CN114818191B - Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading - Google Patents

Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading Download PDF

Info

Publication number
CN114818191B
CN114818191B CN202210482316.3A CN202210482316A CN114818191B CN 114818191 B CN114818191 B CN 114818191B CN 202210482316 A CN202210482316 A CN 202210482316A CN 114818191 B CN114818191 B CN 114818191B
Authority
CN
China
Prior art keywords
substructure
test
actuator
displacement
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210482316.3A
Other languages
Chinese (zh)
Other versions
CN114818191A (en
Inventor
许国山
郑力畅
姜禹彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN202210482316.3A priority Critical patent/CN114818191B/en
Publication of CN114818191A publication Critical patent/CN114818191A/en
Application granted granted Critical
Publication of CN114818191B publication Critical patent/CN114818191B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

基于振动台‑作动器联合多自由度加载实时混合试验方法,涉及实时混合试验技术领域。解决了如何提升实时混合试验方法的适用性和恢复力计算准确性差的问题。本发明先将试验整体结构划分成数值部分和试验部分后,并建立相应子结构的模型,在当前时刻地震波和上一时刻试验子结构修正后的恢复力共同作用在上、下部数值模型分别所对应的运动方程上,获得试验子结构上、下交界面的运动量,并根据交界面的运动量通过滑动模态控制器生成相应的控制指令对振动台和作动器进行控制,同时采集作动器和振动台出力的反力之和,作为当前时刻试验子结构的实际恢复力,再对恢复力进行修正,随着时间变化不断重复上述过程,至地震波消失。主要用于计算恢复力。

Figure 202210482316

The invention relates to a real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading, and relates to the technical field of real-time hybrid test. The problem of how to improve the applicability of the real-time hybrid test method and the poor accuracy of restoring force calculation is solved. In the present invention, the test overall structure is firstly divided into a numerical part and a test part, and a model of the corresponding substructure is established, and the seismic wave at the current moment and the restorative force after the correction of the test substructure at the previous moment act together on the upper and lower numerical models respectively. According to the corresponding motion equation, the motion of the upper and lower interfaces of the test substructure is obtained, and according to the motion of the interface, the corresponding control instructions are generated through the sliding mode controller to control the shaking table and the actuator, and at the same time, the motion of the actuator is collected. The sum of the reaction force and the output force of the shaking table is used as the actual restoring force of the test substructure at the current moment, and then the restoring force is corrected, and the above process is repeated as time changes until the seismic wave disappears. Mainly used to calculate resilience.

Figure 202210482316

Description

基于振动台-作动器联合多自由度加载实时混合试验方法Real-time hybrid test method based on shaker-actuator combined multi-degree-of-freedom loading

技术领域Technical Field

本发明涉及实时混合试验技术领域。The invention relates to the technical field of real-time mixing test.

背景技术Background Art

实时混合试验是当前大型结构震动测试中最为前沿的试验方法之一。与传统的拟动力试验相比,实时混合试验更加直观且真实地再现了整体结构的一部分在真实动力荷载下的响应,因此,在模型精度及边界重现程度相同的情况下,实时混合试验结果往往比传统拟动力试验结果更加令人信服。为了保证对动力子结构试验加载的有效性,将振动台作为加载装置或加载装置的一部分,开展的子结构试验被称为振动台子结构试验。常规的振动台子结构试验一般将结构上部构件划分为试验子结构,用振动台模拟下部构件对其的作用,该优点在于试验加载设备简单。The real-time hybrid test is one of the most cutting-edge test methods in the current large-scale structural vibration test. Compared with the traditional pseudo-dynamic test, the real-time hybrid test more intuitively and realistically reproduces the response of a part of the overall structure under the real dynamic load. Therefore, under the same model accuracy and boundary reproduction degree, the real-time hybrid test results are often more convincing than the traditional pseudo-dynamic test results. In order to ensure the effectiveness of the loading of the dynamic substructure test, the substructure test carried out with the vibration table as a loading device or part of the loading device is called a vibration table substructure test. Conventional vibration table substructure tests generally divide the upper components of the structure into test substructures, and use the vibration table to simulate the effects of the lower components on them. The advantage is that the test loading equipment is simple.

然而,对于类似走线架的横向层间剪切模型来说,并没有传统意义上的上下之分,而是在水平向上左右划分结构,在这类试验中,将试验子结构的一侧锚固在振动台上加载地震波,另一侧还需要作动器模拟数值子结构对其的作用。However, for transverse interlayer shear models such as cable trays, there is no traditional distinction between up and down, but the structure is divided horizontally to the left and right. In this type of test, one side of the test substructure is anchored on the vibration table to load seismic waves, and the other side also requires an actuator to simulate the effect of the numerical substructure on it.

因此,存在现有的震动测试中实时混合试验方法的适用性差;而在一般试验中需克服以下三个问题:1、如何保证结构的边界条件精确地复现;2、振动台与作动器的耦合加载策略;3、在加载过程中,振动台与作动器不可避免地存在时滞,这将使得传递给数值子结构的恢复力存在误差。而现有的实时混合试验方法在试验过程中仅利用一个简化的自由度进行试验,无法保证结构的边界条件精确地复现,导致计算过程中的累积误差不断加大,再加上不可避免地时滞,最终导致恢复力计算准确性差,综合以上,如何提升实时混合试验方法的适用性及准确性亟需解决。Therefore, the applicability of the real-time hybrid test method in the existing vibration test is poor; and in general tests, the following three problems need to be overcome: 1. How to ensure that the boundary conditions of the structure are accurately reproduced; 2. The coupling loading strategy of the vibration table and the actuator; 3. During the loading process, there is inevitably a time lag between the vibration table and the actuator, which will cause errors in the restoring force transmitted to the numerical substructure. The existing real-time hybrid test method only uses a simplified degree of freedom to conduct the test during the test, which cannot ensure the accurate reproduction of the boundary conditions of the structure, resulting in an increasing cumulative error in the calculation process, coupled with the inevitable time lag, which ultimately leads to poor accuracy in the calculation of the restoring force. In summary, how to improve the applicability and accuracy of the real-time hybrid test method needs to be solved urgently.

发明内容Summary of the invention

本发明目的是为了解决如何提升实时混合试验方法的适用性和恢复力计算准确性差的问题,本发明提供了一种基于振动台-作动器联合多自由度加载实时混合试验方法。The purpose of the present invention is to solve the problem of how to improve the applicability of a real-time hybrid test method and the poor accuracy of restoring force calculation. The present invention provides a real-time hybrid test method based on a vibration table-actuator combined with multi-degree-of-freedom loading.

基于振动台-作动器联合多自由度加载实时混合试验方法,该方法包括:A real-time hybrid test method based on a shaker-actuator combined multi-degree-of-freedom loading method includes:

S1、将试验整体结构沿长度方向依次划分成上部数值子结构、试验子结构和下部数值子结构后,建立上部数值子结构、试验子结构和下部数值子结构的模型,分别为上部数值模型、试验子结构模型和下部数值模型;试验子结构放置在振动台;S1. After the whole test structure is divided into an upper numerical substructure, a test substructure and a lower numerical substructure in sequence along the length direction, the models of the upper numerical substructure, the test substructure and the lower numerical substructure are established, which are the upper numerical model, the test substructure model and the lower numerical model respectively; the test substructure is placed on the vibration table;

S2、设置初始时刻i=1时,试验子结构的实际恢复力R1=0,试验子结构的修正后的恢复力R'1=0,作动器的伸长量为0;S2, when the initial time i=1 is set, the actual restoring force R 1 of the test substructure is 0, the corrected restoring force R' 1 of the test substructure is 0, and the elongation of the actuator is 0;

S3、在第i+1时刻,将i时刻试验子结构修正后的恢复力R'1和当前第i+1时刻地震波产生的力共同作用在上、下部数值模型分别所对应的运动方程上,获得上、下交界面的运动量,通过非线性变换对上交界面的运动量进行处理,获得作动器的目标伸长量,同时还对作动器进行时滞补偿;i为整数,其中,S3. At the i+1th moment, the restoring force R'1 corrected by the test substructure at the ith moment and the force generated by the seismic wave at the current i+1th moment act together on the motion equations corresponding to the upper and lower numerical models, respectively, to obtain the motion of the upper and lower interfaces, and process the motion of the upper interface through nonlinear transformation to obtain the target elongation of the actuator, while also performing time lag compensation on the actuator; i is an integer, where

上、下交界面的运动量均包括水平面内的位移量和转角,上交界面为上部数值子结构与试验子结构间的交界面,下交界面为下部数值子结构与试验子结构间的交界面;The motion of the upper and lower interfaces includes the displacement and rotation angle in the horizontal plane. The upper interface is the interface between the upper numerical substructure and the test substructure, and the lower interface is the interface between the lower numerical substructure and the test substructure.

S4、滑动模态控制器根据作动器的目标伸长量生成对作动器进行驱动控制的目标位移指令,还根据下交界面的运动量生成对振动台进行驱动控制的震动位移指令,作动器和振动台接收到指令后,共同对试验子结构进行驱动使试验子结构产生移动,此时,采集作动器和振动台的出力,并将作动器和振动台出力合力的反力,作为当前i+1时刻试验子结构的实际恢复力Ri+1S4, the sliding mode controller generates a target displacement instruction for driving and controlling the actuator according to the target elongation of the actuator, and also generates a vibration displacement instruction for driving and controlling the vibration table according to the motion of the lower interface. After receiving the instruction, the actuator and the vibration table jointly drive the test substructure to move the test substructure. At this time, the output of the actuator and the vibration table is collected, and the reaction force of the combined force of the actuator and the vibration table output is used as the actual restoring force R i+1 of the test substructure at the current time i+1;

S5、通过力修正策略结合试验子结构模型及试验子结构的真实位移,来修正恢复力Ri+1,获得修正后的恢复力R′i+1S5. Correct the restoring force R i+1 by combining the test substructure model and the actual displacement of the test substructure through a force correction strategy to obtain a corrected restoring force R′ i+1 ;

S6、令i=i+1,重复执行步骤S3至S5,逐步积分求解,直至地震波消失,完成试验。S6. Let i=i+1, repeat steps S3 to S5, and gradually integrate and solve until the seismic wave disappears, thus completing the test.

原理分析:Principle analysis:

本发明方法先将试验整体结构划分成数值部分和试验部分后,在计算机中建立数值子结构与试验子结构的模型,数值子结构采用逐步积分方法在数值计算机中进行计算,试验子结构采用振动台-作动器联合加载。在逐步积分的求解过程中,借助试验子结构的简化模型对采集回来的试验子结构恢复力进行修正。在试验加载过程中,需对边界运动量进行非线性变换才能传递给单个作动器进行单独加载,同时采集到的作动器出力也需要通过非线性变换得到试验子结构的实际恢复力。The method of the present invention first divides the overall test structure into a numerical part and a test part, and then establishes models of a numerical substructure and a test substructure in a computer. The numerical substructure is calculated in a numerical computer using a step-by-step integration method, and the test substructure is loaded by a vibration table-actuator joint. In the step-by-step integration solution process, the collected restoring force of the test substructure is corrected with the help of a simplified model of the test substructure. In the test loading process, the boundary motion needs to be nonlinearly transformed before it can be transferred to a single actuator for separate loading. At the same time, the collected actuator output also needs to be transformed nonlinearly to obtain the actual restoring force of the test substructure.

本发明的有益效果:Beneficial effects of the present invention:

一、本发明提出了基于振动台-作动器联合多自由度加载实时混合试验方法,可应用于整体为竖向层间结构以及横向层间剪切模型结构的实时混合试验,提高混合试验的适用性。采用位移控制模式,进行了新型的子结构划分方式。1. The present invention proposes a real-time hybrid test method based on a shaking table-actuator combined with multi-degree-of-freedom loading, which can be applied to real-time hybrid tests of vertical interlayer structures and transverse interlayer shear model structures, thereby improving the applicability of hybrid tests. A new substructure division method is carried out by adopting a displacement control mode.

二、本发明在考虑了作动器之间的耦合以及加载系统的非线性,避免由于作动器的测量结果受位移和转角影响导致出现误差,使得试验结果更加准确。Second, the present invention takes into account the coupling between actuators and the nonlinearity of the loading system, thereby avoiding errors caused by the measurement results of the actuators being affected by displacement and rotation angle, making the test results more accurate.

三、本发明所述的试验方法,在使用常规的时滞补偿方法后,对测量的恢复力采用力修正策略,可以减小在试验中累积的恢复力误差,进一步提高了实时混合试验的准确性。3. The test method described in the present invention adopts a force correction strategy for the measured restoring force after using the conventional time-lag compensation method, which can reduce the accumulated restoring force error in the test and further improve the accuracy of the real-time mixing test.

四、常规的混合试验由于加载设备较少,因此经常忽略了其他自由度的模拟,导致试验结果误差较大。本发明可以很好地解决这类问题,通过试验子结构分别与上、下部数值子结构间的交界面的运动量,精确地模拟结构边界的多自由度,为试验结果的准确性奠定基础。Fourth, due to the small number of loading devices, conventional hybrid tests often ignore the simulation of other degrees of freedom, resulting in large errors in test results. The present invention can solve this problem well, and accurately simulate the multi-degrees of freedom of the structural boundary by measuring the movement of the interface between the test substructure and the upper and lower numerical substructures, laying a foundation for the accuracy of the test results.

五、本发明适用于土木领域、交通领域、桥梁领域、航天领域、机械领域和通信工程领域等。5. The present invention is applicable to the fields of civil engineering, transportation, bridges, aerospace, machinery, and communications engineering, etc.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明所述的基于振动台-作动器联合多自由度加载实时混合试验方法的原理示意图;FIG1 is a schematic diagram of the principle of the real-time hybrid test method based on the vibration table-actuator combined multi-degree-of-freedom loading according to the present invention;

图2为本发明对三层建筑结构模型提出的子结构划分方式下的试验原理示意图;其中,M1为上部数值子结构的质量,C1为上部数值子结构的阻尼,K1为上部数值子结构的刚度,M2为上部数值子结构的质量,C2为上部数值子结构的阻尼,K2为上部数值子结构的刚度;Fig. 2 is a schematic diagram of the test principle of the substructure division method proposed by the present invention for the three-story building structure model; wherein, M1 is the mass of the upper numerical substructure, C1 is the damping of the upper numerical substructure, K1 is the stiffness of the upper numerical substructure, M2 is the mass of the upper numerical substructure, C2 is the damping of the upper numerical substructure, and K2 is the stiffness of the upper numerical substructure;

图3为在4个作动器和4个位移传感器布置下,加载过程中试验子结构位移变化示意图;FIG3 is a schematic diagram of displacement changes of the test substructure during loading when four actuators and four displacement sensors are arranged;

图4为试验子结构变化前后作动器ChA、ChB、ChC和ChD的几何分析示意图;其中,图4a为变化前后作动器ChA的几何分析图,图4b为变化前后作动器ChB的几何分析图,图4c为变化前后作动器ChC的几何分析图,图4d为变化前后作动器ChD的几何分析图,FIG4 is a schematic diagram of geometric analysis of actuators ChA, ChB, ChC and ChD before and after the test substructure changes; wherein FIG4a is a geometric analysis diagram of actuator ChA before and after the change, FIG4b is a geometric analysis diagram of actuator ChB before and after the change, FIG4c is a geometric analysis diagram of actuator ChC before and after the change, and FIG4d is a geometric analysis diagram of actuator ChD before and after the change.

图5为试验子结构变化前后位移传感器LVDT1、LVDT2、LVDT3和LVDT4的几何分析示意图;其中,图5a为试验子结构变化前后位移传感器LVDT1的几何分析图,图5b为试验子结构变化前后位移传感器LVDT2的几何分析图,图5c为试验子结构变化前后位移传感器LVDT3的几何分析图,图5d为试验子结构变化前后位移传感器LVDT4的几何分析图;FIG5 is a schematic diagram of geometric analysis of displacement sensors LVDT1, LVDT2, LVDT3 and LVDT4 before and after the test substructure changes; wherein FIG5a is a geometric analysis diagram of displacement sensor LVDT1 before and after the test substructure changes, FIG5b is a geometric analysis diagram of displacement sensor LVDT2 before and after the test substructure changes, FIG5c is a geometric analysis diagram of displacement sensor LVDT3 before and after the test substructure changes, and FIG5d is a geometric analysis diagram of displacement sensor LVDT4 before and after the test substructure changes;

图6为本发明对连续梁模型提出的新型子结构划分方式的原理示意图,其中,图6a为未划分前的连续梁模型的结构示意图,图6b为划分后的连续梁模型的结构示意图。FIG6 is a schematic diagram showing the principle of a novel substructure division method for a continuous beam model proposed by the present invention, wherein FIG6a is a schematic diagram showing the structure of the continuous beam model before division, and FIG6b is a schematic diagram showing the structure of the continuous beam model after division.

上述附图的图3至图5中,O表示未加载状态下试验子结构的质心的位置,G表示加载后试验子结构的质心的位置。In FIG. 3 to FIG. 5 of the above-mentioned drawings, O represents the position of the center of mass of the test substructure in the unloaded state, and G represents the position of the center of mass of the test substructure after loading.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that, in the absence of conflict, the embodiments of the present invention and the features in the embodiments may be combined with each other.

参见图1说明本实施方式,本实施方式所述的基于振动台-作动器联合多自由度加载实时混合试验方法,该方法包括:Referring to FIG. 1 , the present embodiment is described. The real-time hybrid test method based on the vibration table-actuator combined multi-degree-of-freedom loading described in the present embodiment comprises:

S1、将试验整体结构沿长度方向依次划分成上部数值子结构、试验子结构和下部数值子结构后,建立上部数值子结构、试验子结构和下部数值子结构的模型,分别为上部数值模型、试验子结构模型和下部数值模型;试验子结构放置在振动台;S1. After the whole test structure is divided into an upper numerical substructure, a test substructure and a lower numerical substructure in sequence along the length direction, the models of the upper numerical substructure, the test substructure and the lower numerical substructure are established, which are the upper numerical model, the test substructure model and the lower numerical model respectively; the test substructure is placed on the vibration table;

S2、设置初始时刻i=1时,试验子结构的实际恢复力R1=0,试验子结构的修正后的恢复力R'1=0,作动器的伸长量为0;S2, when the initial time i=1 is set, the actual restoring force R 1 of the test substructure is 0, the corrected restoring force R' 1 of the test substructure is 0, and the elongation of the actuator is 0;

S3、在第i+1时刻,将i时刻试验子结构修正后的恢复力R'1和当前第i+1时刻地震波产生的力共同作用在上、下部数值模型分别所对应的运动方程上,获得上、下交界面的运动量,通过非线性变换对上交界面的运动量进行处理,获得作动器的目标伸长量,同时还对作动器进行时滞补偿;i为整数,其中,S3. At the i+1th moment, the restoring force R'1 corrected by the test substructure at the ith moment and the force generated by the seismic wave at the current i+1th moment act together on the motion equations corresponding to the upper and lower numerical models, respectively, to obtain the motion of the upper and lower interfaces, and process the motion of the upper interface through nonlinear transformation to obtain the target elongation of the actuator, while also performing time lag compensation on the actuator; i is an integer, where

上、下交界面的运动量均包括水平面内的位移量和转角,上交界面为上部数值子结构与试验子结构间的交界面,下交界面为下部数值子结构与试验子结构间的交界面;The motion of the upper and lower interfaces includes the displacement and rotation angle in the horizontal plane. The upper interface is the interface between the upper numerical substructure and the test substructure, and the lower interface is the interface between the lower numerical substructure and the test substructure.

S4、滑动模态控制器根据作动器的目标伸长量生成对作动器进行驱动控制的目标位移指令,还根据下交界面的运动量生成对振动台进行驱动控制的震动位移指令,作动器和振动台接收到指令后,共同对试验子结构进行驱动使试验子结构产生移动,此时,采集作动器和振动台的出力,并将作动器和振动台出力合力的反力,作为当前i+1时刻试验子结构的实际恢复力Ri+1S4, the sliding mode controller generates a target displacement instruction for driving and controlling the actuator according to the target elongation of the actuator, and also generates a vibration displacement instruction for driving and controlling the vibration table according to the motion of the lower interface. After receiving the instruction, the actuator and the vibration table jointly drive the test substructure to move the test substructure. At this time, the output of the actuator and the vibration table is collected, and the reaction force of the combined force of the actuator and the vibration table output is used as the actual restoring force R i+1 of the test substructure at the current time i+1;

S5、通过力修正策略结合试验子结构模型及试验子结构的真实位移,来修正恢复力Ri+1,获得修正后的恢复力Ri+1S5. Correct the restoring force R i+1 by combining the test substructure model and the actual displacement of the test substructure through a force correction strategy to obtain a corrected restoring force R i+1 ;

S6、令i=i+1,重复执行步骤S3至S5,逐步积分求解,直至地震波消失,完成试验。S6. Let i=i+1, repeat steps S3 to S5, and gradually integrate and solve until the seismic wave disappears, thus completing the test.

本实施方式中,试验子结构的加载包括振动台和多个作动器的加载,振动台的加载是既定地震动记录的加载,作动器的加载是数值计算出的目标伸长量通过非线性变化得到的各个作动器的结果作为命令,实际恢复力Ri+1中包含作动器的恢复力和振动台的恢复力,具体应用时,可将实际恢复力Ri+1中的作动器的恢复力与地震波产生的力叠加后共同作用在上部数值模型所对应的运动方程上获得上交界面的运动量、以及将实际恢复力Ri+1中的振动台的恢复力与地震波产生的力叠加后共同作用在下部数值模型所对应的运动方程上,获得下交界面的运动量,其中,上、下部数值模型分别所对应的运动方程均可通过现有技术获得,而上、下部数值模型可根据试验整体结构的具体体现形式确定,且本发明中构建模型的过程均可通过现有技术实现。In this embodiment, the loading of the test substructure includes the loading of the vibration table and multiple actuators. The loading of the vibration table is the loading of the predetermined earthquake motion record. The loading of the actuator is the result of each actuator obtained by nonlinear change of the numerically calculated target elongation as a command. The actual restoring force Ri +1 includes the restoring force of the actuator and the restoring force of the vibration table. In specific application, the restoring force of the actuator in the actual restoring force Ri +1 can be superimposed with the force generated by the seismic wave and then acted on the motion equation corresponding to the upper numerical model to obtain the motion of the upper interface, and the restoring force of the vibration table in the actual restoring force Ri+1 can be superimposed with the force generated by the seismic wave and then acted on the motion equation corresponding to the lower numerical model to obtain the motion of the lower interface. The motion equations corresponding to the upper and lower numerical models can be obtained by the existing technology, and the upper and lower numerical models can be determined according to the specific embodiment of the overall structure of the test, and the process of constructing the model in the present invention can be realized by the existing technology.

本实施方式中的优选试验系统包括:数值计算系统、信号转换系统、试验加载系统和数据采集系统。其中,数值计算系统主要有电子计算机和实时子结构计算程序,软件优选Simulink+Dspace、Labview+NI或者其他控制系统相关软件;试验加载系统包括电液伺服作动器、振动台系统和MTS控制器;数据采集系统包括力传感器,位移传感器和加速度传感器,可根据试验要求另行配置需要的传感器。The preferred test system in this embodiment includes: a numerical calculation system, a signal conversion system, a test loading system and a data acquisition system. Among them, the numerical calculation system mainly includes an electronic computer and a real-time substructure calculation program, and the software is preferably Simulink+Dspace, Labview+NI or other control system related software; the test loading system includes an electro-hydraulic servo actuator, a vibration table system and an MTS controller; the data acquisition system includes a force sensor, a displacement sensor and an acceleration sensor, and the required sensors can be configured separately according to the test requirements.

本实施方式中,建立上部数值子结构、试验子结构和下部数值子结构的模型可通过现有技术手段获得,其具体根据试验整体结构来确定;In this embodiment, the model for establishing the upper numerical substructure, the test substructure and the lower numerical substructure can be obtained by existing technical means, which is specifically determined according to the overall structure of the test;

进一步的,作动器试件系统可以用一个线性模型来近似,表达式如下:Furthermore, the actuator specimen system can be approximated by a linear model, expressed as follows:

Figure GDA0004131405640000051
式中,a1,a2,b1,b2四个中间变量是由试验识别得到的,四个中间变量分别表示第一至第四项比例系数,dm和dc分别为位移命令与响应。
Figure GDA0004131405640000051
Wherein, a1 , a2 , b1 , b2 are four intermediate variables obtained by experimental identification, and the four intermediate variables represent the first to fourth proportional coefficients respectively, and dm and dc are displacement command and response respectively.

控制对象作动器试件系统的微分方程模型如下:The differential equation model of the control object actuator specimen system is as follows:

Figure GDA0004131405640000052
Figure GDA0004131405640000052

b1'=(KPD+KN)b1CF b 1 '=(K PD +K N )b 1 C F

b2'=(KPD+KN)b2CF b2 '=( KPD + KN ) b2CF

CF=(KN+KPD+K'E)-1 CF =( KN + KPD + K'E ) -1

式中,u为输入控制信号,

Figure GDA0004131405640000061
为等效力响应,rE为试验子结构反力,KPD为拟动力刚度,KN为数值子结构刚度,K'E为试验子结构初始切线刚度,CF为力-位移的转换系数,,b1'和b'2均为中间变量。Where u is the input control signal,
Figure GDA0004131405640000061
is the equivalent force response, r E is the reaction force of the test substructure, K PD is the pseudo-dynamic stiffness, K N is the numerical substructure stiffness, K' E is the initial tangent stiffness of the test substructure, CF is the force-displacement conversion coefficient, b 1 ' and b' 2 are both intermediate variables.

本实施方式中,选取中部一层框架作为试验子结构,选取上下两层框架作为数值子结构,这样做可充分考虑到试验子结构分别与上、下部数值子结构间的交界面的运动量,保证结构的边界条件精确地复现。试验子结构采用三自由度振动台模拟底部楼层的作用。In this implementation, the middle layer frame is selected as the test substructure, and the upper and lower layers frame are selected as the numerical substructure. This can fully consider the movement of the interface between the test substructure and the upper and lower numerical substructures, and ensure that the boundary conditions of the structure are accurately reproduced. The test substructure uses a three-degree-of-freedom vibration table to simulate the effect of the bottom floor.

进一步的,S3中、上交界面的运动量为(dxi+1,dyi+1i+1),下交界面的运动量为(dx′i+1,dy′i+1,θ′i+1),其中,Furthermore, in S3, the motion of the upper interface is (dx i+1 ,dy i+1i+1 ), and the motion of the lower interface is (dx′ i+1 ,dy′ i+1 ,θ′ i+1 ), where:

dxi+1为第i+1时刻上交界面在水平面内x方向的位移量;dx i+1 is the displacement of the interface in the x direction in the horizontal plane at the i+1th moment;

dyi+1为第i+1时刻上交界面在水平面内y方向的位移量;dy i+1 is the displacement of the interface in the y direction in the horizontal plane at the i+1th moment;

θi+1为第i+1时刻上交界面的转角;θ i+1 is the rotation angle of the interface at the i+1th moment;

dx′i+1为第i+1时刻下交界面在水平面内x方向的位移量;dx′ i+1 is the displacement of the interface in the x direction in the horizontal plane at the i+1th moment;

dy′i+1为第i+1时刻下交界面在水平面内y方向的位移量;dy′ i+1 is the displacement of the interface in the y direction in the horizontal plane at the i+1th moment;

θ′i+1为第i+1时刻下交界面的转角。θ′ i+1 is the rotation angle of the interface at the i+1th moment.

更进一步的,具体参见图2和图3试验方法采用4个作动器实现,4个作动器的设置高度一致;其中,Furthermore, referring to FIG. 2 and FIG. 3 , the test method is implemented using four actuators, and the settings of the four actuators are highly consistent; wherein,

作动器ChA和作动器ChB分别设置在与试验子结构第一个侧面水平方向三等分点的相对应处,作动器ChC和作动器ChD分别设置在与试验子结构第二个侧面水平方向三等分点的相对应处,且作动器ChA和作动器ChB所对应侧面与作动器ChC和作动器ChD所对应的侧面相邻;Actuator ChA and actuator ChB are respectively arranged at positions corresponding to the points dividing the first side of the test substructure into three equal parts in the horizontal direction, and actuator ChC and actuator ChD are respectively arranged at positions corresponding to the points dividing the second side of the test substructure into three equal parts in the horizontal direction, and the sides corresponding to actuator ChA and actuator ChB are adjacent to the sides corresponding to actuator ChC and actuator ChD;

当试验方法采用4个作动器实现时,对应的通过试验子结构上的4个位移传感器采集真实位移分量Δl1、Δl2、Δl3和Δl4,从而获得试验子结构的真实位移;When the test method is implemented using four actuators, the four displacement sensors on the test substructure collect the real displacement components Δl 1 , Δl 2 , Δl 3 and Δl 4 , thereby obtaining the real displacement of the test substructure;

其中,Δl1为4个位移传感器中位移传感器LVDT1的真实位移分量;Among them, Δl 1 is the true displacement component of the displacement sensor LVDT1 among the four displacement sensors;

Δl2为4个位移传感器中位移传感器LVDT2的真实位移分量;Δl 2 is the true displacement component of displacement sensor LVDT2 among the four displacement sensors;

Δl3为4个位移传感器中位移传感器LVDT3的真实位移分量;Δl 3 is the true displacement component of displacement sensor LVDT3 among the four displacement sensors;

Δl4为4个位移传感器中位移传感器LVDT4的真实位移分量。Δl 4 is the true displacement component of the displacement sensor LVDT4 among the four displacement sensors.

本优选实施方式中,试验子结构采用三自由度振动台模拟底部楼层的作用,采用四个作动器来实现目标命令,作动器ChA和作动器ChB分别在试验子结构第一个侧面的三等分点,作动器ChC和作动器ChD分别在试验子结构第二个侧面的三等分点。采用四个位移传感器来测量试验子结构的实际运动量(dx″,dy″,θ″)。In this preferred embodiment, the test substructure uses a three-degree-of-freedom vibration table to simulate the effect of the bottom floor, and four actuators are used to implement the target command. Actuator ChA and actuator ChB are respectively located at the three-divided points of the first side of the test substructure, and actuator ChC and actuator ChD are respectively located at the three-divided points of the second side of the test substructure. Four displacement sensors are used to measure the actual motion (d x ″, dy ″, θ″) of the test substructure.

作动器的加载策略:作动器和位移传感器布置以及加载过程结构变化示意图如图3所示。作动器ChA和作动器ChB分别在试验子结构第一个侧面的三等分点,作动器ChC和作动器ChD分别在试验子结构第二个侧面的三等分点,采用4个位移传感器来测量试验子结构的真实位移dx″和dy″,位移传感器的布置对应作动器的位置。Loading strategy of actuators: The layout of actuators and displacement sensors and the schematic diagram of structural changes during the loading process are shown in Figure 3. Actuators ChA and ChB are located at the trisection points of the first side of the test substructure, and actuators ChC and ChD are located at the trisection points of the second side of the test substructure. Four displacement sensors are used to measure the true displacements d x ″ and d y ″ of the test substructure. The layout of the displacement sensors corresponds to the position of the actuators.

试验子结构变化前后作动器ChA、ChB、ChC和ChD的几何分析示意图如图4所示。其中,AD是加载后的作动器长度。The schematic diagram of the geometric analysis of the actuators ChA, ChB, ChC and ChD before and after the test substructure change is shown in Figure 4. Among them, AD is the length of the actuator after loading.

更进一步的,4个位移传感器划分为两组,其中,位移传感器LVDT1和位移传感器LVDT2作为一组,位移传感器LVDT3和位移传感器LVDT4作为另一组,两组位移传感器分别设置在试验子结构的第三个第四侧面上,且位移传感器LVDT1和位移传感器LVDT2分别与作动器ChA和作动器ChB相对设置,位移传感器LVDT3和位移传感器LVDT4分别与作动器ChC和作动器ChD相对设置。Furthermore, the four displacement sensors are divided into two groups, wherein displacement sensor LVDT1 and displacement sensor LVDT2 are one group, and displacement sensor LVDT3 and displacement sensor LVDT4 are another group. The two groups of displacement sensors are respectively arranged on the third and fourth side surfaces of the test substructure, and displacement sensor LVDT1 and displacement sensor LVDT2 are respectively arranged opposite to actuator ChA and actuator ChB, and displacement sensor LVDT3 and displacement sensor LVDT4 are respectively arranged opposite to actuator ChC and actuator ChD.

本优选实施方式中,位移传感器的布置对应作动器的位置。数值子结构采用逐步积分方法在数值计算机中进行计算。In this preferred embodiment, the arrangement of the displacement sensor corresponds to the position of the actuator. The numerical substructure is calculated in a numerical computer using a step-by-step integration method.

更进一步的,步骤S5中、试验子结构的真实位移包括试验子结构相对于地面坐标系内x方向的真实位移dx″和试验子结构相对于地面坐标系内y方向的真实位移dy″,且获得试验子结构的真实位移的实现方式包括:Furthermore, in step S5, the real displacement of the test substructure includes the real displacement d x ″ of the test substructure relative to the x direction in the ground coordinate system and the real displacement d y ″ of the test substructure relative to the y direction in the ground coordinate system, and the implementation method of obtaining the real displacement of the test substructure includes:

S51、Δl1、Δl2、Δl3和Δl4表达式分别为:The expressions of S51, Δl 1 , Δl 2 , Δl 3 and Δl 4 are:

Figure GDA0004131405640000071
Figure GDA0004131405640000071

Figure GDA0004131405640000072
Figure GDA0004131405640000072

Figure GDA0004131405640000073
Figure GDA0004131405640000073

Figure GDA0004131405640000074
Figure GDA0004131405640000074

其中,L、S分别为试验子结构的长度和宽度;l10、l20、l30和l40分别为位移传感器LVDT1、LVDT2、LVDT3和LVDT4的初始长度,θ″为试验子结构相对于地面的真实倾角;Wherein, L and S are the length and width of the test substructure respectively; l 10 , l 20 , l 30 and l 40 are the initial lengths of displacement sensors LVDT1, LVDT2, LVDT3 and LVDT4 respectively; θ″ is the true inclination angle of the test substructure relative to the ground;

S52、将Δl1、Δl2、Δl3和Δl4表达式联立,获得dx″、dy″和θ″的值。S52. Combine the expressions of Δl 1 , Δl 2 , Δl 3 and Δl 4 to obtain the values of d x ″, dy ″ and θ″.

更进一步的,对于任意第i+1时刻,作动器ChA的目标伸长量ΔlA、作动器ChB的目标伸长量ΔlB、作动器ChC的目标伸长量ΔlC和作动器ChD的目标伸长量ΔlD的表达式为:Furthermore, for any i+1th moment, the expressions for the target elongation Δl A of the actuator ChA, the target elongation Δl B of the actuator ChB, the target elongation Δl C of the actuator ChC, and the target elongation Δl D of the actuator ChD are:

Figure GDA0004131405640000081
Figure GDA0004131405640000081

Figure GDA0004131405640000082
Figure GDA0004131405640000082

Figure GDA0004131405640000083
Figure GDA0004131405640000083

Figure GDA0004131405640000084
Figure GDA0004131405640000084

其中,L、S分别为试验子结构的长度和宽度;lA0、lB0、lC0和lD0分别为作动器ChA、作动器ChB、作动器ChC和作动器ChD的初始长度。Wherein, L and S are the length and width of the test substructure respectively; l A0 , l B0 , l C0 and l D0 are the initial lengths of actuator ChA, actuator ChB, actuator ChC and actuator ChD respectively.

本优选实施方式中,试验子结构变化前后位移传感器LVDT1、LVDT2、LVDT3和LVDT4的几何分析示意图如图5所示。其中AD是加载后的位移计长度。In this preferred embodiment, the geometric analysis diagram of displacement sensors LVDT1, LVDT2, LVDT3 and LVDT4 before and after the test substructure changes is shown in Figure 5. Where AD is the length of the displacement meter after loading.

更进一步的,步骤S5中、通过力修正策略结合试验子结构模型及试验子结构的实际位移,来修正恢复力Ri+1,获得修正后的恢复力Ri+1的实现方式为:Furthermore, in step S5, the force correction strategy is combined with the test substructure model and the actual displacement of the test substructure to correct the restoring force Ri +1 , and the corrected restoring force Ri+1 is obtained as follows:

S51、所述试验子结构模型为线性模型,所建立的试验子结构的模型为Y,根据试验子结构的模型Y中的相邻两个时刻的试验子结构的实际位移差、及相邻两个时刻的试验子结构的实际速度差,获得第i+1时刻恢复力误差ΔRE,i+1;所述相邻两个时刻分别为第i时刻和第i+1时刻;S51, the test substructure model is a linear model, the established test substructure model is Y, and according to the actual displacement difference of the test substructure at two adjacent moments in the model Y of the test substructure and the actual velocity difference of the test substructure at two adjacent moments, the restoring force error ΔR E,i+1 at the i+1th moment is obtained; the two adjacent moments are the i-th moment and the i+1-th moment respectively;

所述试验子结构的模型Y中相邻两个时刻的试验子结构的速度差,通过对相邻两个时刻的试验子结构的位移差进行微分获得;The velocity difference of the test substructure at two adjacent moments in the model Y of the test substructure is obtained by differentiating the displacement difference of the test substructure at two adjacent moments;

S52、利用恢复力误差ΔRE,i+1对实际恢复力Ri+1进行补偿,获得修正后的恢复力Ri+1S52. Compensate the actual restoring force R i+1 using the restoring force error ΔR E,i+1 to obtain a corrected restoring force R i+1 .

第i时刻力修正状态下的两个数值子结构的运动方程均为:The motion equations of the two numerical substructures in the force correction state at the i-th moment are:

MNaN,i+CNvN,i+KNdN,i=-MNag-(Ri+ΔRE,i);M N a N,i +C N v N,i +K N d N,i =-M N a g -(R i +ΔR E,i );

其中,MN为数值子结构的质量矩阵;Where M N is the mass matrix of the numerical substructure;

CN为数值子结构的阻尼矩阵;C N is the damping matrix of the numerical substructure;

KN为数值子结构的刚度矩阵;K N is the stiffness matrix of the numerical substructure;

dN,i为第i时刻试验子结构相对于地面的位移向量;d N,i is the displacement vector of the test substructure relative to the ground at the i-th moment;

vN,i为第i时刻试验子结构相对于地面的速度向量;v N,i is the velocity vector of the test substructure relative to the ground at the i-th moment;

aN,i为第i时刻试验子结构相对于地面的加速度向量;a N,i is the acceleration vector of the test substructure relative to the ground at the i-th moment;

ag为地震动加速度向量;a g is the ground acceleration vector;

Ri为第i时刻试验子结构的实际恢复力;R i is the actual restoring force of the test substructure at the i-th moment;

ΔRE,i为第i时刻试验子结构的恢复力误差。ΔR E,i is the restoring force error of the test substructure at the i-th moment.

更进一步的,步骤S4中,通过滑动模态控制器来生成目标位移指令和震动位移指令,来分别对作动器和振动台进行控制,且滑动模态控制器的控制律w的表达式为:Furthermore, in step S4, the target displacement command and the vibration displacement command are generated by the sliding mode controller to control the actuator and the vibration table respectively, and the control law w of the sliding mode controller is expressed as:

w=(-(PB*)-1PA*-δPTB*PT)Y=k1eEQ-KZ;w=(-(PB * ) -1 PA * -δP T B * P T )Y=k 1 e EQ -KZ;

其中,B*=[0 BT]T

Figure GDA0004131405640000091
Y=[eEQ ZT]T;Where, B * = [0 B T ] T ,
Figure GDA0004131405640000091
Y = [e EQ Z T ] T ;

P为滑移面系数矩阵,B*为第一中间变量矩阵,B为第一状态空间系数矩阵,A为第二状态空间系数矩阵,A*为第二中间变量矩阵,δ为滑移裕度,C为第三中间变量矩阵,

Figure GDA0004131405640000092
为第四中间变量,eEQ为实际等效力与等效力命令的误差,Z为控制对象的状态控件模型,k1是内模增益系数,K为状态反馈增益系数。P is the slip surface coefficient matrix, B * is the first intermediate variable matrix, B is the first state space coefficient matrix, A is the second state space coefficient matrix, A * is the second intermediate variable matrix, δ is the slip margin, C is the third intermediate variable matrix,
Figure GDA0004131405640000092
is the fourth intermediate variable, e EQ is the error between the actual equivalent force and the equivalent force command, Z is the state control model of the controlled object, k 1 is the internal model gain coefficient, and K is the state feedback gain coefficient.

本优选实施方式中,在常规的实时混合试验中,液压伺服控制系统一般采用PID控制,在试件出现强非线性时,其控制效果将会变差甚至不稳定,因此,本发明采用滑动模态控制器作为外部控制器来取代PID控制器对作动器和振动台进行控制。对滑动模态控制器设计分成两步:首先通过引入内模控制的概念确定滑移面,然后应用李雅谱洛夫直接法设计控制律。In this preferred embodiment, in conventional real-time hybrid tests, the hydraulic servo control system generally uses PID control. When the specimen has strong nonlinearity, its control effect will deteriorate or even become unstable. Therefore, the present invention uses a sliding mode controller as an external controller to replace the PID controller to control the actuator and the vibration table. The design of the sliding mode controller is divided into two steps: first, the sliding surface is determined by introducing the concept of internal model control, and then the control law is designed by applying the Lyapulov direct method.

对控制律w的表达式两边积分可得到系统内部的反馈控制信号为:By integrating both sides of the expression of the control law w, the feedback control signal inside the system can be obtained as follows:

Figure GDA0004131405640000093
Figure GDA0004131405640000093

式中,k1为内模增益系数,eEQ(τ)为实际等效力与等效力命令的误差函数,τ为积分变量,X(t)为等效力响应的状态量。Where k1 is the internal model gain coefficient, eEQ (τ) is the error function between the actual equivalent force and the equivalent force command, τ is the integral variable, and X(t) is the state quantity of the equivalent force response.

更进一步的,当结构模型为一个简单的连续梁模型,如图6所示。图6中的数字1至6均表示自由度编号,图6中,从左到右的三个质量点分别为第一至第三质量点,假设该模型有三个集中质量且无轴向运动,则该连续梁共有六个自由度,包括每个质量点的转动和垂直于梁轴线方向的平动。在实时混合试验中,可以考虑将左边两个质量点划分为下部数值子结构,右边一个质量点划分为试验子结构,而上部数值子结构不存在,两个子结构下部数值子结构和试验子结构分别有4、2个自由度。如果不考虑阻尼效应,数值子结构、试验子结构的运动学方程分别:Furthermore, when the structural model is a simple continuous beam model, as shown in Figure 6. The numbers 1 to 6 in Figure 6 all represent the degree of freedom numbers. In Figure 6, the three mass points from left to right are the first to third mass points respectively. Assuming that the model has three concentrated masses and no axial motion, the continuous beam has a total of six degrees of freedom, including the rotation of each mass point and the translation perpendicular to the axis of the beam. In the real-time hybrid test, it can be considered to divide the two mass points on the left into the lower numerical substructure, and the mass point on the right into the test substructure, while the upper numerical substructure does not exist. The lower numerical substructure and the test substructure of the two substructures have 4 and 2 degrees of freedom respectively. If the damping effect is not considered, the kinematic equations of the numerical substructure and the test substructure are:

Figure GDA0004131405640000101
Figure GDA0004131405640000101

Figure GDA0004131405640000102
Figure GDA0004131405640000102

上式中,mi、xi

Figure GDA0004131405640000103
Figure GDA0004131405640000104
分别为结构模型各个自由度的质量、位移、加速度和地震动加速度记录,i为各个杆件的线刚度,l为相连的两个质量点间连接杆件的长度,I为集中质量点的转动惯量。上式中,m1为第一个质量点竖向的质量,m3为第二个质量点竖向的质量,m5为第三个质量点竖向的质量,x1为第一个质量点竖向的位移,x2为第一个质量点的转角,x3为第二个质量点竖向的位移,x4为第二个质量点的转角,x5为第三个质量点竖向的位移x6为第三个质量点的转角,I2为第一个质量点的转动惯量,I4为第二个质量点的转动惯量,I6为第三个质量点的转动惯量,
Figure GDA0004131405640000105
为第一个质量点竖向的加速度,
Figure GDA0004131405640000106
为地震波加速度,
Figure GDA0004131405640000107
为第一个质量点转角的加速度,
Figure GDA0004131405640000108
为第二个质量点竖向的加速度,
Figure GDA0004131405640000109
为第二个质量点转角的加速度,
Figure GDA00041314056400001010
为第三个质量点竖向的加速度,
Figure GDA00041314056400001011
为第三个质量点转角的加速度;该刚度矩阵的形式是通过结构力学中受弯杆件的形常数确定的,其计算忽略了杆件截面材料的剪切模量对结构整体刚度的贡献,因此只适用于宽度相比杆件长度可以忽略的杆件体系。运动方程最右边的部分即第二、三个集中质量点的相对位移和转角对恢复力的影响。在新型划分方法中,数值子结构和试验子结构相互传递的不仅仅是剪力,还包括一部分弯矩。In the above formula, mi , xi ,
Figure GDA0004131405640000103
and
Figure GDA0004131405640000104
are the mass, displacement, acceleration and seismic acceleration records of each degree of freedom of the structural model, i is the linear stiffness of each rod, l is the length of the connecting rod between the two connected mass points, and I is the moment of inertia of the concentrated mass point. In the above formula, m1 is the vertical mass of the first mass point, m3 is the vertical mass of the second mass point, m5 is the vertical mass of the third mass point, x1 is the vertical displacement of the first mass point, x2 is the rotation angle of the first mass point, x3 is the vertical displacement of the second mass point, x4 is the rotation angle of the second mass point, x5 is the vertical displacement of the third mass point, x6 is the rotation angle of the third mass point, I2 is the moment of inertia of the first mass point, I4 is the moment of inertia of the second mass point, I6 is the moment of inertia of the third mass point,
Figure GDA0004131405640000105
is the vertical acceleration of the first mass point,
Figure GDA0004131405640000106
is the seismic wave acceleration,
Figure GDA0004131405640000107
is the acceleration of the first mass point,
Figure GDA0004131405640000108
is the vertical acceleration of the second mass point,
Figure GDA0004131405640000109
is the acceleration of the second mass point,
Figure GDA00041314056400001010
is the vertical acceleration of the third mass point,
Figure GDA00041314056400001011
is the acceleration of the third mass point rotation; the form of this stiffness matrix is determined by the shape constant of the bending member in structural mechanics. Its calculation ignores the contribution of the shear modulus of the member section material to the overall stiffness of the structure. Therefore, it is only applicable to member systems whose width is negligible compared to the length of the member. The rightmost part of the motion equation is the influence of the relative displacement and rotation of the second and third concentrated mass points on the restoring force. In the new partitioning method, the numerical substructure and the experimental substructure transmit not only shear force but also part of the bending moment.

虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。Although the present invention is described herein with reference to specific embodiments, it should be understood that these embodiments are merely examples of the principles and applications of the present invention. It should therefore be understood that many modifications may be made to the exemplary embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims. It should be understood that the various dependent claims and features described herein may be combined in a manner different from that described in the original claims. It should also be understood that features described in conjunction with individual embodiments may be used in other described embodiments.

Claims (9)

1.基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,该方法包括:1. A real-time hybrid test method based on a vibration table-actuator combined with multi-degree-of-freedom loading, characterized in that the method comprises: S1、将试验整体结构沿长度方向依次划分成上部数值子结构、试验子结构和下部数值子结构后,建立上部数值子结构、试验子结构和下部数值子结构的模型,分别为上部数值模型、试验子结构模型和下部数值模型;试验子结构放置在振动台;S1. After the whole test structure is divided into an upper numerical substructure, a test substructure and a lower numerical substructure in sequence along the length direction, the models of the upper numerical substructure, the test substructure and the lower numerical substructure are established, which are the upper numerical model, the test substructure model and the lower numerical model respectively; the test substructure is placed on the vibration table; S2、设置初始时刻i=1时,试验子结构的实际恢复力R1=0,试验子结构的修正后的恢复力R'1=0,作动器的伸长量为0;S2, when the initial time i=1 is set, the actual restoring force R 1 of the test substructure is 0, the corrected restoring force R' 1 of the test substructure is 0, and the elongation of the actuator is 0; S3、在第i+1时刻,将i时刻试验子结构修正后的恢复力R'1和当前第i+1时刻地震波产生的力共同作用在上、下部数值模型分别所对应的运动方程上,获得上、下交界面的运动量,通过非线性变换对上交界面的运动量进行处理,获得作动器的目标伸长量,同时还对作动器进行时滞补偿;i为整数,其中,S3. At the i+1th moment, the restoring force R'1 corrected by the test substructure at the ith moment and the force generated by the seismic wave at the current i+1th moment act together on the motion equations corresponding to the upper and lower numerical models, respectively, to obtain the motion of the upper and lower interfaces, and process the motion of the upper interface through nonlinear transformation to obtain the target elongation of the actuator, while also performing time lag compensation on the actuator; i is an integer, where 上、下交界面的运动量均包括水平面内的位移量和转角,上交界面为上部数值子结构与试验子结构间的交界面,下交界面为下部数值子结构与试验子结构间的交界面;The motion of the upper and lower interfaces includes the displacement and rotation angle in the horizontal plane. The upper interface is the interface between the upper numerical substructure and the experimental substructure, and the lower interface is the interface between the lower numerical substructure and the experimental substructure. S4、滑动模态控制器根据作动器的目标伸长量生成对作动器进行驱动控制的目标位移指令,还根据下交界面的运动量生成对振动台进行驱动控制的震动位移指令,作动器和振动台接收到指令后,共同对试验子结构进行驱动使试验子结构产生移动,此时,采集作动器和振动台的出力,并将作动器和振动台出力合力的反力,作为当前i+1时刻试验子结构的实际恢复力Ri+1S4, the sliding mode controller generates a target displacement command for driving and controlling the actuator according to the target elongation of the actuator, and also generates a vibration displacement command for driving and controlling the vibration table according to the motion of the lower interface. After receiving the command, the actuator and the vibration table jointly drive the test substructure to move the test substructure. At this time, the output of the actuator and the vibration table is collected, and the reaction force of the combined output of the actuator and the vibration table is used as the actual restoring force R i+1 of the test substructure at the current time i+1; S5、通过力修正策略结合试验子结构模型及试验子结构的真实位移,来修正恢复力Ri+1,获得修正后的恢复力Ri+1S5. Correct the restoring force R i+1 by combining the test substructure model and the actual displacement of the test substructure through a force correction strategy to obtain a corrected restoring force R i+1 ; S6、令i=i+1,重复执行步骤S3至S5,逐步积分求解,直至地震波消失,完成试验。S6. Let i=i+1, repeat steps S3 to S5, and gradually integrate and solve until the seismic wave disappears, thus completing the test. 2.根据权利要求1所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,S3中、上交界面的运动量为(dxi+1,dyi+1i+1),下交界面的运动量为(dxi+1,dyi+1i+1),其中,2. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 1 is characterized in that the motion of the upper interface in S3 is (dx i+1 ,dy i+1i+1 ), and the motion of the lower interface is (dx i+1 ,dy i+1i+1 ), wherein, dxi+1为第i+1时刻上交界面在水平面内x方向的位移量;dx i+1 is the displacement of the interface in the x direction in the horizontal plane at the i+1th moment; dyi+1为第i+1时刻上交界面在水平面内y方向的位移量;dy i+1 is the displacement of the interface in the y direction in the horizontal plane at the i+1th moment; θi+1为第i+1时刻上交界面的转角;θ i+1 is the rotation angle of the interface at the i+1th moment; dxi+1为第i+1时刻下交界面在水平面内x方向的位移量;dx i+1 is the displacement of the interface in the x direction in the horizontal plane at the i+1th moment; dyi+1为第i+1时刻下交界面在水平面内y方向的位移量;dy i+1 is the displacement of the interface in the y direction in the horizontal plane at the i+1th moment; θi+1为第i+1时刻下交界面的转角。θ i+1 is the rotation angle of the interface at the i+1th moment. 3.根据权利要求2所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,该试验方法采用4个作动器实现,4个作动器的设置高度一致;其中,3. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 2 is characterized in that the test method is implemented by using four actuators, and the settings of the four actuators are highly consistent; wherein, 作动器ChA和作动器ChB分别设置在与试验子结构第一个侧面水平方向三等分点的相对应处,作动器ChC和作动器ChD分别设置在与试验子结构第二个侧面水平方向三等分点的相对应处,且作动器ChA和作动器ChB所对应侧面与作动器ChC和作动器ChD所对应的侧面相邻;Actuator ChA and actuator ChB are respectively arranged at positions corresponding to the points dividing the first side of the test substructure into three equal parts in the horizontal direction, and actuator ChC and actuator ChD are respectively arranged at positions corresponding to the points dividing the second side of the test substructure into three equal parts in the horizontal direction, and the sides corresponding to actuator ChA and actuator ChB are adjacent to the sides corresponding to actuator ChC and actuator ChD; 当试验方法采用4个作动器实现时,对应的通过试验子结构上的4个位移传感器采集真实位移分量Δl1、Δl2、Δl3和Δl4,从而获得试验子结构的真实位移;When the test method is implemented using four actuators, the four displacement sensors on the test substructure collect the real displacement components Δl 1 , Δl 2 , Δl 3 and Δl 4 , thereby obtaining the real displacement of the test substructure; 其中,Δl1为4个位移传感器中位移传感器LVDT1的真实位移分量;Among them, Δl 1 is the true displacement component of the displacement sensor LVDT1 among the four displacement sensors; Δl2为4个位移传感器中位移传感器LVDT2的真实位移分量;Δl 2 is the true displacement component of displacement sensor LVDT2 among the four displacement sensors; Δl3为4个位移传感器中位移传感器LVDT3的真实位移分量;Δl 3 is the true displacement component of displacement sensor LVDT3 among the four displacement sensors; Δl4为4个位移传感器中位移传感器LVDT4的真实位移分量。Δl 4 is the true displacement component of the displacement sensor LVDT4 among the four displacement sensors. 4.根据权利要求3所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,试验子结构上的4个位移传感器的设置位置为:4. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 3 is characterized in that the four displacement sensors on the test substructure are arranged at: 将4个位移传感器划分为两组,其中,位移传感器LVDT1和位移传感器LVDT2作为一组,位移传感器LVDT3和位移传感器LVDT4作为另一组,两组位移传感器分别设置在试验子结构的第三和第四侧面上,且位移传感器LVDT1和位移传感器LVDT2分别与作动器ChA和作动器ChB相对设置,位移传感器LVDT3和位移传感器LVDT4分别与作动器ChC和作动器ChD相对设置。The four displacement sensors are divided into two groups, wherein displacement sensor LVDT1 and displacement sensor LVDT2 are one group, and displacement sensor LVDT3 and displacement sensor LVDT4 are another group. The two groups of displacement sensors are respectively arranged on the third and fourth sides of the test substructure, and displacement sensor LVDT1 and displacement sensor LVDT2 are respectively arranged opposite to actuator ChA and actuator ChB, and displacement sensor LVDT3 and displacement sensor LVDT4 are respectively arranged opposite to actuator ChC and actuator ChD. 5.根据权利要求3所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,步骤S5中、试验子结构的真实位移包括试验子结构相对于地面坐标系内x方向的真实位移dx″和试验子结构相对于地面坐标系内y方向的真实位移dy″,且获得试验子结构的真实位移的实现方式包括:5. The real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading according to claim 3, characterized in that in step S5, the real displacement of the test substructure includes the real displacement d x ″ of the test substructure relative to the x direction in the ground coordinate system and the real displacement d y ″ of the test substructure relative to the y direction in the ground coordinate system, and the implementation method of obtaining the real displacement of the test substructure includes: S51、Δl1、Δl2、Δl3和Δl4表达式分别为:The expressions of S51, Δl 1 , Δl 2 , Δl 3 and Δl 4 are:
Figure FDA0004131405630000031
Figure FDA0004131405630000031
Figure FDA0004131405630000032
Figure FDA0004131405630000032
Figure FDA0004131405630000033
Figure FDA0004131405630000034
Figure FDA0004131405630000033
Figure FDA0004131405630000034
其中,L、S分别为试验子结构的长度和宽度;l10、l20、l30和l40分别为位移传感器LVDT1、LVDT2、LVDT3和LVDT4的初始长度,θ″为试验子结构相对于地面的真实倾角;Wherein, L and S are the length and width of the test substructure respectively; l 10 , l 20 , l 30 and l 40 are the initial lengths of displacement sensors LVDT1, LVDT2, LVDT3 and LVDT4 respectively; θ″ is the true inclination angle of the test substructure relative to the ground; S52、将Δl1、Δl2、Δl3和Δl4表达式联立,获得dx″、dy″和θ″的值。S52. Combine the expressions of Δl 1 , Δl 2 , Δl 3 and Δl 4 to obtain the values of d x ″, dy ″ and θ″.
6.根据权利要求3所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,对于任意第i+1时刻,作动器ChA的目标伸长量ΔlA、作动器ChB的目标伸长量ΔlB、作动器ChC的目标伸长量ΔlC和作动器ChD的目标伸长量ΔlD的表达式为:6. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 3, characterized in that, for any i+1th moment, the expressions of the target elongation Δl A of the actuator ChA, the target elongation Δl B of the actuator ChB, the target elongation Δl C of the actuator ChC and the target elongation Δl D of the actuator ChD are:
Figure FDA0004131405630000035
Figure FDA0004131405630000035
Figure FDA0004131405630000036
Figure FDA0004131405630000036
Figure FDA0004131405630000037
Figure FDA0004131405630000037
Figure FDA0004131405630000038
Figure FDA0004131405630000038
其中,L、S分别为试验子结构的长度和宽度;lA0、lB0、lC0和lD0分别为作动器ChA、作动器ChB、作动器ChC和作动器ChD的初始长度。Wherein, L and S are the length and width of the test substructure respectively; l A0 , l B0 , l C0 and l D0 are the initial lengths of actuator ChA, actuator ChB, actuator ChC and actuator ChD respectively.
7.根据权利要求1所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,步骤S5中、通过力修正策略结合试验子结构模型及试验子结构的实际位移,来修正恢复力Ri+1,获得修正后的恢复力Ri+1的实现方式为:7. The real-time hybrid test method based on the shaking table-actuator combined multi-degree-of-freedom loading according to claim 1, characterized in that in step S5, the restoring force Ri +1 is corrected by combining the test substructure model and the actual displacement of the test substructure through a force correction strategy, and the implementation method of obtaining the corrected restoring force Ri+ 1 is as follows: S51、所述试验子结构模型为线性模型,所建立的试验子结构的模型为Y,根据试验子结构的模型Y中的相邻两个时刻的试验子结构的实际位移差、及相邻两个时刻的试验子结构的实际速度差,获得第i+1时刻恢复力误差ΔRE,i+1;所述相邻两个时刻分别为第i时刻和第i+1时刻;S51, the test substructure model is a linear model, the established test substructure model is Y, and according to the actual displacement difference of the test substructure at two adjacent moments in the model Y of the test substructure and the actual velocity difference of the test substructure at two adjacent moments, the restoring force error ΔR E,i+1 at the i+1th moment is obtained; the two adjacent moments are the i-th moment and the i+1-th moment respectively; 所述试验子结构的模型Y中相邻两个时刻的试验子结构的速度差,通过对相邻两个时刻的试验子结构的位移差进行微分获得;The velocity difference of the test substructure at two adjacent moments in the model Y of the test substructure is obtained by differentiating the displacement difference of the test substructure at two adjacent moments; S52、利用恢复力误差ΔRE,i+1对实际恢复力Ri+1进行补偿,获得修正后的恢复力Ri+1S52. Compensate the actual restoring force R i+1 using the restoring force error ΔR E,i+1 to obtain a corrected restoring force R i+1 . 8.根据权利要求1所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,第i时刻力修正状态下的两个数值子结构的运动方程均为:8. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 1 is characterized in that the motion equations of the two numerical substructures in the force correction state at the i-th moment are: MNaN,i+CNvN,i+KNdN,i=-MNag-(Ri+ΔRE,i);M N a N,i +C N v N,i +K N d N,i =-M N a g -(R i +ΔR E,i ); 其中,MN为数值子结构的质量矩阵;Where M N is the mass matrix of the numerical substructure; CN为数值子结构的阻尼矩阵;C N is the damping matrix of the numerical substructure; KN为数值子结构的刚度矩阵;K N is the stiffness matrix of the numerical substructure; dN,i为第i时刻试验子结构相对于地面的位移向量;d N,i is the displacement vector of the test substructure relative to the ground at the i-th moment; vN,i为第i时刻试验子结构相对于地面的速度向量;v N,i is the velocity vector of the test substructure relative to the ground at the i-th moment; aN,i为第i时刻试验子结构相对于地面的加速度向量;a N,i is the acceleration vector of the test substructure relative to the ground at the i-th moment; ag为地震动加速度向量;a g is the ground acceleration vector; Ri为第i时刻试验子结构的实际恢复力;R i is the actual restoring force of the test substructure at the i-th moment; ΔRE,i为第i时刻试验子结构的恢复力误差。ΔR E,i is the restoring force error of the test substructure at the i-th moment. 9.根据权利要求1所述的基于振动台-作动器联合多自由度加载实时混合试验方法,其特征在于,步骤S4中,滑动模态控制器的控制律w的表达式为:9. The real-time hybrid test method based on vibration table-actuator combined multi-degree-of-freedom loading according to claim 1 is characterized in that, in step S4, the expression of the control law w of the sliding mode controller is:
Figure FDA0004131405630000041
Figure FDA0004131405630000041
其中,
Figure FDA0004131405630000042
C=[01];
in,
Figure FDA0004131405630000042
C = [01];
P为滑移面系数矩阵,B*为第一中间变量矩阵,B为第一状态空间系数矩阵,A为第二状态空间系数矩阵,A*为第二中间变量矩阵,δ为滑移裕度,C为第三中间变量矩阵,
Figure FDA0004131405630000043
为第四中间变量,eEQ为实际等效力与等效力命令的误差,Z为控制对象的状态控件模型,k1是内模增益系数,K为状态反馈增益系数。
P is the slip surface coefficient matrix, B * is the first intermediate variable matrix, B is the first state space coefficient matrix, A is the second state space coefficient matrix, A * is the second intermediate variable matrix, δ is the slip margin, C is the third intermediate variable matrix,
Figure FDA0004131405630000043
is the fourth intermediate variable, e EQ is the error between the actual equivalent force and the equivalent force command, Z is the state control model of the controlled object, k 1 is the internal model gain coefficient, and K is the state feedback gain coefficient.
CN202210482316.3A 2022-05-05 2022-05-05 Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading Active CN114818191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210482316.3A CN114818191B (en) 2022-05-05 2022-05-05 Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210482316.3A CN114818191B (en) 2022-05-05 2022-05-05 Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading

Publications (2)

Publication Number Publication Date
CN114818191A CN114818191A (en) 2022-07-29
CN114818191B true CN114818191B (en) 2023-04-14

Family

ID=82510958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210482316.3A Active CN114818191B (en) 2022-05-05 2022-05-05 Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading

Country Status (1)

Country Link
CN (1) CN114818191B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115753158A (en) * 2022-12-08 2023-03-07 中车青岛四方机车车辆股份有限公司 A test method, device and storage medium for a maglev train

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907283A (en) * 2017-12-02 2018-04-13 北京工业大学 A kind of shake table sub-structural test method based on tri-consult volume control AMD
CN109359427A (en) * 2018-11-26 2019-02-19 东南大学 A multi-actuator real-time hybrid simulation test method for spatial structures
CN111207900A (en) * 2020-03-16 2020-05-29 西安建筑科技大学 Space frame substructure hybrid simulation test method and test system
CN112364440A (en) * 2020-12-02 2021-02-12 黑龙江科技大学 Nonlinear model linearization force correction iterative hybrid test method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463727B (en) * 2017-06-27 2021-01-19 浙江大学 Vector finite element and FPGA (field programmable Gate array) based hybrid test method
CN109766668B (en) * 2019-02-27 2020-10-13 武汉理工大学 Real-time hybrid test method based on restart
US11150159B2 (en) * 2020-03-16 2021-10-19 Xi'an University Of Architecture And Technology Adaptive loading method for real-time hybrid simulation testing of space frame model
CN111506948B (en) * 2020-04-09 2022-12-06 武汉理工大学 Real-time hybrid test method realized based on actuator and vibration table
CN114266183B (en) * 2021-12-27 2024-09-24 武汉理工大学 Incomplete boundary condition mixed test method and system based on test substructure restoring force correction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907283A (en) * 2017-12-02 2018-04-13 北京工业大学 A kind of shake table sub-structural test method based on tri-consult volume control AMD
CN109359427A (en) * 2018-11-26 2019-02-19 东南大学 A multi-actuator real-time hybrid simulation test method for spatial structures
CN111207900A (en) * 2020-03-16 2020-05-29 西安建筑科技大学 Space frame substructure hybrid simulation test method and test system
CN112364440A (en) * 2020-12-02 2021-02-12 黑龙江科技大学 Nonlinear model linearization force correction iterative hybrid test method

Also Published As

Publication number Publication date
CN114818191A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
Molina et al. Bi‐directional pseudodynamic test of a full‐size three‐storey building
Shing et al. Application of pseudodynamic test method to structural research
Fermandois et al. Model-based framework for multi-axial real-time hybrid simulation testing
CN111506948B (en) Real-time hybrid test method realized based on actuator and vibration table
CN107543672B (en) Multi-degree-of-freedom micro-vibration environment simulation method
CN114818191B (en) Real-time hybrid test method based on shaking table-actuator combined multi-degree-of-freedom loading
US6598480B2 (en) Vibration testing system
JP3882014B2 (en) Structure vibration test apparatus and vibration test method therefor
Najafi et al. Decoupled model-based real-time hybrid simulation with multi-axial load and boundary condition boxes
Khalilpour et al. Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition
CN108241289B (en) Force-displacement hybrid control method for three-degree-of-freedom loading system
Nakata et al. Multi-dimensional mixed-mode hybrid simulation control and applications
Li et al. Numerical modeling of high-strength steel composite K-eccentrically braced frames and spatial substructure hybrid simulation tests
Law et al. Super-element with semi-rigid joints in model updating
Yang et al. Real-time hybrid simulation of a single-span girder bridge using a shake table coupled with an actuator
JP2019139585A (en) Contact determination model for cae analysis and contact determination method
Kwon et al. Design of experimental apparatus for real-time wind-tunnel hybrid simulation of bridge decks and buildings
Seki et al. Modeling and disturbance compensation aided by multibody dynamics analysis in shaking table systems
Wu et al. Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation
Oztorun et al. Three-dimensional finite element analysis of shear wall buildings
Liu et al. Using real-time hybrid simulation for active mass damper experimentation and validation
You et al. Cascade Control Method for Conducting Hybrid Simulation with Stiff Specimens
Mohagheghian et al. Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames
Sang et al. A novel 6-dimensional force measurement based on the electric 6-DOF loading device
CN114266183A (en) Hybrid test method and system for incomplete boundary conditions based on restoring force correction of test substructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant