CN114820352A - Hyperspectral image denoising method and device and storage medium - Google Patents
Hyperspectral image denoising method and device and storage medium Download PDFInfo
- Publication number
- CN114820352A CN114820352A CN202210365831.3A CN202210365831A CN114820352A CN 114820352 A CN114820352 A CN 114820352A CN 202210365831 A CN202210365831 A CN 202210365831A CN 114820352 A CN114820352 A CN 114820352A
- Authority
- CN
- China
- Prior art keywords
- hyperspectral image
- model
- hyperspectral
- noise
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 19
- 230000003595 spectral effect Effects 0.000 claims abstract description 19
- 230000003190 augmentative effect Effects 0.000 claims abstract description 17
- 230000015556 catabolic process Effects 0.000 claims abstract description 12
- 238000006731 degradation reaction Methods 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 13
- 230000008901 benefit Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 8
- 238000011084 recovery Methods 0.000 abstract description 3
- 230000000007 visual effect Effects 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000005457 optimization Methods 0.000 abstract 1
- 238000011158 quantitative evaluation Methods 0.000 abstract 1
- 238000002474 experimental method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 235000002566 Capsicum Nutrition 0.000 description 3
- 239000006002 Pepper Substances 0.000 description 3
- 241000722363 Piper Species 0.000 description 3
- 235000016761 Piper aduncum Nutrition 0.000 description 3
- 235000017804 Piper guineense Nutrition 0.000 description 3
- 235000008184 Piper nigrum Nutrition 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明属于图像处理技术领域,涉及一种基于改进的加权变分张量分解的高光谱图像去噪方法、装置及存储介质。The invention belongs to the technical field of image processing, and relates to a hyperspectral image denoising method, device and storage medium based on an improved weighted variational tensor decomposition.
背景技术Background technique
高光谱图像拥有丰富的空间和光谱结构信息,被广泛地应用于军事、城市、航天等多个领域。但图像在采集过程中会受到各类噪声的污染,如高斯、椒盐、条带噪声等,使得高光谱图像质量严重退化。因此,有必要对高光谱图像进行去噪,从退化图像中恢复出接近原始清晰的图像。Hyperspectral images have rich spatial and spectral structure information, and are widely used in military, urban, aerospace and other fields. However, the image will be polluted by various kinds of noise during the acquisition process, such as Gaussian, salt and pepper, band noise, etc., which will seriously degrade the quality of the hyperspectral image. Therefore, it is necessary to denoise the hyperspectral image to restore a clear image close to the original from the degraded image.
高光谱图像去噪的一种自然方法是将每个波段视为灰度图像,然后采用传统的二维或一维去噪方法逐波段去噪;随后的方法利用相邻的图像像素存在相似性和空间特性,通过全变分正则化方法实现空间分段光滑,对图像的边缘信息进行处理,提高图像复原精准度。这些方法都是为了去除一到两种类型的噪声,即高斯噪声、脉冲噪声等。然而,在高光谱采集过程中通常会被几种不同类型的噪声所破坏,如高斯噪声、脉冲噪声、死线、条纹等。尽管基于低秩矩阵建模提出了消除噪声混合的方法,但恢复效果并不理想。A natural approach to denoising hyperspectral images is to treat each band as a grayscale image and then denoise band by band using traditional 2D or 1D denoising methods; subsequent methods exploit the presence of similarities in adjacent image pixels and spatial characteristics, the total variational regularization method is used to achieve smooth spatial segmentation, and the edge information of the image is processed to improve the accuracy of image restoration. These methods are all designed to remove one or two types of noise, namely Gaussian noise, impulse noise, etc. However, the hyperspectral acquisition process is often corrupted by several different types of noise, such as Gaussian noise, impulse noise, dead lines, streaks, etc. Although methods to eliminate noise mixing have been proposed based on low-rank matrix modeling, the recovery effect is not ideal.
发明内容SUMMARY OF THE INVENTION
目的:现有技术中的图像去噪算法大多是通过相邻波段相似性用低秩恢复,是二阶的且忽略空间相关性,为了解决这一问题,本发明提供一种基于改进的加权变分张量分解的高光谱图像去噪方法、装置及存储介质,此方法旨在解决高光谱图像采集过程中的多种混合噪声。Purpose: Most of the image denoising algorithms in the prior art use low-rank restoration through the similarity of adjacent bands, which are second-order and ignore spatial correlation. In order to solve this problem, the present invention provides an improved weighted variable A hyperspectral image denoising method, device and storage medium based on sub-tensor decomposition, the method aims to solve various mixed noises in the hyperspectral image acquisition process.
将多维高光谱数据转换为向量或矩阵通常会破坏谱空间结构相关性,基于张量建模技术比矩阵化技术更具有优势。利用三阶张量同时捕获光谱空间的非局部相似度和光谱相关性。基于张量的方法基本上保持了固有的结构相关性,具有更好的恢复结果。Transforming multidimensional hyperspectral data into vectors or matrices usually destroys spectral spatial structural correlations, and tensor-based modeling techniques have advantages over matrixing techniques. Using third-order tensors to simultaneously capture non-local similarity and spectral correlation in spectral space. The tensor-based method basically maintains the inherent structural correlation with better recovery results.
技术方案:为解决上述技术问题,本发明采用的技术方案为:Technical scheme: in order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
第一方面,提供一种高光谱图像去噪方法,包括:In a first aspect, a hyperspectral image denoising method is provided, including:
获取待去噪的高光谱图像数据;Obtain the hyperspectral image data to be denoised;
将待去噪的高光谱图像数据输入预训练优化好的高光谱图像去噪模型,得到输出的经过去噪的高光谱图像结果;Input the hyperspectral image data to be denoised into the pre-trained optimized hyperspectral image denoising model, and obtain the output denoised hyperspectral image result;
其中所述高光谱图像去噪模型的构建方法包括:The method for constructing the hyperspectral image denoising model includes:
1)、利用低秩张量分解分离噪声项,得到高光谱退化模型;1), use low-rank tensor decomposition to separate the noise term, and obtain the hyperspectral degradation model;
2)、在步骤1)得到的高光谱退化模型中加入改进的加权的全变分正则器(w-SSTV),充分表征高光谱图像波段之间的空间和光谱相关性;2), adding an improved weighted total variation regularizer (w-SSTV) to the hyperspectral degradation model obtained in step 1) to fully characterize the spatial and spectral correlations between the hyperspectral image bands;
3)、在步骤2)得到的模型中,用L1范数来规范稀疏噪声,用F范数来规范高斯噪声,确定约束条件;3) In the model obtained in step 2), use the L1 norm to normalize the sparse noise, and use the F norm to normalize the Gaussian noise, and determine the constraints;
4)、利用增广拉格朗日乘子法求解步骤3)得到的模型,通过输入带有稀疏噪声和高斯噪声的训练集图像对模型进行迭代优化,得到训练优化好的高光谱图像去噪模型。4), use the augmented Lagrange multiplier method to solve the model obtained in step 3), and iteratively optimize the model by inputting the training set images with sparse noise and Gaussian noise, and obtain the optimized hyperspectral image denoising. Model.
在一些实施例中,所述高光谱退化模型,包括:In some embodiments, the hyperspectral degradation model includes:
Y=X+N+SY=X+N+S
其中,Y表示有噪声的三阶张量的高光谱立方体Y={Y1,Y1,…YB},其中Yi∈Rh×w,h表示高度,i为频带,宽度为w,B表示频带个数;X代表干净的图像,N表示高斯噪声,S表示稀疏噪声,X、N、S和Y有着相同的张量大小。where Y represents a noisy third-order tensor hyperspectral cube Y={Y 1 , Y 1 ,…Y B }, where Y i ∈R h×w , h represents height, i is frequency band, and width is w, B is the number of bands; X is clean image, N is Gaussian noise, S is sparse noise, X, N, S and Y have the same tensor size.
在一些实施例中,利用低秩张量分解分离噪声项,包括:In some embodiments, the noise terms are separated using a low-rank tensor decomposition, including:
将高光谱图像分割成重叠的三维块,对于一个n阶张量,通过Tucker分解分解为n个因子矩阵和一个核心张量充分利用图像的光谱和空间低秩特性;每一模态上的因子矩阵称为张量的基矩阵或主分量;Tucker分解方程表示为:Divide the hyperspectral image into overlapping 3D blocks, for a tensor of order n, decompose it into n factor matrices and a core tensor by Tucker decomposition to take full advantage of the spectral and spatial low-rank properties of the image; factor on each modality The matrix is called the basis matrix or principal component of the tensor; the Tucker decomposition equation is expressed as:
X=C×1U1×2U2×…×nUn,Un TUn=IX=C× 1 U 1 × 2 U 2 ×…× n U n ,U n T U n =I
其中,C是控制因子矩阵之间相互作用的核心张量;U是系数矩阵。where C is the control factor matrix The core tensor of interactions between ; U is the coefficient matrix.
在一些实施例中,在高光谱退化模型中加入改进的加权的全变分正则器,包括:In some embodiments, an improved weighted total variation regularizer is added to the hyperspectral degradation model, including:
||X||SSTV=w1||DxX||+w2||DyX||+w3||DzX||||X|| SSTV =w 1 ||D x X||+w 2 ||D y X||+w 3 ||D z X||
其中,||X||SSTV为加权的全变分模型,Dx,Dy,Dz分别表示沿空间水平方向x、空间垂直方向y和光谱方向z的一阶正向有限差分算子;w1,w2,w3分别代表x,y,z三个方向上的加权差分算子;Among them, ||X|| SSTV is a weighted total variation model, D x , D y , D z represent the first-order forward finite difference operator along the spatial horizontal direction x, the spatial vertical direction y and the spectral direction z, respectively; w 1 , w 2 , and w 3 represent the weighted difference operators in the three directions of x, y, and z, respectively;
Dx=X(i+1,j,k)-X(i,j,k)D x =X(i+1,j,k)-X(i,j,k)
Dy=X(i,j+1,k)-X(i,j,k)D y =X(i,j+1,k)-X(i,j,k)
Dz=X(i,j,k+1)-X(i,j,k)D z =X(i,j,k+1)-X(i,j,k)
X(i,j,k)中i、j分别表示图像X的水平方向、垂直方向的空间位置,k表示图像X的第k个波段。In X(i, j, k), i and j represent the horizontal and vertical spatial positions of the image X, respectively, and k represents the kth band of the image X.
在一些实施例中,用L1范数来规范稀疏噪声,用F范数来规范高斯噪声,确定约束条件,包括:In some embodiments, the L1 norm is used to normalize sparse noise and the F norm is used to normalize Gaussian noise, and constraints are determined, including:
s.t.Y=X+S+N,s.t.Y=X+S+N,
X=C×1U1×2U2×3U3,Un TUn=IX=C× 1 U 1 × 2 U 2 × 3 U 3 , U n T U n =I
其中X代表干净的图像,N表示高斯噪声,S表示稀疏噪声,τ,λ,β分别表示X,S,N各自的控制系数因子,s.t.表示模型的约束条件;C是控制因子矩阵U1、U2、U3之间相互作用的核心张量;U是系数矩阵。where X represents a clean image, N represents Gaussian noise, S represents sparse noise, τ, λ, β represent the respective control coefficient factors of X, S, N, st represents the constraints of the model; C is the control factor matrix U 1 , The core tensor of the interaction between U 2 , U 3 ; U is the coefficient matrix.
在一些实施例中,利用增广拉格朗日乘子法求解,包括:In some embodiments, the augmented Lagrangian multiplier method is used to solve, including:
令X=Z,Dw(Z)=F,Dw是经过加权的三维差分算子,存在三个不同方向的一阶差分算子,Z和F都表示增广拉格朗日乘子法中引入的辅助变量;增广拉格朗日函数L表达式如下:Let X=Z, Dw (Z)=F, Dw is the weighted three-dimensional difference operator, there are three first-order difference operators in different directions, Z and F both represent the augmented Lagrange multiplier method The auxiliary variable introduced in ; the augmented Lagrangian function L is expressed as follows:
其中μ为惩罚参数,μ1,μ2,μ3,表示增广拉格朗日乘子。where μ is the penalty parameter, μ 1 , μ 2 , μ 3 , which represent augmented Lagrange multipliers.
在一些实施例中,通过输入带有稀疏噪声和高斯噪声的训练集图像对模型进行迭代优化,包括:In some embodiments, the model is iteratively optimized by inputting training set images with sparse noise and Gaussian noise, including:
先输入带有稀疏噪声和高斯噪声的训练集图像,矩阵的秩r,权重值w1,w2,w3,初始化高光谱图像X,根据增广拉格朗日乘子法令X=Z=S=N=0,μ1=μ2=μ3=0,k=0,然后再分别更新X、Z、F、S、N以及更新增广拉格朗日乘子μ1,μ2,μ3,,对模型进行k+1次迭代优化直至满足迭代停止条件。First input the training set image with sparse noise and Gaussian noise, the rank r of the matrix, the weight values w 1 , w 2 , w 3 , initialize the hyperspectral image X, according to the augmented Lagrange multiplier decree X=Z= S=N=0, μ 1 = μ 2 = μ 3 =0, k=0, and then update X, Z, F, S, N and the new generalized Lagrange multipliers μ 1 , μ 2 respectively, μ 3 , the model is iteratively optimized for k+1 times until the iterative stop condition is satisfied.
第二方面,本发明提供了一种高光谱图像去噪装置,包括处理器及存储介质;In a second aspect, the present invention provides a hyperspectral image denoising device, including a processor and a storage medium;
所述存储介质用于存储指令;the storage medium is used for storing instructions;
所述处理器用于根据所述指令进行操作以执行根据第一方面所述方法的步骤。The processor is operable according to the instructions to perform the steps of the method according to the first aspect.
第三方面,本发明提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述方法的步骤。In a third aspect, the present invention provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the method in the first aspect.
有益效果:本发明提供的高光谱图像去噪方法及装置,具有以下优点:基于加权变分张量分解高光谱图像去噪方法,相比于图像去噪方法在除多种混合噪声有着更好的图像恢复效果,结构相似性和峰值信噪比都有显著提升,可以提高光谱空间的平滑度,在图像视觉上获得更好的效果。Beneficial effects: The hyperspectral image denoising method and device provided by the present invention have the following advantages: the hyperspectral image denoising method based on weighted variational tensor decomposition is better than the image denoising method in removing a variety of mixed noises The image restoration effect, the structural similarity and the peak signal-to-noise ratio are significantly improved, which can improve the smoothness of the spectral space and obtain better visual effects on the image.
附图说明Description of drawings
图1为根据本发明一实施例中高光谱图像去噪模型的构建方法的流程图。FIG. 1 is a flowchart of a method for constructing a hyperspectral image denoising model according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below with reference to the accompanying drawings and embodiments. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。In the description of the present invention, the meaning of several means one or more, the meaning of multiple means two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of the present invention, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples" or the like is meant to be used in conjunction with the embodiment. A particular feature, structure, material or characteristic described or exemplified is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
实施例1Example 1
提供一种高光谱图像去噪方法,包括:Provide a hyperspectral image denoising method, including:
获取待去噪的高光谱图像数据;Obtain the hyperspectral image data to be denoised;
将待去噪的高光谱图像数据输入预训练优化好的高光谱图像去噪模型,得到输出的经过去噪的高光谱图像结果;Input the hyperspectral image data to be denoised into the pre-trained optimized hyperspectral image denoising model, and obtain the output denoised hyperspectral image result;
其中所述高光谱图像去噪模型的构建方法包括:The method for constructing the hyperspectral image denoising model includes:
1)、利用低秩张量分解分离噪声项,得到高光谱退化模型;1), use low-rank tensor decomposition to separate the noise term, and obtain the hyperspectral degradation model;
2)、在步骤1)得到的高光谱退化模型中加入改进的加权的全变分正则器(w-SSTV),充分表征高光谱图像波段之间的空间和光谱相关性;2), adding an improved weighted total variation regularizer (w-SSTV) to the hyperspectral degradation model obtained in step 1) to fully characterize the spatial and spectral correlations between the hyperspectral image bands;
3)、在步骤2)得到的模型中,用L1范数来规范稀疏噪声,用F范数来规范高斯噪声,确定约束条件;3) In the model obtained in step 2), use the L1 norm to normalize the sparse noise, and use the F norm to normalize the Gaussian noise, and determine the constraints;
4)、利用增广拉格朗日乘子法求解步骤3)得到的模型,通过输入带有稀疏噪声和高斯噪声的训练集图像对模型进行迭代优化,得到训练优化好的高光谱图像去噪模型。4), use the augmented Lagrange multiplier method to solve the model obtained in step 3), and iteratively optimize the model by inputting the training set images with sparse noise and Gaussian noise, and obtain the optimized hyperspectral image denoising. Model.
在一些实施例中,如图1所示的一种改进的加权全变分张量分解的高光谱图像去噪方法,包括以下步骤:In some embodiments, an improved hyperspectral image denoising method with weighted total variation tensor decomposition as shown in FIG. 1 includes the following steps:
步骤S1、利用低秩张量分解分离噪声项,得到退化的高光谱模型;具体地,Step S1, using the low-rank tensor decomposition to separate the noise term to obtain a degenerated hyperspectral model; specifically,
首先将高光谱分割成重叠的三维块,对于一个n阶张量,通过Tucker分解分解为n个因子矩阵和一个核心张量充分利用图像的光谱和空间低秩特性。每一模态上的因子矩阵称为张量的基矩阵或主分量。Tucker分解也可以被认为是高阶PCA,用来描述低秩张量近似。Tucker分解方程表示为:The hyperspectral is first segmented into overlapping 3D blocks, and for a tensor of order n, it is decomposed into n factor matrices and a core tensor by Tucker decomposition to take full advantage of the spectral and spatial low-rank properties of the image. The factor matrix on each mode is called the basis matrix or principal component of the tensor. Tucker decomposition can also be thought of as high-order PCA, used to describe low-rank tensor approximations. The Tucker decomposition equation is expressed as:
X=C×1U1×2U2×…×nUn,Un TUn=IX=C× 1 U 1 × 2 U 2 ×…× n U n ,U n T U n =I
C是控制因子矩阵之间相互作用的核心张量。U是系数矩阵,采用经典的高阶正交迭代(HOOI)算法,在不增加计算量的前提下,实现低秩Tucker分解,得到高光谱退化模型:C is the control factor matrix The core tensor of interactions between . U is the coefficient matrix. The classical high-order orthogonal iterative (HOOI) algorithm is used to achieve low-rank Tucker decomposition without increasing the amount of calculation, and the hyperspectral degradation model is obtained:
Y=X+N+SY=X+N+S
Y表示有噪声的三阶张量的高光谱立方体Y={Y1,Y1,…YB},其中Yi∈Rh×w,h表示高度,i为频带,宽度为w,B表示频带个数;X代表干净的图像,N和S分别表示高斯噪声和稀疏噪声,它们和Y有着相同的张量大小。Y represents the hyperspectral cube of noisy third-order tensor Y={Y 1 , Y 1 ,…Y B }, where Y i ∈ R h×w , h represents height, i is frequency band, width is w, and B represents The number of bands; X represents clean image, N and S represent Gaussian noise and sparse noise, respectively, and they have the same tensor size as Y.
步骤S2、加入改进的加权的全变分正则器(w-SSTV);具体地,Step S2, adding an improved weighted total variation regularizer (w-SSTV); specifically,
高光谱在其谱模态上存在一个很强的局部平滑结构。即光谱域中邻接频带之间的差值大部分接近于零,且零的个数明显大于空间域中的零。用SSTV正则化算法来研究空间和光谱域中的分段平滑结构。Hyperspectral has a strong local smooth structure in its spectral modes. That is, most of the differences between adjacent frequency bands in the spectral domain are close to zero, and the number of zeros is significantly larger than that in the spatial domain. The SSTV regularization algorithm is used to study piecewise smooth structures in the spatial and spectral domains.
引入各向异性全变分模型||X||SSTV,其中||X||SSTV=||DxX||+||DyX||+||DzX||,Dx,Dy,Dz分别表示沿空间水平方向、空间垂直方向和光谱方向的一阶正向有限差分算子。Introduce the anisotropic total variation model ||X|| SSTV , where ||X|| SSTV =||D x X||+||D y X||+||D z X||,D x , D y , D z represent the first-order forward finite difference operators along the spatial horizontal direction, the spatial vertical direction and the spectral direction, respectively.
Dx=X(i+1,j,k)-X(i,j,k)D x =X(i+1,j,k)-X(i,j,k)
Dy=X(i,j+1,k)-X(i,j,k)D y =X(i,j+1,k)-X(i,j,k)
Dz=X(i,j,k+1)-X(i,j,k)D z =X(i,j,k+1)-X(i,j,k)
X(i,j,k)中i,j分别表示图像X的水平方向、垂直方向的空间位置,k表示图像X的第k个波段;In X(i,j,k) i, j represent the spatial position of the image X in the horizontal and vertical directions, respectively, and k represents the kth band of the image X;
对模型进行加权w得到:||X||SSTV=w1||DxX||+w2||DyX||+w3||DzX||。权值控制着X的正则化速度。w1,w2,w3分别代表x,y,z三个方向上的加权差分算子。The model is weighted w to obtain: ||X|| SSTV =w 1 ||D x X||+w 2 ||D y X||+w 3 ||D z X||. The weights control how fast X is regularized. w 1 , w 2 , and w 3 represent weighted difference operators in the three directions of x, y, and z, respectively.
步骤S3、用L1范数规范稀疏噪声,F范数规范高斯噪声;具体地,将S稀疏噪声通过L1范数建模,N高斯噪声通过F范数建模得到如下表达式Step S3, use the L1 norm to normalize the sparse noise, and the F norm to normalize the Gaussian noise; specifically, the S sparse noise is modeled by the L1 norm, and the N Gaussian noise is modeled by the F norm to obtain the following expression
s.t.Y=X+S+N,s.t.Y=X+S+N,
X=C×1U1×2U2×3U3,Un TUn=IX=C× 1 U 1 × 2 U 2 × 3 U 3 , U n T U n =I
τ,λ,β分别表示X,S,N各自的控制系数因子,s.t.表示该模型的约束条件,充分获取光谱图像像素的相似性和空间光谱的分段平滑度,减少伪影,去除混合噪声。τ, λ, and β represent the respective control coefficient factors of X, S, and N, respectively, and s.t. represents the constraints of the model, which fully obtains the similarity of the spectral image pixels and the segmental smoothness of the spatial spectrum, reduces artifacts, and removes mixed noise. .
步骤S4、通过增广拉格朗日乘子法进行图像去噪,具体地,Step S4, performing image denoising by the augmented Lagrange multiplier method, specifically,
对上述步骤S3得到的模型进行优化,令X=Z,Dw(Z)=F,Dw是经过加权的三维差分算子,存在三个不同方向的一阶差分算子,其ALM模型表达式如下:The model obtained in the above step S3 is optimized, and X=Z, Dw (Z)=F, Dw is a weighted three-dimensional difference operator, there are three first-order difference operators in different directions, and the ALM model expresses The formula is as follows:
μ为惩罚参数,μ1,μ2,μ3,表示增广拉格朗日乘子。去噪算法:先输入带有高斯和稀疏噪声的图像,矩阵的秩r,权重值w,迭代停止准则等,初始化高光谱图像X,根据增广拉格朗日乘子法令X=Z=S=N=0,μ1=μ2=μ3=0,k=0,然后再分别更新X,Z,F,S,N以及更新拉格朗日乘子μ1,μ2,μ3,等,固定其他变量,对模型进行k+1次迭代。μ is the penalty parameter, μ 1 , μ 2 , μ 3 , which represent augmented Lagrange multipliers. Denoising algorithm: first input the image with Gaussian and sparse noise, the rank r of the matrix, the weight value w, the iterative stop criterion, etc., initialize the hyperspectral image X, and according to the augmented Lagrange multiplier law X=Z=S =N=0, μ 1 =μ 2 =μ 3 =0, k=0, then update X, Z, F, S, N and Lagrange multipliers μ 1 , μ 2 , μ 3 respectively, etc., fixing the other variables, and doing k+1 iterations of the model.
在indian数据集进行混合噪声的实验,最终的输出即为得到高光谱图像恢复结果。The mixed noise experiment is performed on the indian data set, and the final output is the hyperspectral image restoration result.
如下表1-2所示分别为本发明所示图像去噪方法与传统现有技术在2种实验下的效果对比:The following Tables 1-2 show the comparison of the effects of the image denoising method shown in the present invention and the traditional prior art under two experiments:
实验1:高斯噪声和椒盐脉冲噪声都被添加到indian数据集的所有波段。高斯噪声(G)的方差分别为0.02、0.06和0.1。同时,椒盐脉冲噪声(P)也被添加到所有的频带,以模拟稀疏噪声。脉冲噪声(P)的百分比分别为0.04、0.12和0.2。Experiment 1: Both Gaussian noise and salt and pepper impulse noise are added to all bands of the indian dataset. The variances of Gaussian noise (G) are 0.02, 0.06, and 0.1, respectively. At the same time, salt and pepper impulse noise (P) is also added to all frequency bands to simulate sparse noise. The percentages of impulse noise (P) were 0.04, 0.12 and 0.2, respectively.
实验2:在实验1的基础上中加入死线噪声(deadlines),其他参数保持不变。Experiment 2: On the basis of Experiment 1, add dead lines noise (deadlines), and other parameters remain unchanged.
用本文方法和对比方法对3种不同的模拟观测数据进行复原。将复原结果所有通道的SSIM和PSNR分别取均值,记为MSSIM和MPSNR,并用这两个均值作为最终复原效果的评价标准。峰值信噪比PSNR是基于误差敏感的图像质量评价。给定一个大小的干净图像X和噪声图像Y,PSNR定义为:Three different simulated observation data were recovered by the method in this paper and the comparison method. Take the average of the SSIM and PSNR of all channels of the restoration result, denoted as MSSIM and MPSNR, and use these two averages as the evaluation standard for the final restoration effect. Peak signal-to-noise ratio (PSNR) is based on error-sensitive image quality assessment. Given a clean image X and a noisy image Y of a size, PSNR is defined as:
M,N表示高光谱图像的空间尺寸即宽度和高度,i,j表示空间位置,B表示高光谱图像的波段数。当峰值信噪比PNSR的值越大,说明图像的失真越小,恢复的图像越接近真实图像。M, N represent the spatial dimensions of the hyperspectral image, namely width and height, i, j represent the spatial position, and B represent the number of bands of the hyperspectral image. When the value of the peak signal-to-noise ratio (PNSR) is larger, the distortion of the image is smaller, and the restored image is closer to the real image.
结构相似性SSIM定义为:Structural similarity SSIM is defined as:
μu,μu′分别表示图像Y和图像X的像素平均值,σu,σu′表示图像的方差,C1,C2为常量,B表示高光谱图像的波段数。结构相似性SSIM的取值范围为[0,1],其值越大表示图像失真越小,图像的恢复效果好。μ u , μ u′ represent the pixel average of image Y and image X, respectively, σ u , σ u′ represent the variance of the image, C1, C2 are constants, and B represents the number of bands of the hyperspectral image. The value range of structural similarity SSIM is [0, 1], and the larger the value is, the smaller the image distortion is, and the better the image restoration effect is.
表1在indian数据集上的实验1结果Table 1 Results of experiment 1 on the indian dataset
表2在indian数据集上的实验2结果Table 2 Results of experiment 2 on the indian dataset
其中,本发明中的模型用OURS代替,评价标准为MSSIM和MPSNR(结构相似性和峰值信噪比)。表1中分别展示了不同图像去噪的方法,随着高斯噪声和脉冲噪声的增强,图像的恢复效果会降低,可以看出本发明的模型在indian数据集中均表现优异。表2中展示了在三种混合噪声在高光谱图像的恢复效果。可以看出,本文模型表现出色,说明很好地解决了多种混合噪声对图像的影响。相比于传统恢复方法,本发明提供的方法具备显著的竞争优势,所以本方法在解决混合噪声的高光谱数据集上表现优秀,具有一定的意义。Among them, the model in the present invention is replaced by OURS, and the evaluation criteria are MSSIM and MPSNR (structural similarity and peak signal-to-noise ratio). Table 1 shows different image denoising methods. With the enhancement of Gaussian noise and impulse noise, the image restoration effect will decrease. It can be seen that the model of the present invention performs well in the indian data set. Table 2 shows the restoration effects of three kinds of mixed noises on hyperspectral images. It can be seen that the model in this paper performs well, indicating that the influence of various mixed noises on the image is well resolved. Compared with the traditional restoration method, the method provided by the present invention has a significant competitive advantage, so the method performs well in solving the hyperspectral data set with mixed noise, which has certain significance.
实施例2Example 2
第二方面,本实施例提供了一种高光谱图像去噪装置,包括处理器及存储介质;In a second aspect, this embodiment provides a hyperspectral image denoising device, including a processor and a storage medium;
所述存储介质用于存储指令;the storage medium is used for storing instructions;
所述处理器用于根据所述指令进行操作以执行根据实施例1所述方法的步骤。The processor is configured to operate in accordance with the instructions to perform the steps of the method according to Embodiment 1.
实施例3Example 3
第三方面,本实施例提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现实施例1所述方法的步骤。In a third aspect, this embodiment provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the method in Embodiment 1.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only the preferred embodiment of the present invention, it should be pointed out that: for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210365831.3A CN114820352B (en) | 2022-04-08 | 2022-04-08 | Hyperspectral image denoising method, device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210365831.3A CN114820352B (en) | 2022-04-08 | 2022-04-08 | Hyperspectral image denoising method, device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114820352A true CN114820352A (en) | 2022-07-29 |
CN114820352B CN114820352B (en) | 2024-11-22 |
Family
ID=82533763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210365831.3A Active CN114820352B (en) | 2022-04-08 | 2022-04-08 | Hyperspectral image denoising method, device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114820352B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115272141A (en) * | 2022-09-29 | 2022-11-01 | 深圳大学 | Hyperspectral image denoising method, device, system and medium |
CN116429709A (en) * | 2023-06-09 | 2023-07-14 | 季华实验室 | Spectrum detection method, spectrum detection device and computer-readable storage medium |
CN116433534A (en) * | 2023-06-09 | 2023-07-14 | 四川工程职业技术学院 | Hyperspectral image restoration method and device, storage medium and electronic equipment |
CN117541495A (en) * | 2023-09-04 | 2024-02-09 | 长春理工大学 | Image stripe removing method, device and medium for automatically optimizing model weight |
CN117974494A (en) * | 2024-03-29 | 2024-05-03 | 哈尔滨工业大学 | Cultural Heritage Infrared Thermal Imaging Denoising Method Based on Regularized Low-Rank Tensor Decomposition |
CN118552802A (en) * | 2024-05-30 | 2024-08-27 | 上海大学 | A fast anomaly detection method and device for hyperspectral images |
CN118840283A (en) * | 2024-09-19 | 2024-10-25 | 四川工程职业技术大学 | Hyperspectral image mixed noise removing method, device, equipment and medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190346522A1 (en) * | 2018-05-10 | 2019-11-14 | Siemens Healthcare Gmbh | Method of reconstructing magnetic resonance image data |
CN110458777A (en) * | 2019-08-05 | 2019-11-15 | 湖南大学 | A hyperspectral image denoising method, system and medium based on adaptive rank correction |
CN111598795A (en) * | 2020-04-27 | 2020-08-28 | 浙江工业大学 | Hyperspectral image denoising method and device based on tensor ring decomposition |
CN112069919A (en) * | 2020-08-17 | 2020-12-11 | 浙江工业大学 | Hyperspectral image denoising method based on non-convex low-rank matrix approximation and total variational regularization |
-
2022
- 2022-04-08 CN CN202210365831.3A patent/CN114820352B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190346522A1 (en) * | 2018-05-10 | 2019-11-14 | Siemens Healthcare Gmbh | Method of reconstructing magnetic resonance image data |
CN110458777A (en) * | 2019-08-05 | 2019-11-15 | 湖南大学 | A hyperspectral image denoising method, system and medium based on adaptive rank correction |
CN111598795A (en) * | 2020-04-27 | 2020-08-28 | 浙江工业大学 | Hyperspectral image denoising method and device based on tensor ring decomposition |
CN112069919A (en) * | 2020-08-17 | 2020-12-11 | 浙江工业大学 | Hyperspectral image denoising method based on non-convex low-rank matrix approximation and total variational regularization |
Non-Patent Citations (1)
Title |
---|
俞珍秒等: "一种结合空间相似性和RPCA的高光谱图像去噪算法", 南京大学学报(自然科学), no. 03, 30 May 2017 (2017-05-30) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115272141A (en) * | 2022-09-29 | 2022-11-01 | 深圳大学 | Hyperspectral image denoising method, device, system and medium |
CN116429709A (en) * | 2023-06-09 | 2023-07-14 | 季华实验室 | Spectrum detection method, spectrum detection device and computer-readable storage medium |
CN116433534A (en) * | 2023-06-09 | 2023-07-14 | 四川工程职业技术学院 | Hyperspectral image restoration method and device, storage medium and electronic equipment |
CN116433534B (en) * | 2023-06-09 | 2023-08-22 | 四川工程职业技术学院 | Hyperspectral image restoration method and device, storage medium and electronic equipment |
CN116429709B (en) * | 2023-06-09 | 2023-09-12 | 季华实验室 | Spectral detection method, device and computer-readable storage medium |
CN117541495A (en) * | 2023-09-04 | 2024-02-09 | 长春理工大学 | Image stripe removing method, device and medium for automatically optimizing model weight |
CN117974494A (en) * | 2024-03-29 | 2024-05-03 | 哈尔滨工业大学 | Cultural Heritage Infrared Thermal Imaging Denoising Method Based on Regularized Low-Rank Tensor Decomposition |
CN118552802A (en) * | 2024-05-30 | 2024-08-27 | 上海大学 | A fast anomaly detection method and device for hyperspectral images |
CN118840283A (en) * | 2024-09-19 | 2024-10-25 | 四川工程职业技术大学 | Hyperspectral image mixed noise removing method, device, equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN114820352B (en) | 2024-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114820352A (en) | Hyperspectral image denoising method and device and storage medium | |
Gu et al. | A brief review of image denoising algorithms and beyond | |
Rejeesh et al. | MOTF: Multi-objective Optimal Trilateral Filtering based partial moving frame algorithm for image denoising | |
Liu et al. | Image restoration using total variation with overlapping group sparsity | |
Jain et al. | A survey of edge-preserving image denoising methods | |
Danielyan et al. | BM3D frames and variational image deblurring | |
Huang et al. | Rank minimization with applications to image noise removal | |
Yang et al. | Image denoising using nonsubsampled shearlet transform and twin support vector machines | |
CN110276726B (en) | Image deblurring method based on multichannel network prior information guidance | |
Fan et al. | Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder | |
Zhong et al. | Modified BM3D algorithm for image denoising using nonlocal centralization prior | |
Xu et al. | Deep sparse representation based image restoration with denoising prior | |
Fu et al. | Learning dual priors for jpeg compression artifacts removal | |
Dong et al. | Image restoration: a data-driven perspective | |
Tang et al. | Bayesian framework with non-local and low-rank constraint for image reconstruction | |
Zhang et al. | Kernel Wiener filtering model with low-rank approximation for image denoising | |
Chen et al. | Image denoising via local and nonlocal circulant similarity | |
Lian et al. | Non-convex fractional-order TV model for impulse noise removal | |
Ullah et al. | A new variational approach for multiplicative noise and blur removal | |
Liu et al. | Validity of non-local mean filter and novel denoising method | |
Ren et al. | Enhanced latent space blind model for real image denoising via alternative optimization | |
Kuang et al. | An adaptive rank-sparsity K-SVD algorithm for image sequence denoising | |
Wang et al. | Hyperspectral unmixing via plug-and-play priors | |
CN115131226A (en) | Image restoration method based on wavelet tensor low-rank regularization | |
Fan et al. | Two-stage image denoising via an enhanced low-rank prior |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |