timescale control input u s (t k ); includes the following sub-steps:
步骤3.1、设计状态反馈控制器:us(t)=K(θj)δωe,代入公式(9)-(10)中,得到:Step 3.1. Design a state feedback controller: u s (t)=K(θ j )δω e , and substitute it into formulas (9)-(10) to obtain:
对于噪声对状态影响程度阈值γ>0,如果存在正定矩阵P>0满足如下不等式条件For the threshold γ>0 of the influence of noise on the state, if there is a positive definite matrix P>0, the following inequality conditions are satisfied
求出H∞鲁棒控制律K(θj);则公式(11)在操作点θj处是渐近稳定的,并且干扰δv到输出y(t)的传递函数Tδvy(s)满足鲁棒性能指标 Find the H ∞ robust control law K(θ j ); then formula (11) is asymptotically stable at the operating point θ j , and the transfer function T δvy (s) from disturbance δv to output y(t) satisfies robust Rod performance indicators
接下来为验证所提出控制方案的合理有效性,进行鲁棒稳定性证明。Next, in order to verify the reasonable validity of the proposed control scheme, a robust stability proof is carried out.
(1)首先证明在零扰动的情况下,闭环系统是渐近稳定的。(1) First, it is proved that the closed-loop system is asymptotically stable in the case of zero disturbance.
假设δv=0,构建李雅普诺夫函数V(δωe,t)=δωe T(t)Pδωe(t),对函数V(δωe,t)沿着公式(11)对时间t求导,可得Assuming δv=0, construct the Lyapunov function V(δω e ,t)=δω e T (t)Pδω e (t), and derive the function V(δω e ,t) for time t along equation (11) ,Available
根据Schur补引理,将不等式(12)等价变换为According to Schur's complement lemma, the inequality (12) is equivalently transformed into
根据公式(14),明显有那么根据(13)式,显然有由此可得,当扰动δv=0时,公式(11)的平衡点是渐近稳定的。According to formula (14), it is obvious that Then according to (13), it is obvious that Therefore, when the disturbance δv=0, the equilibrium point of formula (11) is asymptotically stable.
(2)接下来,证明δv≠0时,在矩阵不等式(12)条件下,系统具有鲁棒性。(2) Next, it is proved that when δv≠0, under the condition of matrix inequality (12), the system is robust.
对函数V(δωe,t)沿着公式(11)对时间t求导,可得Taking the derivative of the function V(δω e ,t) with respect to time t along Equation (11), we get
根据不等式(14)、(15)可以改写为According to inequalities (14) and (15), it can be rewritten as
也即 that is
进一步地,further,
基于第(1)部分渐近稳定性的证明,可以知道δωe(∞)=0,现假设δωe(0)=0,对不等式(16)两边积分,可得:Based on the proof of the asymptotic stability of part (1), it can be known that δω e (∞) = 0, now assuming δω e (0) = 0, integrating both sides of inequality (16), we can get:
即由此明显可得:which is From this it is evident that:
也就是 that is
步骤3.2、测量tk时刻的角速度ωe(tk),并根据角速度的划分区间计算第一权重系数α1(tk)和第二权重系数α2(tk):Step 3.2. Measure the angular velocity ω e (t k ) at time t k , and calculate the first weighting coefficient α 1 (t k ) and the second weighting coefficient α 2 (t k ) according to the divided interval of the angular velocity:
ωe(tk)=α1(tk)θm+α2(tk)θm+1 ω e (t k )=α 1 (t k )θ m +α 2 (t k )θ m+1
α1(tk)+α2(tk)=1,α 1 (t k )+α 2 (t k )=1,
其中,θm为第m个操作点,θm+1为第m+1个操作点,ωe(tk)∈[θm,θm+1];Among them, θ m is the mth operation point, θ m+1 is the m+1th operation point, ω e (t k )∈[θ m , θ m+1 ];
步骤3.3、根据第一权重系数α1(tk)和第二权重系数α2(tk),将tk时刻H∞鲁棒控制律K(θ(tk))描述成:K(θ(tk))=α1(tk)Km(θm)+α2(tk)Km+1(θm+1),再计算慢时间尺度控制输入us(tk)=K(θ(tk))δωe(tk)。Step 3.3. According to the first weight coefficient α 1 (t k ) and the second weight coefficient α 2 (t k ), describe the H ∞ robust control law K(θ(t k )) at time t k as: K(θ(t k )) (t k ))=α 1 (t k )K m (θ m )+α 2 (t k )K m+1 (θ m+1 ), and then calculate the slow time scale control input u s (t k )= K(θ(t k ))δω e (t k ).
步骤四:考虑到电流环的快速性,本发明选用快速性较好且具有鲁棒性的滑模控制作为电流环的控制方法,计算快时间尺度参数τ,将奇异摄动非线性数学模型进行时间尺度更改,得到快时间尺度子模型,选择对角矩阵M求解第一正定矩阵O和第二正定矩阵Q,计算出快时间尺度子模型的控制输入uf(τ);包括如下子步骤:Step 4: Considering the rapidity of the current loop, the present invention selects the sliding mode control with good rapidity and robustness as the control method of the current loop, calculates the fast time scale parameter τ, and performs the singular perturbation nonlinear mathematical model. Change the time scale to obtain the fast time scale sub-model, select the diagonal matrix M to solve the first positive definite matrix O and the second positive definite matrix Q, and calculate the control input u f (τ) of the fast time scale sub-model; including the following sub-steps:
步骤4.1、计算快时间尺度参数将奇异摄动非线性数学模型进行时间尺度更改,即对公式(1)-(2)进行变换,得到:Step 4.1. Calculate fast time scale parameters Change the time scale of the singular perturbation nonlinear mathematical model, that is, transform the formulas (1)-(2), and get:
其中d(τ)为噪声,且噪声有界||d(τ)||2<δ,δ>0,取和为伪输入,将公式(9)-(10)整理为快时间尺度子模型,可以有效地描述解耦的快状态的动态特性;本发明中快时间尺度子模型为:where d(τ) is the noise, and the noise is bounded ||d(τ)|| 2 <δ,δ>0, take and For pseudo input, formulas (9)-(10) are organized into fast time scale sub-models, which can effectively describe the dynamic characteristics of the decoupled fast state; the fast time scale sub-model in the present invention is:
其中,为d轴电流变量的快分量,为q轴电流变量的快分量,为d轴电压变量的快分量,为q轴电压变量的快分量,t为时间变量,t0初始时刻,为慢变量ωe的值。in, is the fast component of the d-axis current variable, is the fast component of the q-axis current variable, is the fast component of the d-axis voltage variable, is the fast component of the q -axis voltage variable, t is the time variable, and t is the initial moment, is the value of the slow variable ω e .
步骤4.2、选择对角矩阵M=diag{λ1 λ2}>0求解第一正定矩阵O和第二正定矩阵Q,计算出快时间尺度子模型的控制输入:Step 4.2. Select the diagonal matrix M=diag{λ 1 λ 2 }>0 to solve the first positive definite matrix O and the second positive definite matrix Q, and calculate the control input of the fast time scale sub-model:
其中,为快时间尺度子模型的控制输入中忽略不确定输入的标称输入,s(τ)为滑模函数,||s(τ)||2为滑模函数的二范数,h小正数。in, is the nominal input that ignores the uncertain input in the control input of the fast time scale sub-model, s(τ) is the sliding mode function, ||s(τ)|| 2 is the second norm of the sliding mode function, h is a small positive number .
第一正定矩阵O和第二正定矩阵Q满足:The first positive definite matrix O and the second positive definite matrix Q satisfy:
接下来证明公式(21)的有效性:Next we prove the validity of formula (21):
若已知参数h>0,l>0和干扰的上界δ,在公式(21)式作用下,公式(20)的跟踪误差e(τ)趋向于0,If the parameters h>0, l>0 and the upper bound δ of interference are known, under the action of formula (21), the tracking error e(τ) of formula (20) tends to 0,
构造李雅普诺夫函数 Construct the Lyapunov function
对V(τ)关于τ求导可得Taking the derivative of V(τ) with respect to τ, we get
其中Veq(τ)=-sT(τ)Qs(τ),VN(τ)=-sT(τ)Osgn(s(τ)),其中O和Q满足:where V eq (τ)=-s T (τ)Qs(τ), V N (τ)=-s T (τ)Osgn(s(τ)), where O and Q satisfy:
或者 or
s(τ)的导数可以表示为:The derivative of s(τ) can be expressed as:
公式(25)代入公式(24)可得:Substitute formula (25) into formula (24) to obtain:
从上式中反求出uf:Inversely find u f from the above formula:
实际上,ueq(τ)包含了标称部分和不确定部分 In fact, u eq (τ) contains the nominal part and the uncertain part
其中 in
基于假设||d(t)||2<δ,可以忽略ueq(τ)中的不确定成分获得快子系统的控制器Based on the assumption ||d(t)|| 2 <δ, the uncertainty component in u eq (τ) can be ignored Get the controller of the fast subsystem
为使得系统在有限时间内收敛,需要已知l是小正数。将公式(25)代入公式(27)-(28)可得:In order to make the system converge in a finite time, it is necessary to It is known that l is a small positive number. Substitute formula (25) into formulas (27)-(28) to obtain:
根据Schwarz不等式,可得(29)不等式的充分条件如下:According to Schwarz's inequality, the sufficient conditions of (29) inequality can be obtained as follows:
进一步的,上式等价于 Further, the above formula is equivalent to
此外,为了避免符号函数导致的抖振,引入如下近似函数 In addition, in order to avoid chattering caused by the sign function, the following approximate function is introduced
步骤五:将计算出的慢时间尺度控制输入u(tk)和快时间尺度子模型的控制输入uf(τ)输入高速永磁电机,进行双时间尺度并联式双环控制。Step 5: Input the calculated control input u(t k ) of the slow time scale and the control input u f (τ) of the fast time scale sub-model into the high-speed permanent magnet motor to perform dual-time-scale parallel dual-loop control.
本发明针对高速永磁电机的双时间尺度并联式双环控制方法充分考虑了高速电机的双时间尺度特性,避免了单一时间尺度的串联双环控制的弊端,且有效降低了高速电机维数,简化了控制器设计复杂度,可明显提高动态响应性能。The dual-time-scale parallel double-loop control method of the present invention for the high-speed permanent magnet motor fully considers the dual-time-scale characteristics of the high-speed motor, avoids the drawbacks of the single-time-scale series double-loop control, effectively reduces the dimension of the high-speed motor, and simplifies the The complexity of the controller design can significantly improve the dynamic response performance.
实施例Example
本实施例采用高速稀土永磁电机作为实验对象,该高速稀土永磁电机的具体参数如表1所示:The present embodiment adopts a high-speed rare earth permanent magnet motor as the experimental object, and the specific parameters of the high-speed rare earth permanent magnet motor are shown in Table 1:
表1 18000rmp/110W高速永磁电机参数Table 1 18000rmp/110W high-speed permanent magnet motor parameters
如图2为实施例基于高速永磁电机的双时间尺度并联式双环控制方法仿真原理图,PI控制器的作用是为快子模型提供理想信号快时间尺度子模型采用滑模控制方法,慢时间尺度子模型采用基于线性变参数理论的H∞控制方法。图3展示了快时间尺度子模型的控制输入效果图,图3中的(a)为d轴绕组快子控制器的输入图,图3中的(b)为q轴绕组快子控制器的输入图,可以看出快子控制器变化快速,响应快速;如图4为实施例中慢时间尺度控制输入效果图,图4中的(a)d轴绕组慢子控制器的输入图,图4中的(b)为q轴绕组慢子控制器的输入图,慢子控制器相对平稳,该实验结果与本发明双时间尺度并联式双环控制方法的设计预期一致。图5展示了A相相电流图,由图5可见在加入负载后,电流非常快速的收敛为正弦波形;图6为电机转速波形图,在负载突变后,转速在极短的时间内恢复平稳;图7展示了q轴绕组电流的波形图,可见q轴电流可以快速地跟踪理想值,跟踪效果很好;图8展示了d轴绕组电流波形图,纹波较小,静态性能很好。Figure 2 is a schematic diagram of the simulation of the dual-time-scale parallel dual-loop control method based on the high-speed permanent magnet motor in the embodiment. The function of the PI controller is to provide an ideal signal for the tachyon model. The fast time scale sub-model adopts the sliding mode control method, and the slow time scale sub-model adopts the H ∞ control method based on the linear variable parameter theory. Figure 3 shows the control input effect diagram of the fast time scale sub-model. Figure 3 (a) is the input diagram of the d-axis winding tachyon controller, and Figure 3 (b) is the q-axis winding tachyon controller. In the input diagram, it can be seen that the tachyon controller changes rapidly and responds quickly; Figure 4 is the input effect diagram of the slow time scale control in the embodiment, and (a) the input diagram of the d-axis winding tachyon controller in Figure 4, Figure 4 (b) in 4 is the input diagram of the q-axis winding slow sub-controller, the slow sub-controller is relatively stable, and the experimental result is consistent with the design expectation of the dual-time-scale parallel dual-loop control method of the present invention. Figure 5 shows the current diagram of phase A. It can be seen from Figure 5 that after adding the load, the current converges very quickly to a sine waveform; Figure 6 is the waveform of the motor speed. After the load suddenly changes, the speed returns to a stable state in a very short time. ; Figure 7 shows the waveform of the q-axis winding current. It can be seen that the q-axis current can quickly track the ideal value, and the tracking effect is very good; Figure 8 shows the d-axis winding current waveform. The ripple is small and the static performance is good.
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。The above are only preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions that belong to the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210549465.7A CN114826075B (en) | 2022-05-20 | 2022-05-20 | A dual-time-scale parallel dual-loop control method for high-speed permanent magnet motors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210549465.7A CN114826075B (en) | 2022-05-20 | 2022-05-20 | A dual-time-scale parallel dual-loop control method for high-speed permanent magnet motors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114826075A true CN114826075A (en) | 2022-07-29 |
CN114826075B CN114826075B (en) | 2024-12-10 |
Family
ID=82516030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210549465.7A Active CN114826075B (en) | 2022-05-20 | 2022-05-20 | A dual-time-scale parallel dual-loop control method for high-speed permanent magnet motors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114826075B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115933383A (en) * | 2022-11-21 | 2023-04-07 | 中国矿业大学 | Nonlinear double-time-scale industrial system H infinite combination control method based on reinforcement learning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180093331A (en) * | 2017-02-13 | 2018-08-22 | 인하대학교 산학협력단 | Method for stabilization of nonlinear system including singular perturbation |
CN110011583A (en) * | 2019-04-12 | 2019-07-12 | 中国矿业大学 | Sliding mode control system and modeling method of permanent magnet synchronous motor based on singular perturbation theory |
CN110744552A (en) * | 2019-11-27 | 2020-02-04 | 中国船舶重工集团公司第七一六研究所 | Flexible mechanical arm motion control method based on singular perturbation theory |
CN111342720A (en) * | 2020-03-06 | 2020-06-26 | 南京理工大学 | Adaptive Continuous Sliding Mode Control Method for Permanent Magnet Synchronous Motor Based on Load Torque Observation |
-
2022
- 2022-05-20 CN CN202210549465.7A patent/CN114826075B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180093331A (en) * | 2017-02-13 | 2018-08-22 | 인하대학교 산학협력단 | Method for stabilization of nonlinear system including singular perturbation |
CN110011583A (en) * | 2019-04-12 | 2019-07-12 | 中国矿业大学 | Sliding mode control system and modeling method of permanent magnet synchronous motor based on singular perturbation theory |
CN110744552A (en) * | 2019-11-27 | 2020-02-04 | 中国船舶重工集团公司第七一六研究所 | Flexible mechanical arm motion control method based on singular perturbation theory |
CN111342720A (en) * | 2020-03-06 | 2020-06-26 | 南京理工大学 | Adaptive Continuous Sliding Mode Control Method for Permanent Magnet Synchronous Motor Based on Load Torque Observation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115933383A (en) * | 2022-11-21 | 2023-04-07 | 中国矿业大学 | Nonlinear double-time-scale industrial system H infinite combination control method based on reinforcement learning |
CN115933383B (en) * | 2022-11-21 | 2023-05-30 | 中国矿业大学 | Nonlinear double-time-scale industrial system H infinite combination control method based on reinforcement learning |
Also Published As
Publication number | Publication date |
---|---|
CN114826075B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109873586B (en) | A method and system for mechanical parameter identification of motor based on high-order sliding mode observer | |
CN107659237B (en) | A model-free deadbeat current predictive control device and method for a permanent magnet synchronous motor | |
CN104410107B (en) | A Passive Integral Sliding Mode Control Method for Doubly-fed Wind Power System | |
CN112448632B (en) | A dual sliding mode observer SPMSM sensorless composite control method | |
CN108832859A (en) | A Predictive Current Control Method for Permanent Magnet Linear Motor Based on Parameter Identification | |
CN111510035A (en) | A control method and device for a permanent magnet synchronous motor | |
CN111371357A (en) | Permanent magnet synchronous motor speed regulation control method based on self-adaptive supercoiling algorithm | |
CN114826075A (en) | Double-time-scale parallel double-ring control method for high-speed permanent magnet motor | |
CN115940722A (en) | Strong anti-disturbance permanent magnet synchronous linear motor position sensorless control method and system | |
CN110176889A (en) | A kind of permanent magnet synchronous motor Speed Sensorless Control Method and system | |
CN115242151B (en) | Synchronous motor parameter-free prediction control method based on rolling time domain estimation | |
CN110649851B (en) | Multi-parameter decoupling online identification method for asynchronous motor | |
CN113965129B (en) | Compensation method for current measurement offset error of permanent magnet synchronous motor control system | |
CN104022701B (en) | Mould method for control speed in a kind of permanent magnetic linear synchronous motor Newton method | |
Xu et al. | Disturbance rejection speed sensorless control of PMSMs based on full order adaptive observer | |
CN107359835B (en) | A kind of ultrahigh speed permanent magnet synchronous motor method for controlling number of revolution based on adaptive robust control | |
CN108270373B (en) | A method for detecting the rotor position of a permanent magnet synchronous motor | |
CN113315122B (en) | Fault transient current analysis method considering nonlinear characteristics of inverter power supply control system | |
CN105790661B (en) | A decoupling control method of linear permanent magnet vernier motor | |
CN112928959B (en) | Sensorless control method of permanent magnet synchronous motor | |
CN116191953A (en) | Construction method of permanent magnet auxiliary bearingless synchronous reluctance motor displacement-free sensing controller | |
CN116577559A (en) | A wide-band negative resistance characteristic analysis method for voltage source energy storage based on impedance splitting | |
Jiang et al. | Reduced-order extended-state-observer-based backstepping control for brushless DC motor server system | |
CN109802610B (en) | A Nonlinear Field Weakening Control Method for Servo System | |
CN119010685B (en) | A deadbeat predictive control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |