CN114796466B - 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用 - Google Patents

一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用 Download PDF

Info

Publication number
CN114796466B
CN114796466B CN202210480033.5A CN202210480033A CN114796466B CN 114796466 B CN114796466 B CN 114796466B CN 202210480033 A CN202210480033 A CN 202210480033A CN 114796466 B CN114796466 B CN 114796466B
Authority
CN
China
Prior art keywords
mettl3
associated virus
spinal cord
recombinant adeno
astrocyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210480033.5A
Other languages
English (en)
Other versions
CN114796466A (zh
Inventor
蔡卫华
葛旭辉
刘蔚
凡进
唐鹏宇
蒋东冬
杨思亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Hospital First Affiliated Hospital Of Nanjing Medical University
Original Assignee
Jiangsu Province Hospital First Affiliated Hospital Of Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Hospital First Affiliated Hospital Of Nanjing Medical University filed Critical Jiangsu Province Hospital First Affiliated Hospital Of Nanjing Medical University
Priority to CN202210480033.5A priority Critical patent/CN114796466B/zh
Publication of CN114796466A publication Critical patent/CN114796466A/zh
Application granted granted Critical
Publication of CN114796466B publication Critical patent/CN114796466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种星型胶质细胞特异性METTL3过表达的重组腺相关病毒在制备防治脊髓损伤的药物中的应用。本发明成功构建一种星形胶质细胞特异性METTL3过表达的重组腺相关病毒,该病毒可在体内星形胶质细胞中特异性过表达METTL3蛋白并靶向修饰下游YAP1mRNA的m6A水平,延长半衰期、维持其mRNA的稳定性并上调YAP1蛋白表达水平,促进反应型星形胶质细胞活化,改善脊髓损伤功能,为脊髓损伤的临床治疗提供了新的途径。

Description

一种星型胶质细胞特异性METTL3过表达的重组腺相关病毒的 应用
技术领域
本发明属于生物医药技术领域,具体涉及一种星型胶质细胞特异性METTL3过表达的重组腺相关病毒及其在制备脊髓损伤治疗药物中的应用。
背景技术
脊髓损伤(Spinal cord injury,SCI)是由创伤、肿瘤或炎症等因素导致的脊髓完整性和连续性受到破坏,从而引起机体运动、感觉及自主功能障碍的中枢神经系统疾病。随着交通运输业的不断发展,脊髓损伤的发病率急剧增长,且脊髓损伤患者也呈年轻化趋势。脊髓损伤发生之后,脊髓生理结构第一时间被破坏并进一步影响神经功能,此过程称为原发性脊髓损伤。而继发性脊髓损伤是指在原发性损伤基础上水肿、缺血、炎症等导致的脊髓组织间接损伤,此阶段会引起更多的神经细胞死亡和轴突脱髓鞘改变,与神经功能恢复密切相关,因此,如何防止继发性脊髓损伤成为治疗的关键,然而,目前我们对脊髓损伤的治疗仍然束手无策。
脊髓损伤后,损伤灶周围的星形胶质细胞经历了一种特殊的变化,被成为反应型星形胶质细胞活化,其特征是星形胶质细胞的肥大、突触延伸以及增殖能力变强,同时伴有基因水平的改变。反应型星形胶质细胞活化的程度取决于损伤的严重程度以及距离损伤灶中心的距离。反应型星形胶质细胞可以在损伤灶周围形成致密的保护带,将损伤灶内的炎症环境与周围正常的神经组织隔离开,保护未受损的神经元,防止其进一步死亡。除了隔离损伤灶之外,反应型星形胶质细胞还能促进血脊髓屏障的修复、分泌神经营养因子、抑制氧化应激损伤等。既往研究表明,利用药物或基因修饰减少星形胶质细胞数量或抑制反应型星形胶质细胞活化会导致脊髓损伤后炎症细胞的扩散、神经元凋亡加重和损伤灶面积扩大,进一步阻碍功能恢复。因此,靶向调控脊髓损伤后反应型星形胶质细胞活化可能是促进脊髓损伤功能恢复的一种行之有效治疗方法。
RNA甲基化修饰约占所有RNA修饰的60%以上,而N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰是mRNA上最为普遍的转录后水平修饰,调控着细胞的多种生物学功能,包括mRNA的成熟、转运、降解等。m6A修饰是一个可逆的过程,通常由三类特殊的蛋白完成,包括“writer、“eraser”和“reader”。“writer”即甲基转移酶,可特异性识别靶mRNA上的“GGAC”序列,并招募甲基腺苷修饰靶mRNA,而“eraser”可将m6A从mRNA上移除,完成去甲基化修饰,最后,经过m6A修饰的mRNA被“reader”蛋白识别,从而调控其定位或稳定性等功能。然而,m6A修饰在脊髓损伤后的作用尚不清楚。我们前期通过实验研究表明,作为m6A甲基转移酶复合体核心METTL3在脊髓损伤后表达显著升高,且定位于反应型星形胶质细胞中。体外敲低原代星形胶质细胞METTL3水平可显著抑制星形胶质细胞的增殖以及划痕愈合的速度,并且缩短星型胶质细胞突触的长度。既往研究表明,METTL3可以结合YAP1的mRNA,促进其m6A修饰并调控其稳定性,从而影响肿瘤进展。有趣的是,我们通过MeRIP-sequence联合mRNA-sequence测序表明,敲低原代星形胶质细胞METTL3也可以降低YAP1 mRNA 3’端非翻译区的m6A丰度,缩短YAP1 mRNA半衰期,降低其表达。
腺相关病毒(adeno-associated virus,AAV)属于细小病毒科内的依赖细小病毒属,是用于治疗多种人类疾病的基因传递工具。开发理想的AAV衣壳、优化基因组设计和利用革命性生物技术方面的最新进展为临床上基因治疗领域的发展做出了重大贡献。AAV作为理想的治疗载体在基因置换、基因沉默和基因编辑方面广受欢迎,其中两种基于AAV的疗法已在欧洲或美国获得了监管部门的批准。由于有血脊髓屏障的存在,传统药物干预很难抵达中枢神经系统发挥相应的作用,而AAV却不受血脊髓屏障的限制,同时具有易获得、高安全性、低免疫原性、强靶向性,能够长期稳定表达外源基因等优点。
发明内容
本发明的目的在于解决现有技术的不足,提供一种重组腺相关病毒,其带有星形胶质细胞特异性启动子GfaABC1D和METTL3基因表达序列,可通过原位注射方式在体内星形胶质细胞中特异性过表达METTL3蛋白并靶向修饰下游YAP1 mRNA的m6A水平,延长半衰期、维持其mRNA的稳定性并上调YAP1蛋白表达水平,促进反应型星形胶质细胞活化,改善脊髓损伤功能。
技术方案
星型胶质细胞特异性METTL3过表达的重组腺相关病毒在制备防治脊髓损伤的药物中的应用。所述METTL3的核苷酸序列如SEQ ID NO:1所示。
SEQ ID NO:1:
atgatgggggctgtggcagaaaagaaaggtcttggagaggtagcagggaccatcgcagggcagaaacggcgtgcagaacaggatttgactacagtgaccacctttgccagctctttagcatctggtctggcctcttcagcatcagaaccagctaaggagccggctaagaagtcaaggaagcacgctgcctccgatgttgatctggagatagaaagccttttgaaccaacagtcaacgaaagaacagcagagcaagaaggtcagtcaggagatcctagagctattaaataccacaacagccaaggaacagtccattgttgaaaagtttcgctctcgaggtcgggcccaggtgcaagaattttgtgattatgggaccaaggaagagtgcatgaaagccagtgacgctgaccggccttgtcgcaagctgcacttcagacgaattatcaataagcacactgatgaatctttaggtgactgctctttccttaacacatgtttccacatggacacctgcaaatatgttcactatgaaattgatgcttgtgttgattctgagagtcctggcagcaaggagcatatgccaagccaggagcttgctcttacacagagtgttgggggtgactccagtgctgatcgactctttccacctcagtggatctgttgtgatatccgctacctggacgtcagtatcttgggcaaatttgcagttgtgatggctgacccaccttgggatattcacatggagctaccgtatgggacattaacagatgatgagatgcgcaggctcaatataccagtgctacaggatgacggctttcttttcctctgggtcacaggaagggccatggaattgggcagagaatgtctgaacctctggggttatgaacgggtggatgaaatcatctgggtgaagactaatcagctgcagcgcatcattaggacgggccggacgggtcactggttaaaccacgggaaggaacactgcttggttggtgttaagggaaatcctcaaggattcaaccagggcctggactgcgatgtgattgtagctgaggttcgttccaccagtcataaaccagatgaaatatatggcatgattgagagactgtcccctggcacccgcaagattgagttatttggacgaccacacaatgtgcagcccaactggattactcttggaaaccaactggatgggatacacctactagacccagatgtggttgccaggtttaagcaaaggtatccggacggcatcatctctaaacctaagaatttatag
进一步,所述星型胶质细胞特异性METTL3过表达的重组腺相关病毒的构建方法包括如下步骤:
(1)设计引物,PCR扩增获得METTL3基因的全长序列;
(2)将METTL3基因和pAAV-GfaABC1D载体分别用限制性内切酶BamH I和EcoR I进行双酶切,然后加入T4连接酶进行DNA连接反应,得到含有目的基因METTL3的重组穿梭质粒,对其进行扩增、提纯;
(3)将含有目的基因METTL3的重组穿梭质粒以及含腺相关病毒基因组DNA的pHelper和pAAV-RC质粒混合,共转染AAV-293细胞,培养后收获细胞,反复冻融后过滤,获得病毒液,纯化后,得到星型胶质细胞特异性METTL3过表达的重组腺相关病毒。
进一步,步骤(1)中,所述引物的序列为:前引物:5’-GGGCGTCCTCGTGAGAATTA-3’,后引物:5’-GGGTAGGGGACACTATTGCG-3’。
进一步,步骤(3)中,所述含有目的基因METTL3的重组穿梭质粒以及含腺相关病毒基因组DNA的pHelper和pAAV-RC质粒的摩尔比为1:1:1。
进一步,步骤(3)中,所述纯化方法为:将病毒液离心后弃去大部分上清,加入核酸酶消化去除残留的质粒DNA,37℃孵育后离心,取上清加入到超滤管中,然后加入碘克沙醇梯度液超速离心,收集病毒层。
进一步,所述药物还包括药学上可接受的载体。所述药学上可接受的载体包括稀释剂和赋形剂。
进一步,所述药物的剂型为针剂或冻干粉。
本发明的有益效果:
本发明成功构建一种星形胶质细胞特异性METTL3过表达的重组腺相关病毒(血清型9),该病毒可在体内星形胶质细胞中特异性过表达METTL3蛋白并靶向修饰下游YAP1mRNA的m6A水平,延长半衰期、维持其mRNA的稳定性并上调YAP1蛋白表达水平,促进反应型星形胶质细胞活化,改善脊髓损伤功能,为脊髓损伤的临床治疗提供了新的途径。
附图说明
图1为重组腺相关病毒原位注射后小鼠脊髓组织切片的荧光染色图;
图2为重组腺相关病毒原位注射治疗脊髓损伤的小鼠后肢运动功能BMS评分结果;
图3为重组腺相关病毒原位注射治疗脊髓损伤小鼠的疼痛阈值测定结果;
图4为重组腺相关病毒原位注射治疗脊髓损伤小鼠的转棒实验测试结果;
图5为重组腺相关病毒原位注射治疗脊髓损伤小鼠的后肢肌电图测定及潜伏期和波幅统计图;
图6为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/Ki67免疫荧光染色及增生的星形胶质细胞比例统计图;
图7为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/CD68免疫荧光染色及损伤灶大小和浸润的巨噬细胞数量的统计图;
图8为重组腺相关病毒原位注射治疗脊髓损伤小鼠的存活神经元免疫荧光染色及数量统计图;
图9为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/NF200免疫荧光染色及轴突数量统计图;
图10为shNC和shMETTL3组原代星形胶质细胞MeRIP-sequence和mRNA-sequence测序结果的火山图;
图11为shNC和shMETTL3组原代星形胶质细胞中YAP1 mRNA上m6A甲基化丰度的IGV可视化图;
图12为shNC和shMETTL3组原代星形胶质细胞中m6A修饰的YAP1 mRNA相对表达量测试结果;
图13为shNC和shMETTL3组原代星形胶质细胞中METTL3和YAP1的mRNA相对表达量测试结果;
图14为shNC和shMETTL3组原代星形胶质细胞中METTL3和YAP1的蛋白表达量及统计图;
图15为shNC和shMETTL3组原代星形胶质细胞的YAP1 mRNA的半衰期测定结果。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案进行详细说明。
实施例1
一种星形胶质细胞特异性METTL3过表达的重组腺相关病毒,具体步骤如下:
(1)设计引物,PCR扩增获得METTL3基因的全长序列;
1)提取并体外培养原代星形胶质细胞:取1-3天龄C57BL/6乳鼠,酒精消毒皮肤后剪头并剥离整个脑组织,分离前额皮质部分,然后去除脑膜,将组织剪碎,用含0.125%胰酶(Gibco)和DNA酶(Sigma)(胰酶:DNA酶=5:1)的DMEM/F12培养基(Gibco)消化20分钟,每隔5分钟进行摇匀,防止组织粘连。终止消化后离心,弃去上清,完全培养基(含有10%的FBS胎牛血清和1%的青链霉素的DMEM高糖培养基)重悬,最后用70μm细胞筛过滤3遍得到单细胞悬液,用含10%FBS的DMEM高糖培养基(Gibco)于37℃,5%CO2条件下培养2周。待星型胶质细胞达到100%密度融合后,通过恒温摇床180rpm,30min和240rpm,6h去除其他的胶质细胞,从而获得纯的星形胶质细胞。
2)收集细胞后用Trizol试剂(日本Takara公司)裂解细胞提取总RNA,测定浓度后用逆转录试剂盒(日本Takara公司)逆转录成cDNA,反应程序:37℃15分钟,85℃5秒钟。反应体系:2μL 5×PrimeScript RT Master Mix,500ng RNA,补加DEPC水至10μL。
3)设计引物PCR扩增获得METTL3基因的全长序列;
引物序列:
前引物:5’-GGGCGTCCTCGTGAGAATTA-3’,
后引物:5’-GGGTAGGGGACACTATTGCG-3’。
PCR扩增反应体系:1μL上述cDNA模板,5μL 10×Reaction buffer,3μL 25mMMgCl2,3μL 2.5μM dNTP,1μL前引物,1μL后引物,1μL Taq DNA polymerase,35μL dH2O。
PCR扩增反应程序:94℃预变性3min,94℃变性1min,60℃退火45s、72℃延伸45s,重复35个循环,4℃保存。
(2)将METTL3基因和pAAV-GfaABC1D载体(和元生物技术)分别用限制性内切酶BamH I和EcoR I(和元生物技术)进行双酶切,然后加入T4连接酶进行DNA连接反应,4℃过夜,得到含有目的基因METTL3的重组穿梭质粒;
对重组穿梭质粒进行扩增、提纯,方法为:冰上融化DH5α感受态细胞,加2μL重组穿梭质粒于100μL感受态细胞中,冰上放置30min,随后42℃水浴热激90s,迅速转移至冰上3-5min,加入1mL无抗生素的LB液体培养基(胰蛋白胨10g/L,酵母提取物5g/L,氯化钠10g/L,用NaOH调pH为7.4),于37℃震荡培养1h使细菌恢复正常生长状态,并表达质粒编码的抗生素抗性基因,菌液摇匀后取100μL均匀涂在含抗生素的LB筛选平板上,正面向上放置半小时,待菌液完全被培养基吸收后,倒置于37℃恒温孵育箱中培养过夜,次日挑选单克隆菌落,接种于LB液体培养基中,37℃摇菌过夜扩增,收集菌液,离心裂解,抽提纯化质粒,双酶切鉴定。
(3)将含有目的基因METTL3的重组穿梭质粒以及含腺相关病毒基因组DNA的pHelper和pAAV-RC质粒(和元生物技术)以1:1:1的摩尔比混合溶于500μL Opti-MEM(Gibco)培养基,轻轻混匀后静置5min,然后将Obio转染试剂(和元生物技术)溶于500μLOpti-MEM培养基,轻轻混匀后静置5min。将上述转染试剂稀释液滴加到质粒稀释液中,静置20min形成稳定的转染复合体,随后转染进AAV-293细胞(和元生物技术),6h后换液,换用新鲜的培养基;转染72小时后,细胞刮刀收集细胞和上清液至离心管,取细胞裂解液在液氮浴和37℃水浴反复冻融,过滤后获得病毒液,将病毒液进行纯化,得到星型胶质细胞特异性METTL3过表达的重组腺相关病毒。
所述纯化方法为:将病毒液离心后弃去大部分上清,加入核酸酶消化去除残留的质粒DNA,37℃孵育后离心,取上清加入到超滤管中,然后加入碘克沙醇梯度液,48000rpm超速离心2.5h,收集病毒层,于-80℃保存。
通过定量PCR法检测基因组中AAV载体的基因组拷贝数来测定AAV的病毒颗粒数:准备样品和标准品,梯度稀释标准品质粒和待测样品至原浓度的10-5,10-6,10-7,10-8,每个梯度做两个副孔,每个反应孔中加入5μL的模板,上机,退火温度设置为60℃,根据CT值计算样品中的AAV拷贝数。
实施例2小鼠脊髓损伤造模、病毒注射及功能恢复检测
取8周龄C57BL/6小鼠(南京市江宁区青龙山动物繁殖场),分为对照组AAV-Con组及实验组AAV-METTL3组,每组小鼠各12只。造模过程及处理步骤如下所述:C57BL/6小鼠术前6小时禁食水,异氟烷(深圳瑞沃德生命科技有限公司)吸入麻醉后对小鼠背部皮肤进行备皮及碘伏消毒。取背部正中切口,逐层顿性分离皮下组织、筋膜、肌肉及椎旁组织,暴露T8及邻近节段。用弯钳小心摘除T8椎板,暴露脊髓,注意止血。将小鼠固定于脊髓打击器(深圳瑞沃德生命科技有限公司)上,以5g重量打击头从6.5cm高处垂直下落打击脊髓,生理盐水冲洗后可观察到明显的脊髓出血、水肿。脊髓损伤后,立即用10μL微量注射泵(瑞士Hamilton公司)以0.2mL/min的速度将上述星形胶质细胞特异性METTL3过表达的重组腺相关病毒(血清型9,5×109vg,1μL)原位注射到损伤脊髓的头侧和尾侧,注射结束后,针头继续维持5min以利于病毒扩散。对于对照组(AAV-Con组),等量注射病毒pAAV-GfaABC1D-MCS-WPRE(即pAAV-GfaABC1D载体),其余步骤不变。然后逐层缝合切口并消毒,保温至苏醒后放回笼中,术后每天给予人工排尿直至膀胱功能恢复正常,并给与抗生素与止痛药处理。
在损伤后的1、3、7、14、28天进行BMS评分,评估小鼠后肢运动功能恢复情况;在损伤后第28天利用针刺实验、转棒实验评估小鼠后肢感觉及后肢平衡恢复情况;肌电图测定运动诱发电位的潜伏期和波幅,评估神经传导功能。进一步将小鼠安乐死后取出脊髓,于4%多聚甲醛(武汉塞维尔)中固定24h,梯度乙醇脱水,二甲苯透明后进行石蜡包埋并切片。通过Flag/GFAP免疫荧光染色鉴定重组腺相关病毒感染效率;通过GFAP/Ki67免疫荧光染色观察反应型星形胶质细胞增生情况;通过免疫荧光双染GFAP/CD68观察反应型星形胶质细胞活化程度、损伤灶大小和炎症细胞浸润数量;通过Neun免疫荧光染色观察损伤灶以远不同距离的存活神经元数量;通过免疫荧光双染GFAP和NF观察轴突再生情况。上述所有行为学检测及病理学实验方法如下:
(1)BMS评分
于造模前及造模后1天、3天、7天、14天、28天对各组小鼠进行BMS评分。评分由两名熟悉评分细则且不知晓分组情况的研究人员分别独立完成,将小鼠置于旷场内观察其自由活动4分钟得出评分。每只小鼠的最终评分取两名评分人员的平均值。评分细则见表1。
表1:BMS评分系统
(2)针刺实验
利用Vonfery机械刺痛测试包(上海软隆科技发展有限公司)评估皮肤的触觉,尼龙丝的粗细及伸出长度决定提供刺激力的大小。在脊髓损伤前和损伤后28天对每只小鼠进行针刺检查。将老鼠放在金属网上,以便接触到爪子的足底面。从小到大调节针刺力量,后肢退缩被视为阳性反应,测定阈值。
(3)转棒实验
利用转棒疲劳仪(深圳瑞沃德生命科技有限公司)在脊髓损伤后28天检测小鼠平衡和运动协调情况。将小鼠放在匀加速(0-40rpm)的转棒疲劳仪上。记录小鼠从棒上掉落时的棒的转速和小鼠持续站在棒上的时间。
(4)肌电图
于造模后28天进行肌电图检测。麻醉小鼠后,将刺激电极置于暴露脊髓的头端,记录电极插入股二头肌屈肌深处1.5mm处。参比电极置于后肢肌腱远端,接地线置于皮下。用0.5mA,0.5ms,1Hz的刺激诱发电位,计算肌电图波幅来评价后肢功能。
(5)免疫荧光染色
石蜡切片经过二甲苯脱蜡,梯度酒精水化后,用柠檬酸钠修复液(武汉塞维尔)高温高压修复,然后用5%BSA(美国赛默飞)溶液室温封闭1小时阻断非特异性结合。滴加一抗,湿盒中4℃孵育过夜,然后PBS洗三遍,每遍5分钟,接着室温避光孵育荧光二抗2小时,继续PBS洗三遍,每遍5分钟,复染DAPI并封片后拍照。所用抗体信息详见表2。
表2:抗体信息
结果见图1-9:所有统计图中的数据均以平均值±标准差的形式展示,*P<0.05,**P<0.01,***P<0.001。
图1为重组腺相关病毒原位注射后小鼠脊髓组织切片的荧光染色图,从图中可以看出GFAP标记的星形胶质细胞和重组腺相关病毒携带的Flag标签有共定位,表明我们的重组腺相关病毒可以特异性靶向星形胶质细胞。
图2为重组腺相关病毒原位注射治疗脊髓损伤的小鼠后肢运动功能BMS评分结果。从图中可以看出,小鼠未损伤前后肢BMS评分为9分,损伤当时后肢运动能力丧失,BMS评分为0分,而在损伤后1、3、7、14、28天,注射AAV-METTL3的小鼠后肢运动功能恢复明显较对照组快,BMS评分更高。
图3为重组腺相关病毒原位注射治疗脊髓损伤小鼠的疼痛阈值测定结果。可以看出,相比于注射对照AAV组,AAV-METTL3组小鼠对针刺反应更明显,疼痛阈值也更低,表明AAV-METTL3注射治疗有利于脊髓损伤小鼠的感觉功能恢复。
图4为重组腺相关病毒原位注射治疗脊髓损伤小鼠的转棒实验测试结果,其中,图4A为小鼠待在棒上的最大时间,图4B为小鼠能够维持在棒上的最大转速。可以看出,与对照组相比,AAV-METTL3原位注射显著延长了小鼠待在转棒上的时间,能够耐受更高的转速,后肢运动功能和躯体平衡能力也显著改善。
图5为重组腺相关病毒原位注射治疗脊髓损伤小鼠的后肢肌电图测定及潜伏期和波幅统计图,其中图5A为AAV-Con组和AAV-METTL3组小鼠的肌电图波形,图5B和图5C分别为运动诱发电位的波幅和潜伏期统计图。从图中可以看出,与AAC-Con组相比,注射AAV-METTL3的小鼠运动诱发电位具有更短的潜伏期和更高的波幅,表明原位注射重组腺相关病毒能够改善脊髓损伤小鼠的后肢神经传导功能。
图6为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/Ki67免疫荧光染色及增生的星形胶质细胞比例统计图。其中图6A为AAV-Con组和AAV-METTL3组小鼠脊髓石蜡切片GFAP/Ki67免疫荧光染色图,图6B为增殖的反应型星型胶质细胞比例统计图。可以看出,相比于AAV-Con组,注射AAV-METTL3的小鼠脊髓中增殖的星形胶质细胞(即GFAP和Ki67均阳性的细胞)比例更高,表明原位注射重组腺相关病毒促进反应型星形胶质细胞活化。
图7为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/CD68免疫荧光染色及损伤灶大小和浸润的巨噬细胞数量的统计图。其中图7A为AAV-Con组和AAV-METTL3组小鼠脊髓石蜡切片GFAP和CD68免疫荧光染色图,图7B为损伤灶面积统计图,图7C为CD68阳性的外周巨噬细胞浸润程度统计图。可以看出,与AAV-Con组相比,AAV-METTL3组小鼠损伤灶面积明显缩小,炎症细胞浸润数量明显增多,范围扩大。
图8为重组腺相关病毒原位注射治疗脊髓损伤小鼠的存活神经元免疫荧光染色及数量统计图。其中图8A为AAV-Con组和AAV-METTL3组小鼠脊髓石蜡切片Neun免疫荧光染色,图8B为损伤灶以远不同距离的存活神经元数量统计图。可以看出,与AAV-Con组相比,AAV-METTL3组小鼠脊髓Z1(距损伤灶边缘0-250μm)、Z2(距损伤灶边缘250-500μm)、Z3区域(距损伤灶边缘1000-1250μm)存活神经元的数量明显增多,而Z4(距损伤灶边缘2000-2250μm)区域和非损伤区域的神经元数量无明显差别。
图9为重组腺相关病毒原位注射治疗脊髓损伤小鼠的GFAP/NF200免疫荧光染色及轴突数量统计图。其中图9A为AAV-Con组和AAV-METTL3组小鼠脊髓石蜡切片GFAP和NF的免疫荧光染色,图9B为损伤灶以远不同距离的NF阳性的轴突数量统计图。可以看出,与AAV-Con组相比,AAV-METTL3组小鼠脊髓NF阳性的轴突数量明显增多,表明原位注射重组腺相关病毒促进小鼠脊髓损伤后轴突再生。
实施例3AAV-METTL3靶向修饰YAP1 mRNA的m6A水平
为了进一步研究上述AAV-METTL3重组腺相关病毒促小鼠脊髓损伤后反应型星形胶质细胞活化和功能恢复的原理,我们首先按照实施例1中的方法分离培养了原代星形胶质细胞,然后通过短发卡RNA技术敲低原代星形胶质细胞中的METTL3水平(shMETTL3),随后进行MeRIP-sequence测序联合mRNA-sequence测序。我们发现敲低原代星形胶质细胞的METTL3水平后,YAP1 mRNA的m6A甲基化水平和mRNA水平均明显降低。利用IGV可视化m6A峰图后,我们发现相比于对照组(shNC),shMETTL3组星形胶质细胞YAP1 mRNA的3’端非翻译区甲基化丰度明显降低。随后,我们利用MeRIP-qPCR进一步验证METTL3敲低可以减少YAP1 mRNA的m6A修饰。最后,我们利用RT-qPCR和Western blot实验技术分别检测了原代星形胶质细胞敲低METTL3后YAP1的mRNA和蛋白水平,并检测了其mRNA半衰期。具体实验方法如下所述。
(1)原代星形胶质细胞敲低METTL3
我们购买了针对METTL3的shRNA及其对照shRNA(上海吉玛制药技术有限公司)并转染原代星形胶质细胞,分别命名为shMETTL3和shNC。转染步骤如下:5μL shRNA溶于250μLOpti-MEM培养基,轻轻混匀后静置5min,然后将RNAimax转染试剂(美国赛默飞公司)溶于250μL Opti-MEM培养基,轻轻混匀后静置5min。将上述转染试剂稀释液滴加到shRNA稀释液中,静置10min形成稳定的转染复合体,随后转染进原代星形胶质细胞,6h后换液,换用新鲜的培养基。
(2)MeRIP-sequence和mRNA-sequence测序
将转染shNC和shMETTL3的原代星形胶质细胞委托南京江北新区生物医药公共服务平台进行MeRIP-sequence和mRNA-sequence测序。步骤如下:用Trizol试剂分别提取shNC组和shMETTL3组原代星形胶质细胞的总RNA,然后将RNA链打断成100-200nt,并用试剂盒纯化(美国Zymo Research公司)。纯化后的RNA在4℃下与磁珠结合的m6A抗体孵育过夜,随后用低盐反应缓冲液和高盐反应缓冲液将与m6A抗体结合的RNA片段洗脱下来。分别用input和IP样本进行文库构建和质检,最后进行文库序列比对。对于MeRIP-qPCR实验,即在上述m6A免疫沉淀实验结束后进行qPCR实验。
(3)RNA提取、逆转录及qRT-PCR
加入1mLTrizol试剂充分裂解原代星形胶质细胞,并转移至1.5mL无RNase的EP管中。-80℃放置一天以充分提取RNA,室温下静置5分钟,使核酸与蛋白复合物完全分离。加入0.2mL氯仿,用手剧烈颠倒震荡混匀,然后室温静置10min,4℃下12000rpm离心10分钟。小心吸取上层水相,转移至新的EP管中,加入等体积的异丙醇,上下颠倒混匀,室温静置10分钟。4℃下12000rpm离心10分钟,弃上清,用-20℃预冷的75%乙醇洗涤RNA沉淀,4℃下12000rpm离心10分钟,弃上清,至少洗涤2次。室温放置干燥RNA,加入20-100μL无RNase水溶解RNA,Nanodrop测定RNA浓度。于37℃15分钟,85℃5秒钟条件下进行逆转录,逆转录反应体系为:2μl 5×PrimeScript RT Master Mix,500ng RNA,补加DEPC水至10μL。以GAPDH作为mRNA的内参每个样本设置3个副孔,使用2-ΔΔCT法计算目的基因相对表达量。
PCR反应体系:10μl 2×TB Green Premix Ex Taq,0.4μL前后引物,0.4μL 50×ROX Reference Dye,2μl cDNA模板,6.8μl灭菌水。
PCR反应程序:95℃预变性30秒钟,95℃变性5秒钟,60℃退火、延伸30秒,循环40次。
所用引物序列如下所示:
METTL3 forward:5’-CGTAGTGATAGTCCCGTGCC-3’,
METTL3 reverse:5’-TGGCGTAGAGATGGCAAGAC-3’;
YAP1 forward:5’-CCCTCGTTTTGCCATGAACC-3’
YAP1 reverse:5’-GCTGTATTTGCTGCTGCTGG-3’;
GAPDH forward:5’-GGAGAGTGTTTCCTCGTCCC-3’,
GAPDH reverse:5’-ATGAAGGGGTCGTTGATGGC-3’。
(4)mRNA半衰期测定
将转染shNC和shMETTL3的原代星形胶质细胞进一步加入5μg/mL的actinomycin D(美国Sigma公司)处理以阻断转录过程,在处理后的0、3、6、9小时后提取RNA进行qRT-PCR检测YAP1相对表达量并拟合降解曲线,计算半衰期。
(5)蛋白提取及Western blot
原代星形胶质细胞蛋白提取:按照1mL裂解液、10μL磷酸酶抑制剂、10μL PMSF及1μL蛋白酶抑制剂配置蛋白裂解液。细胞用PBS洗涤三遍后加入适量的蛋白裂解液,细胞刮刀冰上收集蛋白,超声裂解或冰上裂解30分钟,每5分钟震荡一次。4℃,12000rpm,5分钟离心,将上清转入新的EP管中;吸取部分蛋白裂解液行BCA蛋白浓度测定;余下体积按比例加入适量5×Loading Buffer后于100℃煮沸;待室温冷却后根据实验安排放入-20℃保存或行Western Blot实验。
电泳与转膜:按照实验需求配制不同浓度的分离胶及浓缩胶;加入样品,80V跑浓缩胶;待蛋白样品至分离胶时调节电压至120V;待蛋白至底时停止电泳。裁剪适当大小的PVDF膜,顺序叠放滤纸、凝胶及PVDF膜制备转膜三明治,赶尽其中的气泡;夹紧转膜夹放入转膜槽之中;将转膜槽放入冰盒中,加入预冷的转膜液,300mA恒定电流转膜,转膜时间视情况而定。转膜后取出PVDF膜,放入5%BSA封闭液中封闭2小时。
抗体孵育及检测:封闭结束后将孵育相应的一抗,4℃过夜;次日TBST洗膜三遍,孵育相应二抗,常温2小时;洗膜、配置曝光液,将曝光液涂抹均匀至PVDF膜,放入凝胶成像系统,拍照分析。
结果见图10-15:所有统计图中的数据均以平均值±标准差的形式展示,***P<0.001。
图10为shNC和shMETTL3组原代星形胶质细胞MeRIP-sequence和mRNA-sequence测序结果的火山图,通过MeRIP-sequence联合mRNA-sequence测序,我们发现敲低原代星形胶质细胞的METTL3后,YAP1的mRNA表达量和m6A丰度均明显降低,表明METTL3可以靶向修饰下游YAP1的mRNA甲基化水平,从而调控其mRNA表达量。
图11为shNC和shMETTL3组原代星形胶质细胞中YAP1 mRNA上m6A甲基化丰度的IGV可视化图。可以看出,敲低原代星形胶质细胞的METTL3后,YAP1 mRNA的3’端非翻译区的m6A甲基化丰度明显降低,进一步表明METTL3可以调控YAP1 mRNA的3’非翻译区继而调控YAP1m6A水平。
图12为shNC和shMETTL3组原代星形胶质细胞中m6A修饰的YAP1 mRNA相对表达量测试结果。通过MeRIP-qPCR实验,我们看出,shNC组中,相比于IgG抗体,YAP1 mRNA被m6A抗体富集,而敲低原代星形胶质细胞的METTL3后,YAP1的mRNA被m6A抗体免疫沉淀的量显著减少,表明METTL3可以调节YAP1 mRNA的m6A修饰水平。
图13为shNC和shMETTL3组原代星形胶质细胞中METTL3和YAP1的mRNA相对表达量测试结果。可以看出,敲低原代星形胶质细胞的METTL3水平后,YAP1的mRNA相对表达量也随之降低,表明METTL3可以通过调控YAP1的m6A修饰靶向调控其mRNA表达。
图14为shNC和shMETTL3组原代星形胶质细胞中METTL3和YAP1的蛋白表达量及统计图。图14A为原代星形胶质细胞敲低METTL3后总的YAP1、METTL3、GAPDH以及核内YAP1和Histone H3的蛋白表达量,图14B为总的YAP1和核YAP1蛋白相对表达定量图。可以看出,敲低原代星形胶质细胞METTL3后显著降低了总的YAP1以及核内YAP1蛋白水平。
图15为shNC和shMETTL3组原代星形胶质细胞的YAP1 mRNA的半衰期测定结果。从图中可以看出,在添加转录抑制剂抑制DNA转录后,YAP1的mRNA表达量随着时间推移逐渐减少,而敲低METTL3的原代星形胶质细胞的YAP1 mRNA降解速度较对照组快,其半衰期从5.947h变成4.426h,进一步表明METTL3可以通过靶向修饰YAP1 mRNA的m6A水平,继而调控其mRNA稳定性,影响YAP1的mRNA和蛋白表达水平。
综上,本发明成功构建了一种星形胶质细胞特异性METTL3过表达的重组腺相关病毒(血清型9),该病毒可在体内星形胶质细胞中特异性过表达METTL3蛋白并靶向修饰下游YAP1 mRNA的m6A水平,延长半衰期、维持其mRNA的稳定性并上调YAP1蛋白表达水平,促进反应型星形胶质细胞活化,改善脊髓损伤功能。

Claims (7)

1.星型胶质细胞特异性METTL3过表达的重组腺相关病毒在制备治疗脊髓损伤的药物中的应用,所述METTL3的核苷酸序列如SEQ ID NO:1所示,所述星型胶质细胞特异性METTL3过表达的重组腺相关病毒的构建方法包括如下步骤:
(1)设计引物,PCR扩增获得METTL3基因的全长序列;
(2)将METTL3基因和pAAV-GfaABC1D载体分别用限制性内切酶BamH I和EcoR I进行双酶切,然后加入T4连接酶进行DNA连接反应,得到含有目的基因METTL3的重组穿梭质粒,对其进行扩增、提纯;
(3)将含有目的基因METTL3的重组穿梭质粒以及含腺相关病毒基因组DNA的pHelper和pAAV-RC质粒混合,共转染AAV-293细胞,培养后收获细胞,反复冻融后过滤,获得病毒液,纯化后,得到星型胶质细胞特异性METTL3过表达的重组腺相关病毒。
2.如权利要求1所述的应用,其特征在于,步骤(1)中,所述引物的序列为:前引物:5’-GGGCGTCCTCGTGAGAATTA-3’,后引物:5’-GGGTAGGGGACACTATTGCG-3’。
3.如权利要求1所述的应用,其特征在于,步骤(3)中,所述含有目的基因METTL3的重组穿梭质粒以及含腺相关病毒基因组DNA的pHelper和pAAV-RC质粒的摩尔比为1:1:1。
4.如权利要求1所述的应用,其特征在于,步骤(3)中,所述纯化方法为:将病毒液离心后弃去大部分上清,加入核酸酶消化去除残留的质粒DNA,37℃孵育后离心,取上清加入到超滤管中,然后加入碘克沙醇梯度液超速离心,收集病毒层。
5.如权利要求1所述的应用,其特征在于,所述药物还包括药学上可接受的载体。
6.如权利要求5所述的应用,其特征在于,所述药学上可接受的载体包括稀释剂和赋形剂。
7.如权利要求1至6任一项所述的应用,其特征在于,所述药物的剂型为针剂或冻干粉。
CN202210480033.5A 2022-05-05 2022-05-05 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用 Active CN114796466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210480033.5A CN114796466B (zh) 2022-05-05 2022-05-05 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210480033.5A CN114796466B (zh) 2022-05-05 2022-05-05 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用

Publications (2)

Publication Number Publication Date
CN114796466A CN114796466A (zh) 2022-07-29
CN114796466B true CN114796466B (zh) 2023-10-24

Family

ID=82511750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210480033.5A Active CN114796466B (zh) 2022-05-05 2022-05-05 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用

Country Status (1)

Country Link
CN (1) CN114796466B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103040867A (zh) * 2013-01-04 2013-04-17 江苏省人民医院 骨髓间充质干细胞来源的微泡在制备治疗肾损伤药物中的应用
CN109457029A (zh) * 2018-12-30 2019-03-12 王增艳 Mettl3基因的应用及其检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200129596A1 (en) * 2017-03-13 2020-04-30 City Of Hope m6A mRNA MODIFICATION IN CANCER TREATMENT
US11944608B2 (en) * 2020-10-26 2024-04-02 New York University Targeting RNA viruses using inhibitors of METTL3

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103040867A (zh) * 2013-01-04 2013-04-17 江苏省人民医院 骨髓间充质干细胞来源的微泡在制备治疗肾损伤药物中的应用
CN109457029A (zh) * 2018-12-30 2019-03-12 王增艳 Mettl3基因的应用及其检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Alteration of m6A epitranscriptomic tagging of ribonucleic acids after spinal cord injury in mice";Shuangfei Ni等;《Front Neurosci》;20220825;第16卷;第1-12页 *
"Epitranscriptomic m6A regulation following spinal cord injury";Lingyan Xing等;《Neuroscience Research》;20201203;第99卷(第3期);第843-857页 *
"Mettl3介导m~6A甲基化修饰对过氧化氢诱导的脊髓神经元氧化应激和凋亡的影响";李宏维等;《中国脊柱脊髓杂志》;20220925;第32卷(第9期);第834-842页 *

Also Published As

Publication number Publication date
CN114796466A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN107109407A (zh) 治疗肌萎缩性侧索硬化(als)的组合物和方法
AU2004256281A1 (en) Method of altering cell properties by administering RNA
CN112626031B (zh) 一种基因修饰的牙髓干细胞及其制备方法和应用
CN107929753B (zh) 一种药物组合物及其应用
Mead et al. Viral delivery of multiple miRNAs promotes retinal ganglion cell survival and functional preservation after optic nerve crush injury
CN112451669A (zh) Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用
Shu et al. Treatment of aganglionic megacolon mice via neural stem cell transplantation
CN107119020B (zh) 一种基于miR-9的肝损伤靶向间充质干细胞及其制备方法与应用
US20190224241A1 (en) Nonviral minicircle vector carrying sox gene and construction method therefor
CN114796466B (zh) 一种星型胶质细胞特异性mettl3过表达的重组腺相关病毒的应用
CN110546261B (zh) 小rna及其用于预防和/或治疗纤维增生性病症和/或综合征
CN111494634B (zh) 一类治疗慢性疼痛的核酸药物
CN112386699A (zh) Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用
WO2023104028A1 (zh) 非编码rna介导的神经性疾病治疗
CN114807233B (zh) 一种巨噬细胞特异性usp13过表达的重组腺相关病毒及其应用
CN110066870B (zh) hsa-miR-382-5p在制备诊断视网膜变性疾病的试剂盒中的应用
CN111686124B (zh) miR-486-3p在制备治疗SAH导致的神经炎症产品中的应用
CN114908058A (zh) 一种包载基因编辑核糖核蛋白的外泌体及用途
JP2023540130A (ja) リプログラミング用機能性断片、組み合わせ、およびその用途
CN112891539A (zh) 干预bok在制备治疗新冠肺炎药物中的应用
CN116376910B (zh) 一种三叉神经痛的标志物及治疗三叉神经的药物
CN114712393B (zh) Hnf-1α基因修饰的间充质干细胞在防治肝癌中的用途
US20220403384A1 (en) Engineered circular rna circmir-29b and use thereof in preparation of medicine for treating muscle atrophy
CN117327703B (zh) 一种靶向平滑肌细胞的Agrin-shRNA及其在制备抗动脉粥样硬化的药物中的应用
US20240252680A1 (en) Composition for inhibiting alpha-synuclein aggregation and method for inhibiting alpha-synuclein aggregation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant