CN114820164A - Credit card limit evaluation method, device, equipment and medium - Google Patents
Credit card limit evaluation method, device, equipment and medium Download PDFInfo
- Publication number
- CN114820164A CN114820164A CN202210410903.1A CN202210410903A CN114820164A CN 114820164 A CN114820164 A CN 114820164A CN 202210410903 A CN202210410903 A CN 202210410903A CN 114820164 A CN114820164 A CN 114820164A
- Authority
- CN
- China
- Prior art keywords
- user
- network
- real
- transaction data
- credit card
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 68
- 238000003860 storage Methods 0.000 claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 50
- 239000013598 vector Substances 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 7
- 238000005295 random walk Methods 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims description 4
- 238000004220 aggregation Methods 0.000 claims description 4
- 238000011176 pooling Methods 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims 1
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 230000006399 behavior Effects 0.000 description 30
- 230000006870 function Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000015654 memory Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000006403 short-term memory Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000013475 authorization Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/03—Credit; Loans; Processing thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/04—Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Technology Law (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
技术领域technical field
本公开涉及人工智能和金融技术领域,具体涉及信用卡额度评估方法、装置、设备、介质和程序产品。The present disclosure relates to the field of artificial intelligence and financial technology, and in particular, to a credit card limit evaluation method, apparatus, device, medium and program product.
背景技术Background technique
随着经济的发展和进步,信用体系日益完善,信用卡已经被越来越多的人接受以及使用,并且形成了一种新的基于信用的消费模式。其最大的特点是,当用户与发卡机构达成有效约定后,允许用户在一定的信用额度内,提前透支消费,在指定期限内还清透支金额即可。尽管这种模式可以有效地刺激用户的消费,促进信用机制不断健全,但是也对发卡机构带来了一定的金融风险。With the development and progress of the economy, the credit system is becoming more and more perfect, and credit cards have been accepted and used by more and more people, and a new credit-based consumption model has been formed. Its biggest feature is that after the user and the card issuer reach a valid agreement, the user is allowed to overdraft consumption in advance within a certain credit limit, and the overdraft amount can be repaid within a specified period. Although this model can effectively stimulate the consumption of users and promote the continuous improvement of the credit mechanism, it also brings certain financial risks to the card issuer.
发明内容SUMMARY OF THE INVENTION
鉴于上述问题,本公开提供了一种信用卡额度评估方法、装置、设备、介质和程序产品。In view of the above problems, the present disclosure provides a credit card limit evaluation method, apparatus, device, medium and program product.
根据本公开的第一个方面,提供了一种信用卡额度评估方法,包括:According to a first aspect of the present disclosure, there is provided a credit card limit assessment method, including:
根据待评估用户的信用卡交易数据,获取待评估用户的用卡行为特征;According to the credit card transaction data of the user to be evaluated, obtain the card-using behavior characteristics of the user to be evaluated;
将待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,输出节点交易数据序列,其中,节点交易数据序列包括待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列;预先训练好的生成对抗网络基于真实序列信息、伪序列信息、隐藏特征训练得到;其中,真实序列信息包括交易网络中真实用户的用卡行为特征和相邻真实用户间的关系信息;伪序列信息包括初始生成对抗网络中的生成器生成的伪用户的用卡行为特征和伪相邻用户间的关系信息;隐藏特征包括交易网络中未相邻真实用户间的关系信息;以及Input the card-using behavior characteristics of the user to be evaluated into the generator in the pre-trained generative adversarial network, and output the node transaction data sequence, wherein the node transaction data sequence includes the first node transaction data sequence of the user to be evaluated and the constructed user's transaction data sequence. The second node transaction data sequence; the pre-trained generative adversarial network is trained based on real sequence information, pseudo-sequence information, and hidden features; the real sequence information includes the card-using behavior characteristics of real users in the transaction network and the relationship between adjacent real users. The pseudo-sequence information includes the card-using behavior characteristics of pseudo-users generated by the generator in the initial generative adversarial network and the relationship information between pseudo-adjacent users; the hidden features include the relationship information between non-adjacent real users in the transaction network ;as well as
基于节点交易数据序列,得到待评估用户的信用卡额度评估值。Based on the node transaction data sequence, the credit card limit evaluation value of the user to be evaluated is obtained.
根据本公开的实施例,基于节点交易数据序列,得到待评估用户的信用卡额度评估值包括:According to an embodiment of the present disclosure, based on the node transaction data sequence, obtaining the credit card limit evaluation value of the user to be evaluated includes:
计算节点交易数据序列中与待评估用户的节点相邻的被构造用户的节点出现的频次;Calculate the frequency of occurrence of the nodes of the constructed user adjacent to the node of the user to be evaluated in the node transaction data sequence;
将频次超过预设阈值的被构造用户作为目标用户;The constructed user whose frequency exceeds the preset threshold is regarded as the target user;
基于目标用户对应的信用卡额度值,得到待评估用户的信用卡额度评估值。Based on the credit card limit value corresponding to the target user, the credit card limit evaluation value of the user to be evaluated is obtained.
根据本公开的实施例,预先训练好的生成对抗网络基于伪序列信息、真实序列信息、隐藏特征训练得到包括:According to an embodiment of the present disclosure, the pre-trained generative adversarial network is trained based on pseudo-sequence information, real sequence information, and hidden features, including:
基于真实用户的信用卡交易数据样本,构建以服务方与真实用户为节点的交易网络;Based on the credit card transaction data samples of real users, construct a transaction network with service providers and real users as nodes;
对交易网络进行节点采样,得到真实序列信息;Perform node sampling on the transaction network to obtain real sequence information;
利用初始生成对抗网络中的生成器处理交易网络,生成伪序列信息;Use the generator in the initial generative adversarial network to process the transaction network to generate pseudo-sequence information;
利用图卷积网络处理交易网络,得到隐藏特征;Use graph convolutional network to process transaction network to obtain hidden features;
将真实序列信息、伪序列信息以及隐藏特征输入初始生成对抗网络中的判别器,输出判别分数;Input the real sequence information, pseudo sequence information and hidden features into the discriminator in the initial generation adversarial network, and output the discriminant score;
基于判别分数,调整初始生成对抗网络的参数。Based on the discriminant scores, the parameters of the initial generative adversarial network are adjusted.
根据本公开的实施例,对交易网络进行节点采样,得到真实序列信息包括:According to the embodiment of the present disclosure, performing node sampling on the transaction network to obtain real sequence information includes:
根据服务方与真实用户的交易记录,对交易网络中服务方与真实用户的关系信息赋权值;According to the transaction records between the service provider and the real user, assign weights to the relationship information between the service provider and the real user in the transaction network;
结合服务方与真实用户的关系信息的权值,利用随机游走方法,筛选交易网络中真实用户节点,得到真实序列信息。Combined with the weight of the relationship information between the service provider and the real user, the random walk method is used to filter the real user nodes in the transaction network to obtain the real sequence information.
根据本公开的实施例,利用初始生成对抗网络中的生成器处理交易网络,生成伪序列信息包括:According to an embodiment of the present disclosure, using a generator in an initial generative adversarial network to process a transaction network, generating pseudo-sequence information includes:
将预设初始值输入初始生成对抗网络中的生成器的计算单元,输出计算向量;Input the preset initial value into the calculation unit of the generator in the initial generation confrontation network, and output the calculation vector;
基于计算向量,获取伪序列信息。Based on the calculation vector, pseudo-sequence information is obtained.
根据本公开的实施例,利用图卷积网络处理交易网络,得到隐藏特征包括:According to an embodiment of the present disclosure, using a graph convolutional network to process a transaction network, the hidden features obtained include:
将真实用户的用卡行为特征和相邻用户间的关系信息输入图卷积网络;Input the card-using behavior characteristics of real users and the relationship information between adjacent users into the graph convolutional network;
在图卷积网络的隐藏层进行聚合操作,得到初始隐藏特征;Perform aggregation operations on the hidden layer of the graph convolutional network to obtain initial hidden features;
对初始隐藏特征进行池化操作,得到池化后的初始隐藏特征;Perform a pooling operation on the initial hidden features to obtain the pooled initial hidden features;
将池化后的初始隐藏特征进行预设规则操作,输出隐藏特征。Perform preset rule operations on the pooled initial hidden features to output hidden features.
本公开的第二方面提供了一种信用卡额度评估装置,包括:A second aspect of the present disclosure provides a credit card limit assessment device, comprising:
获取模块,用于根据待评估用户的信用卡交易数据,获取待评估用户的用卡行为特征;The acquiring module is used to acquire the card-using behavior characteristics of the user to be evaluated according to the credit card transaction data of the user to be evaluated;
生成模块,用于将待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,输出节点交易数据序列,其中,节点交易数据序列包括待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列;预先训练好的生成对抗网络基于真实序列信息、伪序列信息、隐藏特征训练得到;其中,真实序列信息包括交易网络中真实用户的用卡行为特征和相邻真实用户间的关系信息;伪序列信息包括初始生成对抗网络中的生成器生成的伪用户的用卡行为特征和伪相邻用户间的关系信息;隐藏特征包括交易网络中未相邻真实用户间的关系信息;以及The generation module is used to input the card-using behavior characteristics of the user to be evaluated into the generator in the pre-trained generative adversarial network, and output the node transaction data sequence, wherein the node transaction data sequence includes the first node transaction data sequence of the user to be evaluated and the second node transaction data sequence of the constructed user; the pre-trained generative adversarial network is trained based on real sequence information, pseudo-sequence information, and hidden features; the real sequence information includes the card-using behavior characteristics of real users in the transaction network and The relationship information between adjacent real users; the pseudo-sequence information includes the card-using behavior characteristics of the pseudo-users generated by the generator in the initial generative adversarial network and the relationship information between the pseudo-adjacent users; the hidden features include the non-adjacent real users in the transaction network. relationship information between users; and
评估模块,用于基于节点交易数据序列,得到待评估用户的信用卡额度评估值。The evaluation module is used to obtain the evaluation value of the credit card limit of the user to be evaluated based on the node transaction data sequence.
本公开的第三方面提供了一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序,其中,当所述一个或多个程序被所述一个或多个处理器执行时,使得一个或多个处理器执行上述信用卡额度评估方法。A third aspect of the present disclosure provides an electronic device, comprising: one or more processors; a memory for storing one or more programs, wherein when the one or more programs are executed by the one or more programs When executed by the processor, one or more processors are caused to execute the above method for evaluating credit card limit.
本公开的第四方面还提供了一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时使处理器执行上述信用卡额度评估方法。A fourth aspect of the present disclosure also provides a computer-readable storage medium having executable instructions stored thereon, the instructions, when executed by a processor, cause the processor to execute the above-mentioned method for evaluating a credit card limit.
本公开的第五方面还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述信用卡额度评估方法。A fifth aspect of the present disclosure also provides a computer program product, including a computer program, which implements the above credit card limit evaluation method when the computer program is executed by a processor.
根据本公开的实施例,通过将待评估用户的用卡行为特征输入经过预先训练好的生成对抗网络中的生成器,生成节点交易数据序列,根据节点交易数据序列得到待评估用户的信用卡额度评估值,可以及时评估出适合待评估用户的用卡额度,在提升用户满意度的同时,也能降低发卡机构的金融风险。使用预先训练好的生成对抗网络中的生成器能够避免一些异常交易数据对额度评估带来的不利影响。同时也减少业务人员基于专家知识的人工评估投入,提升整个业务流程的工作效率。According to an embodiment of the present disclosure, by inputting the card-using behavior characteristics of the user to be evaluated into a generator in a pre-trained generative adversarial network, a node transaction data sequence is generated, and the credit card limit evaluation of the user to be evaluated is obtained according to the node transaction data sequence. It can timely evaluate the card usage limit suitable for the user to be evaluated, which not only improves user satisfaction, but also reduces the financial risk of the card issuer. Using the generator in the pre-trained generative adversarial network can avoid the adverse effect of some abnormal transaction data on the quota evaluation. At the same time, it also reduces the investment in manual evaluation by business personnel based on expert knowledge, and improves the work efficiency of the entire business process.
附图说明Description of drawings
通过以下参照附图对本公开实施例的描述,本公开的上述内容以及其他目的、特征和优点将更为清楚,在附图中:The foregoing and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
图1示意性示出了根据本公开实施例的信用卡额度评估方法、装置、设备、介质和程序产品的应用场景图;FIG. 1 schematically shows an application scenario diagram of a credit card limit evaluation method, apparatus, device, medium and program product according to an embodiment of the present disclosure;
图2示意性示出了根据本公开实施例的信用卡额度评估方法的流程图;FIG. 2 schematically shows a flowchart of a credit card limit evaluation method according to an embodiment of the present disclosure;
图3示意性示出了根据本公开实施例的基于节点交易数据序列,得到待评估用户的信用卡额度评估值的方法流程图;3 schematically shows a flow chart of a method for obtaining the credit card limit evaluation value of a user to be evaluated based on a node transaction data sequence according to an embodiment of the present disclosure;
图4示意性示出了根据本公开实施例的预先训练好的生成对抗网络基于伪序列信息、真实序列信息、隐藏特征训练得到的方法流程图;4 schematically shows a flow chart of a method obtained by training a pre-trained generative adversarial network based on pseudo-sequence information, real sequence information, and hidden features according to an embodiment of the present disclosure;
图5示意性示出了根据本公开实施例的生成对抗网络训练的示意图;FIG. 5 schematically shows a schematic diagram of generative adversarial network training according to an embodiment of the present disclosure;
图6示意性示出了根据本公开实施例的信用卡额度评估装置的结构框图;以及FIG. 6 schematically shows a structural block diagram of a credit card limit assessment device according to an embodiment of the present disclosure; and
图7示意性示出了根据本公开实施例的适于实现信用卡额度评估方法的电子设备的方框图。FIG. 7 schematically shows a block diagram of an electronic device suitable for implementing a credit card limit assessment method according to an embodiment of the present disclosure.
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. In the following detailed description, for convenience of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent, however, that one or more embodiments may be practiced without these specific details. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present disclosure. The terms "comprising", "comprising" and the like as used herein indicate the presence of stated features, steps, operations and/or components, but do not preclude the presence or addition of one or more other features, steps, operations or components.
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meaning as commonly understood by one of ordinary skill in the art, unless otherwise defined. It should be noted that terms used herein should be construed to have meanings consistent with the context of the present specification and should not be construed in an idealized or overly rigid manner.
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。Where expressions like "at least one of A, B, and C, etc.," are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (eg, "has A, B, and C") At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ).
在本公开的技术方案中,所涉及的用户个人信息的获取,存储和应用等,均符合相关法律法规的规定,采取了必要保密措施,且不违背公序良俗。In the technical solution of the present disclosure, the acquisition, storage and application of the user's personal information involved all comply with the relevant laws and regulations, take necessary confidentiality measures, and do not violate public order and good customs.
在本公开实施例的技术方案中,在获取或采集用户个人信息之前,均获取了用户的授权或同意。In the technical solutions of the embodiments of the present disclosure, the authorization or consent of the user is obtained before the user's personal information is obtained or collected.
在实施本公开的实施例的过程中发现,基于专家知识的信用卡额度评估方法,主要使用手工的方式,需要投入大量的人工且依赖于复杂的业务经验,人力和时间成本开销巨大,不仅不利于后续信用卡业务的扩展,也会降低客户用卡的满意度和体验感。基于用户的行为特征以及对应的信用卡额度,通过机器学习算法学习出用卡模式,接着即可通过这些特征以及学习出的模式,分析预测出符合其行为的额度。这种方法假设用户是相互独立的,不符合现实生活中每个用户之间是有相互关联,且彼此之间互相影响的现象。会导致训练后的算法模型具有一定的偏差性,给用卡额度评估留下了一定的金融隐患。将客户之间的关系融入模型的学习中,以此希望增加模型的预测准确性。然而在实际交易网络中,往往伴随着一些由异常情况(如套现、盗刷和欺诈等)产生的交易关系,这些交易关系的引入,不仅不会提升算法学习效果,反倒会一定程度地损害模型的精度,从而导致额度评估的不准确。In the process of implementing the embodiments of the present disclosure, it is found that the credit card limit assessment method based on expert knowledge mainly uses a manual method, requires a large amount of labor and relies on complex business experience, and has huge labor and time costs, which is not only disadvantageous Subsequent expansion of credit card business will also reduce customer satisfaction and experience with cards. Based on the user's behavioral characteristics and the corresponding credit card limit, the card usage pattern is learned through the machine learning algorithm, and then the credit card can be analyzed and predicted based on these characteristics and the learned pattern. This method assumes that users are independent of each other, which is inconsistent with the phenomenon that each user is related to each other and affects each other in real life. This will lead to a certain deviation in the algorithm model after training, leaving certain financial hidden dangers to the credit card limit evaluation. Incorporating the relationships between customers into the learning of the model, we hope to increase the prediction accuracy of the model. However, in the actual transaction network, there are often some transaction relationships generated by abnormal situations (such as cash out, stealing, fraud, etc.). The introduction of these transaction relationships will not only not improve the learning effect of the algorithm, but will damage the model to a certain extent. accuracy, resulting in inaccurate quota assessments.
本公开的实施例提供了一种信用卡额度评估方法,包括:根据待评估用户的信用卡交易数据,获取待评估用户的用卡行为特征;将待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,输出节点交易数据序列,其中,节点交易数据序列包括待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列;预先训练好的生成对抗网络基于真实序列信息、伪序列信息、隐藏特征训练得到;以及基于节点交易数据序列,得到待评估用户的信用卡额度评估值。The embodiments of the present disclosure provide a credit card limit evaluation method, which includes: acquiring the card usage behavior characteristics of the user to be evaluated according to the credit card transaction data of the user to be evaluated; inputting the card usage behavior characteristics of the user to be evaluated into a pre-trained generation The generator in the adversarial network outputs the node transaction data sequence, wherein the node transaction data sequence includes the first node transaction data sequence of the user to be evaluated and the second node transaction data sequence of the constructed user; the pre-trained generative adversarial network is based on The real sequence information, pseudo-sequence information, and hidden feature training are obtained; and based on the node transaction data sequence, the credit card limit evaluation value of the user to be evaluated is obtained.
图1示意性示出了根据本公开实施例的信用卡额度评估方法、装置、设备、介质和程序产品的应用场景图。FIG. 1 schematically shows an application scenario diagram of a credit card limit evaluation method, apparatus, device, medium and program product according to an embodiment of the present disclosure.
如图1所示,根据该实施例的应用场景100可以包括终端设备101、102、103、网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 1 , an
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如购物类应用、网页浏览器应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等(仅为示例)。The user can use the
终端设备101、102、103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。The
服务器105可以是提供各种服务的服务器,例如对用户利用终端设备101、102、103所浏览的网站提供支持的后台管理服务器(仅为示例)。后台管理服务器可以对接收到的用户请求等数据进行分析等处理,并将处理结果(例如根据用户请求获取或生成的网页、信息、或数据等)反馈给终端设备。The
需要说明的是,本公开实施例所提供的信用卡额度评估方法一般可以由服务器105执行。相应地,本公开实施例所提供的信用卡额度评估装置一般可以设置于服务器105中。本公开实施例所提供的信用卡额度评估方法也可以由不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群执行。相应地,本公开实施例所提供的信用卡额度评估装置也可以设置于不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群中。It should be noted that the credit card limit evaluation method provided by the embodiment of the present disclosure may generally be executed by the
本公开实施例所提供的信用卡额度评估方法也可以由终端设备101、102、103执行。相应地,本公开实施例所提供的信用卡额度评估装置一般也可以设置于终端设备101、102、103中。本公开实施例所提供的信用卡额度评估方法也可以由不同于终端设备101、102、103的其他终端执行。相应地,本公开实施例所提供的信用卡额度评估装置也可以设置于不同于终端设备101、102、103的其他终端中。The credit card limit evaluation method provided by the embodiment of the present disclosure may also be executed by the
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。It should be understood that the numbers of terminal devices, networks and servers in FIG. 1 are merely illustrative. There can be any number of terminal devices, networks and servers according to implementation needs.
以下将基于图1描述的场景,通过图2~图5对公开实施例的信用卡额度评估方法进行详细描述。Based on the scenario described in FIG. 1 , the method for evaluating the credit card limit of the disclosed embodiment will be described in detail below with reference to FIGS. 2 to 5 .
图2示意性示出了根据本公开实施例的信用卡额度评估方法的流程图。FIG. 2 schematically shows a flowchart of a credit card limit evaluation method according to an embodiment of the present disclosure.
如图2所示,该实施例的信用卡额度评估方法200包括操作S201~操作S203。As shown in FIG. 2 , the credit card
在操作S201,根据待评估用户的信用卡交易数据,获取待评估用户的用卡行为特征。In operation S201, according to the credit card transaction data of the user to be evaluated, the card-using behavior characteristics of the user to be evaluated are acquired.
根据本公开的实施例,可以通过数据获取软件或者其他数据获取方法先获取待评估用户的信用卡交易数据。用户的用卡行为特征可以包括:消费金额、用卡次数、最高消费金额、最低消费金额等。According to the embodiments of the present disclosure, the credit card transaction data of the user to be evaluated can be first obtained through data obtaining software or other data obtaining methods. The characteristics of the user's card usage behavior may include: consumption amount, card usage times, maximum consumption amount, minimum consumption amount, and the like.
需要说明的是,在获取待评估用户的信用卡交易数据之前,获取待评估用户对信用卡交易数据的授权,在得到授权后获取得到待评估用户的信用卡交易数据。It should be noted that, before obtaining the credit card transaction data of the user to be evaluated, the authorization of the user to be evaluated for the credit card transaction data is obtained, and after the authorization is obtained, the credit card transaction data of the user to be evaluated is obtained.
在操作S202,将待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,输出节点交易数据序列。In operation S202, the card-using behavior characteristics of the user to be evaluated are input into the generator in the pre-trained generative adversarial network, and the node transaction data sequence is output.
其中,节点交易数据序列包括待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列;预先训练好的生成对抗网络基于真实序列信息、伪序列信息、隐藏特征训练得到;其中,真实序列信息包括交易网络中真实用户的用卡行为特征和相邻真实用户间的关系信息;伪序列信息包括初始生成对抗网络中的生成器生成的伪用户的用卡行为特征和伪相邻用户间的关系信息;隐藏特征包括交易网络中未相邻真实用户间的关系信息。The node transaction data sequence includes the first node transaction data sequence of the user to be evaluated and the second node transaction data sequence of the constructed user; the pre-trained generative adversarial network is trained based on real sequence information, pseudo-sequence information, and hidden features; The real sequence information includes the card-using behavior characteristics of real users in the transaction network and the relationship information between adjacent real users; the pseudo-sequence information includes the card-using behavior characteristics and pseudo-phases of the fake users generated by the generator in the initial generative adversarial network. Relationship information between neighboring users; hidden features include relationship information between non-adjacent real users in the transaction network.
根据本公开的实施例,预先训练好的生成对抗网络中的生成器可以将待评估用户的用卡行为特征输入后,对应生成待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列。其中,被构造用户是预先训练好的生成对抗网络中的生成器所生成的与待评估用户关联的用户。According to an embodiment of the present disclosure, the generator in the pre-trained generative adversarial network can input the card-using behavior characteristics of the user to be evaluated, and then correspondingly generate the first node transaction data sequence of the user to be evaluated and the second node transaction data sequence of the constructed user. Node transaction data sequence. The constructed user is the user associated with the user to be evaluated generated by the generator in the pre-trained generative adversarial network.
例如,可以将消费金额、用卡次数、最高消费金额、最低消费金额等待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,可以输出待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列。其中,交易数据可以包括交易金额、交易方和服务方的信息等。被构造用户的第二节点交易数据序列可以通过预先训练好的生成对抗网络中的生成器根据待评估用户的用卡行为特征生成。For example, the consumption amount, the number of times of card use, the maximum consumption amount, and the minimum consumption amount can be input into the generator in the pre-trained generative adversarial network, and the first node transaction data of the user to be evaluated can be output. sequence and the second node transaction data sequence of the constructed user. The transaction data may include transaction amount, transaction party and service party information, and the like. The second node transaction data sequence of the constructed user can be generated by the generator in the pre-trained generative adversarial network according to the card-using behavior characteristics of the user to be evaluated.
根据本公开的实施例,考虑异常交易数据对额度评估的影响,将生成器生成的伪序列信息和交易网络中真实序列信息以及隐藏特征输入到判别器内,得到判别分数;基于判别分数,调整生成对抗网络的模型参数,重复训练得到预先训练好的生成对抗网络。According to the embodiments of the present disclosure, considering the influence of abnormal transaction data on the quota evaluation, the pseudo-sequence information generated by the generator and the real sequence information and hidden features in the transaction network are input into the discriminator to obtain a discriminant score; based on the discriminant score, adjust the The model parameters of the generative adversarial network are repeatedly trained to obtain a pre-trained generative adversarial network.
在操作S203,基于节点交易数据序列,得到待评估用户的信用卡额度评估值。In operation S203, the credit card limit evaluation value of the user to be evaluated is obtained based on the node transaction data sequence.
根据本公开实施例,可以通过在节点交易数据序列中选取与待评估用户相邻的被构造用户的第二节点交易数据序列;然后根据被构造用户的第二节点交易数据序列对应的信用卡额度值,得到待评估用户的信用卡额度评估值。需要说明的是,在预先训练好的生成对抗网络中的生成器输出被构造用户时均携带有当前对应的信用卡额度值。According to the embodiment of the present disclosure, the second node transaction data sequence of the constructed user adjacent to the user to be evaluated can be selected from the node transaction data sequence; and then the credit card limit value corresponding to the constructed user's second node transaction data sequence can be selected. to obtain the credit card limit evaluation value of the user to be evaluated. It should be noted that the generator output in the pre-trained generative adversarial network is constructed with the current corresponding credit card limit value when the user is constructed.
例如,可以选择与待评估用户相邻的N个被构造用户,其中,N为正整数;通过求这N个被构造用户对应的信用卡额度值得平均值,将得到得平均值作为待评估用户的信用卡额度评估值。For example, N constructed users adjacent to the user to be evaluated can be selected, where N is a positive integer; by calculating the average value of the credit card limit values corresponding to the N constructed users, the obtained average value is taken as the user to be evaluated. Credit card limit assessment value.
根据本公开实施例,通过将待评估用户的用卡行为特征输入经过预先训练好的生成对抗网络中的生成器,生成节点交易数据序列,根据节点交易数据序列得到待评估用户的信用卡额度评估值,可以及时评估出适合待评估用户的用卡额度,在提升用户满意度的同时,也能降低发卡机构的金融风险。使用预先训练好的生成对抗网络中的生成器能够避免一些异常交易数据对额度评估带来的不利影响。同时也减少业务人员基于专家知识的人工评估投入,提升整个业务流程的工作效率。According to the embodiment of the present disclosure, by inputting the card-using behavior characteristics of the user to be evaluated into the generator in the pre-trained generative adversarial network, a node transaction data sequence is generated, and the credit card limit evaluation value of the user to be evaluated is obtained according to the node transaction data sequence. , which can timely evaluate the card usage limit suitable for the user to be evaluated, which can not only improve user satisfaction, but also reduce the financial risk of the card issuer. Using the generator in the pre-trained generative adversarial network can avoid the adverse effect of some abnormal transaction data on the quota evaluation. At the same time, it also reduces the investment in manual evaluation by business personnel based on expert knowledge, and improves the work efficiency of the entire business process.
图3示意性示出了根据本公开实施例的基于节点交易数据序列,得到待评估用户的信用卡额度评估值的方法流程图。FIG. 3 schematically shows a flowchart of a method for obtaining an evaluation value of a credit card limit of a user to be evaluated based on a node transaction data sequence according to an embodiment of the present disclosure.
如图3所示,该实施例的基于节点交易数据序列,得到待评估用户的信用卡额度评估值的方法300包括操作S301~操作S303。As shown in FIG. 3 , the
在操作S301,计算节点交易数据序列中与待评估用户的节点相邻的被构造用户的节点出现的频次。In operation S301, the frequency of occurrence of the nodes of the constructed user adjacent to the node of the user to be evaluated in the node transaction data sequence is calculated.
在操作S302,将频次超过预设阈值的被构造用户作为目标用户。In operation S302, a constructed user whose frequency exceeds a preset threshold is used as a target user.
根据本公开实施例,预设阈值可以是根据实际需要评估的额度的精确度确定的频次数值。According to an embodiment of the present disclosure, the preset threshold value may be a frequency value determined according to the accuracy of the amount that actually needs to be evaluated.
在操作S303,基于目标用户对应的信用卡额度值,得到待评估用户的信用卡额度评估值。In operation S303, the credit card limit evaluation value of the user to be evaluated is obtained based on the credit card limit value corresponding to the target user.
根据本公开实施例,可以通过计算目标用户对应的信用卡额度值的平均值,将该平均值作为待评估用户的信用卡额度评估值。According to the embodiment of the present disclosure, the average value of the credit card limit values corresponding to the target user can be calculated, and the average value can be used as the credit card limit evaluation value of the user to be evaluated.
例如,可以根据计算得到的与待评估用户的节点相邻的被构造用户的节点出现的频次,将被构造用户按照从大到小排序,然后将超过预设阈值的频次对应的被构造用户作为目标用户。计算这些目标用户的信用卡额度值的平均值,作为待评估用户的信用卡额度评估值。For example, according to the calculated frequency of occurrence of the nodes of the constructed user adjacent to the node of the user to be evaluated, the constructed users can be sorted in descending order, and then the constructed users corresponding to the frequencies exceeding the preset threshold can be used as Target users. Calculate the average value of the credit card limit of these target users as the credit card limit evaluation value of the user to be evaluated.
根据本公开实施例,基于预先训练好的生成对抗网络,利用反推思想,根据与待评估用户关联的用户的信用卡额度值,得出待评估用户的信用卡额度评估值。能够及时评估出一个适合信用卡用户的用卡额度,在提升客户满意度的同时,也能降低发卡机构的金融风险。According to the embodiment of the present disclosure, based on the pre-trained generative adversarial network, the back-inference idea is used to obtain the credit card limit evaluation value of the user to be evaluated according to the credit card limit value of the user associated with the user to be evaluated. It can timely evaluate a credit card limit suitable for credit card users, which not only improves customer satisfaction, but also reduces the financial risk of card issuers.
图4示意性示出了根据本公开实施例的预先训练好的生成对抗网络基于伪序列信息、真实序列信息、隐藏特征训练得到的方法的流程图;图5示意性示出了根据本公开实施例的生成对抗网络训练的示意图。FIG. 4 schematically shows a flowchart of a method for training a pre-trained generative adversarial network based on pseudo-sequence information, real sequence information, and hidden features according to an embodiment of the present disclosure; FIG. 5 schematically shows an implementation according to the present disclosure. Schematic diagram of Generative Adversarial Network training for an example.
如图4所示,该实施例的预先训练好的生成对抗网络基于伪序列信息、真实序列信息、隐藏特征训练得到的方法400包括操作S401~操作S406。As shown in FIG. 4 , the
在操作S401,基于真实用户的信用卡交易数据样本,构建以服务方与真实用户为节点的交易网络。In operation S401, based on the real user's credit card transaction data samples, a transaction network with the server and the real user as nodes is constructed.
根据本公开实施例,可以通过以服务方与真实用户为节点,将整个交易网络看成一个异构二部网络G={V,U,E,A},用集合V={vi|1≤i≤N}表示代表真实用户的节点;用集合U={uj|1≤j≤M}表示代表服务方的节点。若真实用户vi和服务方uj之间存在一笔用卡交易,则这两个节点之间存在一条边eij∈E。服务方例如可以是用户使用信用卡交易时的交易一方,即商家。如图5所示,可以根据以商家和用户为节点构建交易网络。According to the embodiment of the present disclosure, the entire transaction network can be regarded as a heterogeneous two-part network G={V,U,E,A} by taking the service party and the real user as nodes, and the set V={v i |1 ≤i≤N} represents the node representing the real user; the set U={u j |1≤j≤M} represents the node representing the server. If there is a card transaction between the real user vi and the service party u j , there is an edge e ij ∈ E between these two nodes. The service party may be, for example, a transaction party when the user uses a credit card for transaction, that is, a merchant. As shown in Figure 5, a transaction network can be constructed with merchants and users as nodes.
根据本公开实施例,交易网络除了可以表示真实用户与服务方之间的关系,还可以表示针对每个真实用户节点vi的特征向量ai∈A;例如,每个真实用户的基本特征可以包括年龄、职业、居住地以及消费能力等,向量ai中每个元素可以代表每个真实用户的基本特征中一个特征的量化值。According to the embodiment of the present disclosure, the transaction network can not only represent the relationship between the real user and the service party, but also can represent the feature vector a i ∈ A for each real user node v i ; for example, the basic feature of each real user can be Including age, occupation, place of residence, and spending power, etc., each element in the vector ai can represent the quantified value of one of the basic features of each real user.
在操作S402,对交易网络进行节点采样,得到真实序列信息。In operation S402, node sampling is performed on the transaction network to obtain real sequence information.
根据本公开的实施例,对交易网络进行节点采样,得到真实序列信息可以包括:根据服务方与真实用户的交易记录,对交易网络中服务方与真实用户的关系信息赋权值;结合服务方与真实用户的关系信息的权值,利用随机游走方法,筛选交易网络中真实用户节点,得到真实序列信息。如图5所示,可以根据交易网络获取到真实序列,真实序列携带真实序列信息。According to the embodiment of the present disclosure, sampling the nodes of the transaction network to obtain the real sequence information may include: according to the transaction records between the service party and the real user, assigning a weight to the relationship information between the service party and the real user in the transaction network; The weight of the relationship information with the real user uses the random walk method to filter the real user nodes in the transaction network to obtain the real sequence information. As shown in Figure 5, the real sequence can be obtained according to the transaction network, and the real sequence carries real sequence information.
例如,可以对边eij赋予一个权重wij,其计算方式可以如下式(1)所示:For example, a weight w ij can be assigned to the edge e ij , and its calculation method can be shown in the following formula (1):
其中,sij等于真实用户vi与服务方uj累计用卡交易金额。即可以表示对于某个真实用户来说,其与某个服务方累计交易金额越大,则该条边eij的权重越大。Among them, s ij is equal to the accumulated card transaction amount between the real user vi and the service party u j . That is to say, for a real user, the greater the accumulated transaction amount with a certain service party, the greater the weight of the edge e ij .
需要说明的是,由于每个真实用户往往会与多个服务方存在交易行为,且会有多次重复交易,为了能更好地表现出每笔交易中真实用户与服务方之间的关系,这里对边eij赋予一个权重wij。It should be noted that since each real user often has transaction behaviors with multiple service parties, and there will be multiple repeated transactions, in order to better show the relationship between real users and service parties in each transaction, Here, a weight w ij is assigned to the edge e ij .
随机游走的方法可以从一个真实用户节点出发,交替跳转到服务方和下一个真实用户节点上,跳转概率与真实用户-服务方节点之间边的权重成正比。定义采样长度T后,过滤掉服务方节点,仅保留起始真实用户节点和其余T-1个真实用户节点,共同组成一条训练模型使用的真实序列样本seqi,重复以上随机游走步骤多次,生成包含若干条样本的真实序列集合TSEQ,也即真实序列信息。其中,T为大于1的正整数。T可以根据实际需要而合理的设定。The random walk method can start from a real user node and alternately jump to the server and the next real user node. The jump probability is proportional to the weight of the edge between the real user and the server node. After defining the sampling length T, filter out the server node, only keep the initial real user node and the remaining T-1 real user nodes, which together form a real sequence sample seq i used by the training model, and repeat the above random walk steps for many times , and generate a real sequence set TSEQ containing several samples, that is, real sequence information. where T is a positive integer greater than 1. T can be reasonably set according to actual needs.
在操作S403,利用初始生成对抗网络中的生成器处理交易网络,生成伪序列信息。In operation S403, the transaction network is processed using the generator in the initial generative adversarial network to generate pseudo-sequence information.
根据本公开实施例,初始生成对抗网络中的生成器可以是长短期记忆网络,用于生成伪序列信息。长短期记忆网络包括多个计算单元。如图5所示,可以根据初始生成对抗网络中的生成器获取到伪序列,伪序列携带伪序列信息。According to an embodiment of the present disclosure, the generator in the initial generative adversarial network may be a long short-term memory network for generating pseudo-sequence information. A long short-term memory network includes multiple computational units. As shown in Figure 5, the pseudo-sequence can be obtained according to the generator in the initial generative adversarial network, and the pseudo-sequence carries pseudo-sequence information.
例如,可以将交易网络中一个服从标准正态分布和一个全零向量将会分别作为初始值,输入到生成器第一个时刻的计算单元的隐藏层和输入层中,即可得到当前时刻计算单元的输出层输出向量值。该向量在输出的时候会被转换成了一个独热编码,该编码取值为1对应的元素序号,可以看成是第一个生成的伪节点。接着,将该节点对应的独热编码,作为下一个时刻计算单元输入层的输入,同理即可得到下一时刻生成的伪节点。反复如上步骤T次,即可得到一个长度为T的伪节点序列seqt∈FSEQ。For example, a standard normal distribution and an all-zero vector in the transaction network can be used as initial values, respectively, and input into the hidden layer and input layer of the computing unit of the generator at the first moment, and the calculation at the current moment can be obtained. The output layer of the unit outputs vector values. The vector will be converted into a one-hot encoding when it is output, and the encoding value is the element number corresponding to 1, which can be regarded as the first generated pseudo node. Then, the one-hot encoding corresponding to the node is used as the input of the input layer of the computing unit at the next moment, and the pseudo node generated at the next moment can be obtained in the same way. By repeating the above steps T times, a pseudo-node sequence seq t ∈ FSEQ of length T can be obtained.
其中,每个计算单元可以通过如下步骤(2)~(6)的计算,得到计算单元输出层的结果。Wherein, each computing unit can obtain the result of the output layer of the computing unit through the following steps (2)-(6).
ft=σ(Wf·CONCAT(ot-1,ht)+bf) (2)f t =σ(W f ·CONCAT(o t-1 ,h t )+b f ) (2)
it=σ(Wi·CONCAT(ot-1,ht)+bi) (3)i t =σ(W i ·CONCAT(o t-1 ,h t )+b i ) (3)
ot=σ(Wo·CONCAT(ot-1,ht)+bo)*tanh(Ct) (6)o t =σ(W o ·CONCAT(o t-1 ,h t )+b o )*tanh(C t ) (6)
其中,Wf,Wi,WC,Wo和bf,bi,bC,bo分别是映射矩阵和偏置向量,用于做线性变化。ht和ot分别代表了t时刻计算单元的输入和输出。σ(·)和tanh(·)均为激活函数,增加模型的学习能力。Ct代表了连接相邻两个时刻计算单元的状态值,长短期记忆网络即通过这个状态值来实现对前序数据的选择性遗忘和记忆。Among them, W f ,W i ,W C ,W o and b f ,b i ,b C ,b o are the mapping matrix and the bias vector respectively, which are used for linear change. h t and o t represent the input and output of the computing unit at time t, respectively. Both σ(·) and tanh(·) are activation functions, which increase the learning ability of the model. C t represents the state value of the computing unit connecting two adjacent moments, and the long-term and short-term memory network realizes the selective forgetting and memory of the previous data through this state value.
需要说明的是,激活函数一般可以为指数函数,用于将结果做一个非线性变换。It should be noted that the activation function can generally be an exponential function, which is used to perform a nonlinear transformation on the result.
在操作S404,利用图卷积网络处理交易网络,得到隐藏特征。In operation S404, a graph convolutional network is used to process the transaction network to obtain hidden features.
根据本公开实施例,可以如图5所示在图卷积网络的隐藏层进行三步操作,第一聚合操作,例如可以根据下式(7)进行操作:According to the embodiment of the present disclosure, three-step operations can be performed on the hidden layer of the graph convolutional network as shown in FIG. 5 , and the first aggregation operation can be performed, for example, according to the following formula (7):
其中,代表当前隐藏层前一层中节点u的隐藏特征向量。特别地,当k=1(第一个隐藏层)时,等于节点u对应客户的用卡行为特征组成的向量。N(v)代表节点v在构造的客户-商家户交易网络中,客户v的二阶邻居客户节点(即和客户v有某个相同商家发生过交易行为的其它客户)。AVG表示对向量中各元素求平均值的操作。in, Represents the hidden feature vector of node u in the previous layer of the current hidden layer. In particular, when k=1 (the first hidden layer), It is equal to the vector composed of the card-using behavior characteristics of the customer corresponding to the node u. N(v) represents the second-order neighbor customer node of customer v in the customer-merchant merchant transaction network constructed by node v (ie, other customers who have transaction behavior with the same merchant as customer v). AVG represents the operation of averaging the elements in a vector.
第二池化操作,例如可以根据下式(8)进行操作:The second pooling operation, for example, can be performed according to the following formula (8):
其中,σ(·)代表非线性的激活函数,用来增加图卷积网络的学习能力,一般可以选择ReLu函数。Wk代表一个线性的映射矩阵,用来做降维处理。CONCAT(a,b)表示将a与b两个向量做级联操作。其中,a表示向量;b表示向量。Among them, σ( ) represents the nonlinear activation function, which is used to increase the learning ability of the graph convolution network. Generally, the ReLu function can be selected. W k represents a linear mapping matrix for dimensionality reduction. CONCAT(a,b) means to concatenate the two vectors a and b. Among them, a means vector; b means vector.
第三对每个节点,在当前层计算得到的池化后的初始隐藏特征向量,做如下式(9)的正则化操作作为最后的输出,保证模型的鲁棒性:Thirdly, for each node, the pooled initial hidden feature vector calculated in the current layer is subjected to the regularization operation of the following formula (9) as the final output to ensure the robustness of the model:
其中,||·||代表向量的二范数。where ||·|| represents the two-norm of the vector.
需要说明的是,可以将每个用户的用卡行为特征和相邻用户间的关系信息输入到上述图卷积网络中,最终得到每个节点的隐藏特征向量。It should be noted that the card-using behavior characteristics of each user and the relationship information between adjacent users can be input into the above graph convolutional network, and finally the hidden feature vector of each node is obtained.
在操作S405,将真实序列信息、伪序列信息以及隐藏特征输入初始生成对抗网络中的判别器,输出判别分数。In operation S405, the real sequence information, pseudo sequence information and hidden features are input into the discriminator in the initial generation adversarial network, and a discriminant score is output.
根据本公开实施例,判别器可以包括长短期记忆网络,可以在最后一个计算单元输出一个针对节点序列的判别分数。According to an embodiment of the present disclosure, the discriminator may include a long short-term memory network, and may output a discriminant score for the node sequence at the last computing unit.
在操作S406,基于判别分数,调整初始生成对抗网络的参数。In operation S406, based on the discriminant score, parameters of the initial generative adversarial network are adjusted.
根据本公开实施例,可以将判别分数带入损失函数计算损失值,通过不断调整初始生成对抗网络的参数,使训练收敛,得到预先训练好的生成对抗网络。According to the embodiment of the present disclosure, the discriminant score can be brought into the loss function to calculate the loss value, and by continuously adjusting the parameters of the initial generative adversarial network, the training is converged, and a pre-trained generative adversarial network is obtained.
例如,生成对抗网络模型的损失函数可以如下式(10)所示:For example, the loss function of the generative adversarial network model can be expressed as the following equation (10):
其中,fθ(seqi)表示针对真实序列信息生成对抗网络的判别器输出的判别分数;fθ(seqt)表示针对伪序列信息生成对抗网络的判别器输出的判别分数;和分别表示针对真实序列信息以及伪序列信息的生成对抗网络的参数。Among them, f θ (seq i ) represents the discrimination score of the discriminator output of the adversarial network generated for real sequence information; f θ (seq t ) represents the discrimination score of the discriminator output of the adversarial network generated for pseudo-sequence information; and represent the parameters of the generative adversarial network for real sequence information and pseudo-sequence information, respectively.
为了训练用于信用卡额度评估的生成对抗网络,对于伪序列信息,该分数应该尽量低;反之,对于真实序列信息,应该尽量高。可以用下述优化目标如式(11)所示,给定学习率,配合Adam优化方法即可学习得到最优的参数。In order to train a generative adversarial network for credit card limit evaluation, the score should be as low as possible for pseudo-sequence information; conversely, it should be as high as possible for real-sequence information. The following optimization objective can be used as shown in equation (11), given the learning rate, and the Adam optimization method can be used to learn the optimal parameters.
minG maxD V(D,G) (11)min G max D V(D,G) (11)
其中,D代表判别器,G代表生成器。Among them, D represents the discriminator and G represents the generator.
根据本公开的实施例,在考虑用户的用卡行为特征信息之外,还通过获取隐藏特征以及相邻用户间的关系信息,在生成对抗网络中加入了对用户关联性数据的学习,在对信用卡额度进行评估时可以得到更为准确合理的评估结果。也能够很好的适用于复杂的信用卡交易网络中,避免一些异常交易数据对额度评估带来的不利影响,使得用于信用卡额度评估的生成对抗网络更为鲁棒与可信。According to the embodiments of the present disclosure, in addition to considering the user's card-using behavior feature information, the learning of user correlation data is added to the generative adversarial network by acquiring hidden features and relationship information between adjacent users. When evaluating the credit card limit, a more accurate and reasonable evaluation result can be obtained. It can also be well applied to the complex credit card transaction network, avoiding the adverse effects of some abnormal transaction data on the limit evaluation, making the generative adversarial network used for credit card limit evaluation more robust and credible.
根据本公开的实施例,利用初始生成对抗网络中的生成器处理交易网络,生成伪序列信息可以包括:将预设初始值输入初始生成对抗网络中的生成器的计算单元,输出计算向量;基于计算向量,获取伪序列信息。其中,预设初始值可以是根据交易网络中服从预设规则的值;预设规则例如可以是服从标准正态分布或者全零向量。According to an embodiment of the present disclosure, using a generator in an initial generative adversarial network to process a transaction network, and generating pseudo-sequence information may include: inputting a preset initial value into a calculation unit of the generator in the initial generative adversarial network, and outputting a calculation vector; Calculate the vector to obtain pseudo-sequence information. The preset initial value may be a value that obeys a preset rule in the trading network; the preset rule may be, for example, obeying a standard normal distribution or an all-zero vector.
根据本公开的实施例,考虑异常交易数据对额度评估的影响,利用生成器生成的伪序列信息参与生成对抗网络的训练,有利于训练好的生成对抗网络进行信用卡额度值的准确评估。According to the embodiments of the present disclosure, considering the influence of abnormal transaction data on the limit evaluation, using the pseudo-sequence information generated by the generator to participate in the training of the generative adversarial network is conducive to the accurate evaluation of the credit card limit value of the trained generative adversarial network.
根据本公开的实施例,利用图卷积网络处理交易网络,得到隐藏特征可以包括:将真实用户的用卡行为特征和相邻用户间的关系信息输入图卷积网络;在图卷积网络的隐藏层进行聚合操作,得到初始隐藏特征;对初始隐藏特征进行池化操作,得到池化后的初始隐藏特征;将池化后的初始隐藏特征进行预设规则操作,输出隐藏特征。According to an embodiment of the present disclosure, using a graph convolutional network to process a transaction network to obtain hidden features may include: inputting card-using behavior characteristics of real users and relationship information between adjacent users into the graph convolutional network; The hidden layer performs the aggregation operation to obtain the initial hidden features; performs the pooling operation on the initial hidden features to obtain the pooled initial hidden features; performs the preset rule operation on the pooled initial hidden features to output the hidden features.
根据本公开的实施例,通过获取隐藏特征在生成对抗网络中加入了对用户关联性数据的学习,在对信用卡额度进行评估时可以得到更为准确合理的评估结果。According to the embodiments of the present disclosure, the learning of user correlation data is added to the generative adversarial network by acquiring hidden features, and a more accurate and reasonable evaluation result can be obtained when evaluating the credit card limit.
基于上述信用卡额度评估方法,本公开还提供了一种信用卡额度评估装置。以下将结合图6对该装置进行详细描述。Based on the above credit card limit evaluation method, the present disclosure also provides a credit card limit evaluation device. The device will be described in detail below with reference to FIG. 6 .
图6示意性示出了根据本公开实施例的信用卡额度评估装置的结构框图。FIG. 6 schematically shows a structural block diagram of a credit card limit evaluation apparatus according to an embodiment of the present disclosure.
如图6所示,该实施例的信用卡额度评估装置600包括获取模块610、生成模块620和评估模块630。As shown in FIG. 6 , the
获取模块610用于根据待评估用户的信用卡交易数据,获取待评估用户的用卡行为特征。在一实施例中,获取模块610可以用于执行前文描述的操作S201,在此不再赘述。The obtaining
生成模块620用于将待评估用户的用卡行为特征输入预先训练好的生成对抗网络中的生成器,输出节点交易数据序列,其中,节点交易数据序列包括待评估用户的第一节点交易数据序列和被构造用户的第二节点交易数据序列;预先训练好的生成对抗网络基于真实序列信息、伪序列信息、隐藏特征训练得到;其中,真实序列信息包括交易网络中真实用户的用卡行为特征和相邻真实用户间的关系信息;伪序列信息包括初始生成对抗网络中的生成器生成的伪用户的用卡行为特征和伪相邻用户间的关系信息;隐藏特征包括交易网络中未相邻真实用户间的关系信息。在一实施例中,生成模块620可以用于执行前文描述的操作S202,在此不再赘述。The
评估模块630用于基于节点交易数据序列,得到待评估用户的信用卡额度评估值。在一实施例中,评估模块630可以用于执行前文描述的操作S203,在此不再赘述。The
根据本公开的实施例,获取模块610、生成模块620和评估模块630中的任意多个模块可以合并在一个模块中实现,或者其中的任意一个模块可以被拆分成多个模块。或者,这些模块中的一个或多个模块的至少部分功能可以与其他模块的至少部分功能相结合,并在一个模块中实现。根据本公开的实施例,获取模块610、生成模块620和评估模块630中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,获取模块610、生成模块620和评估模块630中的至少一个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。According to an embodiment of the present disclosure, any number of modules in the
图7示意性示出了根据本公开实施例的适于实现信用卡额度评估方法的电子设备的方框图。FIG. 7 schematically shows a block diagram of an electronic device suitable for implementing a credit card limit assessment method according to an embodiment of the present disclosure.
如图7所示,根据本公开实施例的电子设备700包括处理器701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储部分708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。处理器701例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC))等等。处理器701还可以包括用于缓存用途的板载存储器。处理器701可以包括用于执行根据本公开实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。As shown in FIG. 7 , an
在RAM 703中,存储有电子设备700操作所需的各种程序和数据。处理器701、ROM702以及RAM 703通过总线704彼此相连。处理器701通过执行ROM 702和/或RAM 703中的程序来执行根据本公开实施例的方法流程的各种操作。需要注意,所述程序也可以存储在除ROM 702和RAM 703以外的一个或多个存储器中。处理器701也可以通过执行存储在所述一个或多个存储器中的程序来执行根据本公开实施例的方法流程的各种操作。In the
根据本公开的实施例,电子设备700还可以包括输入/输出(I/O)接口705,输入/输出(I/O)接口705也连接至总线704。电子设备700还可以包括连接至I/O接口705的以下部件中的一项或多项:包括键盘、鼠标等的输入部分706;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分707;包括硬盘等的存储部分708;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分709。通信部分709经由诸如因特网的网络执行通信处理。驱动器710也根据需要连接至I/O接口705。可拆卸介质711,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器710上,以便于从其上读出的计算机程序根据需要被安装入存储部分708。According to an embodiment of the present disclosure, the
本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。The present disclosure also provides a computer-readable storage medium. The computer-readable storage medium may be included in the device/apparatus/system described in the above embodiments; it may also exist alone without being assembled into the device/system. device/system. The above-mentioned computer-readable storage medium carries one or more programs, and when the above-mentioned one or more programs are executed, implement the method according to the embodiment of the present disclosure.
根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM 702和/或RAM 703和/或ROM 702和RAM 703以外的一个或多个存储器。According to an embodiment of the present disclosure, the computer-readable storage medium may be a non-volatile computer-readable storage medium, such as, but not limited to, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM) , erasable programmable read only memory (EPROM or flash memory), portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In this disclosure, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. For example, according to embodiments of the present disclosure, a computer-readable storage medium may include one or more memories other than
本公开的实施例还包括一种计算机程序产品,其包括计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。当计算机程序产品在计算机系统中运行时,该程序代码用于使计算机系统实现本公开实施例所提供的方法。Embodiments of the present disclosure also include a computer program product comprising a computer program containing program code for performing the method illustrated in the flowchart. When the computer program product runs in the computer system, the program code is used to make the computer system implement the methods provided by the embodiments of the present disclosure.
在该计算机程序被处理器701执行时执行本公开实施例的系统/装置中限定的上述功能。根据本公开的实施例,上文描述的系统、装置、模块、单元等可以通过计算机程序模块来实现。When the computer program is executed by the
在一种实施例中,该计算机程序可以依托于光存储器件、磁存储器件等有形存储介质。在另一种实施例中,该计算机程序也可以在网络介质上以信号的形式进行传输、分发,并通过通信部分709被下载和安装,和/或从可拆卸介质711被安装。该计算机程序包含的程序代码可以用任何适当的网络介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。In one embodiment, the computer program may rely on a tangible storage medium such as an optical storage device, a magnetic storage device, or the like. In another embodiment, the computer program may also be transmitted, distributed in the form of a signal over a network medium, and downloaded and installed through the
在这样的实施例中,该计算机程序可以通过通信部分709从网络上被下载和安装,和/或从可拆卸介质711被安装。在该计算机程序被处理器701执行时,执行本公开实施例的系统中限定的上述功能。根据本公开的实施例,上文描述的系统、设备、装置、模块、单元等可以通过计算机程序模块来实现。In such an embodiment, the computer program may be downloaded and installed from the network via the
根据本公开的实施例,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例提供的计算机程序的程序代码,具体地,可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。程序设计语言包括但不限于诸如Java,C++,python,“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。According to the embodiments of the present disclosure, the program code for executing the computer program provided by the embodiments of the present disclosure may be written in any combination of one or more programming languages. programming language, and/or assembly/machine language to implement these computational programs. Programming languages include, but are not limited to, languages such as Java, C++, python, "C" or similar programming languages. The program code may execute entirely on the user computing device, partly on the user device, partly on a remote computing device, or entirely on the remote computing device or server. Where remote computing devices are involved, the remote computing devices may be connected to the user computing device over any kind of network, including a local area network (LAN) or wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or can be implemented using A combination of dedicated hardware and computer instructions is implemented.
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。Those skilled in the art will appreciate that various combinations and/or combinations of features recited in various embodiments and/or claims of the present disclosure are possible, even if such combinations or combinations are not expressly recited in the present disclosure. In particular, various combinations and/or combinations of the features recited in the various embodiments of the present disclosure and/or in the claims may be made without departing from the spirit and teachings of the present disclosure. All such combinations and/or combinations fall within the scope of this disclosure.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. Although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210410903.1A CN114820164A (en) | 2022-04-19 | 2022-04-19 | Credit card limit evaluation method, device, equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210410903.1A CN114820164A (en) | 2022-04-19 | 2022-04-19 | Credit card limit evaluation method, device, equipment and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114820164A true CN114820164A (en) | 2022-07-29 |
Family
ID=82504777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210410903.1A Pending CN114820164A (en) | 2022-04-19 | 2022-04-19 | Credit card limit evaluation method, device, equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114820164A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020123962A1 (en) * | 2001-03-02 | 2002-09-05 | Bryman Evan L. | System and method for providing a reaffirmation credit card including an increasing credit limit |
US20090313163A1 (en) * | 2004-02-13 | 2009-12-17 | Wang ming-huan | Credit line optimization |
CN107993140A (en) * | 2017-11-22 | 2018-05-04 | 深圳市耐飞科技有限公司 | A kind of personal credit's methods of risk assessment and system |
CN111062808A (en) * | 2019-12-24 | 2020-04-24 | 深圳市信联征信有限公司 | Credit card limit evaluation method, device, computer equipment and storage medium |
CN111738837A (en) * | 2020-06-22 | 2020-10-02 | 中国银行股份有限公司 | Credit card limit processing method and device |
-
2022
- 2022-04-19 CN CN202210410903.1A patent/CN114820164A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020123962A1 (en) * | 2001-03-02 | 2002-09-05 | Bryman Evan L. | System and method for providing a reaffirmation credit card including an increasing credit limit |
US20090313163A1 (en) * | 2004-02-13 | 2009-12-17 | Wang ming-huan | Credit line optimization |
CN107993140A (en) * | 2017-11-22 | 2018-05-04 | 深圳市耐飞科技有限公司 | A kind of personal credit's methods of risk assessment and system |
CN111062808A (en) * | 2019-12-24 | 2020-04-24 | 深圳市信联征信有限公司 | Credit card limit evaluation method, device, computer equipment and storage medium |
CN111738837A (en) * | 2020-06-22 | 2020-10-02 | 中国银行股份有限公司 | Credit card limit processing method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11868891B2 (en) | Machine-learning techniques for monotonic neural networks | |
US10558913B1 (en) | Machine-learning techniques for monotonic neural networks | |
US11423365B2 (en) | Transaction card system having overdraft capability | |
US11227217B1 (en) | Entity transaction attribute determination method and apparatus | |
JP2020522832A (en) | System and method for issuing a loan to a consumer determined to be creditworthy | |
US20210272195A1 (en) | Instant Lending Decisions | |
CN114638695A (en) | Credit evaluation method, device, equipment and medium | |
CN111681044A (en) | Method and device for processing point exchange cheating behaviors | |
WO2023185125A1 (en) | Product resource data processing method and apparatus, electronic device and storage medium | |
CN114493853A (en) | Credit rating evaluation method, device, electronic device and storage medium | |
CN111695988A (en) | Information processing method, information processing apparatus, electronic device, and medium | |
CN117670364A (en) | Abnormal transaction identification method, device, equipment and storage medium | |
CN112446777A (en) | Credit evaluation method, device, equipment and storage medium | |
CN114820164A (en) | Credit card limit evaluation method, device, equipment and medium | |
CN115063145A (en) | Prediction method, device, electronic device and storage medium of transaction risk factor | |
CN114897564A (en) | Target customer recommendation method and device, electronic equipment and storage medium | |
CN114820196A (en) | Information pushing method, device, equipment and medium | |
CN112446708A (en) | Risk identification method and device | |
US20240249116A1 (en) | System, Method, and Computer Program Product for Adaptive Feature Optimization During Unsupervised Training of Classification Models | |
US20230259786A1 (en) | Obfuscation of encoded data with limited supervision | |
EP4293534A1 (en) | Blockchain address classification method and apparatus | |
US20220277327A1 (en) | Computer-based systems for data distribution allocation utilizing machine learning models and methods of use thereof | |
CN109992745A (en) | Data processing method and system, computer system and computer readable medium | |
CN118673530A (en) | Data processing method, device, equipment and storage medium | |
CN118229427A (en) | Risk group identification method, apparatus, electronic device, medium and program product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |