CN114807185B - 一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途 - Google Patents

一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途 Download PDF

Info

Publication number
CN114807185B
CN114807185B CN202111538706.XA CN202111538706A CN114807185B CN 114807185 B CN114807185 B CN 114807185B CN 202111538706 A CN202111538706 A CN 202111538706A CN 114807185 B CN114807185 B CN 114807185B
Authority
CN
China
Prior art keywords
gene
powdery mildew
tryptophan
ala
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111538706.XA
Other languages
English (en)
Other versions
CN114807185A (zh
Inventor
旺姆
唐亚伟
扎西罗布
杨春葆
韦泽秀
羊海珍
顿珠加布
达娃
甘雅文
曾兴权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Agriculture Tibet Autonomous Region Academy Of Agriculture And Animal Husbandry
Institute of Animal Husbandry and Veterinary Medicine of Tibet Academy of Agriculture and Animal Husbandry Sciences
Original Assignee
Institute Of Agriculture Tibet Autonomous Region Academy Of Agriculture And Animal Husbandry
Institute of Animal Husbandry and Veterinary Medicine of Tibet Academy of Agriculture and Animal Husbandry Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Agriculture Tibet Autonomous Region Academy Of Agriculture And Animal Husbandry, Institute of Animal Husbandry and Veterinary Medicine of Tibet Academy of Agriculture and Animal Husbandry Sciences filed Critical Institute Of Agriculture Tibet Autonomous Region Academy Of Agriculture And Animal Husbandry
Publication of CN114807185A publication Critical patent/CN114807185A/zh
Application granted granted Critical
Publication of CN114807185B publication Critical patent/CN114807185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种青稞来源的色氨酸羟基肉桂酰基转移酶2(HvTBT2)基因,以及包含该基因的重组载体、重组菌、转基因植物的制备方法。HvTBT2基因调控色氨酸羟基肉桂酰基转移酶2的表达,进而调控芳香族酚胺的合成,芳香族酚胺类物质的积累可以有效增强青稞对白粉病的抗性,具有良好的应用前景。

Description

一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病 的用途
技术领域
本发明属于基因工程领域,具体涉及一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途。
背景技术
大麦(Hordeum vulgare L.)是1万年前通过自然和人工驯化选择出的最早的作物之一。西藏裸大麦(Hordeum valgare L.var.Nudun),又称“裸大麦”或“青稞”,是3500年前西藏自治区的主要粮食作物(占青稞总产量的70%左右),为当地高海拔地区居民的饮食做出了重大贡献。它还广泛用作牲畜饲料和生产啤酒、医药和保健品的原料。然而,西藏青稞的生产和品质经常受到白粉病,这一最具破坏性的的植物疾病的挑战。因此,破解作物抗白粉侵染的潜在分子机制是提高作物抗白粉能力的关键所在。
近二十年来,国内外对小麦抗白粉病的遗传研究较多,通过群体分离的QTL的分析方法已经取得了重要进展。目前已在小麦中定位和鉴定了大约60个抗白粉病的基因位点,但是由于小麦基因组的复杂性,截止目前为止仅克隆并验证了少量具有NLR结构的免疫受体基因,如Pm29、Pm310、Pm5e11、Pm812、Pm2113-14、Pm6015。此外,还有2个抗白粉基因不是NLR型。一个是包括编码ATP结合盒(ABC)转运蛋白的Pm38基因,另一个是编码己糖转运蛋白的Pm4617。尽管做出了这些努力,但最近的证据表明,这些Pm基因通常以物种特异性的方式发挥作用,并赋予品种特异性的抗白粉病能力。即是说,小麦中的抗白粉病基因在青稞中无法实现相同的抗白粉病效果。因此,进一步研究青稞抗白粉病机制的基因模式变化及其抵御机制,提供可有效抗白粉病的青稞品种具有重要的意义。
发明内容
本发明发明人利用代谢组学、转录组学和蛋白质组学数据,对抗白粉病和白粉病敏感的两种青稞品种进行了全面的比较分析,以确定相关的代谢通路及其基因在抗白粉病方面的作用,最终确认了一种抗白粉病基因HvTBT2。
本发明提供了一种基因,其核苷酸序列如SEQ ID NO.1所示。
本发明还提供了一种重组载体,它包括SEQ ID NO.1所示的核苷酸序列。
本发明还提供了一种重组菌,它包含上述重组载体。
本发明还提供了一种制备色氨酸羟基肉桂酰基转移酶2的方法,它是采用上述重组菌发酵制备;所述色氨酸羟基肉桂酰基转移酶2的氨基酸序列如SEQ ID NO.2所示。
本发明提供了一种抗白粉病的植物的构建方法,取上述SEQ ID NO.1所示基因片段,转入植物中,即可。
进一步地,上述转入植物的方法是农杆菌法、基因枪法、电转法、PEG介导法、脂质体法和磷酸钙-DNA共沉淀法中的一种。
更进一步地,上述植物为烟草或青稞。
本发明还提供了上述的基因、重组载体、色氨酸羟基肉桂酰基转移酶2和/或重组菌在制备抗白粉病的植物品种中的用途。
进一步地,上述植物为烟草或青稞。
更进一步地,上述植物为青稞。
本发明发现了青稞中一种新的基因:HvTBT2,该基因可调控色氨酸羟基肉桂酰基转移酶2的表达,进而调控芳香族酚胺的合成,芳香族酚胺的积累可以有效的抑制白粉病的生长,阻碍白粉病的侵袭。本发明还以该基因片段进行体外表达色氨酸羟基肉桂酰基转移酶2(氨基酸序列为:
MEMTSSTMVKPAYAVPHPLVGEKVPLTVFDRAALDIFVPTVLAYPAPAPSNEALREGLLKAVAPYPHLAGRLALDDLGRRFLHVNNEGVLLIEATVPADLADVLVDGRMAAGVDDLYPAIPEENIGAALLQIQLNRYKCGGLVVGISCHHHTADGHSMSMFFTAWATAVREGKDFTTPTPFLDRARTAVPRSTPTPVFDHRSREFTSGDGGDSYAVVPMDRIKNLTLHFTAEFVADLKSLVGTRCSTFQCLLAHVWKKLTAARDLKPEEFTKVRLAVNCRGRADPPVPMDFFGNMVLWAFPRLQVRDMLDSSHGSVVSVIRDAVARIDDEYVQSFVDFGGVADANGEELVATAAAAGTMFCPDAEVDSWLGFRFHQLDLAPAHRPLSCRRTCLSRGS),对酪胺、色胺、5-羟色胺等芳香胺表现出转酰基活性,得到芳香族酰胺;将该基因转移对白粉病敏感的植株中,可以增强其对白粉病的抵御能力,得到抗白粉病植株品种。本发明提供的新的基因,及其重组载体、重组菌、转基因植物均具有良好的应用前景。
本发明HvTBT2基因的序列为(SEQ ID NO.1):
ATGGAGATGACGAGCAGCACGATGGTGAAGCCGGCGTACGCCGTGCCGCACCCGCTCGTCGGCGAGAAGGTCCCGCTGACCGTCTTCGACCGCGCCGCCCTGGACATCTTCGTCCCCACCGTGCTCGCCTACCCCGCGCCGGCGCCGTCCAACGAGGCGCTCAGGGAAGGGCTCCTCAAGGCCGTCGCGCCGTACCCTCACCTGGCGGGCCGCCTCGCCCTCGACGACCTCGGCCGGCGCTTCCTCCACGTGAACAACGAGGGCGTGCTCCTGATCGAGGCCACCGTCCCGGCCGACCTGGCGGACGTGCTCGTCGACGGCCGCATGGCCGCTGGCGTCGACGACCTCTACCCGGCGATACCGGAGGAGAACATTGGGGCGGCGCTGCTGCAGATCCAGCTCAACAGGTACAAGTGCGGCGGCCTCGTGGTCGGCATAAGCTGCCACCACCACACCGCCGACGGCCATTCCATGAGCATGTTCTTCACCGCGTGGGCGACGGCGGTCCGCGAGGGTAAGGACTTCACCACGCCGACCCCGTTCCTCGACCGTGCGAGAACCGCGGTGCCTCGAAGCACGCCGACGCCGGTGTTCGACCACCGGTCACGCGAGTTCACTAGTGGAGACGGAGGAGACTCCTATGCCGTCGTCCCCATGGACAGGATCAAGAACCTCACCCTGCACTTCACGGCCGAGTTCGTCGCCGACCTCAAATCCCTCGTTGGCACCCGTTGCAGCACGTTCCAGTGCCTACTAGCGCACGTCTGGAAGAAGCTCACGGCGGCGCGGGACCTGAAGCCGGAGGAGTTCACCAAGGTGAGGCTCGCCGTGAACTGCAGGGGCAGGGCCGACCCTCCTGTGCCCATGGACTTCTTCGGGAACATGGTGCTCTGGGCTTTCCCAAGGCTTCAGGTCCGGGACATGCTGGACTCGAGCCACGGCAGCGTGGTCAGCGTCATCCGCGACGCCGTGGCGCGCATCGACGACGAGTACGTGCAGTCCTTCGTCGACTTCGGCGGAGTGGCGGACGCGAACGGGGAGGAGCTCGTCGCGACGGCGGCCGCTGCCGGCACGATGTTCTGCCCGGACGCGGAGGTGGACAGCTGGCTGGGATTCAGGTTCCATCAGCTCGATTTGGCACCGGCGCACCGTCCGCTTTCGTGCCGCCGGACCTGCCTTTCGAGGGGCTCATGA。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为K69和G72在白粉病处理过程中酚胺及其前体物质积累变化比较。数据均是三组重复,均显示为带有三次重复的SD。*表示有显著性差异(P<0.05,根据t检验)。
图2为对青稞外施芳香族酚胺抵御白粉病能力的观察。
图3为K69和G72在白粉感染中,与酚胺生物合成途径相关的差异表达基因和差异积累代谢物。与G72相比,橙色或绿色的大写字母代表了K69中显著上调或下调的基因。红色或蓝色的小写字母代表在白粉病胁迫下,K69较G72中显著积累或减少的代谢产物。
图4为HvPHT3和HvACT的功能特征分析。(A)5个候选基因在青稞不同组织不同发育阶段的表达模式。根据转录本数据计算5个候选基因的FRKM。这些基因的表达水平归一化,并用从蓝色到红色梯度的数值表示。(B)系统发育树构建。系统发育树中的BAHD蛋白和5个候选基因序列见表S10。(C)通过体外酶活性验证HvACT的功能。(D)通过体外酶活性验证HvPHT3的功能。(E)在烟草中瞬时表达HvACT,检测香豆酰腐胺、香豆酰胍丁胺和咖啡酰腐胺的含量。(F)在烟草中瞬时表达HvPHT3,检测香豆酰腐胺、香豆酰胺天冬胺和阿魏酰天冬胺的含量。数据显示三次重复的平均值±标准差(SD)。
具体实施方式
本发明所用原料与设备均为已知产品,通过购买市售产品所得。
1、材料与方法
1)植物材料与白粉病侵染
本研究用的两种不同抗性的西藏青稞(Hordeum vulgl.var.nudum),K 69对白粉具有较高的抗性,G72对白粉病具有高的敏感性,两种材料均种植在西藏拉萨农牧科学院。用Bgt小种对种植在塑料盆中的20日龄的材料进行侵染处理,分别侵染6、36、72和168小时。整个过程植物均在25℃的温室中生长,光照条件为光14小时/暗10小时。分别采集经过白粉处理6、36、72和168小时后的叶片组织,每个时间点进行三次生物学取样,立即在液氮中冷冻,并于-80℃保存;后续进行表型和酶活性测定、RNA提取和转录组分析、代谢组检测分析、蛋白质提取-蛋白组测序和数据分析。
2)重组蛋白表达和体外酶活分析
从青稞中克隆5个候选基因的全长CDNA,并用谷胱甘肽s-转移酶标记连接到PGEX-6p-1表达载体(Novagen)中。将重组质粒转化入大肠杆菌BL21(DE3)细胞中(Novagen)。根据先前的研究可以获得详细的实验程序(Peng,M.;Shahzad,R.;Gul,A.;Subthain,H.;Shen,S.;Lei,L.;Zheng,Z.;Zhou,J.;Lu,D.;Wang,S.;Nishawy,E.;Liu,X.;Tohge,T.;Fernie,A.R.;Luo,J.,Differentially evolved glucosyltransferases determine naturalvariation of rice flavone accumulation and UV-tolerance.Nature communications2017,8,1975.)。以牛血清白蛋白(BSA)为十二烷基硫酸钠为定量标准的聚丙烯酰胺凝胶电泳(SDS/PAGE)确认靶蛋白产物,并用纯化的重组蛋白进行后续酶活检测。体外酶反应在30℃的100μl溶液(200μM酰胺受体、100μM酰基底物、500ng纯化重组蛋白和10mM MgCl2)中开展。孵育20min后,加入300μl冰甲醇终止酶反应。反应产物经0.2微孔过滤后进行LC-MS分析。
3)候选基因在烟草中进行瞬时过表达
将载有OD600=0.8浓度的五个候选基因瞬态表达的重组农杆菌(EHA105)注射到完全扩张的烟草叶片中。在浸染后6天后取样。这些实验分别设置了三次重复。以烟草中的甘油醛3-磷酸脱氢酶(GAPDH)基因作为参考基因。
实验例1、特异性诱导的芳香族酚胺可以增强青稞对白粉病的抵抗能力
多种次生代谢物,如黄酮、酚胺和香豆素,都是由苯丙素途径产生的,这些代谢物在抵御生物和非生物胁迫中起到了重要作用。在本研究中,与G72相比,类黄酮的生物合成通路相关的物质,如糖基化黄酮类黄酮,黄酮醇和花青素等的含量都在K69中显著更高。此外,我们还注意到,在白粉病侵染中(36-168h),酚胺合成的前体物质,如L-苯丙氨酸、肉桂酸、L-酪氨酸、L-精氨酸和P香豆酸等在K69中的含量显著低于G72(图1A-E)。然而,与酚胺前体物质变化不同的是,酚胺物质在K69中显著高于G72,其中脂肪族酚胺呈组成型积累模式,而芳香族酚胺呈诱导性积累(图1F)。
为了研究在白粉侵染后,黄酮和酚胺是否也能在除青稞以外的大麦中得以富集以抵御白粉病侵染,我们比较了在正常和白粉处理中,青稞和大麦的差异代谢物。结果表明,在白粉处理下,大麦中类黄酮较正常情况下也显著增加,但是酚胺,特别是芳香族酚胺,没有显著变化。而当青稞被白粉侵染后,芳香族酚胺水平显著上调,高达30.0倍,这一结果与图1的结果一致(图1F)。综上所述,在青稞中,存在与大麦不同的策略:即通过诱导芳香族酚胺的积累来抵御白粉胁迫。
为了进一步验证我们的分析,我们在白粉侵染后的G72上喷施两种芳香族酚胺。结果表明,在喷施了芳香族酚胺的植株中,白粉侵染后引起的病害面积远远小于空白对照植株(图2)。由此我们可以看出在白粉侵染后芳香族酚胺的合成和调控是非常重要的,芳香族酚胺的积累有利于提高青稞的抗白粉病能力。
实验例2、负责合成芳香族酚胺的基因确定
在K69和G72两个青稞材料中,与酚胺生物合成相关的基因和代谢物都是差异调控的(图3)。具体来说,我们注意到与G69相比,苯丙氨酸氨解酶(PAL)、4CL(4-香氨酸:辅酶A连接酶)、N-羟基肉氨酰/苯甲酰转移酶(HCT)、色氨酰羟基肉桂酰转移酶(THT)、色胺苯甲酰转移酶(TBT)、腐氨酰羟基肉桂酰转移酶(PHT)的表达量在K69中均显著更高。通过qRT-PCR分析,验证了酚胺生物合成途径中这9个基因的表达水平,并与转录组数据一致。同时,在抗性K69中发现了脂肪族酚胺呈组成性积累而芳香族酚胺呈诱导性积累的模式(图1F)。
酚胺是通过BAHD N-酰基转移酶基因酰基化修饰的次级代谢产物。为了研究白粉病侵染过程中负责脂肪族和芳香族酚胺合成的BAHD N-酰基转移酶编码基因,我们利用转录数据分析了两种青稞材料中所有注释为BAHD N-酰基转移酶的表达变化。有趣的是,9个N-酰基转移酶基因(HvPHT3基因、HOUSG2299900基因、HOUSH0308900基因、HvACT基因、HvTHT基因、HvTBT11基因、HvTBT1基因、HvTBT2基因、HvTBT23724300基因)在K69中表达显著升高,然而,G72系在白粉病应激中没有显著变化。此外,相关分析表明,HvTBT1、HvTBT2、HvPHT3、HvACT和HvTHT的表达水平与酚胺含量(皮尔逊相关系数(PCC)值>0.6,p<0.01)呈正相关。通过对青稞不同阶段组织转录组数据的研究,结果显示HvACT、HvTHT、HvTBT1和HvTBT2主要在根中表达,而HvPHT3在穗和种子中表达(图4A)。同时,系统发育树表明,HvPHT3、HvACT、HvTHT、HvTBT1和HvTTBT2分别与N-羟基肉桂酰转移酶、腐胺羟基肉桂酰转移酶,色氨酰羟基肉桂酰转移酶和色胺苯甲酰转移酶聚类在一起(图4B)。综上所述,这5个基因被鉴定为参与酚胺生物合成的候选基因。
为了验证这5个候选基因的功能,我们利用大肠杆菌菌株BL21的进行重组蛋白,此外结合本氏烟草的体内瞬时表达候选基因的方法验证候选基因的体外酶活性。鉴定出HvACT基因和HvPHT3基因表达的酶对脂肪族胺表现出转酰基活性,如腐胺和胍丁胺(图4C-F,表1)。相比之下,HvTBT1基因和HvTBT2基因表达的酶(色氨酸羟基肉桂酰基转移酶1(HvTBT1)、色氨酸羟基肉桂酰基转移酶2(HvTBT2))主要对酪胺、色胺和5-羟色胺等芳香胺活性较强,对脂肪族胺(腐胺)活性较弱(表2)。
表1.HvACT和HvPHT3酶动力学分析
表2.HvTBT1和HvTBT2酶动力学分析
1酰胺(100μM)作为酰基受体。2酰辅酶a供体(50μM)作为酰基供体。ND,由于酶活性较低,未检测到。
以上结果表明,HvTBT1和HvTBT2两个基因参与了芳香族酚胺的生物合成,从而影响植株的抗白粉病能力。
综上,本发明发现了青稞中一种新的基因:HvTBT2基因,该基因可调控色氨酸羟基肉桂酰基转移酶2的表达,进而调控芳香族酚胺的合成,芳香族酚胺的积累可以有效的抑制白粉病的生长,阻碍白粉病的侵袭。将该基因转移对白粉病敏感的植株中,可以增强其对白粉病的抵御能力,得到抗白粉病植株品种。本发明提供的新的基因,及其重组载体、重组菌、转基因植物均具有良好的应用前景。
SEQUENCE LISTING
<110> 西藏自治区农牧科学院农业研究所
西藏自治区农牧科学院
<120> 一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途
<130> GY462-2021P0114292CCZ
<150> 202111274887X
<151> 2021-10-29
<160> 2
<170> PatentIn version 3.5
<210> 1
<211> 1194
<212> DNA
<213> HvTBT2基因
<400> 1
atggagatga cgagcagcac gatggtgaag ccggcgtacg ccgtgccgca cccgctcgtc 60
ggcgagaagg tcccgctgac cgtcttcgac cgcgccgccc tggacatctt cgtccccacc 120
gtgctcgcct accccgcgcc ggcgccgtcc aacgaggcgc tcagggaagg gctcctcaag 180
gccgtcgcgc cgtaccctca cctggcgggc cgcctcgccc tcgacgacct cggccggcgc 240
ttcctccacg tgaacaacga gggcgtgctc ctgatcgagg ccaccgtccc ggccgacctg 300
gcggacgtgc tcgtcgacgg ccgcatggcc gctggcgtcg acgacctcta cccggcgata 360
ccggaggaga acattggggc ggcgctgctg cagatccagc tcaacaggta caagtgcggc 420
ggcctcgtgg tcggcataag ctgccaccac cacaccgccg acggccattc catgagcatg 480
ttcttcaccg cgtgggcgac ggcggtccgc gagggtaagg acttcaccac gccgaccccg 540
ttcctcgacc gtgcgagaac cgcggtgcct cgaagcacgc cgacgccggt gttcgaccac 600
cggtcacgcg agttcactag tggagacgga ggagactcct atgccgtcgt ccccatggac 660
aggatcaaga acctcaccct gcacttcacg gccgagttcg tcgccgacct caaatccctc 720
gttggcaccc gttgcagcac gttccagtgc ctactagcgc acgtctggaa gaagctcacg 780
gcggcgcggg acctgaagcc ggaggagttc accaaggtga ggctcgccgt gaactgcagg 840
ggcagggccg accctcctgt gcccatggac ttcttcggga acatggtgct ctgggctttc 900
ccaaggcttc aggtccggga catgctggac tcgagccacg gcagcgtggt cagcgtcatc 960
cgcgacgccg tggcgcgcat cgacgacgag tacgtgcagt ccttcgtcga cttcggcgga 1020
gtggcggacg cgaacgggga ggagctcgtc gcgacggcgg ccgctgccgg cacgatgttc 1080
tgcccggacg cggaggtgga cagctggctg ggattcaggt tccatcagct cgatttggca 1140
ccggcgcacc gtccgctttc gtgccgccgg acctgccttt cgaggggctc atga 1194
<210> 2
<211> 397
<212> PRT
<213> 色氨酸羟基肉桂酰基转移酶2
<400> 2
Met Glu Met Thr Ser Ser Thr Met Val Lys Pro Ala Tyr Ala Val Pro
1 5 10 15
His Pro Leu Val Gly Glu Lys Val Pro Leu Thr Val Phe Asp Arg Ala
20 25 30
Ala Leu Asp Ile Phe Val Pro Thr Val Leu Ala Tyr Pro Ala Pro Ala
35 40 45
Pro Ser Asn Glu Ala Leu Arg Glu Gly Leu Leu Lys Ala Val Ala Pro
50 55 60
Tyr Pro His Leu Ala Gly Arg Leu Ala Leu Asp Asp Leu Gly Arg Arg
65 70 75 80
Phe Leu His Val Asn Asn Glu Gly Val Leu Leu Ile Glu Ala Thr Val
85 90 95
Pro Ala Asp Leu Ala Asp Val Leu Val Asp Gly Arg Met Ala Ala Gly
100 105 110
Val Asp Asp Leu Tyr Pro Ala Ile Pro Glu Glu Asn Ile Gly Ala Ala
115 120 125
Leu Leu Gln Ile Gln Leu Asn Arg Tyr Lys Cys Gly Gly Leu Val Val
130 135 140
Gly Ile Ser Cys His His His Thr Ala Asp Gly His Ser Met Ser Met
145 150 155 160
Phe Phe Thr Ala Trp Ala Thr Ala Val Arg Glu Gly Lys Asp Phe Thr
165 170 175
Thr Pro Thr Pro Phe Leu Asp Arg Ala Arg Thr Ala Val Pro Arg Ser
180 185 190
Thr Pro Thr Pro Val Phe Asp His Arg Ser Arg Glu Phe Thr Ser Gly
195 200 205
Asp Gly Gly Asp Ser Tyr Ala Val Val Pro Met Asp Arg Ile Lys Asn
210 215 220
Leu Thr Leu His Phe Thr Ala Glu Phe Val Ala Asp Leu Lys Ser Leu
225 230 235 240
Val Gly Thr Arg Cys Ser Thr Phe Gln Cys Leu Leu Ala His Val Trp
245 250 255
Lys Lys Leu Thr Ala Ala Arg Asp Leu Lys Pro Glu Glu Phe Thr Lys
260 265 270
Val Arg Leu Ala Val Asn Cys Arg Gly Arg Ala Asp Pro Pro Val Pro
275 280 285
Met Asp Phe Phe Gly Asn Met Val Leu Trp Ala Phe Pro Arg Leu Gln
290 295 300
Val Arg Asp Met Leu Asp Ser Ser His Gly Ser Val Val Ser Val Ile
305 310 315 320
Arg Asp Ala Val Ala Arg Ile Asp Asp Glu Tyr Val Gln Ser Phe Val
325 330 335
Asp Phe Gly Gly Val Ala Asp Ala Asn Gly Glu Glu Leu Val Ala Thr
340 345 350
Ala Ala Ala Ala Gly Thr Met Phe Cys Pro Asp Ala Glu Val Asp Ser
355 360 365
Trp Leu Gly Phe Arg Phe His Gln Leu Asp Leu Ala Pro Ala His Arg
370 375 380
Pro Leu Ser Cys Arg Arg Thr Cys Leu Ser Arg Gly Ser
385 390 395

Claims (3)

1.一种抗白粉病的植物的构建方法,其特征在于:取基因片段,转入植物中,即可;所述植物为烟草或青稞;所述基因片段序列如SEQ ID NO.1所示。
2.如权利要求1所述的构建方法,其特征在于:所述转入植物的方法是农杆菌法、基因枪法、电转法、PEG介导法、脂质体法和磷酸钙-DNA共沉淀法中的一种。
3.一种色氨酸羟基肉桂酰基转移酶2在制备抗白粉病的植物品种中的用途;
所述色氨酸羟基肉桂酰基转移酶2的氨基酸序列如SEQ ID NO.2所示;所述植物为烟草或青稞。
CN202111538706.XA 2021-10-29 2021-12-15 一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途 Active CN114807185B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111274887X 2021-10-29
CN202111274887 2021-10-29

Publications (2)

Publication Number Publication Date
CN114807185A CN114807185A (zh) 2022-07-29
CN114807185B true CN114807185B (zh) 2023-09-08

Family

ID=82525640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111538706.XA Active CN114807185B (zh) 2021-10-29 2021-12-15 一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途

Country Status (1)

Country Link
CN (1) CN114807185B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234826A2 (en) * 1999-08-20 2002-08-28 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
WO2008034648A1 (en) * 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
CN109082432A (zh) * 2018-08-30 2018-12-25 西藏自治区农牧科学院农业研究所 一种青稞阿魏酰酪胺酰基转移酶基因及其用途
CN114807186A (zh) * 2021-10-29 2022-07-29 西藏自治区农牧科学院农业研究所 一种色氨酸羟基肉桂酰基转移酶1基因及其用于抵御白粉病的用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076982A1 (en) * 2015-11-04 2017-05-11 Syngenta Participations Ag Microbiocidal anilide derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234826A2 (en) * 1999-08-20 2002-08-28 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
WO2008034648A1 (en) * 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
CN109082432A (zh) * 2018-08-30 2018-12-25 西藏自治区农牧科学院农业研究所 一种青稞阿魏酰酪胺酰基转移酶基因及其用途
CN114807186A (zh) * 2021-10-29 2022-07-29 西藏自治区农牧科学院农业研究所 一种色氨酸羟基肉桂酰基转移酶1基因及其用于抵御白粉病的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Anthranilate N-benzoyltransferase protein 2 [Hordeum vulgare];Nyima,T.等;GenBank DataBase;Accession No.KAE8819328.1 *

Also Published As

Publication number Publication date
CN114807185A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US10829777B2 (en) Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
Ying et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis
Aragüez et al. Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics
Zhang et al. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis
Zhao et al. Functional characterization of poplar WRKY75 in salt and osmotic tolerance
CA2687320A1 (en) Transgenic plants with increased stress tolerance and yield
BRPI0710192A2 (pt) ácido nucleico isolado, vetor, célula de planta transgênica, planta transgênica, semente de planta, e, método para produzir uma planta transgênica
Yang et al. Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper
He et al. A sucrose: fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco
US20130139281A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
CN114807186B (zh) 一种色氨酸羟基肉桂酰基转移酶1基因及其用于抵御白粉病的用途
Xu et al. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.)
Yu et al. Cloning and functional identification of PeWRKY41 from Populus× euramericana
Fu et al. Transcriptomic analyses reveal genotype-and organ-specific molecular responses to cold stress in Elymus nutans
Howarth et al. Tansley review No. 51. Gene expression under temperature stress
CN114807185B (zh) 一种色氨酸羟基肉桂酰基转移酶2基因及其用于抵御白粉病的用途
CN110760539B (zh) 茶树己糖转运体基因CsSWEET1a的应用
Peng et al. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit
Li et al. Overexpression of GsCNGC20-f from Glycine soja confers submergence tolerance to hairy-root composite soybean plants and Arabidopsis seedlings by enhancing anaerobic respiration
US20080127368A1 (en) Novel Regulatory Protein
Wang et al. ClSnRK2. 3 negatively regulates watermelon fruit ripening and sugar accumulation
KR20150045611A (ko) 식물의 지베렐린 메커니즘에 관련된 OsGASD 유전자 및 이의 용도
CN111676227B (zh) 大豆核糖体蛋白编码基因GmRPL12的基因工程应用
CN111073905B (zh) 大豆丝裂原活化蛋白激酶GmMMK1编码基因的应用
US20210017533A1 (en) Diat gene derived from oryza sativa controlling drought stress tolerance of a plant and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant