CN114778887B - 一种基于改进三角矢量模型的无人机测风方法和装置 - Google Patents

一种基于改进三角矢量模型的无人机测风方法和装置 Download PDF

Info

Publication number
CN114778887B
CN114778887B CN202210495906.XA CN202210495906A CN114778887B CN 114778887 B CN114778887 B CN 114778887B CN 202210495906 A CN202210495906 A CN 202210495906A CN 114778887 B CN114778887 B CN 114778887B
Authority
CN
China
Prior art keywords
real
unmanned aerial
aerial vehicle
average
airspeed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210495906.XA
Other languages
English (en)
Other versions
CN114778887A (zh
Inventor
李冠林
王攀峰
郝明磊
曾祥能
高云霄
崔晓燕
张大厦
程周杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
93213 Unit Of Pla
Original Assignee
93213 Unit Of Pla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 93213 Unit Of Pla filed Critical 93213 Unit Of Pla
Priority to CN202210495906.XA priority Critical patent/CN114778887B/zh
Publication of CN114778887A publication Critical patent/CN114778887A/zh
Application granted granted Critical
Publication of CN114778887B publication Critical patent/CN114778887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/025Indicating direction only, e.g. by weather vane indicating air data, i.e. flight variables of an aircraft, e.g. angle of attack, side slip, shear, yaw
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明涉及一种基于改进三角矢量模型的无人机测风方法和装置,包括设定多边形航线;无人机沿多边形航线匀速平稳飞行一圈,计算无人机沿多边形航线飞行时每条边的飞行参数;根据飞行参数和三角矢量模型,计算得到航向角误差和空速误差;无人机继续飞行,根据实时采集的飞行参数、航向角误差、空速误差和三角矢量模型,计算得到真风的风速和风向。本发明通过对航向角和空速测量值的修正,克服了传统三角矢量法对传感器性能要求较高的缺点,提高了真风解算精度。

Description

一种基于改进三角矢量模型的无人机测风方法和装置
技术领域
本发明涉及无人机技术领域,尤其涉及一种基于改进三角矢量模型的无人机测风方法和装置。
背景技术
高空风场在天气预报业务和气候变化研究中扮演着十分重要的角色,也可作为实时气象信息用于任务行动的现场规划决策。无人机测风作为一种新的技术手段近年来得到了广泛的应用,与业务上常用的气球测风、风廓线雷达测风、激光雷达测风相比,其优点是可利用无人机续航时间长和机动性强的优势,进入常规设备难以部署的区域,连续大范围探测高空风场,缺点是探测精度相对较低。
传统的无人机测风方法主要有水平空速归零法、解析法、航位推算法和三角矢量法。三角矢量法根据真风、航行风和空速管风的矢量关系来解算真风,原理上较为合理,但测风精度对传感器性能依赖度较高,皮托-静压管、导航系统的测量误差都会导致真风解算不准确。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种基于改进三角矢量模型的无人机测风方法和装置。
本发明解决上述技术问题的技术方案如下:
一种基于改进三角矢量模型的无人机测风方法,所述方法包括:
设定多边形航线;
无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速;
根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差;
所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速。
进一步地,所述无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,具体包括:
根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速/>n是所述多边形航线的边数;
根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
进一步地,根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差,具体包括:
将第i条边上的平均航迹角平均地速/>平均航向角/>和平均空速/>输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差ΔθH和所述空速误差ΔrA
进一步地,所述根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,具体包括:
将所述实时航迹角θC、所述实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差ΔθH和所述空速误差ΔrA输入所述三角矢量方程组
计算得到所述真风的风速θT和风向rT
进一步地,所述设定多边形航线,具体包括:
利用预设高度值设定所述多边形航线的高度值;
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
本方法发明的有益效果是:提出了一种基于改进三角矢量模型的无人机测风方法,包括设定多边形航线;无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,根据飞行参数和三角矢量模型,计算得到航向角误差和空速误差;所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向。本发明通过对航向角和空速测量值的修正,克服了传统三角矢量法对传感器性能要求较高的缺点,提高了真风解算精度。
本发明解决上述技术问题的另一技术方案如下:
一种基于改进三角矢量模型的无人机测风装置,所述装置包括:
预设模块,用于设定多边形航线;
第一计算模块,用于无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速;
第二计算模块,用于根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差;
第三计算模块,用于所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速。
进一步地,所述第一计算模块,具体用于根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速n是所述多边形航线的边数;
根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
进一步地,所述第二计算模块,具体用于将第i条边上的平均航迹角平均地速平均航向角/>和平均空速/>输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差ΔθH和所述空速误差ΔrA
进一步地,所述第三计算模块,用于将所述实时航迹角θC、所述实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差ΔθH和所述空速误差ΔrA输入所述三角矢量方程组
计算得到所述真风的风速θT和风向rT
进一步地,所述预设模块,具体用于利用预设高度值设定所述多边形航线的高度值;
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
本发明附加的方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实践了解到。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所示的一种基于改进三角矢量模型的无人机测风方法的流程示意图;
图2为本发明另一实施例所示的一种基于改进三角矢量模型的无人机测风装置的模块示意图;
图3为本发明另一实施例所示的采用传统方法进行解算真风的示意图;
图4为本发明另一实施例所示的仿真试验流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
为提高无人机的测风精度,本申请结合水平空速归零法的优点,提出一种基于改进三角矢量模型的无人机测风方法,实现无人机连续大范围探测高精度风场的目的。
如图1所示,本发明实施例所述的一种基于改进三角矢量模型的无人机测风方法,包括以下步骤;
110、设定多边形航线。
120、无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速。
130、根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差。
140、所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速。
进一步地,步骤120中具体包括:
121、根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速/>n是所述多边形航线的边数;
122、根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
进一步地,步骤130中具体包括:
将第i条边上的平均航迹角平均地速/>平均航向角/>和平均空速/>输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差ΔθH和所述空速误差ΔrA
进一步地,步骤140中具体包括:
将所述实时航迹角θC、所述实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差ΔθH和所述空速误差ΔrA输入所述三角矢量方程组
计算得到所述真风的风速θT和风向rT
进一步地,所述设定多边形航线,具体包括:
利用预设高度值设定所述多边形航线的高度值。
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
基于上述实施例所提出的提出了一种基于改进三角矢量模型的无人机测风方法,包括设定多边形航线;无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,根据飞行参数和三角矢量模型,计算得到航向角误差和空速误差;所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向。本发明通过对航向角和空速测量值的修正,克服了传统三角矢量法对传感器性能要求较高的缺点,提高了真风解算精度。
如图2所示,一种基于改进三角矢量模型的无人机测风装置,所述装置包括:
预设模块,用于设定多边形航线;
第一计算模块,用于无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速;
第二计算模块,用于根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差;
第三计算模块,用于所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速。
进一步地,所述第一计算模块,具体用于根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速n是所述多边形航线的边数;
根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
进一步地,所述第二计算模块,具体用于将第i条边上的平均航迹角平均地速平均航向角/>和平均空速/>输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差ΔθH和所述空速误差ΔrA
进一步地,所述第三计算模块,用于将所述实时航迹角θC、所述实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差ΔθH和所述空速误差ΔrA输入所述三角矢量方程组
计算得到所述真风的风速θT和风向rT
进一步地,所述预设模块,具体用于利用预设高度值设定所述多边形航线的高度值;
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
应理解,以下为本申请对各类物理量的定义描述:
航迹角:从正北方向顺时针旋转至飞机航行轨迹方向所呈的角度,范围是[0,360),用θC表示。
地速:以大地为参考系,飞机单位时间的位移,用rG表示。
航向角:从正北方向顺时针旋转至飞机机头方向所呈的角度,范围是[0,360),用θH表示。
空速:沿空速管方向,飞机相对于空气的速度,用rA表示。空速管通常安装在机头或机翼。
真风:表示空气在水平方向的流动情况,在不考虑飞机航行对周围空气的影响时,真风与航迹角、地速、航向角、空速等无关。真风向是从正北方向顺时针旋转至真风来向所呈的角度,范围是[0,360),用θT表示。真风速是空气在水平方向相对大地的速度,用rT表示。
空速管测得的风是真风与飞行速度的合成矢量,三角矢量法利用矢量三角形关系解算真风。真风向θT、真风速rT、航迹角θC、地速rG、航向角θH和空速rA之间的关系可表示为:
其中,θC、rG和θH由无人机的导航系统给出,rA可以根据皮托-静压管测量的静压、总压和温度传感器测量的温度,应用伯努利方程和理想气体的状态方程得到:
上式中,R为专用气体常数,R=287J·K-1·kg-1,T为静温(单位K),Pt为皮托-静压管测量的总压,P为静压。
利用上式,可解得真风速rT从而可解得真风向θT
基于上述传统的三角矢量法的误差来源包括航迹角、地速、航向角和空速的测量误差,因此对卫星导航系统、惯性导航系统、皮托-静压管的性能要求较高。航迹角和地速通过卫星导航系统获取,通常精度较高,对真风解算的影响可忽略不计,本申请引入航向角误差ΔθH和空速误差ΔrA作为修正因子,对三角矢量法模型进行改进,具体包括以下步骤:
1)设定一条多边形的水平航线。多边形的边数n一般取3或4,航线的高度固定不变,边长由无人机的飞行速度和各传感器的采样频率决定,原则是要保证无人机在每条边上匀速平稳飞行并至少获取N组样本,N由传感器的测量标准差决定,通常可取N=100。
2)使无人机沿多边形航线飞行一圈。计算每条边上的平均航迹角平均地速平均航向角/>平均空速/>
3)计算修正因子ΔθH和ΔrA。假定无人机在沿多边形航线飞行时真风保持不变,将代入下面方程组,并引入航向角误差ΔθH和空速误差ΔrA作为修正因子:
方程组中包含2n个方程、4个未知数,用非线性最小二乘法求出ΔθH和ΔrA
4)无人机继续飞行并探测风场。将修正因子ΔθH和ΔrA引入方程组
把无人机实时测得的实时航迹角θC、实时平均地速rG、实时航向角θH、实时空速rA以及上一步求出的航向角误差ΔθH和空速误差ΔrA的值代入上式中,解出θT和rT,得到真风。
设计仿真试验来验证本申请中改进三角矢量模型的效果,如图4所示,具体步骤如下:
1、设定初始值,包括真风、多边形航线、航迹角测量误差、地速测量误差、航向角测量误差、空速测量误差;
2、根据设定的多边形航线和航迹角测量误差、地速测量误差,计算每条边的平均测量航迹角、平均测量地速;
3、根据设定的多边形航线和真风,计算每条边上各采样点的航向角、空速;
4、根据每条边上各采样点的航向角、空速,以及设定的航向角测量误差和空速测量误差,计算每条边的平均测量航向角、平均测量空速;
5、将第2、4步得到的平均测量航迹角、平均测量地速、平均测量航向角和平均测量空速代入三角矢量模型,得出每条边的真风解算结果1;再代入改进三角矢量模型,得出结果2;
6、对比结果1和结果2。重复10次,得出结论。
以下是利用本申请中的实施例进行仿真试验的过程和结果。
设定一个典型场景如下:真风向为30°,真风速为8m/s;多边形航线为四边形,无人机飞行的地速为10m/s,在每条边上采样100个点;航迹角测量误差平均值为0°、标准差为0.2°;地速测量误差平均值为0m/s、标准差为0.5m/s;航向角测量误差平均值为0.5°,标准差为0.2°;空速测量误差平均值为-2m/s,标准差为0.5m/s。
表1传统三角矢量法进行仿真试验结果
表2本申请的改进三角矢量法仿真试验结果
仿真10次后,得到10组四边形航线上每条边的真风解算结果,如表1和表2所示。可以看出,三角矢量法对传感器的测量误差非常敏感,当航向角、空速的平均误差分别为0.5°和-2m/s时,四条边的风向风速差异很大,风向最大为41.3°,最小为18.6°,风速最大达到9.5m/s,最小为6.5m/s;改进三角矢量法对航向角、空速的平均误差作了修正后,真风解算精度明显提高,四条边的风向最大值为30.1°,最小值为30.0°,风速值均为8.0m/s,与设定的30°、8m/s的真风非常接近。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、数字信号处理器(Digital SignalProcessing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(ProgrammableLogicDevice,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的单元来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (6)

1.一种基于改进三角矢量模型的无人机测风方法,其特征在于,所述方法包括:
设定多边形航线;
无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速;
根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差,具体包括:
将第i条边上的平均航迹角平均地速/>平均航向角/>和平均空速/>输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差△θH和所述空速误差△rA
所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速,具体包括:将所述实时航迹角θC、实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差△θH和所述空速误差△rA输入所述三角矢量方程组:
计算得到所述真风的风速θT和风向rT
2.根据权利要求1所述的基于改进三角矢量模型的无人机测风方法,其特征在于,所述无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,具体包括:
根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速/>n是所述多边形航线的边数;
根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
3.根据权利要求1所述的基于改进三角矢量模型的无人机测风方法,其特征在于,所述设定多边形航线,具体包括:
利用预设高度值设定所述多边形航线的高度值;
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
4.一种基于改进三角矢量模型的无人机测风装置,其特征在于,所述装置包括:
预设模块,用于设定多边形航线;
第一计算模块,用于无人机沿所述多边形航线匀速平稳飞行一圈,计算所述无人机沿所述多边形航线飞行时每条边的飞行参数,其中,所述飞行参数包括平均航迹角、平均地速、平均航向角和平均空速;
第二计算模块,用于根据所述飞行参数和三角矢量模型,计算得到航向角误差和空速误差,具体用于将第i条边上的平均航迹角平均地速/>平均航向角/>和平均空速输入三角矢量方程组:
利用非线性最小二乘法,得到所述航向角误差△θH和所述空速误差△rA
第三计算模块,用于所述无人机继续飞行,采集所述无人机的实时飞行参数,根据所述实时飞行参数、所述航向角误差、所述空速误差和所述三角矢量模型,计算得到真风的风速和风向,其中,所述实时飞行参数包括实时航迹角、实时地速、实时航向角和实时空速,所述第三计算模块,用于将所述实时航迹角θC、实时平均地速rG、所述实时航向角θH、所述实时空速rA、所述航向角误差△θH和所述空速误差△rA输入所述三角矢量方程组
计算得到所述真风的风速θT和风向rT
5.根据权利要求4所述的基于改进三角矢量模型的无人机测风装置,其特征在于,
所述第一计算模块,具体用于根据所述多边形航线,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均航迹角和所述平均地速/>n是所述多边形航线的边数;
根据所述无人机沿所述多边形航线中第i条边上各采样点的实时航向角和实时空速,计算得到所述无人机沿所述多边形航线中第i条边飞行时的平均测量航向角和平均测量空速/>
6.根据权利要求4所述的基于改进三角矢量模型的无人机测风装置,其特征在于,
所述预设模块,具体用于利用预设高度值设定所述多边形航线的高度值;
根据所述无人机的飞行速度和传感器的采样频率,确定所述多边形航线的边长。
CN202210495906.XA 2022-05-09 2022-05-09 一种基于改进三角矢量模型的无人机测风方法和装置 Active CN114778887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210495906.XA CN114778887B (zh) 2022-05-09 2022-05-09 一种基于改进三角矢量模型的无人机测风方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210495906.XA CN114778887B (zh) 2022-05-09 2022-05-09 一种基于改进三角矢量模型的无人机测风方法和装置

Publications (2)

Publication Number Publication Date
CN114778887A CN114778887A (zh) 2022-07-22
CN114778887B true CN114778887B (zh) 2024-05-14

Family

ID=82437572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210495906.XA Active CN114778887B (zh) 2022-05-09 2022-05-09 一种基于改进三角矢量模型的无人机测风方法和装置

Country Status (1)

Country Link
CN (1) CN114778887B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856359B (zh) * 2023-02-15 2023-06-09 成都凯天电子股份有限公司 一种直升机空速在线修正方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720076A2 (de) * 1994-12-25 1996-07-03 Aircotec Ag Vorrichtung zur Visualisierung und Zentrierung thermischer und dynamischer Vertikalwinde
RU2231757C1 (ru) * 2003-04-03 2004-06-27 Мамошин Владимир Романович Способ определения вектора земной скорости и угла сноса летательного аппарата
RU2396569C1 (ru) * 2009-06-15 2010-08-10 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения воздушных параметров в летных испытаниях летательного аппарата на больших углах атаки
CN104459193A (zh) * 2014-12-05 2015-03-25 中国航天空气动力技术研究院 一种基于无人机侧航法估算侧风信息的方法
CN106643737A (zh) * 2017-02-07 2017-05-10 大连大学 风力干扰环境下四旋翼飞行器姿态解算方法
CN107238388A (zh) * 2017-05-27 2017-10-10 合肥工业大学 多无人机任务分配与航迹规划联合优化方法及装置
CN108152529A (zh) * 2017-11-02 2018-06-12 成都飞机工业(集团)有限责任公司 一种基于飞行参数计算风速及风向的方法
RU2687348C1 (ru) * 2018-06-29 2019-05-13 Общество с ограниченной ответственностью "Научно Инженерная Компания" Способ мониторинга систематических погрешностей измерения барометрической высоты на основании данных о скорости
CN110928324A (zh) * 2019-12-30 2020-03-27 北京润科通用技术有限公司 无人机飞行参数采集设备及其校准方法
CN111065890A (zh) * 2017-09-27 2020-04-24 深圳市大疆创新科技有限公司 确定空速的系统和方法
CN111122901A (zh) * 2019-12-31 2020-05-08 中国航空工业集团公司西安飞机设计研究所 一种攻角误差自动检测方法及其修正系统
CN111982100A (zh) * 2020-07-07 2020-11-24 广东工业大学 一种无人机的航向角解算算法
CN112098674A (zh) * 2020-09-02 2020-12-18 厦门市汉飞鹰航空科技有限公司 一种通过航线飞行判断风速风向的方法
CN112986612A (zh) * 2021-03-24 2021-06-18 中国人民解放军63796部队 一种基于四旋翼无人机的低空移动式风速测量方法
CN113281531A (zh) * 2021-05-20 2021-08-20 北京科技大学 一种无人机当前风速风向测量方法及装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720076A2 (de) * 1994-12-25 1996-07-03 Aircotec Ag Vorrichtung zur Visualisierung und Zentrierung thermischer und dynamischer Vertikalwinde
RU2231757C1 (ru) * 2003-04-03 2004-06-27 Мамошин Владимир Романович Способ определения вектора земной скорости и угла сноса летательного аппарата
RU2396569C1 (ru) * 2009-06-15 2010-08-10 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения воздушных параметров в летных испытаниях летательного аппарата на больших углах атаки
CN104459193A (zh) * 2014-12-05 2015-03-25 中国航天空气动力技术研究院 一种基于无人机侧航法估算侧风信息的方法
CN106643737A (zh) * 2017-02-07 2017-05-10 大连大学 风力干扰环境下四旋翼飞行器姿态解算方法
CN107238388A (zh) * 2017-05-27 2017-10-10 合肥工业大学 多无人机任务分配与航迹规划联合优化方法及装置
US10140875B1 (en) * 2017-05-27 2018-11-27 Hefei University Of Technology Method and apparatus for joint optimization of multi-UAV task assignment and path planning
CN111065890A (zh) * 2017-09-27 2020-04-24 深圳市大疆创新科技有限公司 确定空速的系统和方法
CN108152529A (zh) * 2017-11-02 2018-06-12 成都飞机工业(集团)有限责任公司 一种基于飞行参数计算风速及风向的方法
RU2687348C1 (ru) * 2018-06-29 2019-05-13 Общество с ограниченной ответственностью "Научно Инженерная Компания" Способ мониторинга систематических погрешностей измерения барометрической высоты на основании данных о скорости
CN110928324A (zh) * 2019-12-30 2020-03-27 北京润科通用技术有限公司 无人机飞行参数采集设备及其校准方法
CN111122901A (zh) * 2019-12-31 2020-05-08 中国航空工业集团公司西安飞机设计研究所 一种攻角误差自动检测方法及其修正系统
CN111982100A (zh) * 2020-07-07 2020-11-24 广东工业大学 一种无人机的航向角解算算法
CN112098674A (zh) * 2020-09-02 2020-12-18 厦门市汉飞鹰航空科技有限公司 一种通过航线飞行判断风速风向的方法
CN112986612A (zh) * 2021-03-24 2021-06-18 中国人民解放军63796部队 一种基于四旋翼无人机的低空移动式风速测量方法
CN113281531A (zh) * 2021-05-20 2021-08-20 北京科技大学 一种无人机当前风速风向测量方法及装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Chen, YY ; .An effective spray drift-reducing method for a plant-protection unmanned aerial vehicle.INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING.2019,全文. *
Concept of navigation system design of UAV;F.M. Zakharin;2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD);20151015;全文 *
Fu, JQ ; .Transition Controllability Research on Tri-tilt Rotor Unmanned Aerial Vehicle in Wind Tunnel Free Flight Tests.9th International Conference on Modelling, Identification and Control (ICMIC).2017,全文. *
周伟静 ; .一种基于小型无人机的风场测量方法.测试技术学报.2009,第297页-第302页. *
基于GPS、磁罗盘与大气数据计算机的 无人机风估计;高艳辉;计算机测量与控制;全文 *
基于信息融合技术的无人机风速测量方法;井立;飞机设计;全文 *
姜明 ; .多旋翼无人机搭载二维超声风传感器观测研究.国外电子测量技术.2021,全文. *

Also Published As

Publication number Publication date
CN114778887A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN110631593B (zh) 一种用于自动驾驶场景的多传感器融合定位方法
Mallaun et al. Calibration of 3-D wind measurements on a single-engine research aircraft
KR20150043392A (ko) 바람 벡터 추산
Gracey Summary of methods of measuring angle of attack on aircraft
CN114778887B (zh) 一种基于改进三角矢量模型的无人机测风方法和装置
CN105807087B (zh) 确定为优化飞行器的起飞重量需考虑的风速的方法和装置
CN110346605B (zh) 用于基于静压误差修正进行飞机空速校准的方法以及系统
Tjernström et al. Analysis of a radome air-motion system on a twin-jet aircraft for boundary-layer research
CN109725649A (zh) 一种基于气压计/imu/gps多传感器融合的旋翼无人机定高算法
CN113205706A (zh) 基于航班qar数据的ils信号品质监测方法
EP3339915B1 (en) Method in connection with a radiosonde and system
CN103791910B (zh) 导航仪根据车内气压变化进行道路匹配的工作方法
CN105136163A (zh) 一种基于双位置特征的磁悬浮陀螺寻北数据粗差剔除方法
CN110674888B (zh) 一种基于数据融合的头部姿态识别方法
RU2396569C1 (ru) Способ определения воздушных параметров в летных испытаниях летательного аппарата на больших углах атаки
WO2015008308A2 (en) System and process for measuring and evaluating air and inertial data
CN111122901A (zh) 一种攻角误差自动检测方法及其修正系统
US10921457B2 (en) Method and device for detecting a fault of a barometric pressure measuring system arranged aboard a flying device
DE102015121517B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Geschwindigkeitsvektors eines in der Umgegebung eines Fluggeräts herrschenden Windes, und Fluggerät
Cho et al. Air data system calibration using GPS velocity information
Barrick et al. Calibration of NASA turbulent air motion measurement system
Strunin et al. Response properties of atmospheric turbulence measurement instruments using Russian research aircraft
RU2277698C1 (ru) Способ градуировки датчика аэродинамического угла летательного аппарата
Polivanov et al. Key features of the atmospheric boundary layer measurement by small unmanned aerial vehicles
RU2378615C2 (ru) Устройство для определения сдвига ветра

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100085 box 7, 2861, Haidian District, Beijing

Applicant after: 93213 unit of PLA

Address before: 11 anningzhuang Road, Haidian District, Beijing 100085

Applicant before: 93213 unit of PLA

GR01 Patent grant
GR01 Patent grant