CN114802672B - 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法 - Google Patents

一种单模态贴片式压电驱动的摆动鳍装置及驱动方法 Download PDF

Info

Publication number
CN114802672B
CN114802672B CN202210555542.XA CN202210555542A CN114802672B CN 114802672 B CN114802672 B CN 114802672B CN 202210555542 A CN202210555542 A CN 202210555542A CN 114802672 B CN114802672 B CN 114802672B
Authority
CN
China
Prior art keywords
piezoelectric transducer
working section
working
section
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210555542.XA
Other languages
English (en)
Other versions
CN114802672A (zh
Inventor
陈昕荣
王亮
金家楣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210555542.XA priority Critical patent/CN114802672B/zh
Publication of CN114802672A publication Critical patent/CN114802672A/zh
Application granted granted Critical
Publication of CN114802672B publication Critical patent/CN114802672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/36Propulsive elements directly acting on water of non-rotary type swinging sideways, e.g. fishtail type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本发明公开了一种单模态贴片式压电驱动的摆动鳍装置及其工作方法,包括支架导轨、压电换能器、弹性薄板、第一限位板、第二限位板和摆动鳍。本发明利用弹性连接薄板、压电换能器与工作轨道相配合,贴片式压电换能器为纵振单模态作动,在弹性薄板的弯压作用下与导轨成倾斜接触,能够带动摆动鳍在工作轨道上自动往复摆动和自动换向。本发明所提出的压电激励和摩擦驱动结构能够向海水开放,无需严苛密封,解除深海高水压对驱动系统的制约。

Description

一种单模态贴片式压电驱动的摆动鳍装置及驱动方法
技术领域
本发明涉及摩擦驱动和压电换能器领域,尤其涉及一种单模态贴片式压电驱动的摆动鳍装置及其工作方法。
背景技术
不论是海洋健康监测、海洋资源开发,还是海洋权益的维护,海洋信息的获取都是最基础的工作。近年来由于计算机辅助设计、先进制造工艺、传感器等技术的进步,以自主水下航行器(AUV)为代表的水下可移动无人无缆探测设备,正朝着小型、微小型化的方向发展,需要搭载结构紧凑、质量较小、运行安全的水下推进器。而电磁电机带螺旋桨等类型的传统推进器,因抗水压能力较弱、需要严苛动密封等问题,难以适应深海环境,且传统的螺旋桨式推进器需要利用轴承,轴承容易受到泥沙阻塞影响;利用记忆合金等新材料驱动的水下航行器驱动力较小,其游动速度还会受到材料滞后性和响应慢的限制。基于压电驱动设计的新驱动装置对水下环境有更好的适应性,如何通过仿生水族动物实现推进将是一个新颖的、亟待研究和完善的构思,需要设计新的结构以满足更快速、更稳定、更可靠的动力需求。而现有的摆动鳍往复摆动的压电驱动设计,其压电激励通常需要多个模态耦合,存在调频一致性困难的问题;对单模态驱动方法的研究可简化工作方法,提高靠压电驱动工作的装置的稳定性。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种单模态贴片式压电驱动的摆动鳍装置及其工作方法。
本发明为解决上述技术问题采用以下技术方案:
一种单模态贴片式压电驱动的摆动鳍装置,包括支架导轨、压电换能器、弹性薄板、第一限位板、第二限位板和摆动鳍;
所述支架导轨包含依次相连的第一夹持段、第一连接段、第一工作段、第二工作段、第三工作段、第二连接段、第二夹持段;所述第一工作段、第二工作段、第三工作段均为圆弧段,其中,所述第一、第三工作段结构相同,对称设置在第二工作段两端;第一工作段的半径小于第二工作段的半径;所述第一连接段和第二连接段、第一夹持段和第二夹持段均关于第一工作段和第三工作段的对称面对称;所述第一、第二夹持段相互平行设置且通过螺栓固定,将所述弹性薄板的一端夹持固定在其中;所述第一工作段、第二工作段、第三工作段的开口方向均指向第一夹持段,形成了配合压电换能器工作的工作轨道;
所述压电换能器包含基体、第一压电陶瓷片和第二压电陶瓷片;
所述基体包含驱动部和作动部,其中,所述驱动部为柱体,其上端面设有两侧开口的V形槽,且V形槽底部设有两侧开口的、用于固定压电换能器的固定槽;所述作动部为面积从上至下逐渐变小的变幅杆,作动部的上端面和驱动部下端面形状相同且同轴固连;
所述第一压电陶瓷片、第二压电陶瓷片均为单分区压电陶瓷片,均沿厚度方向极化且极化方向相反,粘贴在基体驱动部侧壁上且关于V形槽的对称面对称设置;
所述摆动鳍上设有供所述支架导轨的工作轨道穿过的工作方孔,摆动鳍的根部设有供所述压电换能器伸入至工作方孔内的通槽,且通槽远离工作方孔的一端设有和通槽两侧固连、用于固定压电换能器的固定板;
所述工作方孔内设有分别贴合在工作轨道的两侧侧壁上的第一转动滚筒、第二转动滚筒,使得摆动鳍能够在工作轨道的长度方向相对工作轨道自由滑动;
所述固定板和压电换能器基体上V形槽底部的固定槽过盈配合,使得压电换能器固定在所述摆动鳍的通槽内,且作动部的下端作为作动头和所述工作轨道的内壁相抵;
所述弹性薄板一端夹持在所述第一夹持段、第二夹持段之间,另一端抵在压电换能器上基体上的V形槽内,呈压缩状态;
所述第一限位板、第二限位板分别设置在压电换能器上基体上的V形槽的两侧,均和所述弹性薄板垂直固连,用于防止所述弹性薄板从上基体的V形槽内脱离。
作为本发明一种单模态贴片式压电驱动的摆动鳍装置进一步的优化方案,所述弹性薄板采用65Mn弹簧钢带、PVC塑料板、PC塑料板中的任意一种制成。
作为本发明一种单模态贴片式压电驱动的摆动鳍装置进一步的优化方案,所述支架导轨采用铝合金、钛合金、金属玻璃中的任意一种制成。
作为本发明一种单模态贴片式压电驱动的摆动鳍装置进一步的优化方案,所述压电换能器的基体采用铝合金、金属玻璃、磷青铜中的任意一种制成。
本发明还公开了一种该单模态贴片式压电驱动的摆动鳍装置的驱动方法,激发压电换能器使其纵向振动,压电换能器和工作轨道的内壁保持倾斜接触,压电换能器下基体的作动头不断和工作轨道的内壁进行斜碰撞、脱离,产生摩擦;压电换能器依靠下基体的作动头的不断摩擦,与支架导轨发生相对运动,具体运动的周期过程如下:
步骤1),压电换能器带动摆动鳍由第二工作段朝第一工作段行进;摆动鳍拨水时克服水的阻力,同时弹性薄板的压弯量增大导致其弹性势能也不断储存和增大;
步骤2),压电换能器带动摆动鳍从第二工作段进入到第一工作段中;此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第一工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤3),由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第一工作段顺时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤1)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤4),由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第一工作段朝第二工作段行进;
步骤5),压电换能器带动摆动鳍沿着支架导轨从第一工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放;
步骤6),压电换能器在第二工作段上朝第三工作段行进,摆动鳍向第三工作段方向拨水;
步骤7),压电换能器带动摆动鳍由第二工作段朝第三工作段行进,摆动鳍向第三工作段方向拨水,弹性薄板的弹性势能不断存储和增大;
步骤8),压电换能器带动摆动鳍从第二工作段进入到第三工作段中,此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第三工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤9),由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第三工作段逆时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤7)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤10),由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第三工作段朝第二工作段行进;
步骤11),压电换能器带动摆动鳍沿着支架导轨从第三工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1. 本发明压电驱动方式更为简单,所公开的装置结合利用连接薄板弹性势能的存储与释放、压电换能器的纵向振动、工作轨道相配合,促使压电换能器和摆动鳍在工作轨道上自动往复摆动。其中的压电换能器仅需利用其纵振“单模态”便可实现作动,不存在模态耦合、调频一致性难等问题;且利用压电换能器单模态驱动的响应速度快,装置工作更稳定。
2. 由于夹心式压电换能器的陶瓷片组需要用螺栓或额外的结构进行夹紧和固定,重量和体积较大;故本发明采用贴片式的压电换能器,压电陶瓷只需用胶粘在换能器的基体上,有利于减重和结构小型化,进而提高装置的摆动和推进效率;基体只需一体加工成型,省略了部分连接件,还有利于结构简单化。
3. 本发明公开的装置为压电激励和摩擦驱动结构,压电作动器内部本身无空腔,因此可解除深海高水压对驱动系统的制约。
4. 本发明公开的装置为全开放式仿生结构,无需考虑电磁电机密封、螺旋桨输出轴需要严苛动密封等问题。
附图说明
图1为本发明的整体结构示意图;
图2为本发明中支架导轨的结构示意图
图3为本发明中工作轨道的结构示意图;
图4为本发明中压电换能器的结构示意图;
图5为本发明中压电换能器的一阶纵向振动模态示意图;
图6为本发明中弹性薄板、支架导轨、压电换能器、摆动鳍相配合的结构示意图;
图7为本发明中摆动鳍的结构示意图;
图8为本发明中弹性薄板、第一限位板、第二限位板相配合的结构示意图;
图9为本发明中压电换能器与工作轨道相对运动的原理示意图;
图10为本发明在一个摆动周期内的工作原理图。
图中,1-支架导轨,2-压电换能器,3-摆动鳍,4-弹性薄板,5-第一限位板,6-第二限位板,1.1-第一连接段,1.2-工作轨道,1.2.1-第一工作段,1.2.2-第二工作段,1.2.3-第三工作段,1.3-第一夹持段,2.1-基体,2.2-压电陶瓷片,2.3-固定槽,3.1-第一转动滚筒,3.2-第二转动滚筒,3.3-固定板。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明。
本发明可以以许多不同的形式实现,而不应当认为限于这里所述的实施例。相反,提供这些实施例以便使本公开透彻且完整,并且将向本领域技术人员充分表达本发明的范围。
如图1所示,本发明公开了一种单模态贴片式压电驱动的摆动鳍装置,包括支架导轨、压电换能器、弹性薄板、第一限位板、第二限位板和摆动鳍;
如图2所示,所述支架导轨包含依次相连的第一夹持段、第一连接段、第一工作段、第二工作段、第三工作段、第二连接段、第二夹持段;所述第一工作段、第二工作段、第三工作段均为圆弧段,其中,所述第一、第三工作段结构相同,对称设置在第二工作段两端,第一工作段的半径小于第二工作段的半径,如图3所示,图中,O 1O 2O 3分别为第一、第二、第三工作段的圆心;所述第一连接段和第二连接段、第一夹持段和第二夹持段均关于第一工作段和第三工作段的对称面对称;所述第一、第二夹持段相互平行设置且通过螺栓固定,将所述弹性薄板的一端夹持固定在其中;所述第一工作段、第二工作段、第三工作段的开口方向均指向第一夹持段,形成了配合压电换能器工作的工作轨道;
如图4所示,所述压电换能器包含基体、第一压电陶瓷片和第二压电陶瓷片;
所述基体包含驱动部和作动部,其中,所述驱动部为柱体,其上端面设有两侧开口的V形槽,且V形槽底部设有两侧开口的、用于固定压电换能器的固定槽;所述作动部为面积从上至下逐渐变小的变幅杆,作动部的上端面和驱动部下端面形状相同且同轴固连;
所述第一压电陶瓷片、第二压电陶瓷片均为单分区压电陶瓷片,均沿厚度方向极化且极化方向相反,粘贴在基体驱动部侧壁上且关于V形槽的对称面对称设置;
如图5所示,利用压电换能器模态频率下的交变电压激励每片压电陶瓷片的d 33工作模态,压电陶瓷片的高频振动激发出下部基体及其驱动足的纵向振动;
如图6、图7所示,所述摆动鳍上设有供所述支架导轨的工作轨道穿过的工作方孔,摆动鳍的根部设有供所述压电换能器伸入至工作方孔内的通槽,且通槽远离工作方孔的一端设有和通槽两侧固连、用于固定压电换能器的固定板;
所述工作方孔内设有分别贴合在工作轨道的两侧侧壁上的第一转动滚筒、第二转动滚筒,使得摆动鳍能够在工作轨道的长度方向相对工作轨道自由滑动;
所述固定板和压电换能器基体上V形槽底部的固定槽过盈配合,使得压电换能器固定在所述摆动鳍的通槽内,且作动部的下端作为作动头和所述工作轨道的内壁相抵;
所述弹性薄板一端夹持在所述第一夹持段、第二夹持段之间,另一端抵在压电换能器上基体上的V形槽内,呈压缩状态;
所述第一限位板、第二限位板分别设置在压电换能器上基体上的V形槽的两侧,均和所述弹性薄板垂直固连,用于防止所述弹性薄板从上基体的V形槽内脱离。
所述第一限位板、第二限位板的形状不限,可以设置呈矩形或三角形,或者设置成如图6、图8所示的形状,骑在所述摆动鳍上。
所述弹性薄板采用65Mn弹簧钢带、PVC塑料板、PC塑料板中的任意一种制成,所述支架导轨可以采用铝合金、钛合金、金属玻璃中的任意一种制成,所述压电换能器的基体采用铝合金、金属玻璃、磷青铜中的任意一种制成。
摆动鳍的形状可为矩形、等腰梯形、等腰三角形、等腰梯形和半圆形结合的封闭图形、多个样条曲线结合的封闭图形等;其厚度按照连接关系和强度要求设计;所述摆动鳍其材料可为硬塑料、特殊工程塑料等质量轻、刚度大的材料,也可以选择柔性较大的柔性材料。
本发明利用弹性连接薄板、压电换能器纵向振动与工作轨道相配合,促使压电换能器在导轨上自动往复摆动,如图9所示,该相对运动形成的原理如下:在A—E运动周期(也是压电换能器纵向振动的周期)内,在A状态瞬间,压电换能器处于纵振的缩短变形中,与支架导轨接触;在A—B状态,压电换能器从缩短变形状态回复到纵振周期变形的平衡状态,由于其自身纵振产生了与支架导轨的相互作用力,二者分离;在B—C状态,压电换能器作伸长变形,压电换能器与支架导轨继续分离,C状态瞬间纵振伸长变形达到最大;在C—D状态,由于存在弹性薄板对压电换能器的下压力F 2_4的作用,压电换能器重新靠近支架导轨,D状态瞬间压电换能器处于纵振的平衡状态;在D—E状态,压电换能器做缩短变形,E状态瞬间压电换能器再次与支架导轨接触,E状态瞬间与A状态瞬间相同。图7中的虚线表示在一个运动周期内,压电换能器下基体驱动足与支架导轨的相对椭圆轨迹。因此,压电换能器沿着支架导轨的圆弧柱面,往压电换能器倾斜的一侧方向行进。
支架导轨曲率的变化改变着压电换能器与支架导轨的接触状况,压电换能器位置和姿态的变化影响着弹性薄板的形变量。当压电换能器从第二工作段进入第一工作段或第三工作段时,压电换能器的对称轴线与支架导轨在接触点处的切线之间的夹角(锐角)增大,导致压电换能器受到的摩擦驱动力突然减小,摩擦驱动力小于弹性薄板弹性恢复力,因此弹性薄板拱弯方向发生瞬变;同时,压电换能器上方受到该反向拱弯的力,压电换能器与支架导轨相对倾斜方向发生改变;压电换能器相对姿态发生变化,进而改变其行进方向。又由于摆动鳍与压电换能器固连,整个工作过程自动实现了摆动鳍的摆动与自动换向。
如图10所示,本发明还公开了一种该单模态贴片式压电驱动的摆动鳍装置的驱动方法,激发压电换能器使得纵向振动,压电换能器和工作轨道的内壁保持倾斜接触,压电换能器下基体的作动头不断和工作轨道的内壁进行斜碰撞、脱离,产生摩擦;压电换能器依靠下基体的作动头的不断摩擦,与支架导轨发生相对运动,具体运动的周期过程如下:
步骤1),由状态a经状态b变化至状态c,压电换能器带动摆动鳍由第二工作段朝第一工作段行进;摆动鳍拨水时克服水的阻力,同时弹性薄板的压弯量增大导致其弹性势能也不断储存和增大;
步骤2),由状态c变化至状态d,压电换能器带动摆动鳍从第二工作段进入到第一工作段中;此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第一工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤3),由状态d变化至状态e,由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第一工作段顺时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤1)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤4),由状态e变化至状态f,由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第一工作段朝第二工作段行进;
步骤5),由状态f变化至状态g,压电换能器带动摆动鳍沿着支架导轨从第一工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放;
步骤6),由状态g变化至状态h,压电换能器在第二工作段上朝第三工作段行进,摆动鳍向第三工作段方向拨水;
步骤7),由状态h变化至状态i,压电换能器带动摆动鳍由第二工作段朝第三工作段行进,摆动鳍向第三工作段方向拨水,弹性薄板的弹性势能不断存储和增大;
步骤8),由状态i变化至状态j,压电换能器带动摆动鳍从第二工作段进入到第三工作段中,此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第三工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤9),由状态j变化至状态k,由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第三工作段逆时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤7)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤10),由状态k变化至状态l,由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第三工作段朝第二工作段行进;
步骤11),由状态l变化至状态a,压电换能器带动摆动鳍沿着支架导轨向左行进,从第三工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种单模态贴片式压电驱动的摆动鳍装置,其特征在于,包括支架导轨、压电换能器、弹性薄板、第一限位板、第二限位板和摆动鳍;
所述支架导轨包含依次相连的第一夹持段、第一连接段、第一工作段、第二工作段、第三工作段、第二连接段、第二夹持段;所述第一工作段、第二工作段、第三工作段均为圆弧段,其中,所述第一、第三工作段结构相同,对称设置在第二工作段两端;第一工作段的半径小于第二工作段的半径;所述第一连接段和第二连接段、第一夹持段和第二夹持段均关于第一工作段和第三工作段的对称面对称;所述第一、第二夹持段相互平行设置且通过螺栓固定,将所述弹性薄板的一端夹持固定在其中;所述第一工作段、第二工作段、第三工作段的开口方向均指向第一夹持段,形成了配合压电换能器工作的工作轨道;
所述压电换能器包含基体、第一压电陶瓷片和第二压电陶瓷片;
所述基体包含驱动部和作动部,其中,所述驱动部为柱体,其上端面设有两侧开口的V形槽,且V形槽底部设有两侧开口的、用于固定压电换能器的固定槽;所述作动部为面积从上至下逐渐变小的变幅杆,作动部的上端面和驱动部下端面形状相同且同轴固连;
所述第一压电陶瓷片、第二压电陶瓷片均为单分区压电陶瓷片,均沿厚度方向极化且极化方向相反,粘贴在基体驱动部侧壁上且关于V形槽的对称面对称设置;
所述摆动鳍上设有供所述支架导轨的工作轨道穿过的工作方孔,摆动鳍的根部设有供所述压电换能器伸入至工作方孔内的通槽,且通槽远离工作方孔的一端设有和通槽两侧固连、用于固定压电换能器的固定板;
所述工作方孔内设有分别贴合在工作轨道的两侧侧壁上的第一转动滚筒、第二转动滚筒,使得摆动鳍能够在工作轨道的长度方向相对工作轨道自由滑动;
所述固定板和压电换能器基体上V形槽底部的固定槽过盈配合,使得压电换能器固定在所述摆动鳍的通槽内,且作动部的下端作为作动头和所述工作轨道的内壁相抵;
所述弹性薄板一端夹持在所述第一夹持段、第二夹持段之间,另一端抵在压电换能器上基体上的V形槽内,呈压缩状态;
所述第一限位板、第二限位板分别设置在压电换能器上基体上的V形槽的两侧,均和所述弹性薄板垂直固连,用于防止所述弹性薄板从上基体的V形槽内脱离。
2.根据权利要求1所述的单模态贴片式压电驱动的摆动鳍装置,其特征在于,所述弹性薄板采用65Mn弹簧钢带、PVC塑料板、PC塑料板中的任意一种制成。
3.根据权利要求1所述的单模态贴片式压电驱动的摆动鳍装置,其特征在于,所述支架导轨采用铝合金、钛合金、金属玻璃中的任意一种制成。
4.根据权利要求1所述的单模态贴片式压电驱动的摆动鳍装置,其特征在于,所述压电换能器的基体采用铝合金、金属玻璃、磷青铜中的任意一种制成。
5.基于权利要求1所述的单模态贴片式压电驱动的摆动鳍装置的驱动方法,其特征在于,激发压电换能器使其纵向振动,压电换能器和工作轨道的内壁保持倾斜接触,压电换能器下基体的作动头不断和工作轨道的内壁进行斜碰撞、脱离,产生摩擦;压电换能器依靠下基体的作动头的不断摩擦,与支架导轨发生相对运动,具体运动的周期过程如下:
步骤1),压电换能器带动摆动鳍由第二工作段朝第一工作段行进;摆动鳍拨水时克服水的阻力,同时弹性薄板的压弯量增大导致其弹性势能也不断储存和增大;
步骤2),压电换能器带动摆动鳍从第二工作段进入到第一工作段中;此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第一工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤3),由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第一工作段顺时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤1)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤4),由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第一工作段朝第二工作段行进;
步骤5),压电换能器带动摆动鳍沿着支架导轨从第一工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放;
步骤6),压电换能器在第二工作段上朝第三工作段行进,摆动鳍向第三工作段方向拨水;
步骤7),压电换能器带动摆动鳍由第二工作段朝第三工作段行进,摆动鳍向第三工作段方向拨水,弹性薄板的弹性势能不断存储和增大;
步骤8),压电换能器带动摆动鳍从第二工作段进入到第三工作段中,此时由于变半径导轨的弧线突变、坡度趋缓,压电换能器有绕第三工作段圆心旋转的趋势,在该旋转过程中弹性薄板开始松弛,弹性薄板的弹性势能得以部分释放;
步骤9),由于弹性薄板松弛,其弹性势能释放,弹性薄板的弯曲拱向发生改变,搭向另一侧;加上压电换能器行程速度惯性的影响,压电换能器在弹性薄板的搭压作用下抵着第三工作段逆时针旋转,导致压电换能器与支架导轨的相对倾斜方向与步骤7)相反;此过程压电换能器带动固连的摆动鳍,实现装置摆动的自动反向;
步骤10),由于压电换能器与支架导轨的相对倾斜方向发生改变,压电换能器带动摆动鳍由第三工作段朝第二工作段行进;
步骤11),压电换能器带动摆动鳍沿着支架导轨从第三工作段进入到第二工作段中;弹性薄板的弹性势能进一步释放。
CN202210555542.XA 2022-05-19 2022-05-19 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法 Active CN114802672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210555542.XA CN114802672B (zh) 2022-05-19 2022-05-19 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210555542.XA CN114802672B (zh) 2022-05-19 2022-05-19 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法

Publications (2)

Publication Number Publication Date
CN114802672A CN114802672A (zh) 2022-07-29
CN114802672B true CN114802672B (zh) 2023-03-31

Family

ID=82517361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210555542.XA Active CN114802672B (zh) 2022-05-19 2022-05-19 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法

Country Status (1)

Country Link
CN (1) CN114802672B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099291A1 (ko) * 2011-01-19 2012-07-26 Kim Dal Hyun 진행파 원리를 이용한 이동체의 추진장치 및 그 방법
KR20140045732A (ko) * 2012-10-09 2014-04-17 현대중공업 주식회사 프로펠러의 변동압력을 이용한 선박용 발전장치
CN103950527A (zh) * 2014-05-09 2014-07-30 兰州交通大学 仿生鳐鱼胸鳍的压电耦合推进机构
CN103950525A (zh) * 2014-04-24 2014-07-30 苏州科技学院 一种低能耗仿生机器鱼的磁动力推进机构
CN106741773A (zh) * 2016-12-01 2017-05-31 南京航空航天大学 一种夹心式压电驱动仿生蝌蚪及其工作方式
CN106982005A (zh) * 2017-03-23 2017-07-25 吉林大学 非对称式双片压电纤维惯性驱动装置
WO2018006613A1 (zh) * 2016-07-05 2018-01-11 杭州畅动智能科技有限公司 仿生机器鱼
WO2019090189A1 (en) * 2017-11-03 2019-05-09 Aquaai Corporation Modular biomimetic underwater vehicle
CN111409803A (zh) * 2020-04-01 2020-07-14 西安交通大学 一种基于ipmc驱动的仿生波动鳍
CN112061348A (zh) * 2020-07-14 2020-12-11 南京航空航天大学 一种贴片式压电驱动仿生蝠鲼及其驱动方法
CN112886857A (zh) * 2021-01-13 2021-06-01 南京航空航天大学 一种摆动鳍压电驱动装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201530B2 (en) * 2017-05-26 2021-12-14 Purdue Research Foundation Actuating device and method of making the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099291A1 (ko) * 2011-01-19 2012-07-26 Kim Dal Hyun 진행파 원리를 이용한 이동체의 추진장치 및 그 방법
KR20140045732A (ko) * 2012-10-09 2014-04-17 현대중공업 주식회사 프로펠러의 변동압력을 이용한 선박용 발전장치
CN103950525A (zh) * 2014-04-24 2014-07-30 苏州科技学院 一种低能耗仿生机器鱼的磁动力推进机构
CN103950527A (zh) * 2014-05-09 2014-07-30 兰州交通大学 仿生鳐鱼胸鳍的压电耦合推进机构
WO2018006613A1 (zh) * 2016-07-05 2018-01-11 杭州畅动智能科技有限公司 仿生机器鱼
CN106741773A (zh) * 2016-12-01 2017-05-31 南京航空航天大学 一种夹心式压电驱动仿生蝌蚪及其工作方式
CN106982005A (zh) * 2017-03-23 2017-07-25 吉林大学 非对称式双片压电纤维惯性驱动装置
WO2019090189A1 (en) * 2017-11-03 2019-05-09 Aquaai Corporation Modular biomimetic underwater vehicle
CN111409803A (zh) * 2020-04-01 2020-07-14 西安交通大学 一种基于ipmc驱动的仿生波动鳍
CN112061348A (zh) * 2020-07-14 2020-12-11 南京航空航天大学 一种贴片式压电驱动仿生蝠鲼及其驱动方法
CN112886857A (zh) * 2021-01-13 2021-06-01 南京航空航天大学 一种摆动鳍压电驱动装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
仿尾鳍式变截面摆动振子无阀;胡笑奇等;《光学精密工程》;20110615;第19卷(第6期);第1334-1343页 *

Also Published As

Publication number Publication date
CN114802672A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Wang et al. A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles
Erturk et al. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms
US8610304B2 (en) Mechanisms for creating undulating motion, such as for propulsion, and for harnessing the energy of moving fluid
Watson et al. Piezoelectric ultrasonic micro/milli-scale actuators
US4352023A (en) Mechanism for generating power from wave motion on a body of water
US10647397B2 (en) Robotic jellyfish
US8716880B2 (en) Method and system for fluid wave energy conversion
CN109292062B (zh) 一种压电驱动的浮游式水下机器人及其工作方法
Shi et al. Development of a new jellyfish-type underwater microrobot
Nguyen et al. Performance evaluation of an improved fish robot actuated by piezoceramic actuators
CN109352671B (zh) 一种贴片式压电驱动的机械手关节及其工作方法
CN108394542A (zh) 一种波浪能驱动的仿蝠鲼水下推进装置
CN111661286B (zh) 机器鱼
CN114802672B (zh) 一种单模态贴片式压电驱动的摆动鳍装置及驱动方法
JP3989943B2 (ja) 羽ばたき浮上移動装置
Xing et al. A bionic piezoelectric robotic jellyfish with a large deformation flexure hinge
Tao et al. Bio-inspired actuating system for swimming using shape memory alloy composites
CN114954877B (zh) 一种单模态夹心式压电驱动的摆动鳍装置及驱动方法
Qu et al. Recent advances on underwater soft robots
KR100802354B1 (ko) 압전세라믹 작동기로 구동되는 물고기 로봇
Liu et al. Design and development of a novel piezoelectric caudal fin-like underwater thruster with a single vibration mode
Hariri et al. Locomotion principles for piezoelectric miniature robots
Cheng et al. Piezoelectric pump used in bionic underwater propulsion unit
CN114834616B (zh) 一种仿海豚无人潜航器及其驱动方法
CN114802673B (zh) 一种压电驱动的摆动鳍及其工作方式

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant