CN114781432A - A Displacement Solution Method Based on Multi-source Information Fusion and Detrended Fluctuation Analysis - Google Patents
A Displacement Solution Method Based on Multi-source Information Fusion and Detrended Fluctuation Analysis Download PDFInfo
- Publication number
- CN114781432A CN114781432A CN202210293669.9A CN202210293669A CN114781432A CN 114781432 A CN114781432 A CN 114781432A CN 202210293669 A CN202210293669 A CN 202210293669A CN 114781432 A CN114781432 A CN 114781432A
- Authority
- CN
- China
- Prior art keywords
- acceleration
- data
- acc
- displacement
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 61
- 238000004458 analytical method Methods 0.000 title claims abstract description 27
- 230000004927 fusion Effects 0.000 title claims abstract description 21
- 230000001133 acceleration Effects 0.000 claims abstract description 132
- 230000010354 integration Effects 0.000 claims abstract description 30
- 230000005484 gravity Effects 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000033001 locomotion Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 5
- 230000007774 longterm Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 230000005428 wave function Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract 1
- 238000009434 installation Methods 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000000474 nursing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
- G06F2218/04—Denoising
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及传感器及信号处理技术领域,具体涉及一种基于多源信息融合与去趋势波动分析的位移解算方法。The invention relates to the technical field of sensors and signal processing, in particular to a displacement solution method based on multi-source information fusion and detrended fluctuation analysis.
背景技术Background technique
随着传感器技术的不断发展,各式各样的传感器不断应用于各个领域,其中位移传感器的应用范围相当广泛,常用于工业自动化和建筑桥梁等方面。位移传感器根据位移量的大小输出大小不同的电信号,然后求解位移量的大小,多用于注塑机、液压机、五金机械、钢厂轧棍调节、盾构机等设备的长度、距离、振动、速度、方位等物理量的测量。但由于位移传感器普遍存在体积较大、不便于在较小的设备安装使用,测量距离易受限制,并且不能测量二维和三维运动状态等缺点,在应用位移传感器获得位移信号时往往受到各种环境状态的限制。除通过位移传感器直接获得位移信号外,还可通过应用领域更广的加速度传感器获得加速度信号,利用获得的加速度信号做积分获得位移信号。现有的加速度积分获得位移的方法,加速度传感器多固定于试验平台,利用获得的加速度数据进行分析与处理,灵活性较差,难以移植到可移动工况环境工作。对于垂直轴倾斜的加速度传感器,现有的方法大多是利用高通滤波器进行基线调整,不仅去掉了基线误差还消除了信号内部包括残余位移在内的低频内容,使得积分结果整体小于真实值。因此,针对加速度传感器与数值积分的特性,本发明提供一种基于多源信息融合与去趋势波动分析的稳定数值积分方法,可脱离试验台,实现传感器的移动与便携,用于实现加速度传感器一维、二维和三维运动的位移求解,是进一步在位置空间受限条件下求解设备位移信息的关键。With the continuous development of sensor technology, various sensors are continuously used in various fields. Among them, the application range of displacement sensors is quite extensive, and they are often used in industrial automation and building bridges. The displacement sensor outputs electrical signals of different sizes according to the magnitude of the displacement, and then solves the magnitude of the displacement. It is mostly used for the length, distance, vibration, speed of equipment such as injection molding machines, hydraulic presses, hardware machinery, steel mill rolling rod adjustment, and shield machines. , azimuth and other physical quantities measurement. However, due to the large size of displacement sensors, it is not easy to install and use in smaller equipment, the measurement distance is easily limited, and the two-dimensional and three-dimensional motion states cannot be measured. Constraints on the state of the environment. In addition to directly obtaining the displacement signal through the displacement sensor, the acceleration signal can also be obtained through an acceleration sensor with a wider application field, and the displacement signal can be obtained by integrating the obtained acceleration signal. In the existing methods of obtaining displacement by integrating acceleration, the acceleration sensor is mostly fixed on the test platform, and the obtained acceleration data is used for analysis and processing. For acceleration sensors with vertical axis tilt, most of the existing methods use a high-pass filter to adjust the baseline, which not only removes the baseline error, but also eliminates the low-frequency content in the signal including residual displacement, so that the integral result is smaller than the true value as a whole. Therefore, in view of the characteristics of the acceleration sensor and numerical integration, the present invention provides a stable numerical integration method based on multi-source information fusion and detrended fluctuation analysis, which can be separated from the test bench to realize the movement and portability of the sensor, and is used to realize the acceleration sensor one. The displacement solution of 2D, 2D and 3D motion is the key to further solve the equipment displacement information under the condition of limited position space.
发明内容SUMMARY OF THE INVENTION
本发明为了解决在只采用加速度传感器的情况下,根据加速度传感器输出的时间信息、加速度信息和角度信息,实现一维、二维和三维位移求解的问题,提出一种结合信息融合与去趋势波动分析的位移解算方法,为受位置空间限制而不宜采用位移传感器的设备的位移求解提供新的思路与方法。In order to solve the problem of realizing one-dimensional, two-dimensional and three-dimensional displacement solutions according to the time information, acceleration information and angle information output by the acceleration sensor when only the acceleration sensor is used, the present invention proposes a method combining information fusion and detrending fluctuation. The analytical displacement solution method provides a new idea and method for the displacement solution of equipment that is not suitable for using displacement sensors due to the limitation of position space.
本发明提出的一种基于多源信息融合与去趋势波动分析的位移解算方法,具体为:A displacement calculation method based on multi-source information fusion and detrended fluctuation analysis proposed by the present invention is specifically:
步骤一、检测获得的姿态数据,进行数据预处理,删除同一时刻的多条重复数据。Step 1: Detect the obtained attitude data, perform data preprocessing, and delete multiple duplicate data at the same time.
步骤二、根据获得的加速度与空间姿态信息进行数据融合,消除获得的加速度中的重力加速度分量。Step 2: Perform data fusion according to the obtained acceleration and spatial attitude information to eliminate the gravity acceleration component in the obtained acceleration.
步骤三、根据时间数据与加速度数据,进行插值处理,获得等时间间隔的加速度数据。Step 3: Perform interpolation processing according to the time data and the acceleration data to obtain acceleration data at equal time intervals.
步骤四、根据去趋势波动分析技术,消除加速度中的趋势成分。Step 4: Eliminate the trend component in the acceleration according to the detrended fluctuation analysis technique.
步骤五、根据卡尔曼滤波方法,消除加速度中的噪声。Step 5: Eliminate the noise in the acceleration according to the Kalman filter method.
步骤六、根据稳定数值积分方法,将加速度数据做积分处理求解位移。Step 6: According to the stable numerical integration method, integrate the acceleration data to solve the displacement.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)采用体积更小的加速度传感器,相比于位移传感器,受位置空间的影响更小且便于移植,并且可结合微小型无线传输模块实现与上位机的无线通讯。(1) Using a smaller acceleration sensor, compared with the displacement sensor, it is less affected by the position space and easy to transplant, and can be combined with a micro-miniature wireless transmission module to realize wireless communication with the host computer.
(2)结合加速度与对应的角度信息融合算法,从位姿变换方面消除了重力加速度的影响,消除了在运动过程因加速度传感器空间姿态变换导致重力加速度分量变化的影响。(2) Combined with the fusion algorithm of acceleration and corresponding angle information, the influence of gravitational acceleration is eliminated from the aspect of pose transformation, and the influence of the change of gravitational acceleration component caused by the spatial attitude transformation of the acceleration sensor during the movement process is eliminated.
(3)采用去趋势波动分析和卡尔曼滤波方法,消除了加速度传感器在长时间工作过程中的漂移和噪声,使长时间工作时求解位移的结果更加准确。(3) Using detrended fluctuation analysis and Kalman filtering method, the drift and noise of the acceleration sensor during long-term work are eliminated, so that the result of solving the displacement during long-term work is more accurate.
(4)从传递函数方面考虑了传统的数值积分方法在积分过程中产生漂移的原因,通过修正积分参数,使得改进后的积分算法成为一个稳定系统。(4) From the transfer function, the reasons for the drift of the traditional numerical integration method in the integration process are considered, and the improved integration algorithm becomes a stable system by modifying the integration parameters.
附图说明Description of drawings
图1是本发明的位移解算流程图;Fig. 1 is the displacement solution flow chart of the present invention;
图2是本发明的加速度传感器笛卡尔坐标系位姿变换示意图;2 is a schematic diagram of the Cartesian coordinate system pose transformation of the acceleration sensor of the present invention;
图3是本发明中采用加速度传感器沿X轴运动时采集到的加速度数据与角度数据;Fig. 3 is the acceleration data and angle data collected when the acceleration sensor is used in the present invention to move along the X-axis;
图4是本发明中采用加速度传感器沿Y轴运动时采集到的加速度数据与角度数据;Fig. 4 is the acceleration data and angle data collected when the acceleration sensor is used in the present invention to move along the Y-axis;
图5是本发明中采用加速度传感器沿X轴和Y轴夹角为-61°运动时采集到的加速度数据与角度数据;Fig. 5 is the acceleration data and angle data collected when the acceleration sensor is used in the present invention to move along the X axis and the Y axis with an angle of -61°;
图6是本发明中采用加速度传感器沿X轴和Y轴夹角为53°运动时采集到的加速度数据与角度数据;Fig. 6 is the acceleration data and the angle data collected when the acceleration sensor is used in the present invention to move along the X axis and the Y axis angle of 53°;
图7是本发明中采用加速度传感器沿X轴运动时采集到的加速度数据与经过本发明方法处理后的加速度数据;7 is the acceleration data collected when the acceleration sensor is used in the present invention to move along the X axis and the acceleration data processed by the method of the present invention;
图8是本发明中采用加速度传感器沿Y轴运动时采集到的加速度数据与经过本发明方法处理后的加速度数据;8 is the acceleration data collected when the acceleration sensor is used in the present invention to move along the Y axis and the acceleration data processed by the method of the present invention;
图9是本发明中采用加速度传感器沿X轴和Y轴夹角为-61°运动时采集到的加速度数据与经过本发明方法处理后的加速度数据;9 is the acceleration data collected when the acceleration sensor is used in the present invention to move along the X axis and the Y axis at an angle of -61° and the acceleration data processed by the method of the present invention;
图10是本发明实中采用加速度传感器沿X轴和Y轴夹角为53°运动时采集到的加速度数据与经过本发明方法处理后的加速度数据;10 is the acceleration data collected when the acceleration sensor is used to move along the X-axis and the Y-axis at an angle of 53° and the acceleration data processed by the method of the present invention;
图11是本发明中加速度传感器沿X轴运动时,经过本发明方法解算后得到的积分位移与实际位移对比图;11 is a comparison diagram of the integral displacement and the actual displacement obtained by the method of the present invention when the acceleration sensor moves along the X axis in the present invention;
图12是本发明中加速度传感器沿Y轴运动时,经过本发明方法解算后得到的积分位移与实际位移对比图;12 is a comparison diagram of the integral displacement and the actual displacement obtained by the method of the present invention when the acceleration sensor moves along the Y axis in the present invention;
图13是本发明中加速度传感器沿X轴和Y轴夹角为-61°运动时,经过本发明方法解算后得到的积分位移与实际位移对比图;13 is a comparison diagram of the integral displacement and the actual displacement obtained after the calculation by the method of the present invention when the acceleration sensor moves along the X axis and the Y axis at an angle of -61° in the present invention;
图14是本发明中加速度传感器沿X轴和Y轴夹角为53°运动时,经过本发明方法解算后得到的积分位移与实际位移对比图;14 is a comparison diagram of the integral displacement and the actual displacement obtained after calculation by the method of the present invention when the acceleration sensor moves along the X axis and the Y axis at an angle of 53° in the present invention;
图15是本发明中采用加速度传感器沿四个不同方向运动时采集到的加速度数据经过本发明方法解算后得到的位移轨迹三维图。15 is a three-dimensional diagram of the displacement trajectory obtained by the method of the present invention after the acceleration data collected when the acceleration sensor is used to move in four different directions in the present invention is calculated.
具体实施方式Detailed ways
下面结合附图及实施例对本发明的基于信息融合与去趋势波动分析的位移解算方法进行详细说明。The displacement calculation method based on information fusion and detrended fluctuation analysis of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
步骤一、检测获得的数据样本中的时间数据,删除数据传输与接受过程中的重复数据组,仅保留同一时刻的一组有效数据,并将时间数据处理为绝对时间,以第一组数据为起始数据,时间节点设置为0。Step 1: Detect the time data in the obtained data samples, delete the duplicate data groups in the process of data transmission and reception, retain only a group of valid data at the same time, and process the time data as absolute time, taking the first group of data as Start data, time node is set to 0.
步骤二、引入机器人运动学中旋转矩阵的概念消除原始加速度数据中包含的重力加速度分量。如图2所示,加速度传感器采用笛卡尔坐标系设计,根据右手定则可确定绕X0,Y0,Z0轴旋转的正方向,旋转角度分别表示为α,β,γ。Step 2: Introduce the concept of rotation matrix in robot kinematics to eliminate the gravitational acceleration component contained in the original acceleration data. As shown in Figure 2, the acceleration sensor is designed with a Cartesian coordinate system. According to the right-hand rule, the positive direction of rotation around the axes X 0 , Y 0 , and Z 0 can be determined, and the rotation angles are expressed as α, β, and γ, respectively.
绕X0,Y0,Z0轴分别旋转α,β,γ,得到的旋转矩阵分别为:Rotate α, β, γ around the X 0 , Y 0 , Z 0 axes respectively, and the obtained rotation matrices are:
由初始坐标系0-X0Y0Z0先绕X0轴旋转α,再绕Y0轴旋转β,最后绕Z0轴旋转γ,得到实际运行过程中的真实位姿坐标系0-XYZ。最终得到的旋转矩阵R和两坐标系的关系分别为:From the initial coordinate system 0-X 0 Y 0 Z 0 , first rotate α around the X 0 axis, then rotate β around the Y 0 axis, and finally rotate γ around the Z 0 axis to obtain the real pose coordinate system 0-XYZ during the actual operation. . The relationship between the final rotation matrix R and the two coordinate systems are:
Accinit=R·Accgra (5)Acc init = R·Acc gra (5)
其中Accinit为世界坐标系中重力加速度在各轴的重力加速度分量,Accgra为实际位姿坐标系中重力加速度在各轴的重力加速度分量。因重力的影响,加速度传感器在世界坐标系中静止时,始终有一大小为g,方向与Z0轴正方向重合的加速度,即Accinit=[00g]T。则在实际位姿坐标系中重力加速度在各轴的重力加速度分量可表示为:Among them, Acc init is the gravitational acceleration component of the gravitational acceleration on each axis in the world coordinate system, and Acc gra is the gravitational acceleration component of the gravitational acceleration on each axis in the actual pose coordinate system. Due to the influence of gravity, when the acceleration sensor is stationary in the world coordinate system, there is always an acceleration whose magnitude is g and whose direction coincides with the positive direction of the Z 0 axis, that is, Acc init = [00g] T . Then in the actual pose coordinate system, the gravitational acceleration component of the gravitational acceleration in each axis can be expressed as:
则在实际位姿坐标系中各轴除去重力加速度分量后各轴加速度为:Then in the actual pose coordinate system, the acceleration of each axis after removing the gravitational acceleration component is:
Accact=Acc-Accgra=[Accx+gsinβAccy-gcosβsinαAccz-gcosαcosβ]T (7)Acc act = Acc - Acc gra = [Acc x +gsinβAcc y -gcosβsinαAcc z -gcosαcosβ] T (7)
其中Acc=[Accx Accy Accz]T,Accx,Accy,Accz分别表示采集到的三轴加速度数据。Wherein Acc=[Acc x Acc y Acc z ] T , Acc x , Acc y , and Acc z respectively represent the collected three-axis acceleration data.
步骤三、消除重力加速度分量后的加速度数据的时间间隔可能不相等,将已知的加速度数据与时间数据做插值处理,以保证后续积分过程中各加速度数据之间具有相同的时间间隔并可在一定程度上保证积分过程的简便性和积分结果的准确性。利用时间数据与加速度数据作分段线性插值,插值函数φ(x)在每个小区间[xk,xk+1]上可表示为:
其中,xk(k=0,1,...,n)表示时间节点,fk(k=0,1,...,n)表示在xk时刻的加速度。用插值基函数l(x)表示整个时间区间[ts,te]上的插值函数为:Among them, x k (k=0,1,...,n) represents the time node, and f k (k=0,1,...,n) represents the acceleration at the time of x k . Using the interpolation basis function l(x) to represent the interpolation function over the entire time interval [t s , te ] is:
其中,li(x)为第i个时间节点(i=0,1,...,n)的插值基函数,可表示为:Among them, l i (x) is the interpolation basis function of the i-th time node (i=0,1,...,n), which can be expressed as:
其中ts,te分别表示整个时间区间的起始时刻与终止时刻。由线性插值函数可根据需要确定等间隔时间与对应的加速度数据。Among them, t s and t e represent the start time and end time of the entire time interval, respectively. The equal interval time and the corresponding acceleration data can be determined as required by the linear interpolation function.
步骤四、加速度传感器在长时间运行过程中输出的数据中包含一定的趋势成分,如果分析时没有滤去趋势成分,则随着时间的增长实际数据会逐渐偏离真实值,并且会在后续积分过程中造成更大的偏差。因此针对插值后的加速度数据运用去趋势波动分析技术去除加速度数据中的趋势成分。去趋势波动分析方法过程如下:
对长度为N的序列{φj,j=1,2,...,N},新建一新序列:For a sequence of length N {φ j ,j=1,2,...,N}, create a new sequence:
其中,为原序列φj的均值。in, is the mean value of the original sequence φ j .
将新序列y(m)划分为长度为s的不重叠等长度子区间,长度为N的序列共被分为Ns=int(N/s)个子区间。因序列长度N不一定被子区间长度s整除,为保证原序列信息不丢失,可以从序列末端开始反向前再划分一次,共得到2Ns个子区间。The new sequence y(m) is divided into non-overlapping equal-length sub-intervals of length s, and the sequence of length N is divided into N s =int(N/s) sub-intervals. Because the sequence length N is not necessarily divisible by the subinterval length s, in order to ensure that the original sequence information is not lost, it can be divided again from the end of the sequence before the reverse, and a total of 2N s subintervals are obtained.
对每个子区间v(v=1,2,...,2Ns)的数据进行多项式回归拟合,得到的局部趋势函数可以是一阶、二阶或更高阶的多项式。消除各子区间内趋势,计算其方差均值F2(v,s)为:Perform polynomial regression fitting on the data of each sub-interval v (v=1, 2, . Eliminate the trend in each sub-interval and calculate its variance mean F 2 (v,s) as:
确定全序列的q阶波动函数:Determine the q-order wave function for the full sequence:
其中,q可以取任意非零实数。q=0时,式(14)变为:Among them, q can take any non-zero real number. When q=0, equation (14) becomes:
在实际计算中,对各子区间v(v=1,2,...,2Ns)的数据进行多项式回归拟合时q可以取为任意非零实数。In actual calculation, when performing polynomial regression fitting on the data of each sub-interval v (v=1, 2, . . . , 2N s ), q can be taken as any non-zero real number.
步骤五、原始加速度信号中包含数据采集过程中产生的噪声,采用卡尔曼滤波算法对噪声信号进行处理。该算法具有计算量小,实时性好的优势。可利用实际运动参数,不断修正未来运动状态的估计值,在兼顾实时性和稳定性的前提下提高估计精度。Step 5: The original acceleration signal contains noise generated in the process of data acquisition, and Kalman filtering algorithm is used to process the noise signal. The algorithm has the advantages of small computation and good real-time performance. The estimated value of the future motion state can be continuously revised by using the actual motion parameters, and the estimation accuracy can be improved on the premise of taking into account the real-time performance and stability.
状态向量预测方程可以表示为:The state vector prediction equation can be expressed as:
状态向量协方差矩阵预测可以表示为:The state vector covariance matrix prediction can be expressed as:
卡尔曼增益矩阵可以表示为:The Kalman gain matrix can be expressed as:
状态向量更新方程可以表示为:The state vector update equation can be expressed as:
状态向量协方差更新方程可以表示为:The state vector covariance update equation can be expressed as:
其中,表示预测状态,表示状态估计,A表示状态转移矩阵,表示预测误差协方差,Pk表示估计误差协方差,Q表示过程误差,Kk表示卡尔曼增益,H表示测量矩阵,R表示测量误差,ak表示测量值,I表示单位矩阵。in, represents the predicted state, represents the state estimation, A represents the state transition matrix, is the prediction error covariance, P k is the estimation error covariance, Q is the process error, K k is the Kalman gain, H is the measurement matrix, R is the measurement error, a k is the measurement value, and I is the identity matrix.
步骤六、采用梯形法对经过上述处理的加速度数据进行积分,对于采样区间为T的时间连续函数x(t),区间[0,KT]内的梯形积分公式为:Step 6: Use the trapezoidal method to integrate the acceleration data processed above. For the time continuous function x(t) whose sampling interval is T, the trapezoidal integration formula in the interval [0, KT] is:
y表示对于采样区间为T的时间连续函数x(t)积分后得到的数值。梯形积分公式的传递函数为:y represents the value obtained by integrating the time-continuous function x(t) with the sampling interval T. The transfer function of the trapezoidal integral formula is:
由公式(22)所述传递函数可知,其极点位于单位圆上,即处于临界稳定状态,在积分过程中易造成发散。对第j(j=1,...,N)个加速度a(j)积分得到的速度v(j)和位移s(j)公式表示为:From the transfer function described in formula (22), it can be known that its pole is located on the unit circle, that is, it is in a critically stable state, and it is easy to cause divergence during the integration process. The formulas of velocity v(j) and displacement s(j) obtained by integrating the jth (j=1,...,N) acceleration a(j) are expressed as:
v(j)=T[a(j)+a(j-1)]/2+ωv(j-1) (23)v(j)=T[a(j)+a(j-1)]/2+ωv(j-1) (23)
s(j)=T[v(j)+v(j-1)]/2+ωs(j-1) (24)s(j)=T[v(j)+v(j-1)]/2+ωs(j-1) (24)
其中,ω为稳定因子。where ω is the stabilization factor.
实施例Example
采用本发明方法对三轴加速度传感器采集到的数据做稳定数值积分计算如下:The method of the present invention is used to perform stable numerical integral calculation on the data collected by the three-axis acceleration sensor as follows:
采用内置三轴加速度传感器的测试仪器做四组循环往复运动运动,分别沿X轴、Y轴和X轴、Y轴夹角为-61°和53°方向运动,采集测试仪器通过无线模块发送时间数据、加速度数据和角度数据。检查时间数据,并将重复数据做删减处理,得到加速度数据和角度数据如图3—图6。为验证本发明方法的正确性,采用激光位移传感器采集实际位移数据做参照。The test instrument with built-in three-axis accelerometer is used to perform four groups of cyclic reciprocating motions, which move along the X-axis, Y-axis and X-axis, and the included angles of the Y-axis are -61° and 53°. The test instrument sends the time through the wireless module. data, acceleration data, and angle data. Check the time data, and delete the duplicate data to obtain the acceleration data and angle data as shown in Figure 3-Figure 6. In order to verify the correctness of the method of the present invention, a laser displacement sensor is used to collect actual displacement data for reference.
针对获得的三轴加速度数据和与其对应的三轴角度数据,根据式(7),得到去除重力加速度分量后的三轴加速度数据。由于加速度传感器获得的时间数据间隔不等,因此利用线性插值求得时间间隔T=0.01s的三轴加速度插值数据。然后利用去趋势波动分析技术去除插值数据中的趋势成分,其中q=15。然后采用过程误差Q=0.001和测量误差R=0.01的卡尔曼滤波算法对加速度数据作最后的处理。如图7—图10。For the obtained triaxial acceleration data and the corresponding triaxial angle data, according to formula (7), the triaxial acceleration data after removing the gravitational acceleration component is obtained. Since the interval of time data obtained by the acceleration sensor is not equal, linear interpolation is used to obtain three-axis acceleration interpolation data with a time interval of T=0.01s. The trend component in the interpolated data is then removed using a detrended fluctuation analysis technique, where q=15. Then the Kalman filter algorithm with process error Q=0.001 and measurement error R=0.01 is used for final processing of the acceleration data. Figure 7-Figure 10.
根据获得的最终加速度信号,利用式(23)、式(24)稳定数值积分算法求解位移,其中稳定因子ω=0.996,与激光位移传感器获得到位移数据作对比,积分结果与实际位移结果如图11—图14,积分结果的三维结果如图15。According to the obtained final acceleration signal, the stable numerical integration algorithm of formula (23) and formula (24) is used to solve the displacement, where the stability factor ω=0.996, which is compared with the displacement data obtained by the laser displacement sensor. The integral result and the actual displacement result are shown in the figure 11—Figure 14, the three-dimensional results of the integration results are shown in Figure 15.
引用峰值误差、差值误差、绝对误差和均方误差来评价采用本发明方法加速度积分结果误差。The peak error, difference error, absolute error and mean square error are used to evaluate the error of the acceleration integration result using the method of the present invention.
峰值误差err_peak表示积分结果峰值与真值峰值相对差的平均值:The peak error err_peak represents the average value of the relative difference between the peak value of the integration result and the peak value of the true value:
差值误差err_diff表示积分结果值和真值差的平均值:The difference error err_diff represents the average value of the difference between the result of the integration and the true value:
绝对误差err_abs表示积分结果与真值之差与真值的比值:The absolute error err_abs represents the ratio of the difference between the integral result and the true value to the true value:
均方误差MSE的差值表示积分结果与真值的差值程度:The difference in mean square error MSE represents the degree of difference between the integration result and the true value:
其中,s(t)表示积分结果,st(t)表示真值,默认激光位移传感器采集到的位移数据为真值。Among them, s(t) represents the integration result, s t (t) represents the true value, and the displacement data collected by the laser displacement sensor is the true value by default.
根据式(25)—式(28),计算误差结果如表1。According to formula (25) - formula (28), the calculation error results are shown in Table 1.
表1误差结果Table 1 Error Results
由表1可知,应用本发明方法对加速度进行处理,积分结果的精度明显提升,err_peak,err_diff,err_abs和MSE平均分别提升91.68%、63.41%、72.40%和86.83%。It can be seen from Table 1 that, applying the method of the present invention to process the acceleration, the accuracy of the integration result is obviously improved, and the average of err_peak, err_diff, err_abs and MSE is increased by 91.68%, 63.41%, 72.40% and 86.83% respectively.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210293669.9A CN114781432B (en) | 2022-03-24 | 2022-03-24 | Displacement resolving method based on multi-source information fusion and trend removal fluctuation analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210293669.9A CN114781432B (en) | 2022-03-24 | 2022-03-24 | Displacement resolving method based on multi-source information fusion and trend removal fluctuation analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114781432A true CN114781432A (en) | 2022-07-22 |
CN114781432B CN114781432B (en) | 2024-06-11 |
Family
ID=82424268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210293669.9A Active CN114781432B (en) | 2022-03-24 | 2022-03-24 | Displacement resolving method based on multi-source information fusion and trend removal fluctuation analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114781432B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500695A (en) * | 2017-01-05 | 2017-03-15 | 大连理工大学 | A kind of human posture recognition method based on adaptive extended kalman filtering |
CN109550219A (en) * | 2018-11-30 | 2019-04-02 | 歌尔科技有限公司 | A kind of determination method, system and the mobile device of motion information |
CN110887652A (en) * | 2019-12-04 | 2020-03-17 | 武汉大学 | Interactive multi-model detection method for vibration detection and displacement extraction of accelerometer |
-
2022
- 2022-03-24 CN CN202210293669.9A patent/CN114781432B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500695A (en) * | 2017-01-05 | 2017-03-15 | 大连理工大学 | A kind of human posture recognition method based on adaptive extended kalman filtering |
CN109550219A (en) * | 2018-11-30 | 2019-04-02 | 歌尔科技有限公司 | A kind of determination method, system and the mobile device of motion information |
CN110887652A (en) * | 2019-12-04 | 2020-03-17 | 武汉大学 | Interactive multi-model detection method for vibration detection and displacement extraction of accelerometer |
Also Published As
Publication number | Publication date |
---|---|
CN114781432B (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107560613B (en) | Robot indoor track tracking system and method based on nine-axis inertial sensor | |
CN114912551A (en) | GNSS and accelerometer real-time fusion algorithm for bridge deformation monitoring | |
Dong et al. | Calibration of low cost IMU’s inertial sensors for improved attitude estimation | |
CN105865452A (en) | Mobile platform pose estimation method based on indirect Kalman filtering | |
CN104613966B (en) | A kind of cadastration off-line data processing method | |
CN106370178A (en) | Mobile terminal equipment attitude measurement method and mobile terminal equipment attitude measurement apparatus | |
CN105607760A (en) | Trace restoration method and system based on micro inertial sensor | |
CN108507572B (en) | Attitude positioning error correction method based on MEMS inertial measurement unit | |
CN104546391B (en) | Gyro stabilizer for tactile sticks and complementary filtering method thereof | |
Castro-Toscano et al. | A methodological use of inertial navigation systems for strapdown navigation task | |
Zhong et al. | Trajectory smoothing using gnss/pdr integration via factor graph optimization in urban canyons | |
CN115950423A (en) | A method for measuring ship heave motion based on adaptive filtering | |
Elvira-Ortiz et al. | Vibration suppression for improving the estimation of kinematic parameters on industrial robots | |
CN114781432A (en) | A Displacement Solution Method Based on Multi-source Information Fusion and Detrended Fluctuation Analysis | |
Yang et al. | Multi‐Inertial Sensor‐Based Arm 3D Motion Tracking Using Elman Neural Network | |
CN110672127B (en) | Real-time calibration method of array MEMS magnetic sensor | |
CN117091592A (en) | Gesture resolving method, gesture resolving device, and computer storage medium | |
CN108107882B (en) | Automatic calibration and detection system of service robot based on optical motion tracking | |
Dai et al. | Unsupervised feature fusion combined with neural network applied to UAV attitude estimation | |
CN117325149B (en) | Gesture adjustment method and system based on Kalman filtering | |
Yang et al. | An approach of ANN based noise filtering and position estimation for inertial navigation system | |
CN117128956B (en) | Dynamic tilt angle acquisition method based on angular velocity conversion and equipment applying this method | |
Zhu et al. | Modeling and compensation for dynamic random error of accelerometer under mooring state | |
CN117606768B (en) | Spatially-diverse axial calibration method suitable for rotary machine | |
CN117348051A (en) | Navigation course angle measuring method, device, terminal and medium based on GNSS and IMU combination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |