CN114810232A - 用于故障感测流动部件的系统和方法 - Google Patents

用于故障感测流动部件的系统和方法 Download PDF

Info

Publication number
CN114810232A
CN114810232A CN202210057205.8A CN202210057205A CN114810232A CN 114810232 A CN114810232 A CN 114810232A CN 202210057205 A CN202210057205 A CN 202210057205A CN 114810232 A CN114810232 A CN 114810232A
Authority
CN
China
Prior art keywords
pressure
manifold
pressure differential
differential
engine controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210057205.8A
Other languages
English (en)
Inventor
杰弗里·道格拉斯·兰博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN114810232A publication Critical patent/CN114810232A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/222Fuel flow conduits, e.g. manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/84Redundancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3061Mass flow of the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

提供一种用于运载工具的涡轮机。涡轮机包括歧管,该歧管被配置成引导流体流通过其中;第一压力测量装置,所述第一压力测量装置与歧管通信并被配置为确定第一压力差;第二压力测量装置,所述第二压力测量装置与歧管通信并被配置为确定第二压力差;数据选择器装置,所述数据选择器装置与第一压力测量装置和第二压力测量装置通信,其中数据选择器装置接收第一压力差和第二压力差,并使用逻辑电路生成单个压力信号;和发动机控制器,所述发动机控制器可操作地联接到数据选择器装置,使得发动机控制器接收指示歧管的压力差的单个压力信号。

Description

用于故障感测流动部件的系统和方法
技术领域
本公开大体上涉及用于检测诸如燃气涡轮发动机中的流动部件(flowcomponent)中的故障状况的系统和方法。
背景技术
典型的飞行器推进系统包括一个或多个燃气涡轮发动机。燃气涡轮发动机通常包括涡轮机,涡轮机以串行流顺序包括压缩机区段、燃烧区段、涡轮区段和排气区段。在操作中,空气被提供到压缩机区段的入口,在那里一个或多个轴向压缩机逐渐地压缩空气直到它到达燃烧区段。燃料与压缩空气混合并在燃烧区段内燃烧以提供燃烧气体。燃烧气体从燃烧区段输送到涡轮区段。通过涡轮区段的燃烧气体流驱动涡轮区段,然后通过排气区段被输送到例如大气中。
燃气涡轮发动机和飞行器的某些操作和系统包括输送燃料的燃料系统和输送流体到发动机的各种部件并且可由发动机管理系统控制的流体系统。检测和监测系统可以与这样的燃料系统和流体系统一起使用以监测发动机的系统。
发明内容
本发明的方面和优点将在以下描述中部分阐述,或者可以从描述中显而易见,或者可以通过本发明的实践获知。
在本公开的一个示例性实施例中,提供一种用于运载工具的涡轮机。涡轮机包括歧管,该歧管被配置为引导流体流通过其中;第一压力测量装置,该第一压力测量装置与歧管通信,并被配置为确定第一压力差(ΔP1);第二压力测量装置,该第二压力测量装置与歧管通信,并被配置为确定第二压力差(ΔP2);数据选择器装置,该数据选择器装置与第一压力测量装置和第二压力测量装置通信,其中数据选择器装置接收第一压力差(ΔP1)和第二压力差(ΔP2),并使用逻辑电路生成单个压力信号;和发动机控制器,发动机控制器可操作地联接到数据选择器装置,使得发动机控制器接收指示歧管的压力差的单个压力信号。
在某些示例性实施例中,逻辑电路被配置为确定第一压力差和第二压力差是否在预定压力范围内。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差都在预定压力范围内时,逻辑电路被配置为确定第一压力差和第二压力差的平均值。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差都在预定压力范围之外时,逻辑电路被配置为生成错误消息。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差中只有一个在预定压力范围内时,逻辑电路被配置为仅使用第一压力差和第二压力差中在预定压力范围内的那个压力差。
在某些示例性实施例中,发动机控制器响应于接收单个压力信号,将单个压力信号与预定范围进行比较。
在某些示例性实施例中,当发动机控制器确定单个压力信号在预定范围内时,发动机控制器检测歧管的正状况(positive condition),并且当发动机控制器确定单个压力信号在预定范围之外时,发动机控制器检测歧管的故障状况。
在某些示例性实施例中,发动机控制器包括指示歧管的正状况或故障状况的监测系统。
在某些示例性实施例中,第一压力测量装置包括在第一上游位置处的第一压力传感器和在第一下游位置处的第二压力传感器,并且第二压力测量装置包括在第二上游位置处的第三压力传感器和在第二下游位置处的第四压力传感器。
在某些示例性实施例中,涡轮机包括设置在歧管的一部分中的阀,其中该阀能够在打开位置和关闭位置之间转换。
在本公开的另一个示例性实施例中,提供一种用于运载工具的部件的计算系统。计算系统包括与部件通信并被配置为确定第一压力差(ΔP1)的第一压力测量装置;与部件通信并被配置为确定第二压力差(ΔP2)的第二压力测量装置;与第一压力测量装置和第二压力测量装置通信的数据选择器装置,其中数据选择器装置接收第一压力差(ΔP1)和第二压力差(ΔP2),并使用逻辑电路生成单个压力信号;和具有一个或多个处理器和一个或多个存储装置的控制器,该一个或多个存储装置存储指令,所述指令当由一个或多个处理器执行时,使一个或多个处理器执行操作,在执行操作中,该一个或多个处理器被配置为接收指示部件的压力差的单个压力信号。
在某些示例性实施例中,逻辑电路被配置为确定第一压力差和第二压力差是否在预定压力范围内。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差都在预定压力范围内时,逻辑电路被配置为确定第一压力差和第二压力差的平均值。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差都在预定压力范围之外时,逻辑电路被配置为生成错误消息。
在某些示例性实施例中,当逻辑电路确定第一压力差和第二压力差中只有一个在预定压力范围内时,逻辑电路被配置为仅使用第一压力差和第二压力差中的在预定压力范围内的那个压力差。
在某些示例性实施例中,一个或多个处理器还被配置为响应于接收单个压力信号,将单个压力信号与预定范围进行比较。
在本公开的示例性方面,提供一种测量运载工具的部件处的压力的方法。该方法包括在数据选择器装置处接收指示部件的第一压力差和第二压力差的两个或更多个信号;从第一压力差和第二压力差生成单个压力信号;和通过一个或多个计算装置接收指示部件的压力差的单个压力信号。
在某些方面,从第一压力差和第二压力差生成单个压力信号包括数据选择器装置使用逻辑电路生成单个压力信号,并且逻辑电路被配置为确定第一压力差和第二压力差是否在预定压力范围内。
在某些方面,当逻辑电路确定第一压力差和第二压力差都在预定压力范围内时,逻辑电路被配置为确定第一压力差和第二压力差的平均值。
在某些方面,当逻辑电路确定第一压力差和第二压力差都在预定压力范围之外时,逻辑电路被配置为生成错误消息。
参考以下描述和所附权利要求,将更好地理解本主题的这些和其它特征、方面和优点。包含在本说明书中并构成其一部分的附图示出了该主题的实施例,并与描述一起解释了该主题的原理。
附图说明
在参考附图的说明书中阐述了针对本领域普通技术人员的本主题的完整且可行的公开,包括其最佳模式,其中:
图1是根据本公开的示例性实施例的示例性燃气涡轮发动机的示意性横截面视图。
图2是根据本公开的示例性实施例的示例性控制系统和歧管的立体图。
图3是根据本公开的示例性实施例的示例性控制系统和歧管的侧视图。
图4是根据本公开的示例性实施例的示例性控制系统和歧管的后视图。
图5是根据本公开的示例性实施例的示例性控制系统和歧管的俯视图。
图6是根据本公开的另一个示例性实施例的示例性控制系统和歧管的立体图。
图7是根据本公开的另一个示例性实施例的示例性控制系统和歧管的侧视图。
图8是根据本公开的另一个示例性实施例的示例性控制系统和歧管的后视图。
图9是根据本公开的示例性实施例的示例性控制系统和歧管的侧视图,其中歧管的壁部分被隐藏。
图10是根据本公开的示例性实施例的示例性控制系统和歧管的俯视图。
图11提供根据本公开的示例性实施例的控制系统的框图。
图12是根据本公开的示例性实施例的包括内置状态监测系统的示例控制器。
图13是根据本公开的示例性实施例的测量运载工具的歧管处的压力的示例性方法的流程图。
图14是根据本公开的示例性实施例的示例计算系统。
在这几个视图中,相应的附图标记表示相应的部分。在此阐述的示例说明了本公开的示例性实施例,并且此类示例不应被解释为以任何方式限制本公开的范围。
具体实施方式
现在将详细参考本发明的当前实施例,其一个或多个示例在附图中示出。详细描述使用数字和字母标号来指代图中的特征。附图和描述中相同或相似的标号已用于指代本发明的相同或相似部分。
提供以下描述以使本领域技术人员能够制造和使用所描述的实施例来实现本发明。然而,各种修改、等同物、变型和替代物对本领域技术人员来说仍然是显而易见的。任何和所有这样的修改、变型、等同物和替代物都旨在落入本发明的范围内。
为了下文描述的目的,术语“上”、“下”、“右”、“左”、“垂直”、“水平”、“顶部”、“底部”、“横向”、“纵向”及其衍生物应与本发明有关,因为它在附图中是定向的。然而,应当理解,本发明可以假设各种替代变化,除非明确规定相反。还应当理解的是,附图中示出的以及以下说明书中描述的具体装置仅是本发明的示例性实施例。因此,涉及本文公开的实施例的具体尺寸和其他物理特性不考虑为是限制的。
如本文所用,术语“第一”、“第二”和“第三”可互换使用,以将一个部件与另一个部件区分开,并且不旨在表示各个部件的位置或重要性。
术语“前”和“后”是指燃气涡轮发动机内的相对位置,前是指更靠近发动机入口的位置,而后是指更靠近发动机喷嘴或排气口的位置。
术语“上游”和“下游”是指相对于流体路径中的流体流动的相对方向。例如,“上游”是指流体从其流出的方向,“下游”是指流体流向其的方向。
除非上下文另有明确规定,否则单数形式“一”、“一个”和“该”包括复数指代。
此外,除非另有说明,否则术语“低”、“高”或它们各自的比较级(例如,较低、较高,在适用的情况下)均指发动机内的相对速度。例如,“低压涡轮”在通常低于“高压涡轮”的压力下操作。替代地,除非另有说明,否则上述术语可按其最高级来理解。例如,“低压涡轮”可指涡轮区段内最低的最大压力涡轮,而“高压涡轮”可指涡轮区段内的最高的最大压力涡轮。
在整个说明书和权利要求书中所使用的近似语言被应用于修改可以允许变化而不导致与其相关的基本功能发生变化的任何定量表示。因此,由一个或多个术语(例如“大约”、“近似”和“基本上”)修饰的值不限于指定的精确值。在至少一些情况下,近似语言可以对应于测量值的仪器的精度,或者用于配置或制造部件和/或系统的方法或机器的精度。例如,近似语言可以指在百分之十的裕度范围内。在此以及整个说明书和权利要求书中,范围限制被组合和互换,使得范围被识别并且包括包含在其中的所有子范围,除非上下文或语言另有指示。
在此以及整个说明书和权利要求书中,范围限制被组合和互换,这些范围被识别并包括包含在其中的所有子范围,除非上下文或语言另有指示。例如,本文公开的所有范围都包括端点,并且端点可以相互独立地组合。
本公开的运载工具包括控制系统,该控制系统允许第一压力测量装置和第二压力测量装置与部件(例如歧管或其它流体流动部件)通信,以各自在歧管的上游位置处和歧管的下游位置处读取压力读数。这些压力读数在图11中用P1、P2、P3和P4表示。这允许控制系统确定第一压力差(ΔP1)和第二压力差(ΔP2)。控制系统的数据选择器装置接收第一压力差(ΔP1)和第二压力差(ΔP2),并使用逻辑电路生成单个压力信号。发动机控制器可操作地联接到数据选择器装置,使得发动机控制器接收指示歧管的压力差的单个压力信号。以这种方式,有利地,本公开的控制系统将多个压力读数P1、P2、P3和P4减少为发送到发动机控制器的单个压力信号,其中每个压力读数在传统系统中需要以多个信号传输到控制器。因此,本公开的控制系统允许将单个信号传输到发动机控制器,从而减少发动机控制器所需的空间和/或通道的数量。
预期本公开的控制系统可以使用集成的压力差传感器阵列,其通过部件或歧管测量静压力差以检测涡轮机或其他运载工具的其他部件的流体流动系统中的破损管道状况。可以设想,跨越歧管或其他流动部件上的冗余压力差测量提供对故障流动部件(例如管道系统)的坚韧检测,并且控制系统的控制逻辑需要来自两个压力测量装置的正指示以输出警报信号或错误消息。还预期本公开的监测系统的控制逻辑提供警报信号或错误消息以指示流动部件(例如歧管)的故障状况。例如,在示例性实施例中,控制系统的控制逻辑需要来自两个压力测量装置的正指示以输出警报信号。可以设想,监测系统的警报系统可以包括具有多个警报级别的连续信号。例如,可以使用不同的指示器来指示故障状况的不同级别,例如高、中和低。本公开的系统还提供冗余压力差测量组合成单个信号,以减少误报。
例如,本公开的数据选择器装置的逻辑电路被配置为确定第一压力差和第二压力差是否在预定压力范围内。在示例性实施例中,当逻辑电路确定第一压力差和第二压力差都在预定压力范围内时,逻辑电路被配置为确定第一压力差和第二压力差的平均值。在示例性实施例中,当逻辑电路确定第一压力差与第二压力差都在预定压力范围之外时,逻辑电路被配置为生成错误消息。在示例性实施例中,当逻辑电路确定第一压力差和第二压力差中只有一个在预定压力范围内时,逻辑电路被配置为仅使用第一压力差和第二压力差中的在预定压力范围内的那个压力差。
图1提供可结合本公开的各种实施例的示例性涡轮机的示意性横截面视图。特别地,图1提供航空高旁通涡轮风扇发动机或燃气涡轮发动机10。图1的涡轮风扇10可以安装在飞行器(例如固定翼飞行器)上,并且可以生成推力来推进飞行器。作为参考,涡轮风扇10限定轴向方向A、径向方向R和周向方向。此外,涡轮风扇10限定轴向中心线或纵向轴线12,为了参考目的,该轴向中心线或纵向轴线12延伸穿过涡轮风扇10。一般而言,轴向方向A平行于纵向轴线12延伸,径向方向R在与轴向方向A正交的方向上从纵向轴线12向外和向内延伸,并且周向方向围绕纵向轴线12延伸三百六十度(360°)。
涡轮风扇10包括核心燃气涡轮发动机14和位于其上游的风扇区段16。核心发动机14包括限定环形核心入口20的管状外壳18。外壳18进一步包围并支撑增压器或低压压缩机22,用于对通过核心入口20进入核心发动机14的空气进行加压。高压、多级、轴流式压缩机24从LP压缩机22接收加压空气并进一步增加空气压力。加压空气流向下游流动到燃烧器26,在那里燃料被喷射到加压空气流中并被点燃以提高加压空气的温度和能量水平。高能燃烧产物从燃烧器26下游流到高压涡轮28,用于通过高压线轴30或第二可旋转部件驱动高压压缩机24。高能燃烧产物然后流到低压涡轮32以通过低压线轴34或第一可旋转部件驱动LP压缩机22和风扇区段16。在该示例性实施例中,LP线轴34与HP线轴30同轴。在驱动涡轮28和32中的每一个之后,燃烧产物通过排气喷嘴36离开核心发动机14以生成推进推力。
风扇区段16包括由环形风扇外壳40围绕的可旋转的轴流式风扇转子38。风扇壳体40由核心发动机14通过多个基本径向延伸、周向间隔开的出口导向轮叶42支撑。以此方式,风扇壳体40包围风扇转子38和多个风扇叶片44。风扇壳体40的下游区段46在核心发动机14的外部上方延伸以限定旁通通道48。通过旁通通道48的空气提供推进推力,如下文将进一步解释的。在一些替代实施例中,LP线轴34可以经由减速装置,例如在间接驱动或齿轮驱动配置中的减速齿轮箱,连接到风扇转子38。根据需要或要求,这种减速装置可以包括在涡轮风扇10内的任何合适的轴/线轴之间。
在涡轮风扇10的操作期间,由箭头50表示的初始或进入的气流,通过由风扇外壳40限定的入口52进入涡轮风扇10。气流50通过风扇叶片44并分成通过旁通通道48流动的第一气流(由箭头54表示)和通过核心入口20进入LP压缩机22的第二气流(由箭头56表示)。
第二气流56的压力通过LP压缩机22逐渐增加,然后进入HP压缩机24,如箭头58所示。排出的加压空气流向下游流动到燃烧器26,在那里燃料被引入以生成燃烧气体或产物。燃烧产物60离开燃烧器26并流过HP涡轮28。燃烧产物60然后流过LP涡轮32并离开排气喷嘴36以生成推力。此外,如上所述,进入气流50的一部分流过旁通通道48并流过在风扇外壳40和风扇外壳40的下游区段46处的外壳18之间限定的出口喷嘴。这样,生成大量的推进推力。
如图1进一步所示,燃烧器26限定与纵向中心线轴线12大致同轴的环形燃烧室62,以及入口64和出口66。燃烧器26从高压压缩机排放出口69接收环形的加压空气流。该压缩机排放空气(“CDP”空气)的一部分流入混合器(未显示)。燃料从燃料喷嘴68喷射以与空气混合并形成提供给燃烧室62用于燃烧的燃料-空气混合物。燃料-空气混合物的点燃由合适的点燃器完成,并且生成的燃烧气体60在轴向方向A上流向并流入环形的第一级涡轮喷嘴72。喷嘴72由环形流动通道限定,该环形流动通道包括多个径向延伸、周向间隔开的喷嘴轮叶74,这些喷嘴轮叶74使气体转向,使得它们成角度地流动并撞击在HP涡轮28的第一级涡轮叶片上。对于该实施例,HP涡轮28经由HP线轴30使HP压缩机24旋转并且LP涡轮32经由LP线轴34驱动LP压缩机22和风扇转子38。
参考图1,本公开的控制系统或计算系统100可以与在核心发动机14的外部部分上延伸的风扇壳体40的下游区段46通信,以限定旁通通路48。还预期本公开的控制系统100可以与核心发动机14的任何其他部件通信,这些部件被配置为引导流体流或燃料流通过其中。
图2-14示出了本公开的示例性实施例。参考图2-5,在示例性实施例中,可与图1中所示的示例性燃气涡轮发动机10一起使用的控制或计算系统100。计算系统100是包括涡轮机104的歧管或部件102的系统的一部分。歧管102被配置为引导流体流106通过其中。预期本公开的歧管102可以是核心发动机14的任何部件,其被配置为引导流体流或燃料流通过其中。流体流106通过歧管102从上游部分108流到下游部分110。
参照图2-5和图11,在示例性实施例中,控制系统100包括第一压力测量装置112、第二压力测量装置114、数据选择器装置116和发动机控制器118。
在示例性实施例中,第一压力测量装置112与歧管102通信并且被配置为确定第一压力差(ΔP1)。例如,第一压力测量装置112包括在第一上游位置122处的第一压力传感器120和在第一下游位置126处的第二压力传感器124。第一压力传感器120被配置为确定部件128的一部分的上游或歧管102的特定位置的第一压力读数P1,例如,还预期部件可以是阀250(图6-10),如下文详细描述的,并且第二压力传感器124被配置为确定部件128下游或歧管102的特定位置的第二压力读数P2,例如,还预期部件可以是阀250(图6-10),如下文详细描述的。第一压力读数P1和第二压力读数P2用于确定歧管102的一部分处的第一压力差(ΔP1)。
在示例性实施例中,第二压力测量装置114与歧管102通信并且被配置为确定第二压力差(ΔP2)。例如,第二压力测量装置114包括在第二上游位置132处的第三压力传感器130和在第二下游位置136处的第四压力传感器134。第三压力传感器130被配置为确定部件128的一部分的上游或歧管102的特定位置的第三压力读数P3,例如,还预期部件可以是阀250(图6-10),如下文详细描述的,并且第四压力传感器134被配置为确定部件128下游或歧管102的特定位置的第四压力读数P4,例如,还预期部件可以是阀250(图6-10),如下文详细描述的。第三压力读数P3和第四压力读数P4用于确定歧管102的一部分处的第二压力差(ΔP2)。在示例性实施例中,设想第一压力测量装置112和第二压力测量装置114可以包括压力换能器、传感器或其他感测部件。可以设想,本公开的控制系统100和歧管102是腔体输出弯管,其可以具有增压室到由本公开的控制系统100测量和监测的弯管静压力差。在其他示例性实施例中,本公开的控制系统100可以测量和监测运载工具的任何腔、流动区域或部件的静压力差。
在示例性实施例中,数据选择器装置116与第一压力测量装置112和第二压力测量装置114通信。例如,参考图2-5,数据选择器装置116经由第一信号线140与第一压力测量装置112通信,并且数据选择器装置116经由第二信号线142与该第二压力测量装置114通信。还预期数据选择器装置116经由其他通信方式(例如经由无线通信系统)与第一压力测量装置112和第二压力测量装置114通信。
该数据选择器装置116接收第一压力差(ΔP1)和第二压力差(AP2),并使用逻辑电路来生成单个压力信号220。重要的是,以这种方式,如图11所示,单个压力信号220被传输到发动机控制器118。例如,本发明的数据选择器装置116的逻辑电路被配置为确定第一压力差(ΔP1)与第二压力差(ΔP2)是否在预定压力范围内。在示例性实施例中,当逻辑电路确定第一压力差(ΔP1)和第二压力差(ΔP2)都在预定压力范围内时,逻辑电路被配置为确定第一压力差(ΔP1)和第二个压力差(ΔP2)的平均值。在示例性实施例中,当逻辑电路确定第一压力差(ΔP1)和第二压力差(ΔP2)都在预定压力范围之外时,逻辑电路被配置为生成错误消息。在示例性实施例中,当逻辑电路确定第一压力差(ΔP1)和第二压力差(ΔP2)中只有一个在预定压力范围内时,逻辑电路被配置为仅使用第一压力差(ΔP1)和第二压力差(ΔP2)中的在预定压力范围内的那个压力差。可以设想,可以使用任意数量的逻辑电路,例如AND逻辑门。
预期预定压力范围可以是涡轮机104的任何流动部件的特定流量应用的任何期望范围或计算范围。例如,可以对特定流量应用进行计算以确定适当的预定压力范围。
在示例性实施例中,数据选择器装置116包括多路器,但也考虑其他部件。例如,数据选择器装置116可以是基于某种逻辑发出电信号的电子装置、可编程装置或电路,或者能够读取模拟压力计并发送压力信号的压力信号装置。
在示例性实施例中,发动机控制器118可操作地联接到数据选择器装置116,使得发动机控制器118接收指示歧管102的压力差的单个压力信号220;并且响应于接收单个压力信号220,将单个压力信号220与预定范围进行比较。预期发动机控制器118可以是能够发出电信号的任何电子装置或其他可编程装置或电路。
可以设想,发动机控制器118可以经由第三信号线144被联接到数据选择器装置116。可以预期,数据选择器装置116经由其他的通信装置(例如经由无线通信系统)与发动机控制器118通信。
在本公开的控制系统100中,当发动机控制器118确定单个压力信号220在预定范围内时,发动机控制器118检测歧管102的正状况。此外,当发动机控制器118确定单个压力信号220在预定范围之外时,发动机控制器118检测歧管102的故障状况。可以预期,预定范围可以是歧管102或涡轮机104的其他部件的任何期望范围,以指示部件的正状况或故障状况。例如,通过这种歧管或其他部件102测量静压力差,允许检测例如燃气涡轮发动机10的流动或燃料系统中的破裂管道状况。
图11提供用于本公开的运载工具的控制系统100的示意图。如本文所述,重要的是,本公开的控制系统100允许第一压力测量装置112和第二压力测量装置114与部件,例如歧管102(图2-5)通信,以各自在歧管102的上游位置处和歧管102的下游位置处读取压力读数。这些压力读数在图11中表示为P1、P2、P3和P4。这允许控制系统100确定第一压力差(ΔP1)和第二压力差(ΔP2)。控制系统100的数据选择器装置116接收第一压力差(ΔP1)和第二压力差(ΔP2),并使用逻辑电路生成单个压力信号220。发动机控制器118可操作地联接至数据选择器装置116,使得发动机控制器118接收指示歧管102的压力差的单个压力信号220;并且响应于接收单个压力信号220,将单个压力信号220与预定范围进行比较。以这种方式,有利地,本公开的控制系统100将多个压力读数P1、P2、P3和P4减少为发送到发动机控制器118的单个压力信号220,其中每个压力读数P1、P2、P3和P4在传统系统中都需要以多个信号传输到控制器。因此,本公开的控制系统100允许将单个信号传输到发动机控制器118,从而减少发动机控制器118所需的空间和/或通道数量。
预期本公开的控制系统100可以使用集成的压力差传感器阵列,其测量通过部件或歧管102的静压力差以检测涡轮机104或其他运载工具的其他部件的流体流动系统中的破损管道状况。可以设想,跨越歧管或其他流动部件上的冗余压力差测量提供对故障流动部件(例如管道系统)的坚韧检测,并且控制系统100的控制逻辑需要来自两个压力测量装置的正指示,以输出警报信号或错误消息。还预期监测系统300的控制逻辑提供警报信号或错误消息,以指示流动部件(例如歧管102)的故障状况。例如,在示例性实施例中,控制系统100的控制逻辑需要来自两个压力测量装置的正指示,以输出警报信号或错误消息。可以设想,监测系统300的警报系统可以包括具有多个警报级别的连续信号。例如,可以使用不同的指示器来指示故障状况的不同级别,例如高、中和低。本公开的系统还提供冗余压力差测量组合成单个信号,以减少误报。
在一些示例性实施例中,控制系统100的所有部件都在涡轮风扇10上。在其他实施例中,控制系统100的一些部件在涡轮风扇10上而一些部件在涡轮风扇10外。例如,一些舷外部件可以安装到安装有涡轮风扇10的飞行器的机翼、机身或其他合适的结构上。
此外,参考图12,本公开的控制系统100包括具有内置状态监测系统300的控制器130。内置状态监测系统300能够指示燃气涡轮发动机10的歧管或其他部件102的状态。例如,监测系统300指示歧管102的正状况或故障状况。还设想状态监测系统300能够提供歧管102或燃气涡轮发动机10的其他部件的其他状态的指示。可以预期的是,监测系统300的控制逻辑提供警报信号或错误消息,以指示流动部件(例如歧管102)的故障状况。例如,在示例性实施例中,控制系统100的控制逻辑需要来自两个压力测量装置的正指示,以输出警报信号或错误消息。可以设想,监测系统300的警报系统可以包括具有多个警报级别的连续信号。例如,可以使用不同的指示器来指示故障状况的不同级别,例如高、中和低。
图6-10示出了本公开的另一个示例性实施例。图6-10所示的实施例包括与图2-5所示的实施例相似的部件,并且相似的部件由参考数字后跟字母A表示。为简洁起见,这些相似的部件和使用控制系统100A(图6-10)的相似步骤将不结合图6-10所示的实施例全部讨论。
参考图6-10,本公开的控制系统100A可以包括设置在歧管102A的一部分中的阀250。阀250能够在打开位置和关闭位置之间转换。以此方式,第一压力传感器120A被配置为确定阀250上游的第一压力读数P1,并且第二压力传感器124A被配置为确定阀250下游的第二压力读数P2。第一压力读数P1和第二压力读数P2用于确定歧管102的一部分处的第一压力差(ΔP1)。此外,第三压力传感器130A被配置为确定阀250上游的第三压力读数P3,并且第四压力传感器134A被配置为确定阀250(图6-10)下游的第四压力读数P4。第三压力读数P3和第四压力读数P4用于确定歧管102的一部分处的第二压力差(ΔP2)。
以此方式,本公开的控制系统100A可用于确定在阀250处是否存在堵塞,例如,当阀250应该关闭或如果阀250发生故障时,碎屑或其他污染物是否使阀250保持打开。预期本公开的控制系统100A还可以通过压力差的巨大变化来确定阀250是处于打开位置还是关闭位置。本公开的系统还提供冗余压力差测量组合成单个信号,以减少误报。
图13提供根据本公开的示例性实施例的测量运载工具的歧管或部件处的压力的示例性方法(400)的流程图。例如,示例性方法(400)可用于操作本文所述的发动机10。应当理解,本文中讨论的方法(400)仅用于描述本主题的示例性方面并且不旨在进行限制。在示例性实施例中,测量运载工具的部件处的压力的方法(400)包括在数据选择器装置处接收指示该部件的第一压力差和第二压力差的两个或更多个信号;从第一压力差和第二压力差生成单个压力信号;并且通过一个或多个计算装置接收指示部件的压力差的单个压力信号。
在其他示例性实施例中,在(402)处,方法(400)包括确定部件处的第一压力差(ΔP1)。接下来,在(404)处,方法(400)包括确定部件处的第二压力差(ΔP2)。
在(406)处,方法(400)包括将第一压力差(ΔP1)和第二压力差(ΔP2)发送到数据选择器装置,该数据选择器装置使用逻辑电路来生成单个压力信号。接下来,在(408)处,方法(400)包括由一个或多个计算装置接收指示部件的压力差的单个压力信号。
图14提供根据本公开的示例实施例的示例计算系统500。例如,本文描述的计算系统(例如,控制器118)可以包括各种部件并且执行下面描述的计算系统500的各种功能。
如图14所示,计算系统500可以包括一个或多个计算装置510。计算装置510可以包括一个或多个处理器510A和一个或多个存储装置510B。一个或多个处理器510A可以包括任何合适的处理装置,例如微处理器、微控制器、集成电路、逻辑装置和/或其他合适的处理装置。一个或多个存储装置510B可以包括一个或多个计算机可读介质,包括但不限于非暂时性计算机可读介质、RAM、ROM、硬盘驱动器、闪存驱动器和/或其他存储装置。
一个或多个存储装置510B可存储可由一个或多个处理器510A访问的信息,包括可由一个或多个处理器510A执行的计算机可读指令510C。指令510C可以是当由一个或多个处理器510A执行时使一个或多个处理器510A执行操作的任何指令集。在一些实施例中,指令510C可由一个或多个处理器510A执行,以使一个或多个处理器510A执行操作,例如计算系统500和/或计算装置510被配置的任何操作和功能、在瞬态操作期间电辅助涡轮机的操作(例如,方法(400))和/或一个或多个计算装置510的任何其他操作或功能。因此,方法(400)可以是计算机实现的方法,使得示例性方法(400)的每个步骤由一个或多个计算装置执行,例如计算系统500的示例性计算装置510。指令510C可以是用任何合适的编程语言编写的软件或者可以用硬件实现。附加地和/或替代地,指令510C可以在处理器510A上的逻辑和/或虚拟分离的线程中执行。存储装置510B还可存储可由处理器510A访问的数据510D。例如,数据510D可以包括模型、数据库等。
计算装置510还可以包括网络接口510E,用于例如与系统500的其他部件(例如,经由网络)通信。网络接口510E可以包括用于与一个或多个网络接口的任何合适的部件,包括例如发射器、接收器、端口、控制器、天线和/或其他合适的部件。一个或多个外部装置,例如燃料控制装置150和电气控制装置120,可以被配置为从计算装置510接收一个或多个命令或向计算装置510提供一个或多个命令。
预期本公开的涡轮机和方法可以在飞行器、直升机、汽车、船、潜艇、火车、无人驾驶飞行器或无人机和/或任何其他合适的运载工具上实施。虽然在此参考飞行器实施方式描述本公开,但这仅旨在用作示例而不是限制。本领域的普通技术人员将理解,本公开的涡轮机和方法可以在不脱离本公开的范围的情况下在其他运载工具上实施。
本文讨论的技术参考基于计算机的系统并由发送到基于计算机的系统和从基于计算机的系统发送的信息采取动作。本领域的普通技术人员将认识到,基于计算机的系统的固有灵活性允许在部件之间和之中进行多种可能的配置、组合以及任务和功能的划分。例如,可以使用单个计算装置或组合工作的多个计算装置来实现本文讨论的过程。数据库、存储器、指令和应用程序可以在单个系统上实现,也可以跨多个系统分布。分布式部件可以顺序地或并行操作。
尽管可以在一些附图中而不是在其他附图中示出各种实施例的特定特征,但这仅仅是为了方便。根据本公开的原理,附图的任何特征可以与任何其他附图的任何特征结合被引用和/或要求保护。
本发明的进一步方面通过以下条项的主题提供:
1.一种用于运载工具的涡轮机,包括:歧管,所述歧管被配置为引导流体流通过其中;第一压力测量装置,所述第一压力测量装置与所述歧管通信,并被配置为确定第一压力差(ΔP1);第二压力测量装置,所述第二压力测量装置与所述歧管通信,并被配置为确定第二压力差(ΔP2);数据选择器装置,所述数据选择器装置与所述第一压力测量装置和所述第二压力测量装置通信,其中所述数据选择器装置接收所述第一压力差(ΔP1)和所述第二压力差(ΔP2),并使用逻辑电路生成单个压力信号;和发动机控制器,所述发动机控制器可操作地联接到所述数据选择器装置,使得所述发动机控制器接收指示所述歧管的压力差的所述单个压力信号。
2.根据任何在前条项所述的涡轮机,其中所述逻辑电路被配置为确定所述第一压力差和所述第二压力差是否在预定压力范围内。
3.根据任何在前条项所述的涡轮机,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围内时,所述逻辑电路被配置为确定所述第一压力差和所述第二压力差的平均值。
4.根据任何在前条项所述的涡轮机,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围之外时,所述逻辑电路被配置为生成错误消息。
5.根据任何在前条项所述的涡轮机,其中当所述逻辑电路确定所述第一压力差和所述第二压力差中只有一个在所述预定压力范围内时,所述逻辑电路被配置为仅使用所述第一压力差和所述第二压力差中的在所述预定压力范围内的那个压力差。
6.根据任何在前条项所述的涡轮机,其中所述发动机控制器响应于接收所述单个压力信号,将所述单个压力信号与预定范围进行比较。
7.根据任何在前条项所述的涡轮机,其中当所述发动机控制器确定所述单个压力信号在所述预定范围内时,所述发动机控制器检测所述歧管的正状况,并且其中当所述发动机控制器确定所述单个压力信号在所述预定范围之外时,所述发动机控制器检测所述歧管的故障状况。
8.根据任何在前条项所述的涡轮机,其中所述发动机控制器包括指示所述歧管的所述正状况或所述故障状况的监测系统。
9.根据任何在前条项所述的涡轮机,其中所述第一压力测量装置包括在第一上游位置处的第一压力传感器和在第一下游位置处的第二压力传感器,并且其中所述第二压力测量装置包括在第二上游位置处的第三压力传感器和在第二下游位置处的第四压力传感器。
10.根据任何在前条项所述的涡轮机,还包括设置在所述歧管的一部分中的阀,其中所述阀能够在打开位置和关闭位置之间转换。
11.一种用于运载工具的部件的计算系统,包括:第一压力测量装置,所述第一压力测量装置与所述部件通信,并被配置为确定第一压力差(ΔP1);第二压力测量装置,所述第二压力测量装置与所述部件通信,并被配置为确定第二压力差(ΔP2);数据选择器装置,所述数据选择器装置与所述第一压力测量装置和所述第二压力测量装置通信,其中所述数据选择器装置接收所述第一压力差(ΔP1)和所述第二压力差(ΔP2),并使用逻辑电路生成单个压力信号;和控制器,所述控制器具有一个或多个处理器和一个或多个存储装置,所述一个或多个存储装置存储指令,所述指令当由所述一个或多个处理器执行时,使所述一个或多个处理器执行操作,在执行所述操作时,所述一个或多个处理器被配置为接收指示所述部件的压力差的所述单个压力信号。
12.根据任何在前条项所述的计算系统,其中所述逻辑电路被配置为确定所述第一压力差和所述第二压力差是否在预定压力范围内。
13.根据任何在前条项所述的计算系统,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围内时,所述逻辑电路被配置为确定所述第一压力差和所述第二压力差的平均值。
14.根据任何在前条项所述的计算系统,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围之外时,所述逻辑电路被配置为生成错误消息。
15.根据任何在前条项所述的计算系统,其中当所述逻辑电路确定所述第一压力差和所述第二压力差中只有一个在所述预定压力范围内时,所述逻辑电路被配置为仅使用所述第一压力差和所述第二压力差中的在所述预定压力范围内的那个压力差。
16.根据任何在前条项所述的计算系统,其中所述一个或多个处理器还被配置为响应于接收所述单个压力信号,将所述单个压力信号与预定范围进行比较。
17.一种测量运载工具的部件处的压力的方法,所述方法包括:在数据选择器装置处,接收指示所述部件的第一压力差和第二压力差的两个或更多个信号;从所述第一压力差和所述第二压力差生成单个压力信号;和通过一个或多个计算装置,接收指示所述部件的压力差的所述单个压力信号。
18.根据任何在前条项所述的方法,其中从所述第一压力差和所述第二压力差生成所述单个压力信号包括所述数据选择器装置使用逻辑电路生成所述单个压力信号,其中所述逻辑电路被配置为确定所述第一压力差和所述第二压力差是否在预定压力范围内。
19.根据任何在前条项所述的方法,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围内时,所述逻辑电路被配置为确定所述第一压力差和所述第二压力差的平均值。
20.根据任何在前条项所述的方法,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围之外时,所述逻辑电路被配置为生成错误消息。
该书面描述使用示例来公开本发明,包括最佳模式,并且还使本领域的任何技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何合并的方法。本发明的可专利范围由权利要求限定,并且可以包括本领域技术人员想到的其他示例。如果这些其他示例包括与权利要求的字面语言没有区别的结构元件,或者如果它们包括与权利要求的字面语言没有实质性差异的等效结构元件,则这些其他示例意图在权利要求的范围内。
虽然本公开已经被描述为具有示例性设计,但是可以在本公开的范围内进一步修改本公开。因此,本申请旨在使用其一般原理来涵盖本公开的任何变化、用途或调整。此外,本申请旨在涵盖在本公开所属领域的已知或惯例实践内以及落入所附权利要求的限制内的与本公开的偏离。

Claims (10)

1.一种用于运载工具的涡轮机,其特征在于,包括:
歧管,所述歧管被配置为引导流体流通过其中;
第一压力测量装置,所述第一压力测量装置与所述歧管通信,并被配置为确定第一压力差;
第二压力测量装置,所述第二压力测量装置与所述歧管通信,并被配置为确定第二压力差;
数据选择器装置,所述数据选择器装置与所述第一压力测量装置和所述第二压力测量装置通信,其中所述数据选择器装置接收所述第一压力差和所述第二压力差,并使用逻辑电路生成单个压力信号;和
发动机控制器,所述发动机控制器可操作地联接到所述数据选择器装置,使得所述发动机控制器接收指示所述歧管的压力差的所述单个压力信号。
2.根据权利要求1所述的涡轮机,其特征在于,其中所述逻辑电路被配置为确定所述第一压力差和所述第二压力差是否在预定压力范围内。
3.根据权利要求2所述的涡轮机,其特征在于,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围内时,所述逻辑电路被配置为确定所述第一压力差和所述第二压力差的平均值。
4.根据权利要求2所述的涡轮机,其特征在于,其中当所述逻辑电路确定所述第一压力差和所述第二压力差都在所述预定压力范围之外时,所述逻辑电路被配置为生成错误消息。
5.根据权利要求2所述的涡轮机,其特征在于,其中当所述逻辑电路确定所述第一压力差和所述第二压力差中只有一个在所述预定压力范围内时,所述逻辑电路被配置为仅使用所述第一压力差和所述第二压力差中的在所述预定压力范围内的那个压力差。
6.根据权利要求1所述的涡轮机,其特征在于,其中所述发动机控制器响应于接收所述单个压力信号,将所述单个压力信号与预定范围进行比较。
7.根据权利要求6所述的涡轮机,其特征在于,其中当所述发动机控制器确定所述单个压力信号在所述预定范围内时,所述发动机控制器检测所述歧管的正状况,并且其中当所述发动机控制器确定所述单个压力信号在所述预定范围之外时,所述发动机控制器检测所述歧管的故障状况。
8.根据权利要求7所述的涡轮机,其特征在于,其中所述发动机控制器包括指示所述歧管的所述正状况或所述故障状况的监测系统。
9.根据权利要求1所述的涡轮机,其特征在于,其中所述第一压力测量装置包括在第一上游位置处的第一压力传感器和在第一下游位置处的第二压力传感器,并且其中所述第二压力测量装置包括在第二上游位置处的第三压力传感器和在第二下游位置处的第四压力传感器。
10.根据权利要求9所述的涡轮机,其特征在于,还包括设置在所述歧管的一部分中的阀,其中所述阀能够在打开位置和关闭位置之间转换。
CN202210057205.8A 2021-01-27 2022-01-18 用于故障感测流动部件的系统和方法 Pending CN114810232A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/159,422 2021-01-27
US17/159,422 US20220235715A1 (en) 2021-01-27 2021-01-27 System and method for fault sensing flow components

Publications (1)

Publication Number Publication Date
CN114810232A true CN114810232A (zh) 2022-07-29

Family

ID=82494554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210057205.8A Pending CN114810232A (zh) 2021-01-27 2022-01-18 用于故障感测流动部件的系统和方法

Country Status (2)

Country Link
US (1) US20220235715A1 (zh)
CN (1) CN114810232A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821324B2 (en) * 2022-04-25 2023-11-21 General Electric Company Duct failure detection in a turbine engine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277832A (en) * 1979-10-01 1981-07-07 General Electric Company Fluid flow control system
US5168699A (en) * 1991-02-27 1992-12-08 Westinghouse Electric Corp. Apparatus for ignition diagnosis in a combustion turbine
US20150037133A1 (en) * 2013-07-31 2015-02-05 General Electric Company System and method relating to axial positioning turbine casings and blade tip clearance in gas turbine engines
US20160040604A1 (en) * 2013-03-14 2016-02-11 United Technologies Corporation Pressure Sensor Noise Filter Prior to Surge Detection for a Gas Turbine Engine
US20170067578A1 (en) * 2015-09-09 2017-03-09 Honeywell International Inc. Detection of high stage valve leakage by pressure lockup
CN107152340A (zh) * 2016-03-02 2017-09-12 通用电气公司 用于检测管道系统失效的方法和系统
CN107478278A (zh) * 2017-07-25 2017-12-15 西安交通大学 一种基于管内相分隔技术的差压式两相流测量方法
US20180156138A1 (en) * 2016-12-02 2018-06-07 Rolls-Royce Deutschland Ltd & Co. Kg Control system and method for a gas turbine engine
CN109083847A (zh) * 2017-06-13 2018-12-25 通用电气公司 用于涡轮发动机的压缩机放气设备及其放气方法
US20190032576A1 (en) * 2017-07-28 2019-01-31 Rolls-Royce Plc Determination of a fuel delivery fault in a gas turbine engine
US20190360353A1 (en) * 2018-05-22 2019-11-28 Gulfstream Aerospace Corporation Propulsion system for an aircraft, a nozzle for use with the propulsion system, and a method of manufacturing a propulsion system for an aircraft
CN110566289A (zh) * 2018-06-06 2019-12-13 通用电气公司 操作涡轮机械的方法
US20200339244A1 (en) * 2019-04-25 2020-10-29 Pratt & Whitney Canada Corp. Blade angle position feedback system with offset sensors

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277832A (en) * 1979-10-01 1981-07-07 General Electric Company Fluid flow control system
US5168699A (en) * 1991-02-27 1992-12-08 Westinghouse Electric Corp. Apparatus for ignition diagnosis in a combustion turbine
US20160040604A1 (en) * 2013-03-14 2016-02-11 United Technologies Corporation Pressure Sensor Noise Filter Prior to Surge Detection for a Gas Turbine Engine
US20150037133A1 (en) * 2013-07-31 2015-02-05 General Electric Company System and method relating to axial positioning turbine casings and blade tip clearance in gas turbine engines
US20170067578A1 (en) * 2015-09-09 2017-03-09 Honeywell International Inc. Detection of high stage valve leakage by pressure lockup
CN107152340A (zh) * 2016-03-02 2017-09-12 通用电气公司 用于检测管道系统失效的方法和系统
US20180156138A1 (en) * 2016-12-02 2018-06-07 Rolls-Royce Deutschland Ltd & Co. Kg Control system and method for a gas turbine engine
CN109083847A (zh) * 2017-06-13 2018-12-25 通用电气公司 用于涡轮发动机的压缩机放气设备及其放气方法
CN107478278A (zh) * 2017-07-25 2017-12-15 西安交通大学 一种基于管内相分隔技术的差压式两相流测量方法
US20190032576A1 (en) * 2017-07-28 2019-01-31 Rolls-Royce Plc Determination of a fuel delivery fault in a gas turbine engine
US20190360353A1 (en) * 2018-05-22 2019-11-28 Gulfstream Aerospace Corporation Propulsion system for an aircraft, a nozzle for use with the propulsion system, and a method of manufacturing a propulsion system for an aircraft
CN110566289A (zh) * 2018-06-06 2019-12-13 通用电气公司 操作涡轮机械的方法
US20200339244A1 (en) * 2019-04-25 2020-10-29 Pratt & Whitney Canada Corp. Blade angle position feedback system with offset sensors

Also Published As

Publication number Publication date
US20220235715A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US10196928B2 (en) Method and system for piping failure detection in a gas turbine bleeding air system
CN108204872B (zh) 用于燃气涡轮发动机的扭矩监测装置
US10822997B2 (en) Inspection tool and method
CN110475947B (zh) 用于涡轮发动机的压力传感器组件
CN110566289B (zh) 操作涡轮机械的方法
CN109424444B (zh) 燃气涡轮发动机及其操作方法和振动管理组件
US11713990B2 (en) Monitoring and control system for a flow duct
EP3620630B1 (en) Method and system for separated flow detection
CN114810232A (zh) 用于故障感测流动部件的系统和方法
US4050306A (en) Method and apparatus for measuring pressures
US20170009598A1 (en) Method for monitoring a combustor
CN111720218B (zh) 涡轮发动机的信号响应监测
US11821324B2 (en) Duct failure detection in a turbine engine
US20190368380A1 (en) System and method for gear assembly lubricant system failure detection
US20230287837A1 (en) Gas turbine engine and method of operating the gas turbine engine
US11965424B2 (en) Electronic overspeed protection system and method
US11702958B2 (en) System and method of regulating thermal transport bus pressure
CN108869052A (zh) 燃气涡轮发动机及其控制方法
US20230090415A1 (en) System and method of detecting an airflow fault condition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination