CN114793361A - 用于改变物理上行链路控制信道(pucch)的小区的半静态模式 - Google Patents

用于改变物理上行链路控制信道(pucch)的小区的半静态模式 Download PDF

Info

Publication number
CN114793361A
CN114793361A CN202210078026.2A CN202210078026A CN114793361A CN 114793361 A CN114793361 A CN 114793361A CN 202210078026 A CN202210078026 A CN 202210078026A CN 114793361 A CN114793361 A CN 114793361A
Authority
CN
China
Prior art keywords
uplink control
physical uplink
control channel
cell
pucch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210078026.2A
Other languages
English (en)
Inventor
K·休格尔
K·J·霍里
J·S·考赫南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Publication of CN114793361A publication Critical patent/CN114793361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了用于改变物理上行链路控制信道(PUCCH)的小区的半静态模式的系统、方法、装置和计算机程序产品。一种方法可以包括:向至少一个用户设备(UE)配置多于一个的服务小区,该多于一个的服务小区用于至少一个物理上行链路控制信道(PUCCH)小区组内的物理上行链路控制信道(PUCCH)传输;以及向至少一个用户设备(UE)配置至少一个物理上行链路控制信道(PUCCH)小区组内的可应用物理上行链路控制信道(PUCCH)小区的时域模式的配置。

Description

用于改变物理上行链路控制信道(PUCCH)的小区的半静态 模式
技术领域
一些示例实施例总体上可以涉及包括移动或无线电信系统(诸如长期演进(LTE)或第五代(5G)无线电接入技术或新无线电(NR)接入技术或其他通信系统)的通信。例如,某些示例实施例总体上可以涉及用于改变物理上行链路控制信道(PUCCH)的小区的半静态模式的系统和/或方法。
背景技术
移动或无线电信系统的示例可以包括通用移动电信系统(UMTS)、陆地无线电接入网络(UTRAN)、长期演进(LTE)演进型UTRAN(E-UTRAN)、LTE高级(LTE-A)、MulteFire、LTE-APro和/或第五代(5G)无线电接入技术或新无线电(NR)接入技术。5G无线系统是指下一代(NG)无线电系统和网络架构。5G系统主要在5G新无线电(NR)上被构建,但5G(或NG)网络还可以在E-UTRA无线电上构建。据估计,NR提供大约10到20Gbit/s或更高的比特率,并且至少能够支持服务类别,诸如增强型移动宽带(eMBB)和超可靠低延时通信(URLLC)以及大规模机器类型通信(mMTC)。NR预计递送极限宽带并且超稳健、低延时连接性和大规模联网,以支持物联网(IoT)。随着IoT和机器对机器(M2M)通信变得越来越普及,对满足较低功率、低数据速率和长电池寿命的需求的网络的需求将不断增长。下一代无线电接入网络(NG-RAN)表示5G的RAN,其能够提供NR和LTE(和LTE高级)无线电接入两者。应注意,在5G中,能够向用户设备提供无线电接入功能性的节点(即,类似于UTRAN中的Node B,NB或LTE中的演进型NB,eNB)在NR无线电上构建时可以被命名为下一代NB(gNB)并且在E-UTRA无线电上构建时可以被命名为下一代eNB(NG-eNB)。
发明内容
根据一些方面,提供了独立权利要求的主题。在从属权利要求中限定了一些其他方面。不落入权利要求书的范围内的实施例应被解释为可用于理解本公开的示例。
附图说明
为了正确理解示例实施例,应参考附图,其中:
图1图示了根据实施例的基于半静态配置的用于PUCCH的小区选择的示例操作;
图2图示了根据一个实施例的具有参考子载波间隔(SCS)以及主小区(PCell)和辅小区(Scell)的不同SCS的示例配置;
图3图示了根据一个实施例的具有参考SCS以及Pcell和Scell的不同SCS的配置的另一示例;
图4图示了根据实施例的在取决于时间的模式上使用的具有2符号时间粒度的配置的示例;
图5图示了根据实施例的方法的示例流程图;
图6图示了根据实施例的方法的示例流程图;
图7A图示了根据实施例的装置的示例框图;以及
图7B图示了根据实施例的装置的示例框图。
具体实施方式
应容易理解的是,如本文中一般描述并且本文中的图中图示的,某些示例实施例的组件可以按照各种不同的配置布置和设计。因此,以下对用于改变用于PUCCH的小区的半静态模式的系统、方法、装置和计算机程序产品的一些示例实施例的详细描述不旨在限制某些实施例的范围,而是表示所选择的示例实施例。
贯穿本说明书所描述的示例实施例的特征、结构或特点可以在一个或多个示例实施例中以任何合适的方式组合。例如,贯穿本说明书使用的短语“某些实施例”、“一些实施例”或其他类似语言是指结合实施例描述的特定特征、结构或特点可以被包括在至少一个实施例中的事实。因此,贯穿本说明书出现的短语“在某些实施例中”、“在一些实施例中”、“在其他实施例中”或其他类似语言不一定都是指同一组实施例,并且所描述的特征、结构或特点可以在一个或多个示例实施例中以任何合适的方式组合。
附加地,视需要,下文所讨论的不同功能或过程可以按不同顺序和/或彼此同时执行。此外,视需要,所描述的功能或过程中的一个或多个功能或过程可以是可选的或可以组合。因而,以下描述应被视为对某些示例实施例的原理和教导的说明,而不是对某些示例实施例的限制。
与工业IoT(IIoT)和/或URLLC相关的3GPP第17版新无线电(NR)的目标包括用于混合自动重传请求(HARQ)确认(ACK)的UE反馈增强。此处,一个感兴趣区域包括用于HARQ反馈的物理上行链路控制信道(PUCCH)载波切换。
用于考虑HARQ反馈的PUCCH载波切换的动机是时分双工(TDD)操作的延时问题。更具体地,当调度物理下行链路共享信道(PDSCH)时,gNB能够仅通过k1值(以时隙数目计)指示映射PDSCH的HARQ-ACK的PUCCH的时隙。在TDD操作的情况下,这意味着承载HARQ-ACK的PUCCH可能需要及时延迟,以保证PUCCH传输的符号对PUCCH传输实际上有效,该PUCCH传输考虑了包括上行链路(UL)、下行链路(DL)和/或灵活符号的时隙格式。
针对URLLC服务,低延时是重要的。因此,已经提出针对HARQ-ACK反馈启用PUCCH载波切换,例如,针对具有不同UL/DL配置的带间TDD,该PUCCH载波切换能够引起一些延迟益处。已经预期了PUCCH载波切换的两种不同模式:PUCCH载波切换的动态指示(备选方案1)和基于半静态配置/规则的PUCCH小区切换(备选方案2)。
PUCCH载波切换的动态指示(备选方案1)将是例如通过调度PDSCH的下行链路控制信息(DCI)中的一些字段,PUCCH载波切换将诸如由PUCCH应该映射到的UL服务小区的直接指示进行指示。该方法的缺点是调度PDSCH的缺失DCI的问题(这可以导致gNB与UE之间的对要用于PUCCH传输的UL服务小区的误解)。而且,针对半持久调度(SPS)PDSCH,这将为不可用的,并且将需要单独DCI传输,仅为了指示导致DL控制开销增加的PUCCH载波切换。因此,基于半静态配置/规则的PUCCH小区切换(备选方案2)可以变为优选备选方案。
针对基于半静态配置的PUCCH小区切换(备选方案2),方式是确定PUCCH是否能够在PUCCH小区(诸如Pcell或PUCCH-Scell)上传输,并且如果这由于与例如DL或同步信令块(SSB)符号的冲突而将是不可能的,那么UE将选择可以进行PUCCH传输的另一UL服务小区。
上行链路控制信号(UCI)能够包括HARQ-ACK、调度请求(SR)或链路恢复请求(LRR)和信道状态信息(CSI)。SR/LRR和CSI使用已配置的PUCCH资源。在UCI包括用于动态调度的PDSCH的HARQ-ACK的情况下,PUCCH资源确定能够以三个步骤发生。在第一步骤中,UE可以配置至多4个PUCCH资源集。针对每个集合,最小和最大有效载荷是预定的或配置的。UE基于要传输的UCI比特数(即,UCI有效载荷大小)来选择PUCCH资源集。在第二步骤中,DL指派包含PUCCH资源指示符(PRI)字段,并且UE基于PRI值从所选择的PUCCH资源集(在步骤1中)中选择PUCCH资源。在第三步骤中,在PUCCH格式2或3的情况下,UE基于UCI有效载荷和已配置的最大码率来确定在传输中使用的资源块(RB)的数量。RB数目被确定为码率低于最大码率的最小RB数目,上限为针对资源配置的RB数目。
如果不同UCI的PUCCH在时间上重叠,那么UCI被复用(根据关于例如UE处理时间的规则集合)到单个PUCCH传输中。作为复用的结果,可以选择新PUCCH资源来进行传输。在版本16中,优先级索引被关联到每种UCI类型,并且只有具有相同优先级索引的UCI被复用。然而,在版本17中,可能会支持不同优先级索引的UCI复用。
本文中所描述的某些示例实施例涉及在基于半静态配置的PUCCH小区切换(即,备选方案2)的情况下,UE将用于选择用于PUCCH传输的小区。一个示例实施例可以涉及在某些时间承载PUCCH的小区的半静态配置(即,用于PUCCH的小区的时域模式)。用于PUCCH的小区可以根据这种模式直接确定,而非基于特定规则来确定。本文中所描述的一些实施例提供了这种半静态配置和基于该配置的PUCCH小区切换的操作的细节。本公开中所描述的示例实施例还涵盖关于用于确定应用于PUCCH的UL服务小区上的PUCCH资源的机制的细节。
某些实施例可以是基于gNB配置(诸如RRC),该gNB配置在给定承载PUCCH的小区的半静态配置的定时关系(即,时间模式)的情况下确定PUCCH小区。实施例提供用于小区的取决于时间的配置的操作,该小区将承载PUCCH和相关PUCCH资源选择。示例实施例考虑了关于取决于时间的PUCCH小区的RRC配置以及具有不同子载波间隔(SCS)的小区的操作的不同选项。
应注意,根据一些实施例,承载PUCCH的小区在配置周期内不是半静态固定的,但针对某些时间,可以存在取决于时间的PUCCH小区配置,该取决于时间的PUCCH小区配置允许减少延时,因为可能的PUCCH传输不受单个小区的UL/DL配置限制。
在某些实施例中,不需要指定关于基于例如与可用UL符号(诸如TDD UL/DL配置、SSB等)和小区顺序等的交互来确定承载PUCCH的小区的规则。然而,在实施例中,gNB可以在某个时间直接指示哪个服务小区将承载用于UCI反馈的PUCCH。这将减少歧义并且尤其是简化小区选择,并且将使得gNB能够更好地控制不同服务小区上的PUCCH的潜在所需的UL资源(即,UL资源管理/UL调度器操作)。使用半静态配置的定时关系允许网络控制用于PUCCH的小区,而无需满足于预定义规则集合。
如下文将讨论的,某些实施例提供用于确定用于PUCCH的备选服务小区以及用于PUCCH传输的PUCCH资源的解决方案。该确定可以基于由gNB进行的用于PUCCH的小区的取决于时间的(模式)的配置而在UE处发生。
在下文中,将描述在配置(每时隙的配置)和小区设置(所有小区的相同SCS)方面更受限制的场景的示例操作。然后,将提供针对具有增加的时域配置粒度(即,下至符号级别)的情况并且考虑到具有不同SCS的小区的情况的附加示例和更详细的操作。
在实施例中,gNB可以向UE配置用于PUCCH小区组内的PUCCH传输的多于一个的服务小区。备选地,gNB可以向UE配置用于跨多于一个PUCCH小区组中的PUCCH传输的多于一个的服务小区。例如,相同PUCCH配置可以应用于所有用于PUCCH传输的小区,或备选地,针对适用的PUCCH小区中的每个适用的PUCCH小区可以存在独立PUCCH配置(包括PUCCH资源配置)。
根据某些实施例,gNB还可以向UE配置适用PUCCH小区的取决于时间的模式。时域模式的粒度可以在规范中定义(固定)或可以是对于UE为可配置的。时域模式的粒度可以是多个时隙(N个时隙)或符号(M个符号)。在一个示例中,粒度可以是2个符号、7个符号(针对正常CP,针对扩展CP为6个符号)或时隙,以与允许基于时隙或子时隙的PUCCH配置的版本16PUCCH配置对准。时域模式的周期性可以在规范中预定或可以是基于RRC配置。在示例实施方式中,可配置周期性可以具有与TDD UL/DL配置相同的候选值(例如0.5、0.625、1、1.25、2、2.5、3、4、5和10ms)。
在某些实施例中,配置可以包含参考子载波间隔,以确定时域模式的定时和粒度。根据一个选项,如同TDD UL/DL配置,参考SCS可以是直接配置的参数。根据另一选项,针对不同的可适用UL服务小区的混合SCS的情况,参考小区的SCS可以确定定时。根据实施例,参考小区可以由gNB隐式地确定或显式地配置。在一个实施例中,隐式确定的参考小区可以是至少一个PUCCH小区组的Pcell或PUCCH Scell。在一个实施例中,隐式确定的参考小区可以是具有最低(或最高)服务小区索引的UL服务小区。在另一实施例中,隐式确定的参考小区可以是可应用于具有最高SCS的PUCCH传输的UL服务小区。在具有最高SCS的多于一个的小区的情况下,可以使用具有最低(或最高)服务小区索引的UL服务小区。针对每个时域指示,配置可以包含用于PUCCH传输的小区的索引。PUCCH小区的索引可以由RRC配置给定(即,特定PUCCH小区索引0…K)或可以由服务小区索引隐式地给定。
例如,针对可用于PUCCH传输的两个小区,单个比特(0或1)将指示给定时刻的适用PUCCH小区。UE可以基于RRC配置的、取决于时间的模式来确定用于所需UCI传输的PUCCH传输的小区。这可以包括,至少一个PUCCH小区组内的UE的小区中的一个小区充当定时参考小区,该定时参考小区的时隙/子时隙配置被用于根据DCI中的定时参数来确定从PDSCH传输到HARQ-ACK传输的定时,该DCI调度PDSCH(K1)或激活SPS PDSCH传输。
在实施例中,UE可以根据在用于PUCCH传输的所确定的小区上使用的配置执行UCI复用和PUCCH资源确定。UE可以检查和/或确定PUCCH资源在用于PUCCH传输的所确定的小区上的有效性。例如,UE可以确定所确定的PUCCH资源针对PUCCH传输是否有效。此处,有效性检查可以是基于用于PUCCH的所确定的小区(而不是Pcell/PUCCH Scell)。例如,可以在有效性检查中使用用于PUCCH的所确定的小区的UL/DL模式。如果PUCCH资源不是有效的,那么可以丢弃PUCCH(和相关UCI)。在某些实施例中,UCI可以在PUCCH或PUSCH上传输,并且如果所产生的PUCCH资源与任何服务UL小区中的PUSCH甚至部分地重叠,那么可以基于PUSCH上的UCI的(版本15/16)NR复用规则来在重叠PUSCH上映射UCI。否则,PUCCH可以在用于PUCCH传输的所确定的小区上传输。
图1图示了根据实施例的基于半静态配置的用于PUCCH的小区选择的基线操作的示例。图1中所示出的示例是基于以下假设而提供的:两个小区可应用于PUCCH传输(Pcell和Scell)——在所配置的时域模式下,Pcell与‘0’相关联并且SCell与值‘1’相关联;所配置的参考SCS以及两个小区的SCS为15kHz SCS(即,1ms的时隙长度);以及时域配置粒度为时隙级别,并且模式的周期性为5ms(即,5个时隙的模式长度)。例如,gNB针对具有时隙粒度的5ms周期性配置了模式“00011”(即,针对15kHz SCS,1ms粒度)。
基于针对‘00011’的PUCCH小区的所配置的时域模式,UE可以确定由模式给定的PUCCH小区。即,针对slots#{0,1,2}+k*pattern_length,k≥0,UE可以将Pcell确定为用于PUCCH传输的小区。在图1的示例中,针对时隙0到2和5到7,这被示出为灰色阴影。基于具有‘1’的模式,Scell可以被配置为用于PUCCH传输的小区,这意味着针对slots#{3,4}+k*pattern_length,k≥0,选择了SCell。
一个实施例包括在参考SCS处具有时隙时间粒度的、取决于时间的模式。可以基于参考SCS或参考小区时隙定时来确定用于UCI传输的时隙定时(例如在HARQ-ACK的情况下为K1)。
图2图示了根据一个实施例的具有参考SCS以及PCell和Scell的不同SCS的示例配置。更具体地,图2的示例图示了具有参考SCS的配置,该参考SCS等于Pcell SCS但为ScellSCS的两倍。在图2的示例中,时域模式粒度等于Pcell时隙(Scell时隙的一半),并且模式长度为五。为了使这种配置有意义,Scell的PUCCH资源配置包括被限制于时隙的前半部分和后半部分的资源。在示例实施例中,针对每个适用小区或针对每个适用SCS值可以存在单独PUCCH配置。在HARQ-ACK的情况下能够用在调度PDSCH的DCI中动态指示的PRI来选择适当的PUCCH资源。在半持久PUCCH资源分配(SR、LLR、P-CSI或SP-CSI、用于SP PDSCH的HARQ-ACK)的情况下,可以给定UE位于时隙的前半部分和后半部分的两个资源分配。UE可以基于所确定的定时来选择适合资源。应注意,该方式能够被扩展为适用于SCell SCS与参考SCS之间的更大差异。
图3图示了根据一个实施例的具有参考SCS以及Pcell和Scell的不同SCS的配置的另一示例。更具体地,图3图示了具有参考SCS的配置,该参考SCS等于Pcell SCS但为ScellSCS的一半。在图3的示例中,时域模式粒度等于Pcell时隙(两个Scell时隙),并且模式长度为五。根据实施例,当针对PUCCH选择Scell时,可以利用规则来确定SCell时隙中的哪个SCell被用于PUCCH传输。例如,一种方式可以是确定参考小区(对应于例如PCell的参考SCS)上的参考PUCCH资源(或参考时隙/子时隙),包括任何UCI复用步骤。可以针对UCI传输选择与所确定的参考PUCCH资源重叠的最后一个SCell时隙。
另一实施例可以包括具有时间粒度的、取决于时间的模式(例如7、2或1个符号),该时间粒度比参考SCS处的时隙更短。上文针对具有时隙时间粒度的模式所讨论的Scell时隙确定机制也能够应用于这种情况。然而,由于更精细的时间粒度,因此可以利用一些其他规则。
根据某些实施例,可以基于参考SCS或参考小区时隙定时来确定用于UCI传输的时隙定时(例如在HARQ-ACK的情况下为K1)。进一步地,为了考虑模式的更精细的时间粒度,可以确定参考小区(对应于参考SCS,例如PCell)上的参考PUCCH资源(包括任何UCI复用步骤)。所确定的参考PUCCH资源的符号可以用于选择模式的正确时间部分以用于进行小区选择。图4图示了根据实施例的具有在取决于时间的模式上使用的2符号(2-symbol)时间粒度的这种配置的示例。作为示例,占用时隙#4的最后2个符号的PUCCH资源将在Pcell上被传输,而占用时隙#4的符号#7和#8的PUCCH资源将在Scell上被传输。
在一些实施例中,可以为在PUCCH小区改变边界上占用符号的参考PUCCH资源提供特殊规则。例如,占用时隙#4的最后6个符号的PUCCH资源的模式将是{1 1 0 0 0 0}(其中模式以符号粒度呈现)。一些备选方案可以包括丢弃这种PUCCH,PUCCH在模式的重叠部分上指示的小区之间在具有最高配置优先级或具有最低(或最高)小区ID的小区上传输,或PUCCH在应用于参考PUCCH的第一符号或最后一个符号的小区上传输。
在针对每个适用小区或SCS值单独配置PUCCH资源的情况下,可以在选择用于PUCCH的小区之后重新执行PUCCH资源确定和可能的UCI复用。这可能导致PUCCH资源占用的符号发生变化,并且因此导致与小区选择模式发生冲突。例如,针对参考小区确定的PUCCH资源可以基于选择哪个Scell来占用时隙#4的符号#7和#8。在时隙#4上还可以存在占用符号#5和#6的另一PUCCH资源,并且,同样针对该PUCCH,选择了Scell。Scell具有其自身的PUCCH资源配置,针对映射到Scell的UCI应用了该PUCCH资源配置。因此,在占用符号#7、#8、#9的PUCCH资源上复用UCI。这些符号的小区选择模式是{1 1 0}。用于处置这种情况的一些备选方案可以包括丢弃这种PUCCH,或针对PUCCH仅选择小区一次,之后不再考虑小区选择模式(针对该PUCCH传输)。若可能,根据Scell UL/DL模式,PUCCH在Scell上传输。此外,不同小区上的PUCCH传输将在时间上重叠可以是可能的。为了防止这种情况下,根据某些实施例,可以丢弃后面的PUCCH。
在一些实施例中,针对某些UCI优先级或UCI分量(HARQ-ACK、CSI、L1-RSRP、SR、LRR),用于PUCCH的小区选择可以是受限制的(预定义的或已配置的)。例如,可以仅针对高优先级HARQ-ACK应用了小区选择。如果基于取决于时间的小区选择模式来选择PUCCH小区或不存在遵循在相同时隙上传输的取决于时间的小区选择模式的UCI,那么其他UCI分量可以在PUCCH小区上传输(根据PUCCH小区的UL/DL模式)。
图5图示了根据一个实施例的基于半静态配置的用于PUCCH的小区选择的方法的示例流程图。在某些示例实施例中,图5的示例流程图可以由通信系统(诸如LTE或5G NR)中的网络实体或网络节点执行。在一些示例实施例中,执行图5中所描绘的过程中的一个或多个过程的网络实体可以包括UE、SL UE、中继UE、移动站、移动设备、固定设备、无线传输/接收单元、IoT设备或传感器等或被包括在UE、SL UE、中继UE、移动站、移动设备、固定设备、无线传输/接收单元、IoT设备或传感器等中。
如图5的示例中所图示,在505中,方法可以包括:从gNB接收配置信息,该配置信息具有用于至少一个PUCCH小区组内的PUCCH传输的多于一个的服务小区。此外,方法可以包括:在510中,从gNB接收配置信息,该配置信息具有适用PUCCH小区的取决于时间的模式。在实施例中,方法可以包括:在515中,基于所配置的、取决于时间的模式来确定用于所需UCI传输的PUCCH传输的小区。
如图5的示例中进一步图示,方法可以包括:在520中,根据在用于PUCCH传输的所确定的小区上使用的配置执行UCI复用和PUCCH资源确定。方法还可以包括:在525中,确定PUCCH资源在用于PUCCH传输的所确定的小区上的有效性。在实施例中,方法可以包括:在530中,在用于PUCCH传输的所确定的小区上的PUCCH上、或PUSCH上进行UCI传输。
图6图示了根据一个实施例的用于改变用于PUCCH的小区的半静态模式的方法的示例流程图。在某些示例实施例中,图6的示例流程图可以由通信系统(诸如LTE或5G NR)中的网络实体或网络节点执行。在一些示例实施例中,执行图6的方法的网络实体可以包括基站、接入节点、节点B、eNB、gNB、NG-RAN节点、传输接收点(TRP)、高空平台站(HAPS)、中继站等或被包括在基站、接入节点、节点B、eNB、gNB、NG-RAN节点、传输接收点(TRP)、高空平台站(HAPS)、中继站等中。
如图6的示例中所图示,方法可以包括:在605中,向至少一个UE配置用于至少一个PUCCH小区组内的PUCCH传输的多于一个的服务小区的配置。方法还可以包括:在610中,向至少一个UE配置用于至少一个PUCCH小区组内的适用PUCCH小区的时域模式或取决于时间的模式的配置。在一些实施例中,相同PUCCH配置可以应用于所有用于PUCCH传输的小区,或独立PUCCH配置可以应用于可适用PUCCH小区中的每个可适用PUCCH小区。
根据实施例,时域模式的粒度可以针对至少一个UE为固定的或可配置的。进一步地,在实施例中,时域模式的粒度可以呈多个时隙或符号。
在一些实施例中,时域模式的周期性可以在规范中被固定或基于无线电资源配置(RRC)而被确定。根据一个实施例,时域模式的配置可以包括参考子载波间隔(SCS),以确定时域模式的定时和粒度。在实施例中,参考SCS可以是直接配置的参数。根据一些实施例,针对不同的可适用UL服务小区的混合SCS的情况,参考小区的SCS可以确定定时。在一个示例中,参考小区可以由网络节点(诸如基站或gNB)隐式地确定或显式地配置。
在一些实施例中,隐式确定的参考小区可以包括至少一个PUCCH小区组的Pcell或PUCCH Scell。根据实施例,隐式确定的参考小区可以包括具有最低(或最高)服务小区索引的UL服务小区。根据某些实施例,隐式确定的参考小区可以包括可应用于具有最高SCS的PUCCH传输的UL服务小区。在一个示例中,当存在具有最高子载波间隔(SCS)的多于一个的小区时,可以使用具有最低(或最高)服务小区索引的上行(UL)服务小区。根据实施例,时域模式的配置可以针对每个时域指示包括用于PUCCH传输的小区的索引,并且PUCCH小区的索引可以由RRC配置给定或由服务小区索引隐式地给定。在某些实施例中,图6的方法还可以包括:在615中,从至少一个UE接收PUCCH或PUSCH上的上行链路控制信息(UCI)。
图7A图示了根据实施例的装置10的示例。在实施例中,装置10可以是通信网络中的或服务于这种网络的节点、主机或服务器。例如,装置10可以是与无线电接入网络(诸如LTE网络、5G或NR)相关联的网络节点、感测节点、卫星、基站、Node B、演进型Node B(eNB)、5G Node B或接入点、下一代Node B(NG-NB或gNB)、TRP、HAPS、集成接入和回程(IAB)节点和/或WLAN接入点。在一些示例实施例中,装置10可以是LTE中的eNB或5G中的gNB。
应理解,在一些示例实施例中,装置10可以由作为分布式计算系统的边缘云服务器组成,在分布式计算系统中,服务器和无线电节点可以是经由无线电路径或经由有线连接彼此通信的独立式装置,或该服务器和无线电节点可以位于经由有线连接进行通信的相同实体中。例如,在装置10表示gNB的某些示例实施例中,其可以被配置在划分gNB功能性的中央单元(CU)和分布式单元(DU)架构中。在这种架构中,CU可以是包括gNB功能(诸如用户数据的转移、移动性控制、无线电接入网络共享、定位和/或会话管理等)的逻辑节点。CU可以通过前程接口控制(多个)DU的操作。DU可以是逻辑节点,根据功能拆分选项,该逻辑节点包括gNB功能的子集。应注意,本领域的普通技术人员应理解,装置10可以包括图7A中未示出的组件或特征。
如图7A的示例中所图示,装置10可以包括用于处理信息和执行指令或操作的处理器12。处理器12可以是任何类型的通用或专用处理器。实际上,作为示例,处理器12可以包括以下一项或多项:通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)和基于多核处理器架构的处理器或任何其他处理部件。虽然在图7A中示出了单个处理器12,但根据其他实施例可以利用多个处理器。例如,应理解,在某些实施例中,装置10可以包括两个或更多个处理器,该两个或更多个处理器可以形成可以支持多处理的多处理器系统(例如在这种情况下,处理器12可以表示多处理器)。在某些实施例中,多处理器可以紧密耦合或松散耦合(例如以形成计算机集群)。
处理器12可以执行与装置10的操作相关联的功能,该功能可以包括例如天线增益/相位参数的预编码、形成通信消息的单独位的编码和解码、信息的格式化和装置10的整体控制,包括与通信或通信资源的管理相关的进程。
装置10还可以包括或耦合到存储器14(内部或外部),该存储器可以耦合到处理器12,以用于存储可以由处理器12执行的信息和指令。存储器14可以是一个或多个存储器并且属于适合于本地应用环境的任何类型,并且可以使用任何合适的易失性或非易失性数据存储技术(诸如基于半导体的存储器设备、磁存储器设备和系统、光学存储器设备和系统、固定存储器和/或可移除存储器)来实施。例如,存储器14能够由随机存取存储器(RAM)、只读存储器(ROM)、静态存储装置(诸如磁盘或光盘)、硬盘驱动器(HDD)或任何其他类型的非暂时性机器或计算机可读介质或其他适合的存储部件的任何组合组成。存储在存储器14中的指令可以包括程序指令或计算机程序代码,该程序指令或计算机程序代码在被处理器12执行时使得装置10能够执行如本文中所描述的任务。
在实施例中,装置10还可以包括或耦合到(内部或外部)驱动器或端口,该驱动器或端口被配置为接受和读取外部计算机可读存储介质,诸如光盘、USB驱动器、闪速驱动器或任何其他存储介质。例如,外部计算机可读存储介质可以存储用于供处理器12和/或装置10执行的计算机程序或软件。
在一些实施例中,装置10还可以包括或耦合到一个或多个天线15以用于向装置10传输信号和/或数据和从装置10接收信号和/或数据。装置10还可以包括或耦合到被配置为传输和接收信息的收发器18。收发器18可以包括例如可以耦合到(多个)天线15的多个无线电接口,或可以包括任何其他适合的收发部件。无线电接口可以对应于多种无线电接入技术,包括以下一项或多项:GSM、NB-IoT、LTE、5G、WLAN、蓝牙、BT-LE、NFC、射频标识符(RFID)、超宽带(UWB)、MulteFire等。无线电接口可以包括组件(诸如滤波器、转换器(例如数模转换器等)、映射器、快速傅立叶变换(FFT)模块等),以生成用于经由一个或多个下行链路传输的符号并且接收符号(例如经由上行链路)。
因而,收发器18可以被配置为将信息调制到载波波形上以供(多个)天线15传输并且解调经由(多个)天线15接收到的信息以供装置10的其他元件进行进一步处理。在其他实施例中,收发器18可能能够直接传输和接收信号或数据。附加地或备选地,在一些实施例中,装置10可以包括输入和/或输出设备(I/O设备)或输入/输出部件。
在实施例中,存储器14可以存储在被处理器12执行时提供功能性的软件模块。模块可以包括例如为装置10提供操作系统功能性的操作系统。存储器还可以存储一个或多个功能模块(诸如应用或程序)来为装置10提供附加功能性。装置10的组件可以被实施在硬件中或被实施为硬件与软件的任何合适组合。
根据一些实施例,处理器12和存储器14可以被包括在处理电路系统/部件或控制电路系统/部件中或可以形成处理电路系统/部件或控制电路系统/部件的一部分。此外,在一些实施例中,收发器18可以被包括在收发器电路系统/部件中或可以形成收发器电路系统/部件的一部分。
如本文中所使用,术语“电路系统”可以是指纯硬件电路系统实施方式(例如模拟和/或数字电路系统)、硬件电路与软件的组合、模拟和/或数字硬件电路与软件/固件的组合、(多个)硬件处理器与软件(包括数字信号处理器)的任何部分(这些部分一起工作以使装置(例如装置10)执行各种功能)和/或(多个)硬件电路和/或(多个)处理器或其部分,这些硬件电路和处理器或其部分使用软件进行操作,但该软件在不需要进行操作时可以不存在。作为另一示例,如本文中所使用,术语“电路系统”还可以涵盖仅硬件电路或处理器(或多个处理器),或硬件电路或处理器的一部分和其随附软件和/或固件的实施方式。术语“电路系统”还可以涵盖例如服务器、蜂窝网络节点或设备或其他计算或网络设备中的基带集成电路。
如上文所引入,在某些实施例中,装置10可以是网络元件或RAN节点,诸如基站、接入点、Node B、eNB、gNB、TRP、HAPS、IAB节点、WLAN接入点等。在一个示例实施例中,装置10可以是gNB。根据某些实施例,装置10可以由存储器14和处理器12控制以执行与本文中所描述的实施例中的任何实施例相关联的功能。例如,在一些实施例中,装置10可以被配置为执行在本文中所描述的流程图或信令图(诸如图6中所图示的流程图或信令图或本文中所描述的任何其他方法)中的任何流程图或信令图中所描绘的进程中的一个或多个进程。在一些实施例中,例如,如本文中所讨论,装置10可以被配置为执行与用于改变用于PUCCH的小区的半静态模式相关的过程。
根据实施例,装置10可以由存储器14和处理器12控制以为至少一个UE配置用于至少一个PUCCH小区组内的PUCCH传输的多于一个的服务小区的配置。在实施例中,装置10可以由存储器14和处理器12控制以为至少一个UE配置用于至少一个PUCCH小区组内的可适用PUCCH小区的时域模式或取决于时间的模式的配置。在某些实施例中,装置10也可以由存储器14和处理器12控制以从至少一个UE接收PUCCH或PUSCH上的上行链路控制信息(UCI)。
图7B图示了根据另一实施例的装置20的示例。在实施例中,装置20可以是通信网络中的或与这种网络相关联的节点或元件,诸如UE、通信节点、移动装备(ME)、移动站、移动设备、固定设备、IoT设备或其他设备。如本文中所描述,UE可以备选地被称为例如移动站、移动装备、移动单元、移动设备、用户设备、订户站、无线终端、平板、智能电话、IoT设备、传感器或NB-IoT设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和其应用(例如远程手术)、工业设备和其应用(例如机器人和/或在工业和/或自动化处理链背景中运行的其他无线设备)、消费电子设备、在商业和/或工业无线网络上运行的设备等。作为一个示例,装置20可以被实施在例如无线手持式设备、无线插入式附件等中。
在一些示例实施例中,装置20可以包括一个或多个处理器、一个或多个计算机可读存储介质(例如存储器、存储装置等)、一个或多个无线电接入组件(例如调制解调器、收发器等)和/或用户界面。在一些实施例中,装置20可以被配置为使用一种或多种无线电接入技术(诸如GSM、LTE、LTE-A、NR、5G、WLAN、WiFi、NB-IoT、蓝牙、NFC、MulteFire和/或任何其他无线电接入技术)运行。应注意,本领域的普通技术人员应理解,装置20可以包括图7B中未示出的组件或特征。
如图7B的示例中所图示,装置20可以包括或耦合到用于处理信息和执行指令或操作的处理器22。处理器22可以是任何类型的通用或专用处理器。实际上,作为示例,处理器22可以包括以下一项或多项:通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)和基于多核处理器架构的处理器。虽然在图7B中示出了单个处理器22,但根据其他实施例可以利用多个处理器。例如,应理解,在某些实施例中,装置20可以包括两个或更多个处理器,该两个或更多个处理器可以形成可以支持多处理的多处理器系统(例如在这种情况下,处理器22可以表示多处理器)。在某些实施例中,多处理器可以紧密耦合或松散耦合(例如以形成计算机集群)。
处理器22可以执行与装置20的操作相关联的功能,作为一些示例,该功能可以包括天线增益/相位参数的预编码、形成通信消息的单独位的编码和解码、信息的格式化和装置20的整体控制,包括与通信资源的管理相关的进程。
装置20还可以包括或耦合到存储器24(内部或外部),该存储器可以耦合到处理器22,以用于存储可以由处理器22执行的信息和指令。存储器24可以是一个或多个存储器并且属于适合于本地应用环境的任何类型,并且可以使用任何合适的易失性或非易失性数据存储技术(诸如基于半导体的存储器设备、磁存储器设备和系统、光学存储器设备和系统、固定存储器和/或可移除存储器)来实施。例如,存储器24能够由随机存取存储器(RAM)、只读存储器(ROM)、静态存储装置(诸如磁盘或光盘)、硬盘驱动器(HDD)或任何其他类型的非暂时性机器或计算机可读介质的任何组合组成。存储在存储器24中的指令可以包括程序指令或计算机程序代码,该程序指令或计算机程序代码在被处理器22执行时使得装置20能够执行如本文中所描述的任务。
在实施例中,装置20还可以包括或耦合到(内部或外部)驱动器或端口,该驱动器或端口被配置为接受和读取外部计算机可读存储介质,诸如光盘、USB驱动器、闪速驱动器或任何其他存储介质。例如,外部计算机可读存储介质可以存储用于供处理器22和/或装置20执行的计算机程序或软件。
在一些实施例中,装置20还可以包括或耦合到一个或多个天线25以用于从装置20接收下行信号并且经由上行链路传输。装置20还可以包括被配置为传输和接收信息的收发器28。收发器28还可以包括耦合到天线25的无线电接口(例如调制解调器)。无线电接口可以对应于多种无线电接入技术,包括以下一项或多项:GSM、LTE、LTE-A、5G、NR、WLAN、NB-IoT、蓝牙、BT-LE、NFC、RFID、UWB等。无线电接口可以包括其他组件(诸如滤波器、转换器(例如数模转换器等)、符号解映射器、信号成形组件、快速傅立叶逆变换(IFFT)模块等),以处理由下行链路或上行链路承载的符号,诸如OFDMA符号。
例如,收发器28可以被配置为将信息调制到载波波形上以供(多个)天线25传输并且解调经由(多个)天线25接收到的信息以供装置20的其他元件进行进一步处理。在其他实施例中,收发器28可能能够直接传输和接收信号或数据。附加地或备选地,在一些实施例中,装置20可以包括输入和/或输出设备(I/O设备)。在某些实施例中,装置20还可以包括用户界面,诸如图形用户界面或触摸屏。
在实施例中,存储器24存储在被处理器22执行时提供功能性的软件模块。模块可以包括例如为装置20提供操作系统功能性的操作系统。存储器还可以存储一个或多个功能模块(诸如应用或程序)来为装置20提供附加功能性。装置20的组件可以被实施在硬件中或被实施为硬件与软件的任何合适组合。根据示例实施例,可选地,装置20可以被配置为根据任何无线电接入技术(诸如NR)经由无线或有线通信链路70与装置10进行通信。
根据一些实施例,处理器22和存储器24可以被包括在处理电路系统或控制电路系统中或可以形成处理电路系统或控制电路系统的一部分。此外,在一些实施例中,收发器28可以被包括在收发电路系统中或可以形成收发电路系统的一部分。
如上文所讨论,根据一些实施例,例如,装置20可以是UE、SL UE、中继UE、移动设备、移动站、ME、IoT设备和/或NB-IoT设备等。根据某些实施例,装置20可以由存储器24和处理器22控制以执行与本文中所描述的实施例中的任何实施例相关联的功能,诸如图5中所图示或相对于图5所描述的操作中的一个或多个操作或本文中所描述的任何其他方法。例如,在实施例中,可以控制装置20以执行与用于改变用于PUCCH的小区的半静态模式相关的进程。
根据某些实施例,装置20可以由存储器24和处理器22控制以接收用于至少一个PUCCH小区组内的PUCCH传输的多于一个的服务小区的配置信息,并且接收配置信息,该配置信息包括至少一个物理上行链路控制信道(PUCCH)小区组内的可适用物理上行链路控制信道(PUCCH)小区的时域模式或取决于时间的模式。在实施例中,装置20可以由存储器24和处理器22控制以基于所配置的时域模式来确定用于UCI传输的PUCCH传输的小区。根据一些实施例,PUCCH小区组中的小区中的一个小区充当定时参考小区,该定时参考小区的时隙/子时隙配置用于根据DCI中的定时参数确定从PDSCH传输到HARQ-ACK传输的定时,该DCI调度PDSCH(K1)或激活SPS PDSCH传输。
在一些实施例中,装置20可以由存储器24或处理器22控制以根据在用于PUCCH传输的所确定的小区上使用的配置执行UCI复用和PUCCH资源确定。根据实施例,装置20可以由存储器24和处理器22控制以确定或检查PUCCH资源在用于PUCCH传输的所确定的小区上的有效性。在一个实施例中,装置20可以由存储器24和处理器22控制以通过如下方式检查有效性:至少部分地基于用于PUCCH的所确定的小区来确定所确定的PUCCH资源针对PUCCH传输是否有效。根据实施例,当确定PUCCH资源不是有效的时,可以丢弃PUCCH。
根据实施例,装置20可以由存储器24和处理器22控制以传输PUCCH或PUSCH上的UCI。在一些实施例中,当所产生的PUCCH资源与相同或不同服务UL小区上的PUSCH完全或部分地重叠时,传输UCI可以包括根据PUSCH操作上的(版本15/版本16)NR UCI复用在重叠PUSCH上映射UCI。在实施例中,当所产生的PUCCH资源与相同或不同服务UL小区上的PUSCH不重叠时,传输UCI可以包括传输用于PUCCH传输的所确定的小区上的UCI。
在一些实施例中,装置(例如装置10和/或装置20)可以包括用于执行方法、进程或本文中所讨论的变型中的任何变型的部件。部件的示例可以包括用于引起操作的执行的一个或多个处理器、存储器、控制器、传输器、接收器和/或计算机程序代码。
鉴于前述内容,某些示例实施例提供了优于现有技术进程的若干技术改进、增强和/或优点,并且构成至少对无线网络控制和管理的技术领域的改进。例如,某些实施例可应用于半持久UCI配置(例如CSI、SR、LRR)以及由SPS PDSCH触发的HARQ-ACK,并且还可以应用于DCI触发的UCI,诸如由DCI调度的PDSCH或非周期性CSI触发的HARQ-ACK。示例实施例也不增加DCI有效载荷。此外,某些实施例支持承载PUCCH的小区的取决于时间的配置,从而允许更优化的配置以及减少UCI延时的可能性,这是由于可能PUCCH传输不受单个小区的UL/DL配置限制。此外,根据某些实施例,不需要指定关于基于例如与可用UL符号(诸如TDD UL/DL配置、SSB等)和小区顺序等的交互来确定承载PUCCH的小区的潜在复杂的规则。这将减少歧义并且尤其是简化小区选择。网络还可以调整小区选择以更好地适应网络的资源管理和调度策略,这是由于小区选择由gNB经由配置进行控制。因此,某些示例实施例的使用引起通信网络和其节点(诸如基站、eNB、gNB和/或IoT设备、UE或移动站)的功能的改进。
在一些示例实施例中,本文中所描述的方法、进程、信令图、算法或流程图中的任何方法、进程、信令图、算法或流程图的功能性可以由存储在存储器或其他计算机可读或有形介质中的软件和/或计算机程序代码或代码的部分实施,并且可以由处理器执行。
在一些示例实施例中,装置可以包括至少一个软件应用、模块、单元或实体或与之相关联,该软件应用、模块、单元或实体被配置为(多个)算术运算或程序或程序的部分(包括添加或更新后的软件例程),其可以由至少一个操作处理器或控制器执行。程序(也被称为程序产品或计算机程序,包括软件例程、小应用程序和宏)可以存储在任何装置可读数据存储介质中并且可以包括用于执行特定任务的程序指令。计算机程序产品可以包括一个或多个计算机可执行组件,该计算机可执行组件在程序运行时被配置为执行一些示例实施例。一个或多个计算机可执行组件可以是至少一个软件代码或代码的部分。实施示例实施例的功能性所需的修改和配置可以作为(多个)例程而执行,这些例程可以被实施为添加或更新后的(多个)软件例程。在一个示例中,(多个)软件例程可以被下载到装置中。
作为示例,软件或计算机程序代码或代码的部分可以呈源代码形式、目标代码形式或某种中间形式,并且可以存储在某种载体、分发介质或计算机可读介质中,该载体、分发介质或计算机可读介质可以是能够承载程序的任何实体或设备。例如,这种载体可以包括记录介质、计算机存储器、只读存储器、光电和/或电载体信号、电信信号和/或软件分发包。根据所需的处理能力,计算机程序可以在单个电子数字计算机中执行,或其可以分布在若干计算机中。计算机可读介质或计算机可读存储介质可以是非暂时性介质。
在其他示例实施例中,示例实施例的功能性可以由装置中所包括的硬件或电路系统执行,例如通过使用专用集成电路(ASIC)、可编程门阵列(PGA)、现场可编程门阵列(FPGA)或硬件与软件的任何其他组合。在又一示例实施例中,示例实施例的功能性可以被实施为信号(诸如非有形部件),该信号可以由从互联网或其他网络下载的电磁信号承载。
根据示例实施例,装置(诸如节点、设备或对应组件)可以被配置为电路系统、计算机或微处理器(诸如单芯片计算机元件)或芯片集,该芯片集可以至少包括用于提供用于(多个)算术运算的存储容量的存储器和/或用于执行(多个)算术运算的操作处理器。
本文中所描述的示例实施例可以适用于单数和复数实施方式,而不管结合描述某些实施例使用单数语言还是复数语言。例如,描述单个网络节点的操作的实施例也可以适用于包括网络节点的多个实例的实施例,反之亦然。
本领域的普通技术人员应容易地理解,可以用不同顺序的过程和/或与所公开的配置不同的配置的硬件元件实践如上文所讨论的示例实施例。因此,尽管已经基于这些示例实施例描述了一些实施例,但对于本领域的技术人员而言将显而易见的是,某些修改、变化和备选构造将是显而易见的,同时仍然在示例实施例的精神和范围内。

Claims (15)

1.一种用于通信的装置,包括:
用于向至少一个用户设备配置多于一个服务小区的部件,所述多于一个的服务小区用于至少一个物理上行链路控制信道小区组内的物理上行链路控制信道传输;以及
用于向所述至少一个用户设备配置所述至少一个物理上行链路控制信道小区组内的物理上行链路控制信道小区的时域模式的部件。
2.根据权利要求1所述的装置,其中针对用于进行所述物理上行链路控制信道传输的所有小区,应用相同的物理上行链路控制信道配置。
3.根据权利要求1所述的装置,其中所述时域模式的粒度是以下至少一项:对于所述至少一个用户设备是固定的;对于所述至少一个用户设备可配置;以及按照多个时隙或符号。
4.根据权利要求1所述的装置,其中所述时域模式的周期性在规范中是固定的,或基于无线电资源配置而被确定。
5.根据权利要求1所述的装置,其中所述时域模式的所述配置包括参考子载波间隔,以确定所述时域模式的定时和粒度。
6.根据权利要求1所述的装置,其中针对不同上行链路服务小区的混合子载波间隔的情况,参考小区的所述子载波间隔确定所述时域模式的定时和粒度。
7.根据权利要求1至6中任一项所述的装置,其中所述时域模式的所述配置针对每个时域指示包括被用于物理上行链路控制信道传输的所述小区的索引,并且其中所述物理上行链路控制信道小区的所述索引由无线电资源控制配置给定或由服务小区索引隐式地给定。
8.一种用于通信的方法,包括:
在用户设备处接收针对多于一个的服务小区的配置信息,所述多于一个的服务小区用于至少一个物理上行链路控制信道小区组内的物理上行链路控制信道传输;
接收配置信息,所述配置信息包括所述至少一个物理上行链路控制信道小区组内的物理上行链路控制信道小区的时域模式;
基于所配置的所述时域模式来确定用于上行链路控制信息传输的所述物理上行链路控制信道传输的小区;
根据在所确定的用于所述物理上行链路控制信道传输的所述小区上使用的所述配置,执行上行链路控制信息复用和物理上行链路控制信道资源确定;
检查所确定的所述物理上行链路控制信道资源在所确定的用于所述物理上行链路控制信道传输的所述小区上的有效性;以及
当所述物理上行链路控制信道资源有效时,在物理上行链路控制信道或物理上行链路共享信道上传输上行链路控制信息。
9.一种用于通信的装置,包括:
用于接收针对多于一个的服务小区的配置信息的部件,所述多于一个的服务小区用于至少一个物理上行链路控制信道小区组内的物理上行链路控制信道传输;
用于接收配置信息的部件,所述配置信息包括所述至少一个物理上行链路控制信道小区组内的物理上行链路控制信道小区的时域模式;
用于基于所配置的所述时域模式来确定用于上行链路控制信息传输的所述物理上行链路控制信道传输的小区的部件;
用于根据在所确定的用于所述物理上行链路控制信道传输的所述小区上使用的所述配置执行上行链路控制信息复用和物理上行链路控制信道资源确定的部件;
用于检查所确定的所述物理上行链路控制信道资源在所确定的用于所述物理上行链路控制信道传输的所述小区上的有效性的部件;以及
用于当所述物理上行链路控制信道资源有效时、在物理上行链路控制信道或物理上行链路共享信道上传输上行链路控制信息的部件。
10.根据权利要求9所述的装置,其中所述至少一个物理上行链路控制信道小区组内的所述小区中的一个小区充当定时参考小区,所述定时参考小区的时隙或子时隙配置被用于根据下行链路控制信息中的定时参数,来确定从物理下行链路共享信道传输到混合自动重传请求确认传输的定时,所述下行链路控制信息调度物理下行链路共享信道或激活半持久调度的物理下行链路共享信道传输。
11.根据权利要求10所述的装置,其中所述参考小区由网络节点显式地配置或隐式地确定。
12.根据权利要求11所述的装置,其中隐式确定的所述参考小区包括所述至少一个物理上行链路控制信道小区组的主小区或物理上行链路控制信道辅小区。
13.根据权利要求11所述的装置,其中隐式确定的所述参考小区包括具有最低或最高服务小区索引的上行链路服务小区。
14.根据权利要求9所述的装置,其中用于检查所述物理上行链路控制信道资源的所述有效性的所述部件还包括:
用于至少部分地基于所确定的用于物理上行链路控制信道的所述小区来确定所确定的所述物理上行链路控制信道资源针对所述物理上行链路控制信道传输是否有效的部件。
15.根据权利要求9至14中任一项所述的装置,其中用于传输所述上行链路控制信息的所述部件还包括:
用于当所得到的所述物理上行链路控制信道资源与相同或不同的所述服务上行链路小区上的所述物理上行链路共享信道完全或部分地重叠时、在重叠的所述物理上行链路共享信道上映射所述上行链路控制信息的部件;以及
用于当所得到的所述物理上行链路控制信道资源与相同或不同的所述服务上行链路小区上的所述物理上行链路共享信道不重叠时、在所确定的用于所述物理上行链路控制信道传输的所述小区上传输所述上行链路控制信息的部件。
CN202210078026.2A 2021-01-25 2022-01-24 用于改变物理上行链路控制信道(pucch)的小区的半静态模式 Pending CN114793361A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163141158P 2021-01-25 2021-01-25
US63/141,158 2021-01-25

Publications (1)

Publication Number Publication Date
CN114793361A true CN114793361A (zh) 2022-07-26

Family

ID=79024404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210078026.2A Pending CN114793361A (zh) 2021-01-25 2022-01-24 用于改变物理上行链路控制信道(pucch)的小区的半静态模式

Country Status (3)

Country Link
US (1) US20220240244A1 (zh)
EP (1) EP4033687A1 (zh)
CN (1) CN114793361A (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611825B1 (ko) * 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
RU2658340C1 (ru) * 2014-09-01 2018-06-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для передачи и приема беспроводного сигнала в системе беспроводной связи

Also Published As

Publication number Publication date
US20220240244A1 (en) 2022-07-28
EP4033687A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
US20220361169A1 (en) Resource allocation signaling for slot aggregation
CN112088550A (zh) 基于路径损耗估计发送上行链路传输的方法和装置
US11546113B2 (en) Resource allocation signaling
EP3188563A1 (en) Method and apparatus for controlling a secondary carrier in asymmetric uplink carrier aggregation
CN113692769A (zh) 发送下行链路控制信息的方法和基站、接收下行链路控制信息的方法和用户设备以及存储介质
CN111615861B (zh) 多比特调度请求
WO2017193827A1 (zh) Srs的发送处理方法及装置和发送方法、装置及系统
EP4099607A1 (en) Pdcch monitoring periodicity
EP3050385A1 (en) Dynamic tdd ul/dl configuration indication for tdd eimta in carrier aggregation
US20220030628A1 (en) Determining cyclic prefix extension and listen before talk type for uplink transmissions
EP4087167A1 (en) Physical channel transmission method, apparatus, and node, and storage medium
CN108293245B (zh) 一种数据通信的方法、终端设备及网络设备
US11601920B2 (en) Methods and apparatuses for multiple transmission and reception point (multi-TRP) physical uplink control channel (PUCCH) scheme determination
US9538509B2 (en) Method and apparatus for multi-mode control information on uplink channel
CN107666715B (zh) 一种无线传输中的方法和装置
EP4033687A1 (en) Semi-static pattern for change of cell for physical uplink control channel (pucch)
US11647465B2 (en) Power control enhancements for physical uplink shared channel (PUSCH) multiplexing uplink control information (UCI) of different priority
US11617167B2 (en) Enhanced traffic co-existence with multi-panel user equipment (UE)
EP4333348A2 (en) Dynamic uplink transmission scheme indication for multi-panel user equipment
US20240098742A1 (en) Enabling dynamic switching between multiple transmission reception points and single transmission reception points physical uplink control channel schemes
EP4344116A2 (en) Dynamic uplink transmission scheme indication for multi-panel user equipment
US20240114498A1 (en) Control resource set for enhanced reduced capability user equipment
EP3739988B1 (en) Method for resource set position indication and rate matching
WO2023061744A1 (en) Methods and apparatuses for determining transmission configuration indicator state
CN118104164A (zh) 用于确定传输配置指示符状态的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination