CN114814826A - 一种基于目标网格的雷达轨行区环境感知方法 - Google Patents

一种基于目标网格的雷达轨行区环境感知方法 Download PDF

Info

Publication number
CN114814826A
CN114814826A CN202210367869.4A CN202210367869A CN114814826A CN 114814826 A CN114814826 A CN 114814826A CN 202210367869 A CN202210367869 A CN 202210367869A CN 114814826 A CN114814826 A CN 114814826A
Authority
CN
China
Prior art keywords
target
data
radar
rail
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210367869.4A
Other languages
English (en)
Other versions
CN114814826B (zh
Inventor
张瑾
吴澄
汪一鸣
盛洁
牛伟龙
丁俊哲
陆文学
谈逸文
汪曙明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Rail Transit Group Co ltd
Suzhou University
Original Assignee
Suzhou Rail Transit Group Co ltd
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Rail Transit Group Co ltd, Suzhou University filed Critical Suzhou Rail Transit Group Co ltd
Priority to CN202210367869.4A priority Critical patent/CN114814826B/zh
Publication of CN114814826A publication Critical patent/CN114814826A/zh
Application granted granted Critical
Publication of CN114814826B publication Critical patent/CN114814826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9328Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种基于目标网格的雷达轨行区环境感知方法,包括:获取毫米波雷达采集的数据,对数据进行预处理,形成靶面投影图;对所述靶面投影图中的目标进行有效性判断,识别有效目标数据并对所述有效目标数据进行分类,得到静止目标和运动目标;获取激光雷达点云数据,基于所述激光雷达点云数据提取轨道限界信息;将所述有效目标数据和所述轨道限界信息融合,实现环境感知与障碍物检测。本发明采用基于目标网格的毫米波雷达去噪算法,有效去除了闪灭噪声,提高了毫米波雷达获取的信息的准确度,大大减少了障碍物检测中的虚警现象。

Description

一种基于目标网格的雷达轨行区环境感知方法
技术领域
本发明涉及雷达障碍物检测技术领域,特别是涉及一种基于目标网格的雷达轨行区环境感知方法。
背景技术
国际公共运输联合会按照轨道交通线路自动化程度定义了五个自动化等级,自动化程度从低至高被分为GOA0到GOA4,其中GOA4等级实现了真正意义上的无人驾驶。在GOA4等级下,列车的休眠、唤醒、启动、停车、车门开关、洗车、车站和列车的设备管理以及故障和突发情况的应对全部由自动化系统自动管理,无任何人员参与。在该系统中,障碍物检测技术是实现列车缺点对行驶环境进行自主感知的重要手段,同时准确检测障碍物也是列车能够在复杂环境下实现无人驾驶的前提条件。
车载传感器检测法是当前货运铁路系统使用的一种主流障碍物检测方法,该方法使用包括摄像头、激光雷达、毫米波雷达、红外传感器、超声波传感器在内的一种或多种传感器实现障碍物检测。该方法在平稳路况下的表现较好,对于一些路况简单,任务单一的场景,例如倒车、泊车等,只需要使用单一的传感器就可以完成障碍物检测任务,这在一定程度上提升了轨道交通线路自动化的水平。但货运铁路的运营往往是24小时不间断,不同的天气状况以及不同时间段的光照条件限制了视觉传感器的正常工作,夜间较弱的光照条件大大降低了摄像头的成像质量,从而影响了障碍物检测的效果;同时,货运铁路系统是一个复杂的高动态场景,列车在行驶中的频繁振动会对毫米波雷达收到的目标点位等信息产生影响,不利于障碍物的检测;不仅如此,铁路轨道附近存在来自于铁路系统本身的电磁噪声污染,这些噪声来自列车、铁路供电系统和附近电力输电线路等,会对周围使用电磁波的传感器产生负面影响,例如会引起毫米波雷达的杂波,削弱了雷达的目标获取能力。
受限于不同传感器的特殊工作特性,铁路场景的复杂性和高动态性以及传感器工作环境中的各种噪声,现有的车载传感器检测法对障碍物的检测率较低,同时由于噪声的影响,检测过程中会存在虚警现象。
发明内容
本发明为了将高动态环境下毫米波雷达和激光雷达收到的含噪环境信息进行去噪,进行有效障碍物感知,从而提出了一种基于目标网格的雷达轨行区环境感知方法。
为实现上述目的,本发明提供了如下方案:
一种基于目标网格的雷达轨行区环境感知方法,包括:
获取毫米波雷达采集的数据,对数据进行预处理,形成靶面投影图;
对所述靶面投影图中的目标进行有效性判断,识别有效目标数据并对所述有效目标数据进行分类,得到静止目标和运动目标;
获取激光雷达点云数据,基于所述激光雷达点云数据提取轨道限界信息;
将所述有效目标数据和所述轨道限界信息融合,实现环境感知与障碍物检测。
优选地,通过基于目标的网格方法对所述靶面投影图进行有效性判断,去除闪灭噪声目标,识别有效目标数据。
优选地,对所述靶面投影图进行有效性判断的步骤包括:
输入新一帧雷达数据,计算所述新一帧雷达数据在直角坐标系中的位置,并将所述新一帧雷达数据投影到靶面;
以投影到靶面的每个目标为中心构建网格,得到当前帧的目标池;
判断当前帧数据是否与所述目标池内的数据匹配,若匹配则得到有效目标,若不匹配则继续读取下一帧数据,直至停止输入新雷达数据。
优选地,所述目标池中的数据包括:匹配目标数据、新出现目标数据和丢失目标数据。
优选地,根据公式(1),判断所述当前帧数据是否与所述目标池内的数据匹配:
Figure BDA0003586667490000031
其中,i和j为上一帧时刻和当前帧时刻的目标,x和y为目标与雷达设备在水平和垂直方向上的距离,v和a为目标的速度与加速度,k为对应参数的阈值;
对于当前帧数据中的匹配目标数据,生命周期life加1,丢失次数lost置0;不匹配的目标为新出现目标数据,将其生命周期life置为1,丢失次数lost置0,此时目标池数据中的不匹配的数据为丢失目标数据,其life不变,lost加1;
判断所述匹配目标数据的生命周期life是否大于klife,若life>klife则输出有效目标并更新目标池,否则直接更新目标池内的数据;
对于所述新出现目标数据,直接放入目标池;
对于所述丢失目标数据,判断丢失次数lost是否大于klost,若lost>klost,则丢弃该目标,否则对所述丢失目标数据进行预测,放入目标池并更新目标池,读取下一帧数据并继续进行判断,直至停止输入新雷达数据。
优选地,根据公式(2)对所述丢失目标数据进行预测:
Figure BDA0003586667490000041
其中,t为毫米波雷达的帧间隔时间,x与y为目标与雷达设备的横坐标与纵坐标距离,vx与vy为目标的横向速度与纵向速度,ax与ay为目标的横向加速度与纵向加速度;x′与y′为下一时刻目标与雷达设备的横坐标与纵坐标距离的预测值,v′x与v′y为下一时刻目标的横向速度与纵向速度的预测值,a′x与a′y为下一时刻目标的横向加速度与纵向加速度的预测值;Δx与Δy为目标与雷达设备的横坐标与纵坐标的偏移量,Δvx与Δvy为目标的横向速度与纵向速度的偏移量,Δax与Δay为目标的横向加速度与纵向加速度的偏移量,公式中角标′代表此数据为该参数的下一时刻预测值,Δ代表通过匹配的数据计算出的列车震动对该参数产生的偏移量。
优选地,通过聚类算法,根据所述有效目标与列车的距离、所述有效目标的运动状态信息,对所述有效目标进行分类,得到所述静止目标和运动目标。
优选地,利用随机抽样一致算法提取所述轨道限界信息,具体步骤包括:
基于地面的高度信息设置阈值,排除高于所述阈值的点云数据,筛选出列车正前方地面感兴趣区域,使用随机抽样一致算法提取地平面信息;
基于所述地平面信息,提取出轨道的感兴趣区域,使用随机抽样一致算法从所述轨道的感兴趣区域中提取出所述轨道限界信息。
优选地,将所述有效目标数据和所述轨道限界信息融合,通过时空配准的方法将所述有效目标数据和所述轨道界限信息置于同一坐标系内,实现环境感知与障碍物检测;其中,所述时空配准包括时间配准和空间配准。
本发明的有益效果为:
(1)本发明采用基于目标网格的毫米波雷达去噪算法,有效去除了闪灭噪声,提高了毫米波雷达获取的信息的准确度,大大减少了障碍物检测中的虚警现象。
(2)本发明利用激光雷达和毫米波雷达融合进行环境感知,提高了障碍物检测结果的鲁棒性与可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的基于目标网格的雷达轨行区环境感知方法的流程示意图;
图2为本发明实施例的标网格算法的流程图;
图3为本发明实施例的目标网格算法中目标池数据更新的示意图;
图4为本发明实施例的地平面点云数据示意图;
图5为本发明实施例的轨道限界点云数据示意图;
图6为本发明实施例的毫米波雷达与激光雷达时间配准示意图;
图7为本发明实施例的毫米波雷达与激光雷达空间配准示意图;
图8为本发明实施例的毫米波雷达与激光雷达融合环境感知效果示意图;
图9为本发明实施例的毫米波雷达数据和激光雷达数据融合系统示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明公开了一种基于目标网格的雷达轨行区环境感知方法,包括步骤:
如图1所示的基于目标网格的雷达轨行区环境感知方法,其流程为:获取毫米波雷达的报文数据,在预处理后采用一种有效的去噪算法提高毫米波雷达的目标识别准确率,将识别出的有效目标和激光雷达提取的轨道限界进行融合,采用时空配准的方式消除误差,实现环境感知与障碍物检测。
技术路线:首先获取毫米波雷达采集的数据,对数据进行预处理后形成靶面投影图,利用基于目标的网格方法对靶面投影图中的目标进行有效性判断,去除闪灭噪声目标,识别有效目标。接着利用聚类算法,根据目标与列车的距离、目标的运动状态信息,将有效目标进行静止目标和运动目标的分类。与此同时,获取激光雷达采集的点云数据,形成点云三维空间坐标,利用随机抽样一致算法处理点云三维空间坐标,提取轨道限界信息。最后将毫米波雷达输出的有效目标和激光雷达提取的轨道限界融合,通过时空配准的方法置于同一坐标系内,实现环境感知与障碍物检测。
如图2所示的流程图,目标网格算法对数据的每一帧进行处理。利用基于目标的网格方法对靶面投影图进行有效性判断,具体步骤如下:
(1)新一帧雷达数据输入;
(2)雷达数据投影,计算雷达数据在直角坐标系中的位置,投影到靶面;
(3)以投影到靶面的每个目标为中心,构建横向1.3m,纵向2m的网格;
(4)建立当前帧的目标池,目标池中的数据分为三类:匹配目标、新出现目标、丢失目标,目标池中的数据更新如图3所示,当某一个目标生命周期life大于阈值klife时认为该目标为有效目标,当此目标丢失次数lost大于阈值klost时认为该目标丢失;
(5)根据公式:
Figure BDA0003586667490000081
判断当前帧数据是否与目标池内的数据匹配,公式中i和j为上一帧时刻和当前帧时刻的目标,x和y为目标与雷达设备在水平和垂直方向上的距离,v和a为目标的速度与加速度,k为对应参数的阈值;
(6)对于当前帧数据中的匹配目标,生命周期life加1,丢失次数lost置0,不匹配的目标为新目标,将其life置为1,lost置0,此时目标池数据中的不匹配的数据为丢失目标,其life不变,lost加1;
(7)对于匹配目标,判断生命周期life是否大于klife,若life>klife则输出有效目标并更新目标池,否则直接更新目标池内的数据;
(8)对于新目标,直接放入目标池;
(9)对于上一帧的丢失目标,判断丢失次数lost是否大于klost,若lost>klost,丢弃该目标,否则依据公式:
Figure BDA0003586667490000091
对该目标进行预测,并将预测目标放入目标池并更新目标池,公式中的t为毫米波雷达的帧间隔时间,x与y为目标与雷达设备的横坐标与纵坐标距离,vx与vy为目标的横向速度与纵向速度,ax与ay为目标的横向加速度与纵向加速度,角标′代表此数据为该参数的下一时刻预测值,Δ代表通过匹配的数据计算出的列车震动对该参数产生的偏移量;
(10)读取下一帧,返回步骤(1),直至停止输入新雷达数据。
如图4所示的是使用随机抽样一致算法提取地平面点云数据,如图5所示的是使用随机抽样一致算法从地平面点云数据中提取出的轨道限界点云数据,后续的融合与时空配准建立在上述点云数据的基础上。
毫米波雷达和激光雷达采集到的数据进行融合包括时间配准和空间配准两方面。如图6所示的是时间配准的示意图,在进行时间配准时,将帧率较低的激光雷达的帧数据作为基准,根据公式:
Figure BDA0003586667490000101
可以得到匹配的毫米波雷达的帧数据,公式中Fradar为毫米波雷达帧号,Flidar为激光雷达帧号,fpsradar为毫米波雷达帧率,fpslidar为激光雷达帧率。如图7所示的是空间配准的示意图,其中XL、YL和ZL构成激光雷达坐标系,XR与YR构成毫米波雷达坐标系,毫米波雷达坐标原点在激光雷达坐标系下的位置为(xL0 yL0 zL0)T,由于毫米波雷达获取的数据作为激光雷达空间某一高度坐标下的数据,因此两者坐标是线性转换关系,转换公式为:
Figure BDA0003586667490000102
其中z0是毫米波雷达坐标系原点相较于激光雷达坐标系原点的高度差,矩阵R为平面旋转变换矩阵,T为平面平移矩阵。将毫米波雷达的数据转换到激光雷达坐标系后,两者数据相互匹配,形成对应关系,效果如图8所示。
如图9所示,本发明设计毫米波雷达与激光雷达环境感知系统主要由传感器模块、数据融合处理模块和能源供给模块组成,其中传感器模块由毫米波雷达和激光雷达两个设备组成,并具有一定可扩展性。数据融合处理模块由工控机或个人计算机构成,该模块通过算法处理传感器模块获取的数据,将不同传感器的数据配准,并进行轨道限界提取与融合障碍物目标检测,最终输出轨道限界内的障碍物目标信息。能源供给模块主要由UPS电源、开关电源、连接线等组成,该模块主要用于为其他模块设备提供稳定持续的电源,以及将电源转换成设备所需的电压。
以下通过模拟实验对目标网格算法的性能进行验证,其实施如下:
在模拟中,设置了3个运动状态不同于静止目标的移动目标,以及33个静止目标,来模拟两旁树木、信号机等物体,并且在4个噪声目标、8个噪声目标以及12个噪声目标的条件下分别进行实验;为了模拟振动环境,每个目标都添加了0至1m的随机位置偏移,以及0至0.5m/s的随机速度偏移,这些偏移数据的范围取值来自实际测试结果。考虑到铁路的震动环境,实验中网格大小为横向1.3m,纵向2m,阈值klost设定为3,klife设定为4,其他阈值三倍精度。实验结果如表1所示。
表1
Figure BDA0003586667490000111
Figure BDA0003586667490000121
从表1可以看到,使用目标网格算法可以有效去除噪声,提高了信号质量,对目标检测能力较强,同时大大减小了虚警率。
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.一种基于目标网格的雷达轨行区环境感知方法,其特征在于,包括:
获取毫米波雷达采集的数据,对数据进行预处理,形成靶面投影图;
对所述靶面投影图中的目标进行有效性判断,识别有效目标数据并对所述有效目标数据进行分类,得到静止目标和运动目标;
获取激光雷达点云数据,基于所述激光雷达点云数据提取轨道限界信息;
将所述有效目标数据和所述轨道限界信息融合,实现环境感知与障碍物检测。
2.根据权利要求1所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,通过基于目标的网格方法对所述靶面投影图进行有效性判断,去除闪灭噪声目标,识别有效目标数据。
3.根据权利要求2所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,对所述靶面投影图进行有效性判断的步骤包括:
输入新一帧雷达数据,计算所述新一帧雷达数据在直角坐标系中的位置,并将所述新一帧雷达数据投影到靶面;
以投影到靶面的每个目标为中心构建网格,得到当前帧的目标池;
判断当前帧数据是否与所述目标池内的数据匹配,若匹配则得到有效目标,若不匹配则继续读取下一帧数据,直至停止输入新雷达数据。
4.根据权利要求3所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,所述目标池中的数据包括:匹配目标数据、新出现目标数据和丢失目标数据。
5.根据权利要求4所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,根据公式(1),判断所述当前帧数据是否与所述目标池内的数据匹配:
Figure FDA0003586667480000021
其中,i和j为上一帧时刻和当前帧时刻的目标,x和y为目标与雷达设备在水平和垂直方向上的距离,v和a为目标的速度与加速度,k为对应参数的阈值;
对于当前帧数据中的匹配目标数据,生命周期life加1,丢失次数lost置0;不匹配的目标为新出现目标数据,将其生命周期life置为1,丢失次数lost置0,此时目标池数据中的不匹配的数据为丢失目标数据,其life不变,lost加1;
判断所述匹配目标数据的生命周期life是否大于klife,若life>klife则输出有效目标并更新目标池,否则直接更新目标池内的数据;
对于所述新出现目标数据,直接放入目标池;
对于所述丢失目标数据,判断丢失次数lost是否大于klost,若lost>klost,则丢弃该目标,否则对所述丢失目标数据进行预测,放入目标池并更新目标池,读取下一帧数据并继续进行判断,直至停止输入新雷达数据。
6.根据权利要求4所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,根据公式(2)对所述丢失目标数据进行预测:
Figure FDA0003586667480000031
其中,t为毫米波雷达的帧间隔时间,x与y为目标与雷达设备的横坐标与纵坐标距离,vx与vy为目标的横向速度与纵向速度,ax与ay为目标的横向加速度与纵向加速度;x′与y′为下一时刻目标与雷达设备的横坐标与纵坐标距离的预测值,v′x与v′y为下一时刻目标的横向速度与纵向速度的预测值,a′x与a′y为下一时刻目标的横向加速度与纵向加速度的预测值;Δx与Δy为目标与雷达设备的横坐标与纵坐标的偏移量,Δvx与Δvy为目标的横向速度与纵向速度的偏移量,Δax与Δay为目标的横向加速度与纵向加速度的偏移量,公式中角标′代表此数据为该参数的下一时刻预测值,Δ代表通过匹配的数据计算出的列车震动对该参数产生的偏移量。
7.根据权利要求1所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,通过聚类算法,根据所述有效目标与列车的距离、所述有效目标的运动状态信息,对所述有效目标进行分类,得到所述静止目标和运动目标。
8.根据权利要求1所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,利用随机抽样一致算法提取所述轨道限界信息,具体步骤包括:
基于地面的高度信息设置阈值,排除高于所述阈值的点云数据,筛选出列车正前方地面感兴趣区域,使用随机抽样一致算法提取地平面信息;
基于所述地平面信息,提取出轨道的感兴趣区域,使用随机抽样一致算法从所述轨道的感兴趣区域中提取出所述轨道限界信息。
9.根据权利要求8所述的基于目标网格的雷达轨行区环境感知方法,其特征在于,将所述有效目标数据和所述轨道限界信息融合,通过时空配准的方法将所述有效目标数据和所述轨道界限信息置于同一坐标系内,实现环境感知与障碍物检测;其中,所述时空配准包括时间配准和空间配准。
CN202210367869.4A 2022-04-08 2022-04-08 一种基于目标网格的雷达轨行区环境感知方法 Active CN114814826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210367869.4A CN114814826B (zh) 2022-04-08 2022-04-08 一种基于目标网格的雷达轨行区环境感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210367869.4A CN114814826B (zh) 2022-04-08 2022-04-08 一种基于目标网格的雷达轨行区环境感知方法

Publications (2)

Publication Number Publication Date
CN114814826A true CN114814826A (zh) 2022-07-29
CN114814826B CN114814826B (zh) 2023-06-16

Family

ID=82533745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210367869.4A Active CN114814826B (zh) 2022-04-08 2022-04-08 一种基于目标网格的雷达轨行区环境感知方法

Country Status (1)

Country Link
CN (1) CN114814826B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115393680A (zh) * 2022-08-08 2022-11-25 武汉理工大学 雾天场景下多模态信息时空融合的3d目标检测方法及系统
CN116402871A (zh) * 2023-03-28 2023-07-07 苏州大学 一种基于场景平行要素的单目测距方法、系统及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208793A (zh) * 2019-04-26 2019-09-06 纵目科技(上海)股份有限公司 基于毫米波雷达的辅助驾驶系统、方法、终端和介质
CN111368706A (zh) * 2020-03-02 2020-07-03 南京航空航天大学 基于毫米波雷达和机器视觉的数据融合动态车辆检测方法
CN112083441A (zh) * 2020-09-10 2020-12-15 湖南大学 激光雷达和毫米波雷达深度融合的障碍物检测方法及系统
WO2020260649A1 (fr) * 2019-06-26 2020-12-30 Thales Dispositif radar pour la détection d'un comportement de référence de cibles pistées; procédé et produit programme d'ordinateur associés
CN112230245A (zh) * 2020-09-21 2021-01-15 卡斯柯信号有限公司 一种基于激光雷达的隧道内列车主动障碍物检测系统及方法
CN113156421A (zh) * 2021-04-07 2021-07-23 南京邮电大学 基于毫米波雷达和摄像头信息融合的障碍物检测方法
CN113468941A (zh) * 2021-03-11 2021-10-01 长沙智能驾驶研究院有限公司 障碍物检测方法、装置、设备及计算机存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208793A (zh) * 2019-04-26 2019-09-06 纵目科技(上海)股份有限公司 基于毫米波雷达的辅助驾驶系统、方法、终端和介质
WO2020260649A1 (fr) * 2019-06-26 2020-12-30 Thales Dispositif radar pour la détection d'un comportement de référence de cibles pistées; procédé et produit programme d'ordinateur associés
CN111368706A (zh) * 2020-03-02 2020-07-03 南京航空航天大学 基于毫米波雷达和机器视觉的数据融合动态车辆检测方法
CN112083441A (zh) * 2020-09-10 2020-12-15 湖南大学 激光雷达和毫米波雷达深度融合的障碍物检测方法及系统
CN112230245A (zh) * 2020-09-21 2021-01-15 卡斯柯信号有限公司 一种基于激光雷达的隧道内列车主动障碍物检测系统及方法
CN113468941A (zh) * 2021-03-11 2021-10-01 长沙智能驾驶研究院有限公司 障碍物检测方法、装置、设备及计算机存储介质
CN113156421A (zh) * 2021-04-07 2021-07-23 南京邮电大学 基于毫米波雷达和摄像头信息融合的障碍物检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
翟光耀 等: "基于毫米波雷达和机器视觉信息融合的障碍物检测" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115393680A (zh) * 2022-08-08 2022-11-25 武汉理工大学 雾天场景下多模态信息时空融合的3d目标检测方法及系统
CN116402871A (zh) * 2023-03-28 2023-07-07 苏州大学 一种基于场景平行要素的单目测距方法、系统及电子设备
CN116402871B (zh) * 2023-03-28 2024-05-10 苏州大学 一种基于场景平行要素的单目测距方法、系统及电子设备

Also Published As

Publication number Publication date
CN114814826B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN113536883B (zh) 障碍物检测方法、车辆、设备及计算机存储介质
Liu et al. A review of applications of visual inspection technology based on image processing in the railway industry
CN110889350B (zh) 一种基于三维成像的线路障碍物监测报警系统及方法
CN103064086B (zh) 一种基于深度信息的车辆跟踪方法
CN112132896B (zh) 一种轨旁设备状态检测方法及系统
CN114814826A (zh) 一种基于目标网格的雷达轨行区环境感知方法
Wohlfeil Vision based rail track and switch recognition for self-localization of trains in a rail network
Zhangyu et al. A camera and LiDAR data fusion method for railway object detection
CN107380163A (zh) 基于磁导航的汽车智能报警预测系统及其方法
CN108230254A (zh) 一种自适应场景切换的高速交通全车道线自动检测方法
CN103150786A (zh) 一种非接触式无人驾驶车辆行驶状态测量系统及测量方法
CN103176185A (zh) 用于检测道路障碍物的方法及系统
CN108765974A (zh) 一种交通情况监测设备、监测方法及系统
CN102914290A (zh) 地铁限界检测系统及其检测方法
CN109242035B (zh) 车底故障检测装置及方法
CN116310679A (zh) 多传感器融合目标检测方法、系统、介质、设备及终端
CN111717244A (zh) 一种列车自动驾驶感知方法和系统
CN115236673A (zh) 一种大型车辆多雷达融合感知系统和方法
CN113654632A (zh) 一种基于高速激光雷达的铁路货运几何超限预警系统
Sharma et al. Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load
CN110501699A (zh) 一种屏蔽门与车体间的障碍物检测系统及检测方法
Qi et al. Railway obstacle detection based on radar and image data fusion
Wang et al. An inverse projective mapping-based approach for robust rail track extraction
Wolf et al. Asset Detection in Railroad Environments using Deep Learning-based Scanline Analysis.
CN109591850A (zh) 一种轨道异物检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant