CN114779355A - Ground transient electromagnetic inversion method and device based on transmitting current full waveform - Google Patents
Ground transient electromagnetic inversion method and device based on transmitting current full waveform Download PDFInfo
- Publication number
- CN114779355A CN114779355A CN202210175778.0A CN202210175778A CN114779355A CN 114779355 A CN114779355 A CN 114779355A CN 202210175778 A CN202210175778 A CN 202210175778A CN 114779355 A CN114779355 A CN 114779355A
- Authority
- CN
- China
- Prior art keywords
- inversion
- model
- waveform
- current
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 230000001052 transient effect Effects 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 claims abstract description 11
- 238000005457 optimization Methods 0.000 claims abstract description 7
- 230000004044 response Effects 0.000 claims description 109
- 230000006698 induction Effects 0.000 claims description 46
- 239000011159 matrix material Substances 0.000 claims description 36
- 238000004364 calculation method Methods 0.000 claims description 20
- 230000014509 gene expression Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 230000006641 stabilisation Effects 0.000 claims description 7
- 238000011105 stabilization Methods 0.000 claims description 7
- 238000002939 conjugate gradient method Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims description 2
- 239000000523 sample Substances 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/40—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for measuring magnetic field characteristics of the earth
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Electromagnetism (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供一种基于发射电流全波形的地面瞬变电磁法反演方法及装置,该方法包括以下步骤:基于Tikhonov正则化方式构建一维反演目标函数,采用高斯牛顿法对反演目标函数进行最优化,输出最终反演模型。在对反演目标函数进行最优化的过程中,将用于地面瞬变电磁法一维反演的发射电流基本波形由斜阶跃波形,拓展为包含开启时间、稳定时间、关断时间和占空比的发射电流全波形,并在发射电流基本波形中纳入了周期数目参数。这一策略不仅有助于提高数据处理解释精度,也有助于完善仪器参数设计。
The invention provides a ground transient electromagnetic inversion method and device based on the full waveform of the emission current. The method includes the following steps: constructing a one-dimensional inversion objective function based on a Tikhonov regularization method, and using the Gauss-Newton method for the inversion objective function. Perform optimization and output the final inversion model. In the process of optimizing the inversion objective function, the basic waveform of the emission current used for the one-dimensional inversion of the ground transient electromagnetic method is expanded from a sloped step waveform to include the on time, the settling time, the off time and the duty cycle. The full waveform of the emission current of the empty ratio, and the parameter of the number of cycles is included in the basic waveform of the emission current. This strategy not only helps to improve the accuracy of data processing and interpretation, but also helps to improve the design of instrument parameters.
Description
技术领域technical field
本发明涉及地球物理探测领域,具体涉及一种基于发射电流全波形的地面瞬变电磁法反演方法及装置。The invention relates to the field of geophysical detection, in particular to a ground transient electromagnetic method inversion method and device based on the full waveform of an emission current.
背景技术Background technique
地面瞬变电磁法多采用“双极性”发射电流波形,即一个发射周期内既正向供电,也负向供电。如图1所示,正向和负向供电半周期均包含电流开启、稳定和关断阶段,以及测量阶段。“双极性”波形中,发射电流每一次开启和关断都会在地下介质中感应产生涡流,并且发射电流前一次开启或关断产生的涡流必然会部分抵消后一次关断或开启产生的涡流。受上述现象影响,正向和负向供电两个半周期内分别测量的电磁响应幅值存在差异。为了确保连续两个供电半周期内测量的电磁响应绝对值差异在极小范围之内,瞬变电磁法通常在多个发射周期之后才开始记录数据。此外,为了降低随机干扰影响,瞬变电磁法数据测量通常采用多次叠加技术,即需要连续观测叠加次数规定发射周期数目的电磁信号。因此,瞬变电磁法观测数据必然受发射电流波形,及其周期数目的影响。The ground transient electromagnetic method mostly adopts the "bipolar" emission current waveform, that is, both positive and negative power supply in one emission cycle. As shown in Figure 1, both positive and negative supply half-cycles include current turn-on, settling, and turn-off phases, as well as a measurement phase. In the "bipolar" waveform, eddy currents are induced in the underground medium each time the emission current is turned on and turned off, and the eddy currents generated by the previous turn-on or turn-off of the emission current will inevitably partially offset the eddy currents generated by the next turn-off or turn-on. . Affected by the above phenomenon, there are differences in the magnitudes of the electromagnetic responses measured in the two half-cycles of the positive and negative power supply, respectively. In order to ensure that the absolute value of the electromagnetic response measured during two consecutive power supply half-cycles differs within a very small range, TEM usually does not start recording data until after several transmit cycles. In addition, in order to reduce the influence of random interference, the transient electromagnetic method data measurement usually adopts the multiple superposition technology, that is, the electromagnetic signal with the specified number of emission cycles needs to be continuously observed and superimposed. Therefore, the transient electromagnetic method observation data must be affected by the emission current waveform and the number of cycles.
目前,地面瞬变电磁法数据处理软件采用斜阶跃电流波形,即只考虑关断时间影响,而忽略了发射电流波形中稳定时间和开启时间,以及周期数目影响。然而,在高电导率勘探背景下,伴随电流开启产生的涡流信号强、衰减慢,即使稳定时间长达数十毫秒也未必充分衰减,依然会部分抵消关断后瞬变电磁响应,且在晚期尤为明显。因此,只考虑关断时间影响的地面瞬变电磁法数据处理方法不适用于晚期数据,并制约了进一步提高数据处理解释精度。At present, the ground transient electromagnetic method data processing software adopts the slope-step current waveform, that is, only considers the effect of the off time, while ignoring the effect of the settling time, the opening time and the number of cycles in the emission current waveform. However, under the background of high-conductivity exploration, the eddy current signal generated by the current turn-on is strong and decays slowly. Even if the stabilization time is as long as tens of milliseconds, it may not fully decay, and it will still partially offset the transient electromagnetic response after turn-off. Especially obvious. Therefore, the ground transient electromagnetic method data processing method that only considers the effect of the off time is not suitable for late data, and restricts the further improvement of data processing and interpretation accuracy.
发明内容SUMMARY OF THE INVENTION
本发明解决的主要技术问题在于,在考虑关断时间影响的基础上,还考虑发射电流波形中稳定时间和开启时间,以及周期数目影响,以提高地面瞬变电磁法数据一维反演解释精度。The main technical problem solved by the present invention is that, on the basis of considering the influence of the turn-off time, the stabilization time and turn-on time in the emission current waveform, and the influence of the number of cycles are also considered, so as to improve the interpretation accuracy of the one-dimensional inversion of the ground transient electromagnetic method data. .
为了实现上述目的,根据本发明的一个方面,提供了一种基于发射电流全波形的地面瞬变电磁法反演方法,包括以下步骤:In order to achieve the above object, according to one aspect of the present invention, a ground transient electromagnetic method inversion method based on the full waveform of the emission current is provided, comprising the following steps:
步骤一:基于Tikhonov正则化方式构建一维反演目标函数,所述反演目标函数设定为公式一:Step 1: Construct a one-dimensional inversion objective function based on the Tikhonov regularization method, the inversion objective function Set to formula one:
式中,||Wd(dobs-dpre)||2为观测数据与正演模型响应的拟合差函数,α||Wm(m-m*)||2为模型正则化函数,||·||表示l2范数;其中,dobs为观测数据向量;dpre为模型参数向量m相应的正演模型响应向量,即F(m),F表示瞬变电磁法一维正演函数;Wd为数据加权矩阵,此处为一个对角矩阵,Wd的元素为观测数据标准差的倒数;α为正则化因子;m*为参考模型,其中包含先验信息;Wm为模型粗糙度算子,Wm的形式为:where ||W d (d obs -d pre )|| 2 is the fitting difference function between the observed data and the forward model response, α||W m (mm * )|| 2 is the model regularization function, | |·|| represents the l 2 norm; among them, d obs is the observation data vector; d pre is the response vector of the forward model corresponding to the model parameter vector m, namely F(m), F represents the one-dimensional forward model of the transient electromagnetic method function; W d is the data weighting matrix, here is a diagonal matrix, the elements of W d are the reciprocal of the standard deviation of the observed data; α is the regularization factor; m * is the reference model, which contains prior information; W m is The model roughness operator, W m is in the form:
步骤二:采用高斯牛顿法对反演目标函数进行最优化,输出最终反演模型;Step 2: Use the Gauss-Newton method to optimize the inversion objective function, and output the final inversion model;
所述采用高斯牛顿法对反演目标函数进行最优化的过程,包括:The process of optimizing the inversion objective function using the Gauss-Newton method includes:
步骤S1:输入瞬变电磁法的观测数据和工作参数;Step S1: input the observation data and working parameters of the transient electromagnetic method;
步骤S2:输入初始反演模型、参考模型和控制参数;Step S2: input the initial inversion model, reference model and control parameters;
步骤S3:根据所述工作参数,计算所述初始反演模型的瞬变电磁法正演响应;Step S3: according to the working parameters, calculate the transient electromagnetic method forward response of the initial inversion model;
步骤S3包括:Step S3 includes:
S3.1:计算下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应;S3.1: Calculate the magnetic induction intensity impulse response or step response excited by the lower step current waveform;
S3.2:根据所述下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应,采用卷积算法计算发射电流基本波形激发的磁感应强度脉冲响应或阶跃响应;S3.2: According to the magnetic induction intensity impulse response or step response excited by the lower step current waveform, use the convolution algorithm to calculate the magnetic induction intensity impulse response or step response excited by the basic waveform of the emission current;
所述发射电流基本波形分为两类:第一类只包含关断时间,即斜阶跃波形;第二类包括多个周期数目不同且由开启时间、稳定时间、关断时间和占空比确定的全波形,全波形参数取决于实际电流波形,由步骤S1输入;The basic waveform of the emission current is divided into two categories: the first type only includes the off time, that is, the ramp step waveform; the second type includes multiple cycles with different numbers and is determined by the on time, settling time, off time and duty cycle. The determined full waveform, the full waveform parameter depends on the actual current waveform, which is input by step S1;
步骤S4:采用扰动法计算当前反演模型(即第k次反演迭代获得的反演模型)的雅克比矩阵;Step S4: using the perturbation method to calculate the Jacobian matrix of the current inversion model (that is, the inversion model obtained by the k-th inversion iteration);
步骤S5:根据所述观测数据、所述参考模型、所述控制参数和所述雅克比矩阵生成高斯牛顿法正规方程,并求解所述高斯牛顿法正规方程,获得模型更新量;Step S5: generating a Gauss-Newton's normal equation according to the observation data, the reference model, the control parameters and the Jacobian matrix, and solving the Gauss-Newton's normal equation to obtain a model update amount;
步骤S6:根据所述模型更新量更新所述当前反演模型,并计算更新后反演模型的正演响应和均方根拟合差;Step S6: Update the current inversion model according to the model update amount, and calculate the forward response and root mean square fitting difference of the updated inversion model;
步骤S7:判断当前迭代次数或所述均方根拟合差是否满足所述控制参数中的迭代终止条件,若是,则停止迭代并输出最终反演模型,否则,返回步骤S4开启下一次迭代。Step S7: Determine whether the current number of iterations or the root mean square fitting difference satisfies the iteration termination condition in the control parameter, if so, stop the iteration and output the final inversion model, otherwise, return to step S4 to start the next iteration.
优选地,步骤S1中,所述观测数据包括:观测时间序列对应的按接收探头等效面积和发射电流强度归一化的磁感应强度脉冲响应或阶跃响应和相应的测量标准差;Preferably, in step S1, the observation data includes: the magnetic induction intensity impulse response or step response normalized by the equivalent area of the receiving probe and the emission current intensity corresponding to the observation time series and the corresponding measurement standard deviation;
所述工作参数包括:工作装置、发射回线尺度和位置、发射电流波形参数、测点位置和观测时间序列;The working parameters include: working device, size and position of the emission loop, emission current waveform parameters, measurement point position and observation time sequence;
其中,所述发射电流波形参数包括:基频、占空比、开启时间、稳定时间和关断时间。Wherein, the transmit current waveform parameters include: fundamental frequency, duty cycle, turn-on time, stabilization time and turn-off time.
优选地,步骤S2中,所述初始反演模型为一维层状介质,所述输入初始反演模型包括:输入层状介质层数、各层介质厚度和电导率;Preferably, in step S2, the initial inversion model is a one-dimensional layered medium, and the input initial inversion model includes: inputting the number of layers of the layered medium, the thickness and conductivity of each layer of the medium;
通过输入参考模型的形式输入先验信息;Input prior information in the form of input reference model;
所述控制参数包括:目标均方根拟合差、最大迭代次数、正则化因子初值及更新参数。The control parameters include: target root mean square fitting error, maximum number of iterations, initial value of regularization factor, and update parameters.
优选地,步骤S31包括:Preferably, step S31 includes:
铺设于水平层状介质表面的矩形发射回线源通以一定频率f的电流,在测点(x,y,0)激发的频率域磁感应强度沿z轴方向的分量Bz(f)表述为公式二:The rectangular emission loop source laid on the surface of the horizontal layered medium carries a current of a certain frequency f, and the component B z (f) of the magnetic induction in the frequency domain excited at the measuring point (x, y, 0) along the z-axis direction is expressed as Formula two:
其中,和表达式依次为公式三至公式六:in, and The expressions are in order from Formula 3 to Formula 6:
式中,Ex和Ey分别表示沿x和y轴方向的电场分量,I表示电流强度,W和L表示矩形发射回线源的半长和半宽;z0为真空中阻抗率,满足z0=iωμ0,i表示复数单位,ω为角频率,ω=2πf,μ0为真空中磁导率;rTE为反射系数,各层电导率和厚度信息包含于反射系数中;λ形式为其中kx和ky为傅里叶变换中的波数;J1为1阶的第一类贝塞尔函数;rL、r-L、rW和r-W表示测点(x,y,0)到矩形发射回线四条边的距离,rL、r-L、rW和r-W的表达式分别为:rL=[(x′-x)2+(L-y)2]1/2、r-L=[(x′-x)2+(-L-y)2]1/2、rW=[(W-x)2+(y′-y)2]1/2和r-W=[(-W-x)2+(y′-y)2]1/2,其中四条边坐标依次表示为(x′,L,0)、(x′,-L,0)、(W,y′,0)和(-W,y′,0);In the formula, E x and E y represent the electric field components along the x and y axes, respectively, I represents the current intensity, W and L represent the half-length and half-width of the rectangular emission loop source; z 0 is the resistivity in vacuum, satisfying z 0 =iωμ 0 , i represents a complex unit, ω is the angular frequency, ω=2πf, μ 0 is the magnetic permeability in vacuum; r TE is the reflection coefficient, and the conductivity and thickness information of each layer are included in the reflection coefficient; the λ form for where k x and k y are the wave numbers in the Fourier transform; J 1 is the first-order Bessel function of the first order; r L , r -L , r W and r -W represent the measuring points (x, y, 0) The distance to the four sides of the rectangular emission return line, the expressions of r L , r -L , r W and r -W are respectively: r L =[(x′-x) 2 +(Ly) 2 ] 1/ 2 , r -L = [(x'-x) 2 +(-Ly) 2 ] 1/2 , r W =[(Wx) 2 +(y'-y) 2 ] 1/2 and r -W = [(-Wx) 2 +(y′-y) 2 ] 1/2 , where the coordinates of the four sides are expressed as (x′,L,0), (x′,-L,0), (W,y′ in turn ,0) and (-W,y′,0);
采用12阶高斯—勒让德积分和Hankel变换分别求解公式三至公式六中的外层和内层积分,并获得频率域磁感应强度;The 12th-order Gauss-Legendre integral and the Hankel transform are used to solve the outer and inner integrals in Equation 3 to
对所述频率域磁感应强度的虚部分别开展正弦或余弦变换,获得下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应bz(t),表达式为公式七和八:Perform sine or cosine transformation on the imaginary part of the magnetic induction intensity in the frequency domain respectively to obtain the magnetic induction intensity impulse response excited by the lower step current waveform or the step response b z (t), expressed as Equations seven and eight:
优选地,步骤S32包括:Preferably, step S32 includes:
将计算得到的所述下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应与任一基本波形中电流对时间的微分做卷积运算,这一过程表示为公式九:Convolve the calculated magnetic induction intensity impulse response or step response excited by the lower step current waveform with the current versus time differential in any basic waveform, and this process is expressed as formula 9:
式中,fwaveform(t)表示该基本波形激发的磁感应强度脉冲响应或阶跃响应,fstepoff(t)表示下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应,表示电流对时间t的微分,τ表示积分变量;In the formula, f waveform (t) represents the magnetic induction intensity impulse response or step response excited by the basic waveform, f stepoff (t) represents the magnetic induction intensity impulse response or step response excited by the lower step current waveform, represents the differential of the current with respect to time t, and τ represents the integral variable;
采用梯形积分方法求解公式九,获得该基本波形激发的磁感应强度脉冲响应或阶跃响应。The trapezoidal integration method is used to solve Formula 9, and the magnetic induction intensity impulse response or step response excited by the basic waveform is obtained.
优选地,步骤S4中,扰动量根据当前反演模型mk中的参数确定。Preferably, in step S4, the disturbance amount is determined according to the parameters in the current inversion model m k .
优选地,步骤S5中,对于反演目标函数,高斯牛顿法第k+1次迭代的正规方程为公式十:Preferably, in step S5, for the inversion objective function, the normal equation of the k+1 iteration of the Gauss-Newton method is Formula 10:
式中,δmk+1为待求量,即模型更新量,Jk为正演函数F在第k次反演模型mk处的一阶导数,也即当前反演模型mk处的一阶导数,即雅克比矩阵,上角标T表示转置,表示第k次反演模型mk的正演响应,即F(mk);In the formula, δm k+1 is the amount to be calculated, that is, the model update amount, and J k is the first derivative of the forward function F at the k-th inversion model m k , that is, the first derivative of the current inversion model m k . Order derivative, namely Jacobian matrix, superscript T means transposition, represents the forward response of the k-th inversion model m k , namely F(m k );
采用预条件共轭梯度法求解公式十,获得δmk+1;反演中,正则化因子随反演迭代次数等比例递减。The preconditioned conjugate gradient method is used to solve
优选地,步骤S6包括:Preferably, step S6 includes:
根据模型更新量采用公式十一对当前反演模型进行更新:According to the model update amount, the current inversion model is updated by formula 11:
mk+1=mk+aδmk+1 m k+1 =m k +aδm k+1
式中,a为模型更新步长,δmk+1表示模型更新量,mk表示第k次反演迭代获得的反演模型,mk+1表示第k+1次反演迭代获得的反演模型,k表示反演迭代次数;In the formula, a is the model update step size, δm k+1 is the model update amount, m k is the inversion model obtained by the k-th inversion iteration, and m k+1 is the inversion model obtained by the k+1-th inversion iteration. Inversion model, k represents the number of inversion iterations;
更新模型后,再采用步骤S3中的方法计算该更新后的反演模型的瞬变电磁法正演响应,并根据公式十二计算均方根拟合差xrms,所述均方根拟合差用于衡量数据的拟合度:After the model is updated, the method in step S3 is used to calculate the TEM forward response of the updated inversion model, and the root mean square fitting error x rms is calculated according to
式中,M为数据数目,sm为第m个观测数据对应的标准差,为反演模型mk+1相应正演响应中的第m个数据。In the formula, M is the number of data, s m is the mth observation data The corresponding standard deviation, is the mth data in the corresponding forward response of the inversion model m k+1 .
优选地,步骤S7包括:Preferably, step S7 includes:
判断所述均方根拟合差是否满足小于或等于目标拟合差,或达到设定迭代次数,若满足,则停止迭代并输出最终反演模型;否则,开启下一次迭代。It is judged whether the root mean square fitting difference is less than or equal to the target fitting difference, or the set number of iterations is reached. If so, the iteration is stopped and the final inversion model is output; otherwise, the next iteration is started.
根据本发明的另一方面,提供了一种基于发射电流全波形的地面瞬变电磁法反演装置,包括:According to another aspect of the present invention, a ground transient electromagnetic method inversion device based on the full waveform of the emission current is provided, comprising:
反演目标函数构建模块,用于基于Tikhonov正则化方式构建一维反演目标函数,所述反演目标函数设定为公式一:The inversion objective function building module is used to construct a one-dimensional inversion objective function based on the Tikhonov regularization method, and the inversion objective function Set to formula one:
式中,||Wd(dobs-dpre)||2为观测数据与正演模型响应的拟合差函数,α||Wm(m-m*)||2为模型正则化函数,||·||表示l2范数;其中,dobs为观测数据向量;dpre为模型参数向量m相应的正演模型响应向量,即F(m),F表示瞬变电磁法一维正演函数;Wd为数据加权矩阵,此处为一个对角矩阵,Wd的元素为观测数据标准差的倒数;α为正则化因子;m*为参考模型,其中包含先验信息;Wm为模型粗糙度算子,Wm的形式为:where ||W d (d obs -d pre )|| 2 is the fitting difference function between the observed data and the forward model response, α||W m (mm * )|| 2 is the model regularization function, | |·|| represents the l 2 norm; among them, d obs is the observation data vector; d pre is the response vector of the forward model corresponding to the model parameter vector m, namely F(m), F represents the one-dimensional forward model of the transient electromagnetic method function; W d is the data weighting matrix, here is a diagonal matrix, the elements of W d are the reciprocal of the standard deviation of the observed data; α is the regularization factor; m * is the reference model, which contains prior information; W m is The model roughness operator, W m is in the form:
反演目标函数优化模块,用于采用高斯牛顿法对反演目标函数进行最优化,输出最终反演模型;The inversion objective function optimization module is used to optimize the inversion objective function by using the Gauss-Newton method, and output the final inversion model;
所述反演目标函数优化模块包括:The inversion objective function optimization module includes:
第一输入单元,用于输入瞬变电磁法的观测数据和工作参数;a first input unit, used for inputting the observation data and working parameters of the transient electromagnetic method;
第二输入单元,用于输入初始反演模型、参考模型和控制参数;a second input unit for inputting the initial inversion model, the reference model and the control parameters;
正演响应计算单元,用于根据所述工作参数,计算所述初始反演模型的瞬变电磁法正演响应;a forward response calculation unit, configured to calculate the transient electromagnetic method forward response of the initial inversion model according to the working parameters;
其中,所述正演响应计算单元包括:Wherein, the forward response calculation unit includes:
第一计算单元,用于计算下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应;a first calculation unit, configured to calculate the magnetic induction intensity impulse response or step response excited by the lower step current waveform;
第二计算单元,用于根据所述下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应,采用卷积算法计算发射电流基本波形激发的磁感应强度脉冲响应或阶跃响应;a second calculation unit, configured to calculate the magnetic induction intensity impulse response or step response excited by the basic waveform of the emission current by using a convolution algorithm according to the magnetic induction intensity impulse response or step response excited by the lower step current waveform;
所述发射电流基本波形分为两类:第一类只包含关断时间,即斜阶跃波形;第二类包括多个周期数目不同且由开启时间、稳定时间、关断时间和占空比确定的全波形,全波形参数取决于实际电流波形,由所述第一输入单元输入;The basic waveform of the emission current is divided into two categories: the first type only includes the off time, that is, the ramp step waveform; the second type includes multiple cycles with different numbers and is determined by the on time, settling time, off time and duty cycle. The determined full waveform, the full waveform parameter depends on the actual current waveform, and is input by the first input unit;
雅克比矩阵计算单元,用于采用扰动法计算当前反演模型的雅克比矩阵;The Jacobian matrix calculation unit is used to calculate the Jacobian matrix of the current inversion model using the perturbation method;
正规方程生成及求解单元,用于根据所述观测数据、所述参考模型、所述控制参数和所述雅克比矩阵生成高斯牛顿法正规方程,并求解所述高斯牛顿法正规方程,获得模型更新量;A normal equation generating and solving unit, used for generating a Gauss-Newton normal equation according to the observation data, the reference model, the control parameters and the Jacobian matrix, and solving the Gauss-Newton normal equation to obtain a model update quantity;
迭代更新单元,用于根据所述模型更新量更新所述当前反演模型,并计算更新后反演模型的正演响应和均方根拟合差;an iterative update unit, configured to update the current inversion model according to the model update amount, and calculate the forward response and root mean square fitting difference of the updated inversion model;
迭代终止单元,用于判断当前迭代次数或所述均方根拟合差是否满足所述控制参数中的迭代终止条件,若是,则停止迭代并输出最终反演模型,否则,返回所述雅克比矩阵计算单元开启下一次迭代。The iteration termination unit is used to judge whether the current iteration number or the root mean square fitting difference satisfies the iteration termination condition in the control parameter, if so, stop the iteration and output the final inversion model, otherwise, return to the Jacobian The matrix calculation unit starts the next iteration.
本发明提供的技术方案具有以下有益效果:The technical scheme provided by the invention has the following beneficial effects:
提供了一种基于发射电流全波形的地面瞬变电磁法反演方法及装置,将用于地面瞬变电磁法数据处理的发射电流基本波形由斜阶跃波形,拓展为包含开启时间、稳定时间、关断时间和占空比的发射电流全波形,并在发射电流基本波形中纳入了周期数目参数。这一策略不仅有助于提高数据处理解释精度,也有助于完善仪器参数设计。A ground transient electromagnetic method inversion method and device based on the full waveform of the emission current are provided, and the basic waveform of the emission current used for the ground transient electromagnetic method data processing is expanded from a sloped step waveform to include the opening time and the stabilization time. , off-time and duty cycle emission current full waveform, and the number of cycles parameter is included in the emission current basic waveform. This strategy not only helps to improve the accuracy of data processing and interpretation, but also helps to improve the design of instrument parameters.
附图说明Description of drawings
下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with the accompanying drawings and embodiments, in which:
图1是单个周期“双极性”波形示意图;Figure 1 is a schematic diagram of a single cycle "bipolar" waveform;
图2是实施例1和实施例2中一种基于发射电流全波形的地面瞬变电磁法反演方法的流程图;2 is a flowchart of a ground transient electromagnetic method inversion method based on the full waveform of the emission current in
图3是实施例1和实施例2中发射电流基本波形示意图,其中图3(a)波形1(现有方法),图3(b)波形2(本发明),图3(c)波形3(本发明),图3(d)波形4(本发明);Fig. 3 is a schematic diagram of the basic waveform of the emission current in the first and second embodiments, wherein Fig. 3(a) waveform 1 (existing method), Fig. 3(b) waveform 2 (the present invention), Fig. 3(c) waveform 3 (the present invention), Figure 3 (d) waveform 4 (the present invention);
图4是实施例1和实施例2中层状介质模型示意图;4 is a schematic diagram of a layered medium model in
图5是实施例1中基于图3的4种基本波形一维反演获取的地电模型,其中图5(a)波形1,图5(b)波形2,图5(c)波形3,图5(d)波形4;Fig. 5 is a geoelectric model obtained by one-dimensional inversion based on the four basic waveforms of Fig. 3 in Example 1, wherein Fig. 5(a)
图6是实施例2中野外观测数据(磁感应强度阶跃响应)曲线;Fig. 6 is the field observation data (magnetic induction intensity step response) curve in
图7是对于图6的观测数据,基于图3的4种基本波形一维反演获取的地电模型;Fig. 7 is the geoelectric model obtained based on the one-dimensional inversion of the four basic waveforms of Fig. 3 for the observation data of Fig. 6;
图8是本发明提供的一种基于发射电流全波形的地面瞬变电磁法反演装置的结构图。FIG. 8 is a structural diagram of a ground transient electromagnetic method inversion device based on the full waveform of the emission current provided by the present invention.
具体实施方式Detailed ways
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, objects and effects of the present invention, the specific embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
实施例1:理论模型Example 1: Theoretical Model
基于Tikhonov正则化方式构建一维反演目标函数,采用高斯牛顿法对其最优化。反演目标函数设定为:The one-dimensional inversion objective function is constructed based on the Tikhonov regularization method, and the Gauss-Newton method is used to optimize it. Inversion objective function set as:
式中,第一项为观测数据与正演模型响应的拟合差函数、第二项为模型正则化函数,||·||表示l2范数。其中,dobs为观测数据向量;dpre为模型参数向量m相应的正演模型响应向量,即F(m),F表示瞬变电磁法一维正演函数;Wd为数据加权矩阵,此处为一个对角矩阵,Wd的元素为观测数据标准差的倒数;α为正则化因子;m*为参考模型,先验信息包含其中。Wm为模型粗糙度算子,其形式为:In the formula, the first term is the fitting difference function between the observed data and the forward model response, the second term is the model regularization function, and ||·|| represents the l 2 norm. Among them, d obs is the observation data vector; d pre is the response vector of the forward model corresponding to the model parameter vector m, namely F(m), F represents the one-dimensional forward model function of the transient electromagnetic method; W d is the data weighting matrix, this where is a diagonal matrix, the elements of W d are the reciprocal of the standard deviation of the observed data; α is the regularization factor; m * is the reference model, and the prior information is included. W m is the model roughness operator, and its form is:
如图3所示,本实施例的反演中,发射电流基本波形先后采用了4种基本波形,并对每种波形都开展了10次反演计算。As shown in FIG. 3 , in the inversion of this embodiment, four basic waveforms of the transmit current are successively used, and 10 inversion calculations are performed for each waveform.
如图2所示,每次反演计算的过程包括以下步骤:As shown in Figure 2, the process of each inversion calculation includes the following steps:
步骤S1:输入瞬变电磁法的观测数据和工作参数;Step S1: input the observation data and working parameters of the transient electromagnetic method;
采用理论模型时,观测数据包括两部分:即特定地电模型和工作参数的正演响应(由步骤S3中方法生成)与随机噪音。When the theoretical model is adopted, the observation data includes two parts: the forward model response of the specific geoelectric model and the working parameters (generated by the method in step S3) and random noise.
地电模型和工作参数如下:地电模型为5Ωm均匀半空间;发射源为边长100m的方形回线,铺设于均匀半空间表面;装置类型为中心回线装置;发射电流为1A;发射电流基本波形为加拿大PROTEM仪器采用的、发射基频25Hz的双极性电流波形(占空比50%),相应时间序列包含30个时刻,范围为6.8–6978μs。其中,25Hz发射基频相应的周期为0.04s,即0.25周期为10ms,并设置开启时间、稳定时间和关断时间依次为1ms、8.99ms和0.01ms。正演响应由8.25个周期的基本波形激发产生的感应电动势(磁感应强度脉冲响应)。The geoelectric model and working parameters are as follows: the geoelectric model is a 5Ωm uniform half space; the emission source is a square loop with a side length of 100m, which is laid on the surface of the uniform half space; the device type is a center loop device; the emission current is 1A; the emission current The basic waveform is a bipolar current waveform with a fundamental frequency of 25 Hz (50% duty cycle) adopted by the Canadian PROTEM instrument. The corresponding time series contains 30 moments in the range of 6.8–6978 μs. Among them, the corresponding period of the 25Hz transmission fundamental frequency is 0.04s, that is, the period of 0.25 is 10ms, and the turn-on time, stabilization time and turn-off time are set to 1ms, 8.99ms and 0.01ms in turn. The forward model responds to the induced electromotive force (magnetic induction intensity impulse response) excited by the fundamental waveform of 8.25 cycles.
随机噪音按下述方法生成:首先生成高斯噪音,再乘以标准差作为随机噪音。标准差设置为某一时刻正演响应的0.5–3%(详见表1)。Random noise is generated as follows: Gaussian noise is first generated and then multiplied by the standard deviation as random noise. The standard deviation is set to the forward response at a certain moment 0.5–3% (see Table 1 for details).
将正演响应与随机噪音相加作为观测数据,用于反演。The forward response is summed with random noise as observational data for inversion.
表1理论模型正演响应标准差设置表Table 1 Theoretical model forward modeling response standard deviation setting table
步骤S2:输入初始反演模型、参考模型和控制参数;Step S2: input the initial inversion model, reference model and control parameters;
初始反演模型为39层层状介质,每层介质电阻率为20Ωm,厚度由5m阶梯式递增至40m(第1至10层为5m、第11至25层为10m、第26至35层为20m、第36至38层为40m、第39层介质为均匀半空间),层厚度在反演中固定不变。无参考模型。目标均方根拟合差为1,最大迭代次数为30。正则化因子初值α0为360000,其更新方案为αk+1=αk/1.5,k为反演迭代次数。The initial inversion model is 39 layers of layered dielectrics, each layer of dielectric resistivity is 20Ωm, and the thickness is stepped from 5m to 40m (the 1st to 10th layers are 5m, the 11th to 25th layers are 10m, and the 26th to 35th layers are 20m, 40m for layers 36 to 38, and a uniform half space for layer 39), and the layer thickness is fixed in the inversion. No reference model. The target rms fit difference is 1, and the maximum number of iterations is 30. The initial value of the regularization factor α 0 is 360000, and its update scheme is α k+1 =α k /1.5, where k is the number of inversion iterations.
步骤S3:按照步骤S1输入的瞬变电磁法工作参数,采用步骤S3所述的方法计算基本波形激励下的磁感应强度脉冲响应 Step S3: According to the transient electromagnetic method working parameters input in step S1, use the method described in step S3 to calculate the magnetic induction intensity impulse response under the excitation of the basic waveform
步骤S3这一步骤是区别于其他反演方法的关键,即在正演响应计算中纳入了发射电流全波形影响。步骤S3可细分两步,首先计算下阶跃电流波形激发的磁感应强度脉冲响应再采用卷积算法计算发射电流基本波形(见图3)激发的磁感应强度脉冲响应图3中,图3(a)对应波形1为斜阶跃波形,被现有资料处理方法所采用,图3(b)、3(c)和3(d)为本发明使用的发射电流基本波形,分别对应波形2–4。图3(b)中,基本波形为正向供电发射电流波形,即0.25个周期;图3(c)中的基本波形在图3(b)所示波形的基础上,增加了一个周期,即1.25个周期;图3(d)中的基本波形在图3(b)所示波形的基础上,增加了两个周期,即2.25个周期。其发射电流波形参数(基频、占空比、开启时间、稳定时间和关断时间)由步骤S1中输入值确定。在一些实施例中,本发明的发射电流基本波形数量以及周期数目可以根据实际需要进行调整。Step S3 This step is the key to distinguish it from other inversion methods, that is, the influence of the full waveform of the emission current is included in the forward response calculation. Step S3 can be subdivided into two steps, first calculate the magnetic induction intensity impulse response excited by the next step current waveform Then the convolution algorithm is used to calculate the magnetic induction intensity impulse response excited by the basic waveform of the emission current (see Figure 3). In Fig. 3, the
铺设于水平层状介质表面的矩形发射回线源通以一定频率f的电流,在测点(x,y,0)激发的频率域磁感应强度z分量Bz(f)表述为:The rectangular emission loop source laid on the surface of the horizontal layered medium carries a current of a certain frequency f, and the frequency domain magnetic induction intensity z component B z (f) excited at the measuring point (x, y, 0) is expressed as:
其中,和表达式依次为:in, and The expressions are in turn:
式中,I表示电流强度,W和L表示矩形发射回线的半长和半宽。z0=iωμ0,i表示复数单位,ω为角频率,ω=2πf,μ0为真空中磁导率。rTE为反射系数,各层电导率和厚度信息包含于反射系数中。λ形式为其中kx和ky为傅里叶变换中的波数;J1为1阶的第一类贝塞尔函数;rL、r-L、rW和r-W表示测点(x,y,0)到矩形发射回线四条边的距离,rL、r-L、rW和r-W的表达式为:In the formula, I represents the current intensity, and W and L represent the half-length and half-width of the rectangular emission loop. z 0 =iωμ 0 , i represents a complex unit, ω is the angular frequency, ω=2πf, μ 0 is the magnetic permeability in vacuum. r TE is the reflection coefficient, and the conductivity and thickness information of each layer are included in the reflection coefficient. The λ form is where k x and k y are the wave numbers in the Fourier transform; J 1 is the first-order Bessel function of the first order; r L , r -L , r W and r -W represent the measuring points (x, y, 0) The distance to the four sides of the rectangular emission return line, the expressions of r L , r -L , r W and r -W are:
rL=[(x′-x)2+(L-y)2]1/2、r-L=[(x′-x)2+(-L-y)2]1/2、rW=[(W-x)2+(y′-y)2]1/2和r-W=[(-W-x)2+(y′-y)2]1/2,其中四条边坐标依次表示为(x′,L,0)、(x′,-L,0)、(W,y′,0)和(-W,y′,0)。r L =[(x'-x) 2 +(Ly) 2 ] 1/2 , r -L =[(x'-x) 2 +(-Ly) 2 ] 1/2 , r W =[(Wx ) 2 +(y′-y) 2 ] 1/2 and r -W =[(-Wx) 2 +(y′-y) 2 ] 1/2 , where the coordinates of the four sides are expressed as (x′,L ,0), (x',-L,0), (W,y',0) and (-W,y',0).
采用12阶高斯—勒让德积分和Hankel变换分别求解公式(4)至公式(7)中的外层和内层积分,并获得频率域磁感应强度。The 12th-order Gauss-Legendre integral and the Hankel transform are used to solve the outer and inner integrals in equations (4) to (7), respectively, and obtain the magnetic induction in the frequency domain.
对上述频率域磁感应强度虚部分别开展正弦变换,获得下阶跃电流波形激发的磁感应强度脉冲响应表达式为:The sine transformation is carried out on the imaginary part of the magnetic induction intensity in the frequency domain respectively, and the magnetic induction intensity impulse response excited by the lower step current waveform is obtained. The expression is:
再采用卷积算法求解发射电流基本波形激发的电磁场。卷积算法中,首先根据式(3)计算下阶跃电流波形激发的磁感应强度脉冲响应(fstepoff),再将该脉冲响应与某一基本波形中电流对时间的微分(dI/dt)做卷积运算,即可获得该基本波形激发的磁感应强度脉冲响应(fwaveform)。这一过程可用下式表示为下式:Then the convolution algorithm is used to solve the electromagnetic field excited by the basic waveform of the emission current. In the convolution algorithm, first calculate the magnetic induction intensity impulse response (f stepoff ) excited by the lower step current waveform according to formula (3), and then calculate the impulse response with the current versus time differential (dI/dt) in a certain basic waveform. Convolution operation, the magnetic induction intensity impulse response (f waveform ) excited by the basic waveform can be obtained. This process can be represented by the following equation:
采用梯形积分方法求解式(8)。Equation (8) is solved by the trapezoidal integration method.
步骤S4:采用扰动法计算当前反演模型的雅克比矩阵。本实施例中为39层介质,由于层厚度固定不变,需要对每层介质电阻率逐一扰动,扰动39次后即可获得完整的雅克比矩阵。扰动量为当前反演模型某一参数的10%。在一些实施例中,层状介质的层数可根据实际需要进行选择,对应的扰动次数及扰动量也可相应进行调整。Step S4: Calculate the Jacobian matrix of the current inversion model by using the perturbation method. In this embodiment, there are 39 layers of dielectric. Since the layer thickness is fixed, the resistivity of each layer of dielectric needs to be perturbed one by one, and a complete Jacobian matrix can be obtained after perturbation 39 times. The disturbance amount is 10% of a certain parameter of the current inversion model. In some embodiments, the number of layers of the layered medium can be selected according to actual needs, and the corresponding disturbance times and disturbance amounts can also be adjusted accordingly.
步骤S5:代入步骤S3和步骤S4分别生成正演响应和雅克比矩阵,再代入当前正则化因子,生成高斯牛顿法正规方程。采用预条件共轭梯度法求解正规方程,其终止条件为迭代次数达到200次或相对残差小于等于10-6。Step S5: Substitute into steps S3 and S4 to generate the forward response and Jacobian matrix respectively, and then substitute the current regularization factor to generate the Gauss-Newton normal equation. The normal equation is solved by the preconditioned conjugate gradient method, and the termination condition is that the number of iterations reaches 200 or the relative residual is less than or equal to 10 -6 .
步骤S6:计算模型更新量和均方根拟合差,其中模型更新步长设置为1。Step S6: Calculate the model update amount and the root mean square fitting difference, where the model update step size is set to 1.
步骤S7:进行终止条件判断。这一理论模型研究中,均方根拟合差均在10次反演迭代之内小于目标值。Step S7: judging the termination condition. In this theoretical model study, the RMS fitting errors were all less than the target value within 10 inversion iterations.
上述反演流程运行了10次。用于反演的观测数据含有随机噪音,因此每次反演获取的地电模型都略有差异。反演结果如图5所示,其中实线表示理论模型,虚线表示反演模型,采用波形1(现有方法)时,绝大多数反演地电模型与理论模型差异明显(见图5(a));采用波形2、3和4(本发明)时,绝大多数反演地电模型与理论模型吻合(见图5(b)、5(c)和5(d))。因此,与现有基于斜阶跃电流波形的数据处理方法相比,本发明提出的基于发射电流全波形的地面瞬变电磁法反演方法具有明显优势,实现了预期目标。The above inversion procedure was run 10 times. The observational data used for the inversion contains random noise, so the geoelectric model obtained from each inversion is slightly different. The inversion results are shown in Figure 5, where the solid line represents the theoretical model and the dashed line represents the inversion model. When waveform 1 (the existing method) is used, most of the inversion geoelectric models are significantly different from the theoretical model (see Figure 5 ( a)); when
实施例2:野外观测数据Example 2: Field observation data
步骤S1:输入瞬变电磁法的观测数据和工作参数;Step S1: input the observation data and working parameters of the transient electromagnetic method;
观测数据采集地点为中国东海某滩涂,该地区处于海陆交替环境,浅部地层一般饱含海水,电阻率仅为0.1至0.8Ωm,深部地层电阻率略有增大。观测数据为一个测点的磁感应强度阶跃响应,由加拿大Crone仪器公司生产的超导量子干涉仪(SQUID)采集。发射源为边长400m×200m的矩形回线,回线中心坐标为(0,0,0)m,测点坐标为(-100,0,0)m。发射电流为25A;发射电流基本波形为加拿大Crone Pulse EM仪器采用的、发射基频0.833333Hz的双极性电流波形(占空比50%),相应时间序列包含45个时刻,范围为-0.15ms–222.7ms。其中,0.833333Hz发射基频相应的周期为1.2s,即0.25周期为300ms,并设置开启时间、稳定时间和关断时间依次为0.5ms、299.5ms和1ms。反演中,只使用了第2至45时刻的观测数据,见图6。由于Crone Pulse EM仪器采集的观测数据不含标准差,本发明依据瞬变电磁法早期信号强、信噪比高,晚期信号弱、信噪比低的特点,为实测数据匹配了标准差,详见表2。The observation data collection site is a tidal flat in the East China Sea. This area is in an alternating land and sea environment. The shallow strata are generally saturated with seawater, and the resistivity is only 0.1 to 0.8Ωm, and the resistivity of the deep strata increases slightly. The observed data is the step response of the magnetic induction intensity of a measuring point, which is collected by a superconducting quantum interferometer (SQUID) produced by Crone Instruments in Canada. The emission source is a rectangular loop with a side length of 400m×200m, the loop center coordinate is (0,0,0)m, and the measurement point coordinate is (-100,0,0)m. The emission current is 25A; the basic waveform of the emission current is the bipolar current waveform (50% duty cycle) of the emission fundamental frequency of 0.833333Hz adopted by the Canadian Crone Pulse EM instrument, and the corresponding time series includes 45 moments with a range of -0.15ms –222.7ms. Among them, the corresponding period of the 0.833333Hz transmission fundamental frequency is 1.2s, that is, the period of 0.25 is 300ms, and the turn-on time, stabilization time and turn-off time are set to 0.5ms, 299.5ms and 1ms in turn. In the inversion, only the observation data from
表2野外观测数据标准差设置表Table 2 Standard deviation setting table of field observation data
步骤S2:输入初始反演模型、参考模型和控制参数;Step S2: input the initial inversion model, reference model and control parameters;
初始反演模型为46层层状介质,每层介质电阻率为1Ωm,厚度由10m阶梯式递增至40m(第1至20层为10m、第21至30层为20m、第31至45层为40m、第46层介质为均匀半空间),层厚度在反演中固定不变。无参考模型。目标均方根拟合差为1,最大迭代次数为30。正则化因子初值α0为360000,其更新方案为αk+1=αk/1.5,k为反演迭代次数。The initial inversion model is 46 layers of layered dielectrics, each layer of dielectric resistivity is 1Ωm, and the thickness is stepped from 10m to 40m (the first to 20th layers are 10m, the 21st to 30th layers are 20m, and the 31st to 45th layers are 40m, the 46th layer medium is a uniform half space), and the layer thickness is fixed in the inversion. No reference model. The target rms fit difference is 1, and the maximum number of iterations is 30. The initial value of the regularization factor α 0 is 360000, and its update scheme is α k+1 =α k /1.5, where k is the number of inversion iterations.
步骤S3:按照步骤S1输入的瞬变电磁法工作参数,采用步骤S3所述的方法计算基本波形激励下的磁感应强度阶跃响应bz(t)。Step S3: According to the transient electromagnetic method working parameters input in step S1, the method described in step S3 is used to calculate the magnetic induction intensity step response b z (t) under the excitation of the basic waveform.
步骤S4:采用扰动法计算当前反演模型的雅克比矩阵。本实施例中为46层介质,由于层厚度固定不变,需要对每层介质电阻率逐一扰动,扰动46次后即可获得完整的雅克比矩阵。Step S4: Calculate the Jacobian matrix of the current inversion model by using the perturbation method. In this embodiment, there are 46 layers of medium. Since the layer thickness is fixed, the resistivity of each layer of medium needs to be perturbed one by one, and a complete Jacobian matrix can be obtained after perturbation 46 times.
步骤S5:代入步骤S3和步骤S4分别生成的正演响应和雅克比矩阵,再代入当前正则化因子,生成高斯牛顿法正规方程。采用预条件共轭梯度法求解正规方程,其终止条件为迭代次数达到200次或相对残差小于等于10-6。Step S5: Substitute the forward response and Jacobian matrix generated in step S3 and step S4 respectively, and then substitute the current regularization factor to generate the Gauss-Newton normal equation. The normal equation is solved by the preconditioned conjugate gradient method, and the termination condition is that the number of iterations reaches 200 or the relative residual is less than or equal to 10 -6 .
步骤S6:计算模型更新量和均方根拟合差,其中模型更新步长设置为1。Step S6: Calculate the model update amount and the root mean square fitting difference, where the model update step size is set to 1.
步骤S7:进行终止条件判断。这一理论模型研究中,均方根拟合差均在10次反演迭代之内小于目标值。Step S7: judging the termination condition. In this theoretical model study, the RMS fitting errors were all less than the target value within 10 inversion iterations.
反演结果如图7所示,采用波形1(现有方法)获取的反演结果与采用波形2、3和4(本发明)获取的反演结果在地下100至1000m存在明显差异,且采用波形2、3和4(本发明)获取的反演结果更加符合真实的地质情况。因此,本发明提出的基于发射电流全波形的地面瞬变电磁法反演方法实现了预期目标。The inversion results are shown in Fig. 7. The inversion results obtained by waveform 1 (existing method) and the inversion results obtained by
如图8所示,本实施例还提供了一种基于发射电流全波形的地面瞬变电磁法反演装置,包括:As shown in FIG. 8 , this embodiment also provides a ground transient electromagnetic method inversion device based on the full waveform of the emission current, including:
反演目标函数构建模块01,用于基于Tikhonov正则化方式构建一维反演目标函数,反演目标函数设定为公式一:The inversion objective
式中,||Wd(dobs-dpre)||2为观测数据与正演模型响应的拟合差函数,α||Wm(m-m*)||2为模型正则化函数,||·||表示l2范数;其中,dobs为观测数据向量;dpre为模型参数向量m相应的正演模型响应向量,即F(m),F表示瞬变电磁法一维正演函数;Wd为数据加权矩阵,此处为一个对角矩阵,Wd的元素为观测数据标准差的倒数;α为正则化因子;m*为参考模型,其中包含先验信息;Wm为模型粗糙度算子,Wm的形式为:where ||W d (d obs -d pre )|| 2 is the fitting difference function between the observed data and the forward model response, α||W m (mm * )|| 2 is the model regularization function, | |·|| represents the l 2 norm; among them, d obs is the observation data vector; d pre is the response vector of the forward model corresponding to the model parameter vector m, namely F(m), F represents the one-dimensional forward model of the transient electromagnetic method function; W d is the data weighting matrix, here is a diagonal matrix, the elements of W d are the reciprocal of the standard deviation of the observed data; α is the regularization factor; m * is the reference model, which contains prior information; W m is The model roughness operator, W m is in the form:
反演目标函数优化模块02,用于采用高斯牛顿法对反演目标函数进行最优化,输出最终反演模型;The inversion objective
反演目标函数优化模块02包括:The inversion objective
第一输入单元021,用于输入瞬变电磁法的观测数据和工作参数;The
第二输入单元022,用于输入初始反演模型、参考模型和控制参数;The
正演响应计算单元023,用于根据输入的工作参数,计算初始反演模型的瞬变电磁法正演响应;The forward
正演响应计算单元023包括:The forward
第一计算单元0231,用于计算下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应;The
第二计算单元0232,用于根据下阶跃电流波形激发的磁感应强度脉冲响应或阶跃响应,采用卷积算法计算发射电流基本波形激发的磁感应强度脉冲响应或阶跃响应;The
发射电流基本波形分为两类:第一类只包含关断时间,即斜阶跃波形;第二类包括多个周期数目不同且由开启时间、稳定时间、关断时间和占空比确定的全波形,全波形参数取决于实际电流波形,由第一输入单元021输入;The basic waveform of the emission current is divided into two categories: the first type only includes the off time, that is, the ramp step waveform; the second type includes multiple cycles with different numbers and determined by the on time, settling time, off time and duty cycle. Full waveform, the full waveform parameter depends on the actual current waveform, which is input by the
雅克比矩阵计算单元024,用于采用扰动法计算当前反演模型的雅克比矩阵;Jacobian
正规方程生成及求解单元025,用于根据输入的观测数据、参考模型、控制参数和计算得到的雅克比矩阵生成高斯牛顿法正规方程,并求解所述高斯牛顿法正规方程,获得模型更新量;The normal equation generation and solving
迭代更新单元026,用于根据所述模型更新量更新所述当前反演模型,并计算更新后反演模型的正演响应和均方根拟合差;an
迭代终止单元027,用于判断当前迭代次数或所述均方根拟合差是否满足所述控制参数中的迭代终止条件,若是,则停止迭代并输出最终反演模型,否则,返回雅克比矩阵计算单元024开启下一次迭代。The
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or system comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or system. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为标识。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. do not denote any order, and these words may be construed as identifications.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是采用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210175778.0A CN114779355B (en) | 2022-02-24 | 2022-02-24 | Ground transient electromagnetic method inversion method and device based on full waveform of emission current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210175778.0A CN114779355B (en) | 2022-02-24 | 2022-02-24 | Ground transient electromagnetic method inversion method and device based on full waveform of emission current |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114779355A true CN114779355A (en) | 2022-07-22 |
CN114779355B CN114779355B (en) | 2024-04-16 |
Family
ID=82424087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210175778.0A Active CN114779355B (en) | 2022-02-24 | 2022-02-24 | Ground transient electromagnetic method inversion method and device based on full waveform of emission current |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114779355B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114970290A (en) * | 2022-07-27 | 2022-08-30 | 中国地质大学(武汉) | A ground transient electromagnetic method parallel inversion method and system |
CN115238549A (en) * | 2022-07-25 | 2022-10-25 | 中南大学 | A method of using ERT to monitor the safety factor under the condition of landslide rainfall |
WO2024087149A1 (en) * | 2022-10-28 | 2024-05-02 | 中国科学院地质与地球物理研究所 | Energy spectrum inversion method of high-frequency magnetotelluric instrument |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106199742A (en) * | 2016-06-29 | 2016-12-07 | 吉林大学 | A kind of Frequency-domain AEM 2.5 ties up band landform inversion method |
KR20170009609A (en) * | 2015-07-17 | 2017-01-25 | 서울대학교산학협력단 | Seismic imaging apparatus and method using iterative direct waveform inversion and full waveform inversion |
CN106501867A (en) * | 2016-10-19 | 2017-03-15 | 中国科学院电子学研究所 | A kind of transient electromagnetic inversion method based on horizontal smoothness constraint |
US20170075030A1 (en) * | 2015-09-15 | 2017-03-16 | Brent D. Wheelock | Accelerated Occam Inversion Using Model Remapping and Jacobian Matrix Decomposition |
CN112949134A (en) * | 2021-03-09 | 2021-06-11 | 吉林大学 | Earth-well transient electromagnetic inversion method based on non-structural finite element method |
CN113325482A (en) * | 2021-04-15 | 2021-08-31 | 成都理工大学 | Time domain electromagnetic data inversion imaging method |
-
2022
- 2022-02-24 CN CN202210175778.0A patent/CN114779355B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170009609A (en) * | 2015-07-17 | 2017-01-25 | 서울대학교산학협력단 | Seismic imaging apparatus and method using iterative direct waveform inversion and full waveform inversion |
US20170075030A1 (en) * | 2015-09-15 | 2017-03-16 | Brent D. Wheelock | Accelerated Occam Inversion Using Model Remapping and Jacobian Matrix Decomposition |
CN106199742A (en) * | 2016-06-29 | 2016-12-07 | 吉林大学 | A kind of Frequency-domain AEM 2.5 ties up band landform inversion method |
CN106501867A (en) * | 2016-10-19 | 2017-03-15 | 中国科学院电子学研究所 | A kind of transient electromagnetic inversion method based on horizontal smoothness constraint |
CN112949134A (en) * | 2021-03-09 | 2021-06-11 | 吉林大学 | Earth-well transient electromagnetic inversion method based on non-structural finite element method |
CN113325482A (en) * | 2021-04-15 | 2021-08-31 | 成都理工大学 | Time domain electromagnetic data inversion imaging method |
Non-Patent Citations (3)
Title |
---|
戴锐;张达;冀虎;: "大定源瞬变电磁法反演效果分析", 有色金属(矿山部分), no. 03, 25 May 2017 (2017-05-25) * |
李建慧等: "One-dimensional full-waveform inversion for magnetic induction data in ground-based transient electromagnetic methods", 《JOURNAL OF GEOPHYSICS AND ENGINEERING》, 15 May 2023 (2023-05-15) * |
李建慧等: "地面回线源瞬变电磁法一维反演系统及其应用", 《物探与化探》, 14 October 2022 (2022-10-14) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115238549A (en) * | 2022-07-25 | 2022-10-25 | 中南大学 | A method of using ERT to monitor the safety factor under the condition of landslide rainfall |
CN115238549B (en) * | 2022-07-25 | 2024-03-12 | 中南大学 | Method for monitoring safety coefficient under landslide rainfall condition by using ERT |
CN114970290A (en) * | 2022-07-27 | 2022-08-30 | 中国地质大学(武汉) | A ground transient electromagnetic method parallel inversion method and system |
CN114970290B (en) * | 2022-07-27 | 2022-11-01 | 中国地质大学(武汉) | Ground transient electromagnetic method parallel inversion method and system |
WO2024087149A1 (en) * | 2022-10-28 | 2024-05-02 | 中国科学院地质与地球物理研究所 | Energy spectrum inversion method of high-frequency magnetotelluric instrument |
Also Published As
Publication number | Publication date |
---|---|
CN114779355B (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114779355A (en) | Ground transient electromagnetic inversion method and device based on transmitting current full waveform | |
Farquharson et al. | Approximate sensitivities for the electromagnetic inverse problem | |
WO2009146041A1 (en) | Constructing a reduced order model of an electromagnetic response in a subterranean structure | |
CN110852025B (en) | Three-dimensional electromagnetic slow diffusion numerical simulation method based on super-convergence interpolation approximation | |
CN113156526B (en) | Full-region multi-source electromagnetic sounding method and multi-field source multi-component data joint inversion technology | |
CN101650443B (en) | Back-propagation network calculating method of apparent resistivity | |
CN105785455A (en) | Two-dimensional ground nuclear magnetic resonance inversion method based on B spline interpolation | |
CN108019206A (en) | With brill electromagnetic wave resistivity instrument Range Extension method under a kind of high-k | |
CN102707323A (en) | Controllable source audio-frequency magnetic field sounding method for geological exploration | |
Ji et al. | 3D numerical modeling of induced-polarization electromagnetic response based on the finite-difference time-domain method | |
Hanssens et al. | Frequency-domain electromagnetic forward and sensitivity modeling: Practical aspects of modeling a magnetic dipole in a multilayered half-space | |
CN105354421A (en) | Magnetotelluric meshless numerical simulation method for random conductive medium model | |
CN107798190A (en) | The air-ground transient electromagnetic Three-dimensional Numerical Simulation Method of time domain under complicated landform | |
Wang et al. | Efficient and robust Levenberg–Marquardt Algorithm based on damping parameters for parameter inversion in underground metal target detection | |
Zhang et al. | Design of depth-focused electromagnetic transmitting scheme based on MFSPWM method | |
Galuk et al. | Comparison of exact and approximate solutions of the Schumann resonance problem for the knee conductivity profile | |
CN114296144B (en) | Controllable source electromagnetic one-dimensional forward modeling method considering influence of three-phase alternating-current high-voltage transmission line | |
Li et al. | Airborne transient electromagnetic simulation: detecting geoelectric structures for HVdc monopole operation | |
Persova et al. | Numerical scheme for modelling the electromagnetic field in airborne electromagnetic survey taking into account follow currents in transmitter loop | |
Slob et al. | Green's tensors for the diffusive electric field in a VTI half-space | |
Ji et al. | 3-D modeling and analysis of small-loop source TDEM method based on CFS-PML-CN-FDTD method | |
Xia et al. | A small-loop double-coil decoupling transient electromagnetic device for high-sensitivity near-surface detection | |
Olalekan et al. | Particle Swarm Optimization method for 1D and 2D MTEM data inversion | |
CN114966870B (en) | Multi-component joint detection transient electromagnetic method for arbitrary position of ground loop | |
Zhou et al. | Three-dimensional Finite-Element Forward Modeling and Response Characteristic Analysis of Multifrequency Electromagnetic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |