CN114761862A - 具有微棱镜反射器的紧凑型激光束组合器 - Google Patents

具有微棱镜反射器的紧凑型激光束组合器 Download PDF

Info

Publication number
CN114761862A
CN114761862A CN202080084275.1A CN202080084275A CN114761862A CN 114761862 A CN114761862 A CN 114761862A CN 202080084275 A CN202080084275 A CN 202080084275A CN 114761862 A CN114761862 A CN 114761862A
Authority
CN
China
Prior art keywords
light
light source
prism
laser
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080084275.1A
Other languages
English (en)
Inventor
H·J·科尼利森
O·V·维多文
R·范阿塞尔特
R·A·M·希克梅特
T·范博梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Signify Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signify Holding BV filed Critical Signify Holding BV
Publication of CN114761862A publication Critical patent/CN114761862A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/005Refractors for light sources using microoptical elements for redirecting or diffusing light using microprisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/504Cooling arrangements characterised by the adaptation for cooling of specific components of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本发明提供了一种光生成设备(1000),该光生成设备(1000)包括(i)数目为n的多个光源(100)和(ii)包括棱镜元件(300)的阵列(200)的光学组件(1200),其中:(a)数目为n的多个光源(100)包括被配置为生成准直的第一光源光(111)的一个或多个第一光源(110)的第一子集和被配置为生成准直的第二光源光(121)的一个或多个第二光源的第二子集(120),其中n>2;(b)棱镜元件(300)的阵列(200)被配置为与n个光源(100)成光接收关系,其中棱镜元件(300)的阵列包括k1个平行布置的第一棱镜面(201)和k2个平行布置的第二棱镜面(202),其中k1>2并且其中k2>2,其中第一棱镜面(201)和第二棱镜面(202)不相互平行;(c)第一光源(110)被配置为照射第一棱镜面(201)并且第二光源(120)被配置为照射第二棱镜面(202);以及(d)棱镜元件(300)被配置为将准直的第一光源光(111)和准直的第二光源光(121)反射或折射为第一光源光(111)和第二光源光(121)的重合光束。

Description

具有微棱镜反射器的紧凑型激光束组合器
技术领域
本发明涉及一种光生成设备和一种包括这样的光生成设备的照明器。
背景技术
用于组合激光束的装置和方法在本领域中是已知的。例如,US2014/0092364描述了输出具有第一偏振的第一白色激光束和具有与第一偏振正交的第二偏振的第二白色激光束的第一激光光源和第二激光光源。US2014/0092364的实施例进一步利用被定位成接收上述第一白色激光束和第二白色激光束以组合第一偏振和第二偏振的多窄带偏振分束器(作为光束组合器操作)。此外,US2014/0092364描述了一种投影系统,该投影系统具有被布置为输出两组激光束的两个激光光源,该两组激光束的偏振彼此正交、以及以约为45°的角度定位在第一激光束与第二激光束之间的多窄带偏振分束器。激光束组可以以多个波长,针对三个或更多个原色;红色、绿色和蓝色或更多而被提供。
发明内容
虽然白色LED光源可以提供例如高达约300lm/mm2的强度;静态磷光体转换的激光白色光源可以提供高达约20.000lm/mm2的强度。Ce掺杂石榴石(例如,YAG、LuAG)可以是可以用于利用泵浦蓝色激光的最合适的发光转换器,因为石榴石基质具有非常高的化学稳定性。此外,在低Ce浓度(例如,低于0.5%)下,温度淬火可能仅发生在约200℃以上。此外,来自Ce的发射具有非常快的衰减时间,使得基本上可以避免光学饱和。在诸如汽车等应用中,需要在低CRI时相关色温高于约5000K。但是,在其他应用中,例如具有高CRI(例如,至少90)和相对较低CCT(例如,最大3000K)的光源可能是可取的。例如,在某些应用中,在CRI≥90和较低的CCT≤3000K的情况下,强度高于1GCd/m2似乎是可取的。对于良好的显色性和/或R9,红色磷光体的添加可能是有用的。然而,似乎这样的磷光体通常不能承受高泵浦功率,和/或表现出热猝灭,和/或表现出劣化。
利用聚焦的蓝色激光二极管泵浦陶瓷磷光体可以创建光源,该光源例如具有是磷光体转换的白光LED的约10-20倍的亮度,因此可以实现更紧凑的光束角点或小型化照明器。似乎可以提供由蓝色激光二极管和陶瓷掺铈石榴石荧光板组成的相对较小的窄光束光源。为了生成期望的流明通量,单个蓝色二极管激光器的光可能是不够的,因为它可能被限制在每个芯片大约5W。组合若干蓝色激光二极管的光束可能是一种解决方案。然而,为了生成期望色点,蓝色激光的光(部分地)利用磷光体进行波长转换,如果不需要添加红色(激光)光以实现高显色性,则这似乎是有用的。在这样的实施例中,可能需要组合红色和蓝色激光二极管的光束。光束组合方法可以例如基于多芯光纤、贴片反射器或偏振和二向色滤光片。在这样的系统中,似乎可以组合数十到数百个二极管激光器。然而,这些系统看起来非常复杂,并且可能包含昂贵的组件。需要更有效的解决方案来组合例如两个或更多个激光二极管的光束。
因此,本发明的一个方面是提供一种备选的光生成设备,该光生成设备优选地进一步至少部分消除了上述缺点中的一个或多个。本发明的目的可以是克服或改善现有技术的缺点中的至少一个,或提供有用的替代方案。
在第一方面,本发明提供了一种光生成设备(“设备”或“照明设备”),该光生成设备包括(i)数目为n的多个光源和(ii)光学组件,其包括棱镜元件阵列。特别地,数目为n的多个光源可以包括被配置为生成经准直的第一光源光的一个或多个第一光源的第一子集和被配置为生成经准直的第二光源光的一个或多个第二光源的第二子集。此外,特别地,n≥2。在实施例中,棱镜元件阵列可以被配置为与n个光源成光接收关系。特别地,棱镜元件阵列包括k1个平行布置的第一棱镜面和k2个平行布置的第二棱镜面。在实施例中,k1≥1,更特别地k1≥2。替代地或另外地,在实施例中k2≥1,更特别地k2≥2。在特定实施例中,第一棱镜面和第二棱镜面不相互平行。此外,在特定实施例中,第一光源被配置为照射第一棱镜面并且第二光源被配置为照射第二棱镜面。特别地,在实施例中,棱镜元件被配置为反射或折射经准直的第一光源光和经准直的第二光源光,特别是作为(该)第一光源光和(该)第二光源光的重合光束。特别地,光生成设备被配置为生成设备光,设备光可以包括第一光源光和第二光源光中的一个或多个,并且如果光生成设备还包括被配置为转换第一光源光和第二光源光中的一项或多项的至少一部分的发光材料,则设备光可选地还包括发光材料光。因此,在特定实施例中,本发明提供了一种光生成设备,该光生成设备包括(i)数目为n的多个光源和(ii)包括棱镜元件阵列的光学组件,其中:(a)数目为n的多个光源包括一个或多个第一光源的第一子集和一个或多个第二光源的第二子集,该一个或多个第一光源的第一子集被配置为生成经准直的第一光源光的,该一个或多个第二光源的第二子集被配置为生成经准直的第二光源光,其中n≥2;(b)棱镜元件阵列,被配置为与n个光源成光接收关系,其中棱镜元件阵列包括k1个平行布置的第一棱镜面和k2个平行布置的第二棱镜面,其中k1≥1,更具体地,其中k1≥2,并且其中k2≥1,更特别地其中k2≥2,其中第一棱镜面和第二棱镜面不相互平行;(c)第一光源,被配置为照射第一棱镜面并且第二光源被配置为照射第二棱镜面;以及(d)棱镜元件,被配置为将准直的第一光源光和准直的第二光源光反射或折射为(准直的)第一光源光和(准直的)第二光源光的重合光束。(准直的)第一光源光和(准直的)第二光源光的重合光束从光生成设备发出。因此,由光生成设备生成的设备光在实施例中可以包括(准直的)第一光源光和(准直的)第二光源光的重合光束或在实施例中基本上由(准直的)第一光源光和(准直的)第二光源光的重合光束组成。因此,在实施例中,光生成设备包括光束组合器。光生成设备可以被布置为生成白光。
利用这种设备,可以组合两个或更多个准直光束,诸如特别是两个或更多个准直激光束。因此,利用这种设备,可以提供高强度辐射。此外,利用这种设备,可以在所得到的(设备)光束之上产生两个或激光束的相对均匀分布。此外,特别地,(准直的)激光可以保持(严格)准直。此外,利用这种设备,各种激光器的光束可以交错,在实施例中甚至没有重叠和/或没有暗隙。此外,激光束的偏振状态还可以被保留。在实施例中,该设备可以用于组合基本相同的(激光)光源,从而提供这种(激光)光源的光源光的重合光束。这可以提供高强度的设备光束,该设备光束在特定实施例中可以是基本上单色的。然而,在其他实施例中,第一光源光的至少一部分和/或第二光源光的至少一部分可以被发光材料转换(成发光材料光)。此外,在实施例中,可以提供白光,该白光具有相对高的强度和相对宽的范围的相关色温和相对高的显色指数,诸如至少75,甚至约80,或甚至更高,例如至少85,甚至至少90。光生成设备(因此)也可以被指示为光束组合设备或可以包括这样的光束组合器。
如上所述,光生成设备被配置为生成设备光,该设备光包括第一光源光和第二光源光中的一个或多个,并且可选地还包括发光材料光。为此,光生成设备包括第一光源、第二光源和可选的发光材料。在特定实施例中,光生成设备被配置为生成基本上仅包括发光材料光的设备光。在这样的实施例中,基本上所有的第一光源光和第二光源光都可以被转换成发光材料光(和可选地转换成热)。
在下文中,首先描述与第一光源和第二光源相关的一些方面,然后描述与可选发光材料相关的一些方面。
该设备包括数目为n的多个光源。这里,术语“n个光源”特别地指代至少2个光源。因此,n≥2。然而,在特定实施例中,可以有两个以上的光源,例如4个、16个或更多,例如至少32个、或至少64个、或甚至更多。
在实施例中,多个光源包括一个或多个第一光源的第一子集和一个或多个第二光源的第二子集。这些光源子集可以向不同的棱镜面提供辐射。另见下文。然而,当棱镜面较大和/或细长时,多个光源可以向同一棱镜面提供辐射。然而,这里,存在至少两个光源子集的这一事实特别地指代两个光源子集向不同(类型)棱镜面提供辐射的实施例(也参见下文)。然而,可以有两个以上的光源子集。每个光源子集可以向相应类型的棱镜面提供辐射。然而,在实施例中,也可以存在可以处理相同类型的棱镜面(例如,第一棱镜面或第二棱镜面等)的多于两个的光源子集的两个或更多个子集。
每个子集可以包括一个或多个光源。在特定实施例中,至少两个光源子集中的一个或多个包括多个光源。例如,如以下在实施例中进一步阐明的,至少两个光源子集中的一个或多个(诸如至少两个光源子集中的每个)包括多个激光光源。
通常,子集中的所有光源可以提供具有基本相同光谱功率分布的辐射。例如,子集中的每个光源可以包括相同区间的固态光源。通过本发明,可以组合这些光源的光束。
第一光源子集和第二光源子集可以生成具有不同光谱功率分布的相应辐射。然而,在又一实施例中,第一光源子集和第二光源子集可以生成具有基本相同光谱功率分布的相应辐射。然而,特别地,在(特定)实施例中,第一子集的一个或多个第一光源可以提供具有与第二子集的一个或多个第二光源不同的光谱功率分布的辐射,例如,分别是蓝光和红光。因此,在实施例中,第一光源光和第二光源光可以相互不同。因此,在实施例中,第一光源和第二光源可以不同,因为光谱功率分布可以相互不同。替代地或另外地,第一光源的第一子集的一个或多个第一光源可以提供具有与第一光源的第一子集的一个或多个其他第一光源不同的光谱功率分布的第一光源光。又替代地或另外地,第二光源的第二子集的一个或多个第二光源可以提供具有与第二光源的第二子集的一个或多个其他第二光源不同的光谱功率分布的第二光源光。因此,相同光源和不同光源的许多组合是可能的,并且可以用于生成组合光束。
当应用具有不同光谱功率分布的光源时,以图案方式照射棱镜元件可能是有用的。以这种方式,光混合可能是最有效的。然而,同样,当应用具有基本相同光谱功率分布的光源时,以图案方式照射棱镜元件可能是有用的。
因此,在实施例中,一个或多个第一光源的第一子集可以发射相同颜色(或光谱功率分布)的光。替代地或另外地,在实施例中,一个或多个第二光源的第二子集可以发射相同颜色(或光谱功率分布)的光。
在特定实施例中,一个或多个第一光源的第一子集可以发射具有相同偏振的光。替代地或另外地,在实施例中,一个或多个第二光源的第二子集可以发射具有相同偏振的光(其可以与第一子集的第一光源相同或不同)。
在实施例中,一个或多个第一光源的第一子集和一个或多个第二光源的第二子集可以发射(基本上)相同颜色(或光谱功率分布)的光。这样的光束可以与本文中描述的设备(或光束组合器)组合,而这对于基于二向色的光组合器来说基本上是不可能的。
在实施例中,一个或多个第一光源的第一子集和一个或多个第二光源的第二子集可以发射具有(基本上)相同偏振的光,然而这对于基于偏振器的光组合器来说基本上是不可能的。
在下文中,讨论与第一光源和第二光源有关的一些方面。
在特定实施例中,当第一类型的光源光和第二类型的光源光的相应色点的差异针对u’为至少0.01和/或针对v’为至少0.01,甚至更特别地针对u’为至少0.02和/或针对v’为至少0.02时,第一类型的光源光和第二类型的光源光的颜色或色点(或光谱功率分布)可以不同。在更具体的实施例中,第一类型的光和第二类型的光的相应色点的差异可以针对u’为至少0.03和/或针对v’为至少0.03。这里,u’和v’是CIE 1976 UCS(统一色度标度)图中光的颜色坐标。
如上所述,在实施例中,光生成设备可以包括被配置为生成第一光源光的第一光源,诸如在实施例中为蓝色的第一光源光。因此,在实施例中,第一光源光可以具有蓝色的色点。
特别地,第一光源可以包括第一激光光源。第一激光光源具体地被配置为生成第一激光光源光。在实施例中,第一光源光可以基本上由第一激光光源光组成。因此,在实施例中,第一光源是第一激光光源。在实施例中,术语“第一光源”也可以指代多个相同的第一光源。在实施例中,可以应用一组第一激光光源。替代地或另外地,术语“第一光源”还可以指代多个不同的第一光源。在实施例中,术语“第一激光光源”也可以指代多个相同的第一激光光源。替代地或另外地,术语“第一激光光源”还可以指代多个不同的第一激光光源。
如上所述,光生成设备可以包括被配置为生成第二光源光的第二光源,例如在实施例中为红色的第二光源光。因此,在实施例中,第二光源光可以具有红色的色点。
特别地,第二光源可以包括第二激光光源。第二激光光源具体地被配置为生成第二激光光源光。在实施例中,第二光源光可以基本上由第二激光光源光组成。因此,在实施例中,第二光源是第二激光光源。在实施例中,术语“第二光源”也可以指代多个相同的第二光源。在实施例中,可以应用一组第二激光光源。替代地或另外地,术语“第二光源”也可以指代多个不同的第二光源。在实施例中,术语“第二激光光源”也可以指代多个相同的第二激光光源。
在此,术语“紫光”或“紫光发射”特别涉及波长在约380-440nm范围内的光。术语“蓝光”或“蓝光发射”特别涉及波长在约440-495nm范围内的光(包括一些紫色和青色色调)。术语“绿光”或“绿色发射”特别涉及波长在约495-570nm范围内的光。术语“黄光”或“黄色发射”特别涉及波长在约570-590nm范围内的光。术语“橙色光”或“橙色发射”特别涉及波长在约590-620nm范围内的光。术语“琥珀色”可以指代选自约585-605nm(例如约590-600nm)范围内的一个或多个波长。术语“红光”或“红光发射”特别涉及波长在约615-780nm(更特别地是620-780nm)范围内的光。术语“粉红色光”或“粉红色发射”是指具有蓝色和红色成分的光。术语“可见”、“可见光”或“可见发射”和类似术语是指一个或多个波长在约380-780nm范围内的光。
术语“光”和“辐射”在本文中可互换使用,除非从上下文清楚术语“光”仅指可见光。术语“光”和“辐射”因此可以指代UV辐射、可见光和IR辐射。在特定实施例中,特别地,对于照明应用,术语“光”和“辐射”是指可见光。
此外,本文的术语“第一光源”也可以指代一个或多个第一光源。同样,术语“第二光源”也可以指代一个或多个第二光源,等等。
因此,短语“数目为n的多个光源包括一个或多个第一光源的第一子集和一个或多个第二光源的第二子集”或“数目为n的多个光源包括一个或多个第一光源的第一子集和一个或多个第二光源的第二子集,该一个或多个第一光源的第一子集被配置为生成第一光源光,该一个或多个第一光源的第一子集被配置为生成第二光源光的一个或多个第二光源的第二子集”和类似的短语可以指代其中仅存在两个子集的实施例,但在实施例中也可以指代两个或更多个光源子集。在特定实施例中,可以存在三个或更多个不同的光源子集。例如,第一光源的第一子集可以被配置为生成蓝色的第一光源光,第二光源的第二子集可以被配置为生成红色的第二光源光,并且第三光源的第三子集可以被配置为生成琥珀色的第三光源光或青色的第三光源光。或者,在实施例中,第一光源的第一子集可以被配置为生成蓝色的第一光源光,第二光源的第二子集可以被配置为生成红色的第二光源光,第三光源的第三子集可以被配置为生成琥珀色的第三光源光,第四光源的第四子集被配置为生成青色的第四光源光。
特别地,一个或多个第一光源的第一子集被配置为生成准直的第一光源光。此外,特别地,一个或多个第二光源的第二子集(还)被配置为生成准直的第二光源光。为此,可以应用可选的(准直)光学器件。这种光学器件可以由一个或多个第一光源和/或一个或多个第二光源组成。用于准直的合适光学器件的示例是透镜、准直器和抛物面反射器。因此,准直器元件可以包括透镜、准直器和抛物面反射器中的一种或多种。特别地,可以使用抛物面反射器,因为它们可以允许光生成设备的紧凑设计。
在实施例中,(激光)光源光束可以是相对高度地准直的,诸如在实施例中≤2°(FWHM),更特别地≤1°(FWHM),最特别地≤0.5°(FWHM)。因此,≤2°(FWHM)可以被认为是(高度地)准直的光源光。光学器件可以用于提供这种(高)准直(另见上文)。
在特定实施例中,第一光源可以包括被配置为生成第一激光光源光的第一激光光源和被配置为提供准直的第一激光光源光的(第一)准直元件。替代地或另外地,第二光源可以包括被配置为生成第二激光光源光的第二激光光源和被配置为提供准直的第二激光光源光的(第二)准直元件。因此,在实施例中,在每个激光光源下游,可以配置有准直器,准直器用于准直激光光源光(并且提供准直的光源光)。这可以提供在实施例中具有准直≤2°(FWHM)的(激光)光源光(也参见上文)。此外,在特定实施例中,准直器可以包括抛物面反射器。抛物面反射器可以很好地准直。
特别地,对于激光二极管,可能需要准直。然而,其他激光器可以提供准直的激光光源光本身。因此,在实施例中,(i)第一光源可以包括被配置为生成第一激光光源光的第一激光光源(和可选地,被配置为提供(进一步)准直的第一(激光)光源光的准直元件),和/或(ii)第二光源包括被配置为生成第二激光光源光的第二激光光源(和可选地,被配置为提供(进一步)准直的第二(激光)光源光的准直元件)。
因此,本文所述的光源可以特别地提供准直的光源光(也见上文)。这种准直可以通过例如使用提供准直的激光光源光本身的激光器来实现。替代地或另外地,这种准直可以通过例如结合下游配置的准直元件使用提供较少或不提供准直的激光源光的激光器来实现。在两个实施例中,都提供有准直的光源光(在后面的实施例中,其可以基本上由准直的激光光源光组成)。
此外,如上所述,光生成设备可以包括光学组件,该光学组件包括棱镜元件阵列。在实施例中,光学组件可以基本上由该阵列组成。这里,术语“阵列”可以指代至少两个棱镜元件。然而,特别地,该阵列包括至少4个,例如至少8个棱镜元件。棱镜元件可以被配置为一维阵列或二维阵列。
在实施例中,棱镜元件包括三角棱镜。一侧可以利用第一光源光照射,并且可选地用其他光源(除第二光源之外)的光源光照射,另一侧可以用第二光源光照射,并且可选地用其他光源(除第一光源之外)的光源光照射。在定义的三角棱镜以三个平坦侧面为特征的情况下,在实施例中,棱镜元件可以具有非平坦侧面,例如弯曲的或琢面(facet)的。因此,在实施例中,三角棱镜可以具有两个(细长的)基本平坦的面和一个底面(其也可以是基本平坦的)。替代地,两个(细长的)面可以具有一个或多个曲率。然而,横截面可以具有整体三角形形状。代替术语“面”,也可以应用术语“琢面”。
在例如棱镜元件的情况下,这样的元件可以(因此)被拉长,特别是拉长到允许多个光源照射单个面的程度。例如,两个或更多个光源可以照射同一面。甚至更特别地,四个或更多个光源可以照射同一面,例如至少八个光源,或甚至更多。
在特定实施例中,(多个)棱镜元件的至少一个尺寸(如高度和/或底部宽度)可以选自5μm-1mm(诸如5-500μm)的范围。甚至更特别地,底部宽度和高度都可以选自μm-1mm(诸如5-500pm)的范围。在实施例中,棱镜元件阵列的间距可以选自约5-100μm的范围,甚至更特别地选自约5-50μm的范围。当间距低于约50μm时,不同光束的混合可能达到人眼可能看不到可能的不均匀性的程度。
如上所述,棱镜元件阵列特别被配置为与n个光源成光接收关系。因此,棱镜元件阵列可以配置在(多个)第一光源和(多个)第二光源(以及可选地另外的光源,也参见上文)两者下游。术语“上游”和“下游”涉及相对于来自光生成部件(这里特别地是光源)的光的传播的项目或特征的布置,其中相对于来自光生成部件的光束内的第一位置,光束内靠近光生成部件的第二位置为“上游”,并且光束内远离光生成部件的第三位置为“下游”。换句话说,光学组件、特别是棱镜元件阵列可以与(多个)第一光源和(多个)第二光源辐射耦合。
特别地,每个棱镜结构包括可以被配置为具有相互角的第一棱镜面(或第一棱镜琢面)和第二棱镜面(或第二棱镜琢面)。第一棱镜面和第二棱镜面可以从基面(或基琢面)延伸并且在棱镜结构的顶点处组合。
尽管不排除在不同角度、长度、宽度等方面存在不同的棱镜元件,但在特定实施例中,阵列包括基本上相同的棱镜结构,至少在顶角和底角方面。
因此,在实施例中,棱镜元件阵列包括k1个平行布置的第一棱镜面和k2个平行布置的第二棱镜面,其中k1≥2并且其中k2≥2,其中第一棱镜面和第二棱镜面不相互平行。特别地,在实施例中k1=k2。例如,当应用n个(基本上相同的)三棱镜时,棱镜面可以由顶点定义,每个三棱镜具有第一棱镜面和第二棱镜面。因此,在这样的实施例中,n=k1=k2。因此,在实施例中,不同棱镜元件的第一棱镜面可以平行配置,和/或不同棱镜元件的第二棱镜面可以平行配置(尽管特别地,第一棱镜面和第二棱镜面不相互平行)。
术语“不相互平行”可以指代不具有0°或180°的相互角(γ1)的棱镜面(即,第一棱镜面和第二棱镜面)。棱镜元件可以具有对称或不对称的横截面。因此,底角可以相同或不同。在特定实施例中,棱镜面是镜像。
如上所述,棱镜元件阵列可以配置在第一光源和第二光源(以及可选地另外的光源)两者下游。特别地,在实施例中,第一光源被配置为照射第一棱镜面,并且第二光源被配置为照射第二棱镜面。正如其他地方所提到的,“第一”和“第二”仅用作指示。
基本上,棱镜结构和光源可以被配置为使得棱镜结构折射辐射或反射辐射。此外,棱镜结构和光源可以被配置为使得第一光源光和第二光源光可以再次巧合地从棱镜结构传播开(在反射或折射之后)。因此,以这种方式,不同光源的准直光源光被组合成单个(准直)光束。这可以通过选择光源的照射光束的角度以及棱镜结构的形状和材料来获取(也参见下文)。因此,特别地,在实施例中,棱镜元件可以被配置为将准直的第一光源光和准直的第二光源光反射或折射为(准直的)第一光源光和(准直的)第二光源光的重合光束。因此,设备光在实施例中可以包括(准直的)第一光源光和(准直的)第二光源光的重合光束。有关“准直”和类似术语的定义另请参见上文。重合光束可以基本上平行。然而,光轴不一定是重合光轴。然而,特别地,光轴(光学组件下游)基本上是平行的。
下面,更详细地描述一些实施例。
在实施例中,光源、特别是激光光源可以与导热体热耦合。替代地或另外地,棱镜元件或包括棱镜元件的光学组件可以热耦合到导热体。导热体包括导热材料。导热体可以包括散热片元件或散热器元件。导热材料的导热率可以特别为至少约20W/m/K,如至少约30W/m/K,诸如至少约100W/m/K,特别如至少约200W/m/K。散热器在本领域中是已知的。术语“散热器(heatsink,或heat sink)”特别可以是无源热交换器,该无源热交换器将由诸如电子设备或机械设备等设备生成的热量传递到流体(冷却)介质(通常是空气或液体冷却剂)。因此,热量(至少部分)从设备耗散。散热器专门设计为使其与其周围的流体冷却介质接触的表面积最大化。因此,特别地,散热器可以包括多个翅片。例如,散热器可以是具有在其上延伸的多个翅片的体。散热器特别包括导热材料(更特别地由其组成)。在实施例中,散热器可以包括铜、铝、银、金、碳化硅、氮化铝、氮化硼、碳化硅铝、氧化铍、碳化硅复合材料、碳化铝硅、钨铜合金、铜碳化钼、碳、金刚石和石墨中的一种或多种,或者由其组成。替代地或另外地,散热器可以包括氧化铝或者由氧化铝组成。术语“散热器”还可以指代多个(不同的)散热器。在实施例中,光生成设备可以包括导热体,其中数目为n的多个光源和棱镜元件与导热体热耦合。
代替术语“热耦合”,也可以应用术语“热接触”。如果一个元件可以通过热过程交换能量,则可以认为它与另一元件热接触。在实施例中,热接触可以通过物理接触来实现。在实施例中,热接触可以经由诸如导热胶(或导热粘合剂)等导热材料来实现。当两个元件相对于彼此以等于或小于约10μm的距离布置时,也可以在两个元件之间实现热接触,尽管更大的距离(例如高达100μm)也是可能的。距离越短,热接触越好。特别地,该距离为10μm或更小,例如5μm或更小。该距离可以是相应元件的两个相应表面之间的距离。
在实施例中,多个光源和光学组件(也可以表示为“光束组合器”)可以布置在散热器上。在实施例中,多个光源和光学组件可以布置在同一散热器上。
在实施例中,多个光源可以布置在印刷电路板上。在实施例中,印刷电路板可以包括布置在衬底与图案化电极之间的电绝缘层。在实施例中,图案化电极可以被配置为将驱动器电连接到激光二极管。此外,在实施例中,印刷电路板可以是金属芯印刷电路板。在特定实施例中,多个光源和光学组件可以布置在同一印刷电路板上(即,它可以变成激光封装)。在实施例中,印刷电路板可以(物理地)连接到外部散热器。
其中,可以有两种类型的实施例。第一实施例可以基于反射并且第二实施例可以基于折射。在前面的实施例中,光源的光可以直接照射琢面,光源光从该琢面反射。在后面的实施例中,光源光可以进入另外的琢面或面,例如棱镜元件的基面,传播通过棱镜元件,并且在第一琢面或第二琢面处折射。因此,在这些后面的实施例中,第一光源可以被配置为间接照射第一棱镜面,并且第二光源可以被配置为间接照射第二棱镜面。
首先,进一步阐明一些反射实施例。此后,进一步阐明一些折射实施例。
在实施例中,棱镜元件对于第一光源光和第二光源光是反射性的。特别地,光源光可以反射到的棱镜面是镜面反射性的。由于所使用的材料(诸如银(Ag)和铝(Al)),棱镜元件可以是反射性的。在替代实施例中,棱镜元件可以包括金(Au),金(Au)可以是反射性的,例如IR激光器。棱镜元件也可以涂有反射涂层,诸如(其他)金属层、介电薄膜反射器(例如,包括具有不同厚度和折射率的膜的堆叠)、或者这些中的两种或更多种的组合。
然而,另外地或替代地,可以使用其他材料,诸如(透光)聚合材料。同样,在聚合材料的棱镜结构的表面,光源光可以被反射。
特别地,棱镜元件被成形为使得并且光源的入射角被选择为使得能够获取反射。这是本领域技术人员已知的。
令人惊讶的是,特定的棱镜形状在反射、混合和防止杂散光方面提供了最佳结果。特别地,顶角约为120°的棱镜形元件可能是有用的。因此,在实施例中,棱镜元件的第一棱镜面和第二棱镜面限定的第一顶角(γ1)选自120°±15°、特别地是120°±10°、甚至更特别地是120°±5°的范围。棱镜面的底角(β1)然后在实施例中(每个)可以是0.5*(180-γ1)。
此外,当准直的第一光源光大致掠过(平面)第二面以到达第一面或掠过时和/或当准直的第二光源光大致掠过第一面以到达第二面时,这似乎是有用的。对于较小或较大的角度,光源光可以在与预期面不同的其他类型的面处反射,导致杂散光,或者可能无法到达预期面,导致非闪光区域。因此,特别地,相对于平面(这可以是基平面),棱镜元件的第一棱镜面和第二棱镜面具有选自30°±5°范围的第一底角(β1)。在(更进一步)特定实施例中,第一光源光具有第一光轴(O1)并且第二光源光具有第二光轴(O2),其中光轴(O1、O2)具有光束角(α1、α2)并且具有等于或小于相应底角(β1)的平面。
在又一些实施例中,棱镜元件对于第一光源光和第二光源光是折射性的。由于所使用的材料,棱镜元件可以是折射性的。特别地,棱镜元件的材料是透光的,更特别地是基本上透明的。例如,可以使用透光聚合材料。替代地,可以应用玻璃或石英(诸如光学质量玻璃)。第一光源光和/或第二光源光可以经由基面进入棱镜结构,传播通过棱镜结构并且在第一棱镜面或第二棱镜面处折射。光源光因此可以照射第一棱镜面或第二棱镜面,但仅在首先从基面传播到这种棱镜面之后。特别地,棱镜元件的形状被选择为使得并且光源的入射角被选择为使得能够获取折射。这是本领域技术人员已知的。
令人惊讶的是,特定的棱镜形状在反射、混合和防止杂散光方面提供了最佳结果。特别地,具有约为55°的顶角的棱镜形元件可能是有用的。因此,在实施例中,棱镜元件的第一棱镜面和第二棱镜面限定的第一顶角(γ1)选自55°±15°范围,特别地选自55°±10°范围,甚至更特别地选自55°±5°范围。棱镜面的底角然后在实施例中(每个)可以是0.5*(180-γ1)。
如上所述,在折射棱镜元件的情况下,光耦合可以例如经由基面或基琢面发生。入射角可以被选择为使得当经由第一琢面或第二琢面耦合出时,第一光源光和第二光源光逸出重合。因此,在实施例中,棱镜元件包括基面,其中第一光源光具有第一光轴(O1)并且其中第二光源光具有第二光轴(O2),其中光轴(O1、O2)具有与基面的法线(N)的光束入射角(θ1、θ2),该光束入射角(θ1、θ2)选自45°±10°的范围。
在实施例中,棱镜元件可以包括在透光体中或从透光体延伸。光源光可以在其他地方进入体,传播到棱镜元件并且被反射或折射。因此,在特定实施例中,光生成设备包括透光体,其中棱镜元件由透光体包括。
在此,关于若干实施例提及了透光材料。透光材料可以包括选自透光有机材料的一种或多种材料,例如选自PE(聚乙烯)、PP(聚丙烯)、PEN(聚萘二甲酸乙二醇)、PC(聚碳酸酯)、聚甲基丙烯酸酯(PMA)、聚甲基丙烯酸甲酯(PMMA)(有机玻璃或有机玻璃)、醋酸丁酸纤维素(CAB)、有机硅、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)(在一个实施例中包括(PETG)(乙二醇改性聚对苯二甲酸乙二醇酯))、PDMS(聚二甲基硅氧烷)和COC(环烯烃共聚物)。特别地,透光材料可以包括芳族聚酯或其共聚物,例如聚碳酸酯(PC)、聚甲基丙烯酸(甲)酯(P(M)MA)、聚乙交酯或聚乙醇酸(PGA)、聚乳酸(PLA)、聚己内酯(PCL)、聚己二酸(PEA)、聚羟基链烷酸酯(PHA)、聚羟基丁酸(PHB)、聚(3-羟基丁酸-co-3-羟基戊酸)(PHBV)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸丙二醇酯(PTT)、聚萘二甲酸乙二醇酯(PEN);特别地,透光材料可以包括聚对苯二甲酸乙二醇酯(PET)。因此,透光材料特别地是聚合物透光材料。然而,在另一实施例中,透光材料可以包括无机材料。特别地,无机透光材料可以选自玻璃、(熔融)石英、透光陶瓷材料和可选的硅树脂。也可以应用包括无机和有机部分两者的混合材料。特别地,透光材料包括PMMA、透明PC或玻璃中的一种或多种。特别地,透光材料包括聚合材料。替代地,透光材料包括玻璃或石英(诸如光学质量玻璃)。
在实施例中,光生成设备可以包括多个光学组件。在特定实施例中,光生成设备可以被配置为组合作为本文中描述的光束组合的结果的光束。因此,在实施例中,光生成设备包括两个或更多个光束光学组件的级联。
在实施例中,光生成设备可以包括如本文所述的光束组合器,但也还可以包括常规的光束组合器,例如基于多芯光纤、修补反射器和/或偏振和二向色滤光片。
例如,本发明可以提供用于组合第一偏振的光和不同于第一偏振的第二偏振的光(通过可选地(也)使用偏振器)的如本文中定义的光束组合器。例如,本发明可以提供用于通过使用二向色镜组合具有第一光谱分布的光和具有不同于第一光谱分布的第二光谱分布的光的如本文中定义的光束组合器。例如,第一光束组合器可以被配置为组合蓝色,第二光束组合器可以被配置为组合绿色,第三光束组合器可以被配置为组合红色,并且这些颜色可以使用二向色(dichroic)来组合。
在实施例中,上述激光封装可以包括光束收集器。
光束组合器元件可以包括光学组件,该光学组件包括棱镜元件阵列。可选地,合束器元件还可以包括数目为n的多个光源。
从棱镜元件逸出的第一光源光和/或第二光源光(并且当两者都提供给棱镜元件时同时逸出)可以被这样使用。例如,可以提供强单色光生成设备。然而,也可以提供白光生成设备或彩色光生成设备。例如,这可以基于本领域技术人员已知的RGB原理或RGBY原理。在特定实施例中,这种光生成设备可以完全基于激光。
在特定实施例中,光源光的一部分用于生成发光材料光。因此,在特定实施例中,光生成设备还可以包括配置在棱镜元件下游的发光材料,其中发光材料被配置为将第一光源光和第二光源光中的一项或多项的至少一部分转换成发光材料光。下面进一步描述发光材料的特定实施例。在这样的实施例中,光生成设备可以是基于激光和发光材料的。
在特定实施例中,发光材料可以例如作为陶瓷体提供或可以由陶瓷体构成。因此,在实施例中,光生成设备还可以包括配置在棱镜元件下游的陶瓷体,其中陶瓷体包括发光材料,并且其中陶瓷体对于第一光源光和第二光源光中的一项或多项的至少一部分是透射性的。
如上所述,光生成设备特别地被配置为生成设备光。在特定实施例中,设备光可以包括以下中的一项或多项:(i)第一光源光、(ii)第二光源光和(iii)发光材料光(见上文)。
在特定实施例中,光生成设备被配置为在光生成设备的一种或多种操作模式下生成白色设备光。这可以基于使用如上所述的发光材料的光生成设备或基于包括具有不同颜色的不同光源的光生成设备,该不同光源可以在一定操作模式下一起提供白光。
光生成设备还可以包括用于控制第一光源和第二光源中的一项或多项的控制系统。在特定实施例中,光生成设备还可以包括用以控制第一光源子集和第二光源子集中的一项或多项的控制系统。因此,在特定实施例中,光生成设备可以包括被配置为控制光源中的一个或多个的控制系统。在特定实施例中,控制系统被配置为控制设备光的一种或多种光学特性,特别地,在另外的实施例中,根据用户界面、传感器信号和定时器。在特定实施例中,一种或多种光学特性包括相关色温和显色指数。
该系统或装置或设备可以在“模式”或“操作模式”或“操作的模式”或“操作性模式”下执行动作。同样,在方法中,动作或阶段或步骤可以在“模式”或“操作模式”或“操作的模式”下执行。术语“模式”也可以表示为“控制模式”。这不排除该系统或装置或设备也可以适用于提供另一种控制模式或多种其他控制模式。同样,这不排除在执行模式之前和/或在执行模式之后可以执行一个或多个其他模式。然而,在实施例中,控制系统可以是可用的,其适于至少提供控制模式。如果其他模式可用,则这些模式的选择特别地可以经由用户界面来执行,尽管其他选项也是可能的,例如根据传感器信号或(时间)方案执行一定模式。在实施例中,操作模式还可以指代只能在单一操作模式下操作(即,“开启”,没有进一步的可调性)的系统、装置或设备。因此,在实施例中,控制系统可以根据用户界面的输入信号、(传感器的)传感器信号和定时器中的一个或多个进行控制。术语“定时器”可以指代时钟和/或预定的时间方案。另见下文。特别地,可以存在多种操作模式,例如至少两种,例如至少三种,例如至少五种,例如至少8种,例如至少16种。操作模式之间的改变可以是逐步的或无级。控制可以是模拟的或数字的。术语“控制”和类似术语至少特别地指代确定行为或监督元件的运行。因此,本文中的“控制”和类似的术语可以例如指代对元件施加行为(确定行为或监督元件的运行)等,例如测量、显示、启动、打开、切换、改变温度等。除此之外,术语“控制”和类似术语还可以包括监测。因此,术语“控制”和类似的术语可以包括对元件施加行为以及对元件施加行为并且监测该元件。元件的控制可以通过控制系统来完成,该控制系统也可以表示为“控制器”。控制系统和元件因此可以至少暂时地或永久地在功能上耦合。该元件可以包括控制系统。在实施例中,控制系统和元件可以不物理耦合。控制可以经由有线和/或无线控制来完成。术语“控制系统”也可以指代多个不同的控制系统,这些控制系统特别地功能耦合,例如一个控制系统可以是主控制系统,而一个或多个其他控制系统可以是从控制系统。控制系统可以包括或可以在功能上耦合到用户界面。控制系统还可以被配置为接收和执行来自遥控器的指令。在实施例中,控制系统可以经由设备上的应用程序来控制,例如便携式设备,如智能手机或智能电话、平板电脑等。因此,该设备不必耦合到照明系统,而可以(临时)在功能上耦合到照明系统。因此,在实施例中,控制系统可以(也)被配置为由远程设备上的应用程序控制。在这样的实施例中,照明系统的控制系统可以是从控制系统或从模式的控件。例如,照明系统可以用代码来标识,特别是相应照明系统的唯一代码。照明系统的控制系统可以被配置为由外部控制系统控制,该外部控制系统基于(唯一)代码的知识(由具有光学传感器(例如,QR码阅读器)的用户界面输入)来访问照明系统。照明系统还可以包括用于与其他系统或设备通信的部件,例如基于Bluetooth、LiFi、WIFI、ZigBee、BLE或WiMAX或其他无线技术。
本发明可以通过包括若干不同元件的硬件以及通过适当编程的计算机来实现。在设备权利要求、或装置权利要求或系统权利要求中,列举了若干手段,这些手段中的若干可以由同一硬件项来体现。在相互不同的从属权利要求中列举了某些措施这一事实并不表明这些措施的组合不能有利地使用。本发明还提供了一种控制系统,该控制系统可以控制设备、装置或系统,或者可以执行本文中描述的方法或过程。此外,本发明还提供了一种计算机程序产品,当在功能上耦合到设备、装置或系统或由其包括的计算机上运行时,该计算机程序产品控制这样的设备、装置或系统的一个或多个可控元件。
在特定实施例中,光生成设备可以包括被配置为控制第一光源和第二光源的控制系统。这可以允许控制相关色温和/或显色指数、和/或设备光的色点。因此,在特定实施例中,光生成设备还可以包括控制系统,其中控制系统被配置为通过控制第一光源和第二光源来控制设备光的相关色温和显色指数中的一项或多项。
在实施例中,光生成设备可以包括传感器(诸如光传感器),传感器用于感测光,特别是组合光。在特定实施例中,光传感器可以布置为与光束组合器光学接触。此外,在实施例中,光传感器可以被反射器部分地屏蔽,使得传感器可以感测(组合)光的一小部分。
因此,在光生成设备的实施例中,第一光源光和第二光源光具有不同光谱功率分布,其中光生成设备还包括被配置为通过控制第一光源和第二光源来控制设备光的相关色温和显色指数中的一项或多项的控制系统。此外,在实施例中,光生成设备还包括被配置为例如根据用户界面、传感器信号和定时器中的一项或多项来控制设备光的控制系统。
当应用发光材料时,并且当应用不同类型的光源时,与一种或多种其他类型的光源光相比,发光材料可以更好地吸收一种类型的光源光。甚至,一种类型的光源光可以主要被吸收和转换,而一种或多种其他类型的光源光可以基本上不被吸收(并且不被转换)。此外,发光材料的配置(诸如,反射或透射模式)以及相关吸收物质的浓度可以被选择为使得光源光的至少一部分被吸收(良好)并且至少一部分被透射,尽管在其他实施例中,基本上所有类型的光源光都可以被吸收(和转换)。因此,在实施例中,发光材料具有对第一光源光的第一吸收率(A1)和对第二光源光的第二吸收率(A2),其中A1/A2≥5或其中A2/A1≥5。
下面描述一些(另外的)实施例。与光源或激光光源有关的实施例可以应用于第一光源和/或第二光源(和/或另外的光源,如果它们被应用的话)。
术语“光源”可以指代包括发光器件的半导体,诸如发光二极管(LED)、谐振腔发光二极管(RCLED)、垂直腔激光二极管(VCSEL)、边缘发射激光器等。术语“光源”在特定实施例中还可以指代有机发光二极管(包括发光器件),例如无源矩阵(PMOLED)或有源矩阵(AMOLED)。特别地,在实施例中,光源包括固态光源(例如,LED或激光二极管)。在一个实施例中,光源包括LED(发光二极管)。术语LED也可以指代多个LED。此外,术语“光源”在实施例中还可以指代所谓的板上芯片(COB)光源。术语“COB”特别地指代半导体芯片形式的LED芯片,它既不封装也不连接,而是直接安装到PCB等基板上。因此,可以在同一基板上配置多个半导体光源。在实施例中,COB是一起配置为单个照明模块的多LED芯片。术语“光源”还可以涉及多个(基本上相同(或不同)的)光源,例如2-2000个固态光源。在实施例中,光源可以包括位于单个固态光源(诸如,LED)下游或多个固态光源下游(即,由多个LED共享)的一个或多个微光学组件(微透镜阵列)。在实施例中,光源可以包括具有片上光学器件的LED。在实施例中,光源包括像素化的单个LED(具有或不具有光学器件)(在实施例中提供片上光束控制)。术语“激光光源”特别地指代激光器。这种激光器特别地可以被配置为生成一个或多个波长在UV、可见光或红外中的激光光源光,特别地,波长选自200-2000nm的光谱波长范围,例如300-1500nm。术语“激光器”特别地指代通过基于电磁辐射的受激发射的光学放大过程来发射光的器件。特别地,在实施例中,术语“激光器”可以指代固态激光器。
因此,在实施例中,光源包括激光光源。在实施例中,术语“激光器”或“固态激光器”可以指代以下中的一项或多项:铈掺杂锂锶(或钙)氟化铝(Ce:LiSAF、Ce:LiCAF)、铬掺杂金绿玉(紫翠玉)激光器、铬ZnSe(Cr:ZnSe)激光器、二价钐掺杂氟化钙(Sm:CaF2)激光器、Er:YAG激光器、掺铒和铒镱共掺杂玻璃激光器、F-Center激光器、钬YAG(Ho:YAG)激光器、Nd:YAG激光器、NdCrYAG激光器、掺钕氧硼酸钇钙Nd:YCa4O(BO3)3或Nd:YCOB、掺钕原钒酸钇(Nd:YVO4)激光器、钕玻璃(Nd:glass)激光器、钕YLF(Nd:YLF)固态激光器、掺钷147磷酸盐玻璃(147Pm3+:glass)固态激光器、红宝石激光器(Al2O3:Cr3+)、铥YAG(Tm:YAG)激光器、钛蓝宝石(Ti:Sapphire;Al2O3:Ti3+)激光器、三价铀掺杂氟化钙(U:CaF2)固态激光器、掺镱玻璃激光器(棒、板/芯片和光纤)、镱YAG(Yb:YAG)激光器、Yb2O3(玻璃或陶瓷)激光器等。在实施例中,术语“激光器”或“固态激光器”可以指代半导体激光二极管中的一种或多种,例如GaN、InGaN、AlGaInP、AlGaAs、InGaAsP、铅盐、垂直腔表面发射激光器(VCSEL)、量子级联激光器、混合硅激光器等。
在实施例中,激光光源可以布置在激光组中(也参见上文)。在实施例中,激光器组可以包括散热器和/或光学器件,例如,用于准直激光的抛物面反射器。抛物面(或抛物体或抛物线)反射器特别地可以是用于收集或投射光的反射表面。它的形状可以是圆形抛物面的一部分,即由抛物线围绕其轴旋转而生成的表面。
激光光源被配置为生成激光光源光(或“激光”)。光源光可以基本上由激光光源光组成。光源光还可以包括两个或更多个(不同或相同)激光光源的激光光源光。例如,两个或更多个(不同或相同)激光光源的激光光源光可以耦合到光导中,以提供包括两个或更多个(不同或相同)激光光源的激光光源光的单个光束。在特定实施例中,光源光因此特别地是准直的光源光。在另外的实施例中,光源光特别地是(准直的)激光光源光。短语“不同光源”或“多个不同光源”以及类似短语在实施例中可以指代选自至少两个不同区间(bin)的多个固态光源。同样地,短语“相同光源”或“多个相同光源”以及类似短语在实施例中可以指代选自相同区间的多个固态光源。
光源特别地被配置为生成具有光轴(O)、(光束形状)和光谱功率分布的光源光。在实施例中,光源光可以包括一个或多个带,该带具有对于激光器而言已知的带宽。在特定实施例中,(多个)带可以是(多个)相对尖锐的线,例如在RT下的半峰全宽(FWHM)在小于20nm的范围内,诸如等于或小于10nm。因此,光源光具有可以包括一个或多个(窄)带的光谱功率分布(能量尺度上的强度,作为波长的函数)。
在实施例中,激光光源可以布置在激光组中。在实施例中,激光器组可以包括散热器和/或用于准直激光的光学器件(例如,透镜、多个透镜或透镜阵列)。激光组可以例如包括至少10个、例如至少20个激光光源。在实施例中,激光器组可以包括第一光源。替代地或另外地,激光组可以包括第二激光光源。
如上所述,在实施例中,第一光源光可以基本上由激光光源光组成。在另外的特定实施例中,第一光源光可以基本上由一个或多个基本上相同的激光光源(例如,来自相同区间)的第一激光光源光组成。此外,如上所述,第一光源可以包括用于准直第一激光光源光的准直光学器件。此外,如上所述,在实施例中,第二光源光可以基本上由激光光源光组成。在另外的特定实施例中,第二光源光可以基本上由一个或多个基本上相同的激光光源(诸如来自相同区间)的第二激光光源光组成。此外,如上所述,第二光源可以包括用于准直第二激光光源光的准直光学器件。
在特定实施例中,第一光源被配置为生成具有选自437-472nm的光谱波长范围的第一峰值波长λ1的蓝色第一光源光。在特定实施例中,第二光源被配置为生成具有第二峰值波长λ2的红色第二光源光,在特定实施例中,选自615-635nm的光谱波长范围,例如615-630nm,更特别地选自615-625nm的光谱波长范围,特别地是616-625nm。如上所述,特别地,第二光源是第二激光光源。
本文中的术语“发光材料”特别地涉及无机发光材料,其有时也表示为磷光体。这些术语是本领域技术人员已知的。
在实施例中,可以应用量子点和/或有机染料,并且可以可选地将量子点和/或有机染料嵌入到透射矩阵中,例如,聚合物,如PMMA或聚硅氧烷等。量子点是半导体材料的小晶体,具有通常只有几纳米的宽度或直径。当被入射光激发时,量子点会发出颜色由晶体尺寸和材料决定的光。因此,可以通过调节点的尺寸来生成特定颜色的光。大多数已知的在可见光范围内发射的量子点都是基于硒化镉(CdSe)和壳层,例如硫化镉(CdS)和硫化锌(ZnS)。也可以使用无镉量子点,例如磷化铟(InP)、铜铟硫化物(CuInS2)和/或银铟硫化物(AgInS2)。量子点显示出非常窄的发射带,因此它们显示出饱和的颜色。此外,可以通过调节量子点的尺寸轻松调节发射颜色。本领域已知的任何类型的量子点都可以用于本发明。然而,出于环境安全和关注的原因,可能优选使用无镉量子点或至少具有非常低镉含量的量子点。代替量子点或除了量子点之外,也可以使用其他量子限制结构。在本申请的上下文中,术语“量子限制结构”应当理解为例如量子阱、量子点、量子棒、三脚架、四脚架或纳米线等。也可以使用有机磷光体。合适的有机磷光体材料的示例是基于苝衍生物的有机发光材料,例如由BASF以名称
Figure BDA0003677677870000241
出售的化合物。合适化合物的实例包括但不限于
Figure BDA0003677677870000242
Red F305、
Figure BDA0003677677870000243
Orange F240、
Figure BDA0003677677870000244
Yellow F083和
Figure BDA0003677677870000245
F 170。
如上所述,光生成设备特别地还包括发光材料,该发光材料被配置为将第一光源光的至少一部分转换成具有发射带的发光材料光,该发射带具有在(a)绿色光谱波长范围和(b)黄色光谱波长范围中的一个或多个内的波长。
术语“发光材料”特别地指代可以将第一辐射、特别是蓝光辐射(UV辐射和蓝光辐射中的一种或多种)转换成第二辐射的材料。通常,第一辐射和第二辐射具有不同光谱功率分布。因此,代替术语“发光材料”,也可以应用术语“发光转换器”或“转换器”。通常,与第一辐射相比,第二辐射在更大的波长处具有光谱功率分布,这就是所谓的下变频的情况。然而,在特定实施例中,与第一辐射相比,第二辐射在更小的波长处具有强度的光谱功率分布,在所谓的上变频中就是这种情况。在实施例中,“发光材料”可以特别地指代可以将辐射转换为例如可见光和/或红外光的材料。例如,在实施例中,发光材料能够将UV辐射和蓝色辐射中的一种或多种转换成可见光。在特定实施例中,发光材料还可以将辐射转换成红外辐射(IR)。因此,在用辐射激发时,发光材料发射辐射。一般而言,发光材料将是下变频器,即,波长较小的辐射被转换成波长较大(λexem)的辐射,但在特定实施例中,发光材料可以包括下变频器发光材料,即,波长较大的辐射被转换成波长较小(λexem)的辐射。在实施例中,术语“发光”可以指代磷光。在实施例中,术语“发光”也可以指代荧光。代替术语“发光”,也可以应用术语“发射”。因此,术语“第一辐射”和“第二辐射”可以分别指代激发辐射和发射(辐射)。同样地,术语“发光材料”在实施例中可以指代磷光和/或荧光。术语“发光材料”也可以指代多种不同的发光材料。本文中的术语“发光材料”还可以指代包括发光材料的材料,例如包括发光材料的透光主体。
特别地,发光材料被配置为将蓝色第一光源光的一部分转换成具有发射带的发光材料光,该发射带具有在绿色和黄色的一个或多个中的波长。此外,特别地,发光材料光具有在约500-700nm范围内的一个或多个波长。此外,在特定实施例中,发光材料光具有至少50nm,例如至少75nm的半峰全宽(FWHM),如在特定实施例中高达约130nm(在室温下)。宽带可以提供更高的CRI。特别地,发光材料光具有绿色或黄色的色点,特别地是黄色。特别地,在实施例中,发光材料光的主波长(λd1)选自540-580nm的光谱波长范围,更特别地选自555-580nm的光谱波长范围。特别地,发光材料光的至少85%(例如至少90%)的光谱功率(以瓦特为单位)在500-700nm的范围内。因此,特别地,发光材料被配置为发射一个或多个波长至少为(绿色和/或)黄色的发光材料光。此外,特别地,发光材料光的发射强度在整个波长范围520-650之上,特别地甚至500-675nm,例如甚至在480-700nm的整个波长范围之上。
就CRI和CCT范围而言,特别好的结果似乎可以用铈掺杂的石榴石型材料实现。因此,在特定实施例中,发光材料包括A3B5O12:Ce类型的发光材料,其中实施例中的A包括Y、La、Gd、Tb和Lu中的一种或多种,特别地是(至少)Y、Gd、Tb和Lu中的一种或多种,并且其中实施例中的B包括Al、Ga、In和Sc中的一种或多种。特别地,A可以包括Y、Gd和Lu中的一种或多种,例如特别地是Y和Lu中的一种或多种。特别地,B可以包括Al和Ga中的一种或多种,更特别地至少包括Al,例如基本上完全是Al。因此,特别合适的发光材料是含铈的石榴石材料。石榴石的实施例特别地包括A3B5O12石榴石,其中A至少包括钇或镥并且其中B至少包括铝。这种石榴石可以掺杂铈(Ce)、镨(Pr)或铈和镨的组合;然而,特别地,掺杂Ce。特别地,B包括铝(Al),然而,B也可以部分地包括镓(Ga)和/或钪(Sc)和/或铟(In),特别是高达约20%的Al,更特别地是高达约10%的Al(即,B离子基本上由90%或更多摩尔%的Al和1O%或更少摩尔%的Ga、Sc和In中的一种或多种组成);B特别地可以包括高达约10%的镓。在另一变体中,B和O可以至少部分被代替为Si和N。元素A可以特别地选自由钇(Y)、钆(Gd)、铽(Tb)和镥(Lu)组成的组。此外,Gd和/或Tb的存在量特别地仅高达A的约20%。在特定实施例中,石榴石发光材料包括(Y1-xLux)3B5O12:Ce,其中x等于或大于0并且等于或小于1。项“:Ce”表示发光材料中的部分金属离子(即,石榴石中:部分“A”离子)被替换为Ce。例如,在(Y1-xLux)3Al5O12:Ce的情况下,部分Y和/或Lu被替换为Ce。这是本领域技术人员已知的。Ce将替换一般不超过10%的A;一般而言,Ce浓度将在0.1%到4%的范围内,特别是0.1%到2%(相对于A)。假定1%的Ce和10%的Y,完全正确的公式可能是(Y0.1Lu0.89Ce0.01)3Al5O12。如本领域技术人员已知的,石榴石中的Ce基本上或仅处于三价状态。
在实施例中,发光材料(因此)包括A3B5O12,其中在特定实施例中,最多10%的B-O可以被替换为Si-N。
在特定实施例中,发光材料包括(Yx1-x2-x3A’x2Cex3)3(Aly1-y2B’y2)5O12,其中x1+x2+x3=1,其中x3>0,其中0<x2+x3≤0.2,其中y1+y2=1,其中0≤y2≤0.2,其中A’包括选自由镧系元素的组中的一种或多种元素,并且其中B’包括选自由Ga、In和Sc组成的组的一种或多种元素。在实施例中,x3选自0.001-0.1的范围。在本发明中,特别地,x1>0,诸如>0.2,如至少0.8。带有Y的石榴石可以提供合适的光谱功率分布。
在特定实施例中,最多10%的B-O可以被替换为Si-N。这里,B-O中的B是指Al、Ga、In和Sc中的一种或多种(O是指氧);在特定实施例中,B-O可以指代AI-O。如上所述,在特定实施例中,x3可以选自0.001-0.04的范围。特别地,这样的发光材料可以具有合适的光谱分布(然而见下文),具有相对较高的效率,具有相对较高的热稳定性,并且实现了高CRI(与第一光源光和第二光源光(和滤光片)结合)。因此,在特定实施例中,A可以选自由Lu和Gd组成的组。替代地或另外地,B可以包括Ga。因此,在实施例中,发光材料包括(Yx1-x2-x3(Lu,Gd)x2Cex3)3(Aly1-y2Gay2)5O12,其中Lu和/或Gd可以是可用的。甚至更特别地,x3选自0.001-0.1的范围,其中0<x2+x3≤0.1,并且其中0≤y2≤0.1。此外,在特定实施例中,最多1%的B-O可以被替换为Si-N。这里,百分比是指摩尔数(如本领域已知的);还可以参见例如EP3149108。在另外的特定实施例中,发光材料包括(Yx1-x3Cex3)3Al5O12,其中x1+x3=1,并且其中0<x3≤0.2,例如0.001-0.1。
在特定实施例中,光生成设备可以仅包括选自包括石榴石的铈类型的发光材料。在另外的特定实施例中,光生成设备包括单一类型的发光材料,例如(Yx1-x2-x3A’x2Cex3)3(Aly1-y2B’y2)5O12。因此,在特定实施例中,光生成设备包括发光材料,其中至少85重量%,甚至更特别地至少约90重量%,例如甚至更特别地至少约95重量%的发光材料包括(Yx1-x2- x3A’x2Cex3)3(Aly1-y2B’y2)5O12。这里,其中A’包括选自由镧系元素组成的组的一种或多种元素,并且其中B’包括选自由Ga In和Sc组成的组的一种或多种元素,其中x1+x2+x3=1,其中x3>0,其中0<x2+X3≤0.2,其中y1+y2=1,其中0≤y2≤0.2。特别地,x3选自0.001-0.1的范围。注意,在实施例中,x2=0。替代地或另外地,在实施例中,y2=0。
在特定实施例中,A可以特别地包括至少Y,并且B可以特别地包括至少Al。
在另外的实施例中,除了发光材料之外,光生成设备还可以包括一种或多种另外的发光材料,该另外的发光材料特别地被配置为将第一光源光和发光材料光中的一项或多项的一部分转换成另外的发光材料光。
特别地,在实施例中,光生成设备还可以包括第二发光材料,该第二发光材料特别地被配置为将第一光源光和发光材料光中的一项或多项的一部分转换成第二发光材料光。此外,特别地,第二发光材料光的一个或多个波长可以在约550-700nm范围内。此外,在特定实施例中,发光材料光的半峰全宽(FWHM)为至少25nm,例如至少40nm,如在特定实施例中,高达约150nm(在室温下)。特别地,第二发光材料光可以具有琥珀色和/橙色的色点。特别地,在实施例中,第二发光材料光的主波长(λd1)可以选自590-605nm的光谱波长范围,特别地选自590-600nm的光谱波长范围。特别地,发光材料光的至少50%(例如至少70%)的光谱功率(以瓦特为单位)在550-650nm范围内。第二发光材料光的主波长例如可以在琥珀色和/或橙色波长范围内。这种第二发光材料的示例可以是例如M2Si5N8:Eu2+和/或MAlSiN3:Eu2+和/或Ca2AlSi3O2N5:Eu2+等,其中M包括Ba、Sr和Ca中的一种或多种,特别地在实施例中,包括至少Sr。因此,在实施例中,光生成设备还可以包括第二发光材料,该第二发光材料被配置为将第一光源光和发光材料光中的一项或多项的一部分转换成第二发光材料光。特别地,第二发光材料和发光材料被配置为使得第二发光材料转换发光材料光的一部分。因此,在实施例中,第二发光材料可以被配置为将发光材料光的至少一部分转换成第二发光材料光(由此发光材料光被红移)。因此,在实施例中,第二发光体可以包括选自(Ba,Sr,Ca)S:Eu、(Ba,Sr,Ca)AlSiN3:Eu和(Ba,Sr,Ca)2Si5N8:Eu的一种或多种材料。在这些化合物中,铕(Eu)基本上或仅是二价的,并且替换了指定的二价阳离子中的一种或多种。通常,Eu的含量不会超过阳离子的10%;相对于它所替换的(多个)阳离子,它的存在量特别地在约0.5-10%范围内,更特别地在约0.5-5%范围内。项“:Eu”表示金属离子的部分被替换为Eu(在这些示例中被替换为Eu2+)。例如,假定CaAlSiN3:Eu中的Eu为2%,正确的公式可能是(Ca0.98Eu0.02)AlSiN3。二价铕一般将替换二价阳离子,例如上述二价碱土金属阳离子,特别地是Ca、Sr或Ba。材料(Ba,Sr,Ca)S:Eu也可以表示为MS:Eu,其中M为选自钡(Ba)、锶(Sr)和钙(Ca)中的一种或多种元素;特别地,M在该化合物中包括钙或锶、或钙和锶,更特别地是钙。在此,Eu被引入并且替换M的至少一部分(即,Ba、Sr和Ca中的一种或多种)。进一步地,材料(Ba,Sr,Ca)2Si5N8:Eu也可以表示为M2Si5N8:Eu,其中M为选自钡(Ba)、锶(Sr)和钙(Ca)中的一种或多种元素;特别地,M在该化合物中包括Sr和/或Ba。在另一特定实施例中,M由Sr和/或Ba组成(不考虑Eu的存在),特别地是50至100%、更特别地是50至90%的Ba和50至0%、特别地是50至10%的Sr,例如Ba1.5Sr0.5Si5N8:Eu(即,75%的Ba;25%的Sr)。这里,Eu被引入并且替换M的至少一部分(即,Ba、Sr和Ca中的一种或多种)。同样,材料(Ba,Sr,Ca)AlSiN3:Eu也可以表示为MAlSiN3:Eu,其中M为选自钡(Ba)、锶(Sr)和钙(Ca)中的一种或多种元素;特别地,M在该化合物中包括钙或锶、或钙和锶,更特别地是钙。在此,Eu被引入并且替换M的至少一部分(即,Ba、Sr和Ca中的一种或多种)。如本领域技术人员已知的,上述发光材料中的Eu基本上或仅处于二价状态。
特别地,光生成设备基本上是基于石榴石型发光材料。利用基本上基于蓝色激光光源、红色激光光源和基本上仅基于石榴石的发光材料(光)的光生成设备获取了色点稳定性、高CRI和高R9方面的最佳结果。在实施例中,显色指数可以是至少80,例如甚至至少85,例如在实施例中甚至至少90。此外,在实施例中,R9值是至少50,例如至少60,甚至至少70。
光生成设备可在操作期间提供设备光(或“照明设备光”或“光生成设备光”)。光生成设备光可以包括第一光源光、发光材料光和第二光源光。在实施例中,第一光源、发光材料和第二光源被选择为使得可以生成白色设备光。因此,在特定实施例中,光生成设备被配置为生成(在一种或多种操作模式下)(白色)设备光,该设备光包括发光材料光、第二发光材料光和光源光。特别地,光生成设备被配置为在第一操作模式下提供包括第一光源光、发光材料光和第二光源光的白色设备光,相关色温选自2000-5000K的范围,诸如2000-3150K,显色指数选自至少80、如至少85、如至少约90的范围。
本文中的术语“白光”是本领域技术人员已知的。它特别涉及具有在大约1800K到20000K之间,诸如在2000到20000K之间,特别是2700-20000K的相关色温(CCT)的光,对于一般照明,特别是在大约2700K到6500K范围内。在实施例中,出于背光的目的,相关色温(CCT)特别地可以在约7000K到20000K的范围内。此外,在实施例中,相关色温(CCT)特别地在距BBL(黑体轨迹)约15SDCM(颜色匹配的标准偏差)内,特别地在距BBL约10SDCM内,甚至更特别地在距BBL约5SDCM内。因此,在特定实施例中,设备光具有选自距黑体轨迹在2000-5000K的范围内,诸如2000-4000K,或在10SDCM内的相关色温。
在甚至更具体的实施例中,控制系统被配置为在控制模式下将显色指数保持超过85,甚至更特别地至少90。
特别地,在实施例中,发光材料对于第二光源光的至少一部分是透射性的。
代替术语“发光体”和类似术语,也可以应用术语“透光体”和类似术语,因为发光体对于发光材料光也是透射性的。
透光体可以具有光导或波导特性。因此,透光体在本文中也表示为波导或光导。由于透光体用作聚光器,因此此处也将透光体称为聚光器。透光体通常将在垂直于透光体长度的方向上对(N)UV、可见光和(N)IR辐射中的一种或多种具有(某种)透射率,例如在实施例中,至少是可见光。如果没有活化剂(掺杂剂),诸如三价铈,可见光的内部透射率可以接近100%。
对于一个或多个(第一)发光波长,透光体的透射率可以是至少80%/cm,例如至少90%/cm,甚至更特别地是至少95%/cm,例如至少98%/cm,例如至少99%/cm。这表示例如一块1cm3的立方体形透光体在具有选定发光波长(例如,与透光体的发光材料的发光的发射最大值相对应的波长)的垂直辐射照射下将具有至少95%的透射率。因此,发光体在本文中也称为“透光体”,因为该体对于发光材料光是透光性的。在此,透射率的值特别地指代在不考虑接口处的菲涅耳损耗(例如,空气)的情况下的透射率。因此,术语“透射率”特别地指代内部透射率。内部透射率例如可以通过测量具有不同宽度的两个或更多个物体的透射率来确定,其中透射率是在该宽度上测量的。然后,基于这样的测量,可以确定菲涅耳反射损耗的贡献和(因此)内部透射率。因此,特别地,这里指出的透射率值忽略了菲涅耳损耗。在实施例中,可以将抗反射涂层施加到发光体,例如以抑制菲涅耳反射损耗(在光耦合过程期间)。除了(多个)感兴趣波长的高透射率之外,(多个)波长的散射也可能特别低。因此,仅考虑散射效应的感兴趣波长的平均自由程(因此不考虑可能的吸收(考虑到高透射率,无论如何应当是低的)可能至少是体长度的0.5倍,诸如至少为体长度,例如体长度的至少两倍。例如,在实施例中,仅考虑散射效应的平均自由程可以是至少5mm,例如至少10mm。感兴趣波长特别地可以是发光材料发光的最大发射波长。术语“平均自由程”特别地是光线在经历将改变其传播方向的散射事件之前行进的平均距离。透射率可以通过在垂直辐射下向透光体提供具有第一强度的特定波长的光并且关联在传输通过材料之后测量的该波长的光的强度与以该特定波长提供给材料的光的第一强度来确定(另见CRC Handbook of Chemistryand Physics,第69版,1088-1989的E-208和E-406)。
术语“辐射耦合”或“光学耦合”可以特别地表示(i)光生成元件(例如光源)和(ii)另一物品或材料彼此相关联使得由透光源发射的辐射的至少一部分被物品或材料接收。换句话说,物品或材料被配置为与光生成元素具有光接收关系。光源的辐射的至少一部分将被物品或材料接收。在实施例中,还可以在光源与物品或材料之间的光路中配置一个或多个光学器件,例如透镜、反射器、滤光器。因此,光学组件可以与光源辐射耦合。此外,发光材料可以与光源辐射耦合(通过光学组件);因此,发光材料实际上也可以辐射耦合到光学组件。
在实施例中,发光材料由(透光)体构成或被提供为(透光)体。在实施例中,发光材料由(透光)层构成或被提供为(透光)层。该层在实施例中也可以表示为体。在特定实施例中,光生成设备包括发光体,其中发光体包括发光材料,并且其中发光体是陶瓷体。同样,这可以适用于第二发光材料。在特定实施例中,体可以包括发光材料和第二发光材料两者。因此,在实施例中,发光体包括第二发光材料。因此,在特定实施例中,陶瓷体包括发光材料和第二发光材料。
在实施例中,(第一)发光体由单晶构成。在(其他)实施例中,(第一)发光体由陶瓷体构成。在又一实施例中,(第一)发光体由多晶材料构成,例如多晶材料层。这在实施例中可以是粉末层或压实的粉末层。在特定实施例中,粉末层或压实的粉末层可以包括发光材料和第二发光材料两者。因此,在实施例中,粉末层或压实的粉末层包括第二发光材料。在又一些实施例中,可以应用多层,其中第一层包括发光材料(并且基本上没有第二发光材料)并且第二层包括第二发光材料(并且基本上没有发光材料)。这里,“基本上没有”可以表示<0.1的重量比,例如<0.01。因此,在进一步的特定实施例中,发光体可以包括陶瓷体和多层材料中的一种或多种。多层材料因此可以包括发光材料和第二发光材料,并且在特定实施例中也可以是陶瓷体。
当发光材料配置在光学组件下游时,第一光源光和/或第二光源光与发光材料光一起远离发光材料传播,因此在实施例中可以形成设备光,可能已经由于例如散射而失去它的一些准直。因此,在发光材料下游,可以根据具体应用可选地应用另外的准直光学器件。如上所述,在特定实施例中,基本上所有第一光源光和第二光源光都可以由发光材料转换。
白色设备光的流明等效物在实施例中可以选自290-370Lm/W的范围,诸如300-360Lm/W。在实施例中,光生成设备被配置为向发光光提供从发光体的辐射出射面发射的功率,具有4W/mm2的功率密度,特别地功率密度为至少7W/mm2,更特别地为至少9W/mm2,甚至更特别地为至少13W/mm2。因此,在实施例中,在光生成设备的操作模式下,光生成设备被配置为从发光转换器的辐射出射面(或辐射出射面)生成功率密度为至少4W/mm2的发光材料光。在另外的特定实施例中,光生成设备可以被配置为提供与蓝色和/或红色激光组合的发光光,该蓝色和/或红色激光从与提供具有至少2000lm/mm2、更特别地至少3000lm/mm2、甚至更特别地至少6000lm/mm2的亮度的白光的发光光相同的表面发出。在本文中,“lm”是指流明。
在又一方面,本发明还提供了一种包括如本文中定义的光生成设备的照明器。照明器还可以包括外壳、光学组件、百叶窗等。
光生成设备(或照明器)可以是例如以下各项的一部分或可以应用于以下各项:办公照明系统、家庭应用系统、商店照明系统、家庭照明系统、重点照明系统、聚光灯系统、剧院照明系统、光纤应用系统、投影系统、自发光显示系统、像素化显示系统、分段显示系统、警告标志系统、医疗照明应用系统、指示标志系统、装饰照明系统、便携式系统、汽车应用、(户外)道路照明系统、城市照明系统、温室照明系统、园艺照明、数字投影或LCD背光等。
附图说明
现在将仅通过示例的方式参考所附示意图来描述本发明的实施例,其中相应的附图标记表示相应的部分,并且在附图中:
图1a-图1i示意性地描绘了一些实施例;
图2a-图2c示意性地描绘了一些另外的实施例;
图3a-图3b示意性地描绘了一些另外的实施例;
图4示意性地描绘了另一实施例。示意图不一定按比例绘制。
具体实施方式
如上所述,本发明提供了一种光生成设备,该光生成设备包括多个光源和包括棱镜元件阵列的光学组件。
图1a和图1b示意性地描绘了包括棱镜元件300的阵列200的光学组件1200的一些实施例。光学组件1200、特别是阵列200被配置为与n个光源(未描绘,然而参见图2a、图2b、图2c、图3a和图3b)具有光接收关系。
棱镜元件300的阵列200包括k1个平行布置的第一棱镜面201和k2个平行布置的第二棱镜面202。这里,特别地,k1≥2并且k2≥2。如示意性描绘的,第一棱镜面201和第二棱镜面202不相互平行。棱镜面(即,第一棱镜面和第二棱镜面)的相互角γ1不等于0°或180°。棱镜元件可以具有对称或不对称的横截面。这里,底角β1是相同的。在本文中示意性描绘的(特定)实施例中,棱镜面是(彼此的)镜像。
数目为n的多个光源包括被配置为生成准直的第一光源光111的一个或多个第一光源的第一子集和被配置为生成准直的第二光源光的一个或多个第二光源的第二子集。特别地,n≥2。
如示意性地描绘的,第一光源(光源未示出;但光源光111,121是)被配置为照射第一棱镜面201并且第二光源被配置为照射第二棱镜面202。
此外,还如示意性描绘的,棱镜元件300被配置为将准直的第一光源光111和准直的第二光源光121反射或折射为第一光源光111和第二光源光121的重合光束。在图1a和1b中,应用反射。
图1a-图1b示意性地描绘了实施例,其中示出了光束组合器的操作原理。第一光源光111的(激光)光束从左侧照射到反射棱镜阵列上;第二光源光121的(激光)光束从右侧照射。两个反射光束是共线的,并且它们在空间上是交错的。只要满足以下特定实施例的设计规则,最终的配光不存在暗隙。
在图1a-图1b中,示出了光束组合器的可能设计规则。反射微棱镜具有倾斜角或底角β1。激光束以与所示表面成角度α1(与表面法线成90°-α1)指向微棱镜阵列。如果反射光必须与表面成90°角,则α1+2β1=90°。如果(激光)光束可能只击中正斜率而不是负斜率,因为那会生成杂散光,则α1≤β1。最后,如果必须照亮(闪烁)整个棱镜斜面,否则会出现暗隙,则α1=β1=30°。在图1b中,附图标记5表示杂散光;参考文献3表示非闪光区域。顶角用附图标记γ1表示。
因此,如图1a-图1b等所示,在实施例中,棱镜元件300对于第一光源光111和第二光源光121可以是反射性的。特别地,棱镜元件300的第一棱镜面201和第二棱镜面202限定选自120°±10°范围的第一顶角γ1。此外,如图1a所示,相对于平面330,棱镜元件300的第一棱镜面201和第二棱镜面202具有选自30°±5°范围的第一底角β1,其中第一光源光111具有第一光轴O1,并且其中第二光源光121具有第二光轴O2,其中光轴O1、O2具有与平面330的光束角α1、α2,该光束角α1、α2等于或小于相应底角β1
图1b中的附图标记P表示棱镜元件300的间距。棱镜元件的间距可以选自约5-100pm的范围,甚至更特别地选自约5-50pm的范围。
图1c-图1e示意性地描绘了使用透射微光学结构的其他实施例。如图所示,两个(激光)光束分别针对第一光源光111和第二光源光121以入射角θ1和θ2从下方进入折射微棱镜阵列。出射角θout特别地应当是共线的。微棱镜具有折射率n2和半顶角α和全顶角γ1。出射角θout是折射率n1和n2、入射角θ1和棱镜半顶角α的函数。通过适当的参数选择,可以防止杂散光5,并且最终分布中没有暗条纹。第一约束可以是光束应当是共线的:θout=0;第二约束可以是没有杂散光和暗隙:θZ=α。令人惊讶的是,对于给定折射率,对于θ1和α只有一种解。同样,这适用于θ2
因此,图1c-图1e示意性地描绘了实施例,其中棱镜元件300对于第一光源光111和第二光源光121是折射性的。特别地,第一光源被配置为照射第一棱镜面201,其中第一光源光111通过棱镜元件300传播到第一棱镜面201。进一步地,特别地,第二光源被配置为照射第二棱镜面202,其中第二光源光121通过棱镜元件300传播到第二棱镜面202。因此,尽管在反射性实施例中,棱镜面201和202被直接照射,但在折射性实施例中,棱镜面201和202被间接照射。
特别地,棱镜元件300的第一棱镜面201和第二棱镜面202限定选自55°±10°范围的第一顶角γ1。
此外,特别地,棱镜元件300包括基面1330,其中第一光源光111具有第一光轴O1并且其中第二光源光121具有第二光轴O2,其中光轴O1、O2具有与基面1330的法线(N)的光束入射角(θ1、θ2),该光束入射角(θ1、θ2)选自45°±10°范围。
对于各种折射率,这些是通过模拟模型找到的,并且在下表中给出:
Figure BDA0003677677870000361
图1f-图11示意性地描绘了包括透光体1300的光生成设备1000的实施例,其中棱镜元件300由透光体1300构成。图1f-图1g示意性地描绘了实施例,其中棱镜元件300用作反射元件。图1h-图1i示意性地描绘了实施例,其中棱镜元件300用作折射元件。这里,在实施例中,具有棱镜元件的透光体1300可以是单片元件。
图2a-图2c示意性地描绘了实施例,其中光束组合器用于提供组合的、共线的、准直的光束。在图2a-图2b示意性描绘的实施例中,这些用于照射透射式转换器。这里,示意性地描绘了透射性配置。然而,反射性配置也是可能的。如图2b中示意性地描绘的,也可以使用透镜将组合光束聚焦到转换器元件上。
图2a示意性地描绘了光生成设备1000的实施例,光生成设备1000包括数目为n的多个光源100和具有棱镜元件300的阵列200的光学组件1200。数目为n的多个光源100包括被配置为生成准直的第一光源光111的一个或多个第一光源110的第一子集和被配置为生成准直的第二光源光121的一个或多个第二光源120的第二子集,其中n≥2。棱镜元件阵列300被配置为与n个光源100成光接收关系,其中棱镜元件300的阵列200包括k1个平行布置的第一棱镜面201和k2个平行布置的第二棱镜面202,其中k1≥2并且其中k2≥2,其中第一棱镜面201和第二棱镜面202不相互平行。如图所示,第一光源110被配置为照射第一棱镜面201并且第二光源120被配置为照射第二棱镜面202。此外,棱镜元件300被配置为将准直的第一光源光111和准直的第二光源光121反射或折射为第一光源光111和第二光源光121的重合光束。
在实施例中,光生成设备1000还可以包括配置在棱镜元件300下游的发光材料500。特别地,发光材料500被配置为将第一光源光111和第二光源光121中的一项或多项的至少一部分转换成发光材料光501。
附图标记150表示光学器件,诸如透镜。
在另外的特定实施例中,光生成设备1000可以包括配置在棱镜元件300下游的陶瓷体1500,其中陶瓷体1500包括这种发光材料500。例如,发光材料可以作为陶瓷体提供。在实施例中,陶瓷体1500可以对于第一光源光111和第二光源光121中的一项或多项的至少一部分是透射性的。
因此,如示意性地描绘的,光生成设备1000可以特别地被配置为生成设备光1001,该设备光1001包括(i)第一光源光111、(ii)第二光源光121和(iii)(可选的)发光材料光中的一项或多项。
在特定实施例中,光生成设备1000可以被配置为在光生成设备1000的一种或多种操作模式下生成白色设备光。
在实施例中,第一光源光111和第二光源光121具有不同光谱功率分布。
此外,在实施例中,光生成设备1000还可以包括被配置为控制光源中的一个或多个的控制系统300。
在特定实施例中,控制系统300可以被配置为通过控制第一光源110和第二光源20来控制设备光1001的相关色温和显色指数中的一项或多项。
与一个或多个其他波长相比,发光材料500可以更好地吸收一个或多个波长。因此,在实施例中,发光材料500可以具有针对第一光源光111的第一吸收率A1和针对第二光源光121的第二吸收率A2,其中A1/A2≥5或其中A2/A1≥5。例如,发光材料500可以吸收第一光的至少一部分并且基本上不吸收第二光源光,或者相反。
图2c还示意性地描绘了光生成设备1000的实施例,其中第一光源110包括被配置为生成第一激光光源光11的第一激光光源10和被配置为提供准直的第一激光光源光11的准直元件15,第二光源120包括被配置为生成第二激光光源光21的第二激光光源20和被配置为提供准直的第二激光光源光21的准直元件25,并且其中准直器15,25包括抛物面反射器。
此外,图2c还示意性地描绘了其中光生成设备1000包括导热体400的实施例。例如,数目为n的多个光源100和/或棱镜元件300可以与导热体400热耦合。
光束组合器的一个可能实施例在图2c中示出。例如,在其子底座上的蓝色和红色二极管激光器安装到中央散热器。它们位于抛物面反射器的焦点中,这些反射器与微棱镜反射器的表面法线以例如角度60°准直光线。在从棱镜反射之后,两个光束现在共线并且交错。
图2a-图2c示意性地示出了截面图。棱镜元件可以垂直于图面(plane ofdrawing)伸长并且多个第一光源110和/或多个第二光源120可以被配置为垂直于图面(并且基本上平行于棱镜元件)的行,参见例如图3a-图3b。
性能示例如图3a-图3b所示。例如,微棱镜间距P选择为0.1mm。如果选择较小的微棱镜间距P尺寸,如0.05mm,则在所得到的光束(横截面)中可能不再有结构可见。参考图3a-图3b,实施例可以例如包括以下中的一项或多项:
两个激光器可以具有相同的波长或不同的波长,例如RGB。
棱镜倾斜角可以小于30°(但可能会出现暗条纹)。
可以应用自由形状反射器(即,不是抛物面)来准直个体激光器。
多于两个激光器以线性阵列方式组合(参见例如图3a-图3b)。
因此,在实施例中,例如可以组合多个蓝色激光二极管的光束,诸如至少四个。替代地或另外地,可以组合多个红色激光二极管(例如,至少2个)的光束。组合光可以用于(以反射或透射模式)照射发光材料,以生成发光材料光,蓝色激光二极管光可以被用于通过全部或部分转换来生成发光材料光。
组合超过2个激光器(例如,4个)的另一种方法是使用一对模块,每个模块混合有2个激光器。来自每个模块的准直光束可以由第三微棱镜反射器组合。两个模块交错的取向与最终微棱镜反射镜的结构方向正交。
因此,除其他外,本发明可以提供具有良好色彩质量的高亮度光源、零售点、娱乐点、窄光束宽度点等。
如图3a-图3b中示意性地描绘的,在实施例中,三角棱镜可以具有两个(细长的)基本平坦的面和一个底面(其也可以基本是平坦的)。
图4示意性地描绘了包括如上所述的光生成设备1000的照明器2的实施例。附图标记301指示可以与控制系统(未描绘)功能耦合的用户界面,控制系统被包括在照明系统1000中或在功能上耦合到照明系统1000。
术语“多个”是指两个或更多个。
本文中的术语“基本上”或“本质上”以及类似的术语将由本领域技术人员理解。术语“基本上”或“本质上”还可以包括具有“整个”、“完全”、“全部”等的实施例。因此,在实施例中,形容词基本上或本质上也可以被移除。在适用的情况下,术语“基本上”或术语“本质上”还可以涉及90%或更高,例如95%或更高,特别是99%或更高,甚至更特别是99.5%或更高,包括100%。
术语“包括”还包括其中术语“包括”意指“由……组成”的实施例。
术语“和/或”特别地涉及在“和/或”之前和之后提及的项目中的一个或多个。例如,短语“项1和/或项2”和类似的短语可以涉及项1和项2中的一个或多个。术语“包括”在一个实施例中可以涉及“由……组成”,但在另一实施例中也可以涉及“包含至少定义的物种和可选的一种或多种其他物种”。
此外,描述和权利要求中的术语第一、第二、第三等用于区分相似的元素,而不一定用于描述顺序或时间顺序。应当理解,如此使用的术语在适当情况下是可互换的,并且本文中描述的本发明的实施例能够以除了本文中描述或图示之外的其他顺序操作。
设备、装置或系统在本文中可以在操作期间进行描述。如本领域技术人员将清楚的,本发明不限于操作方法或操作中的设备、装置或系统。
应当注意,上述实施例说明而不是限制本发明,并且本领域技术人员将能够在不脱离所附权利要求的范围的情况下设计很多替代实施例。
在权利要求中,放置在括号之间的任何附图标记不应当被解释为限制权利要求。
动词“包括”及其变位的使用不排除权利要求中所述之外的元素或步骤的存在。除非上下文另有明确要求,否则在整个说明书和权利要求书中,词语“包括”、“包含”等应当被解释为包括性的含义,而不是排他性或穷举性的含义;也就是说,在“包括但不限于”的意义上。
一个元素之前的冠词“一个(a)”或“一个(an)”不排除多个这样的元素的存在。
本发明还适用于包括在说明书中描述和/或在附图中示出的一个或多个特征的设备、装置或系统。本发明还涉及包括在说明书中描述和/或在附图中示出的一个或多个特征的方法或过程。
可以组合本专利中讨论的各个方面以提供附加的优点。此外,本领域技术人员将理解,实施例可以组合,并且多于两个的实施例也可以组合。此外,某些特征可以构成一个或多个分案申请的基础。

Claims (15)

1.一种光生成设备(1000),包括(i)数目为n的多个光源100),和(ii)光学组件(1200),包括棱镜元件(300)的阵列(200),其中:
-所述数目为n的多个光源(100)包括一个或多个第一光源(110)的第一子集和一个或多个第二光源(120)的第二子集,所述第一子集被配置为生成经准直的第一光源光(111),所述第二子集被配置为生成经准直的第二光源光(121),其中n≥2;
-所述棱镜元件(300)的阵列(200)被配置为与所述数目为n的多个光源(100)成光接收关系,其中所述棱镜元件(300)的阵列包括k1个平行布置的第一棱镜面(201)和k2个平行布置的第二棱镜面(202),其中k1≥2,并且其中k2≥2,其中所述第一棱镜面(201)和所述第二棱镜面(202)不相互平行;
-所述第一光源(110)被配置为照射所述第一棱镜面(201),并且所述第二光源(120)被配置为照射所述第二棱镜面(202);以及
-所述棱镜元件(300)被配置为将所述经准直的第一光源光(111)和所述经准直的第二光源光(121)反射或折射为第一光源光(111)和第二光源光(121)的重合光束,
-其中所述第一光源光(111)和所述第二光源光(121)具有不同的光谱功率分布,其中所述光生成设备(1000)还包括控制系统(300),所述控制系统(300)被配置为通过控制所述第一光源(110)和所述第二光源(20)来控制设备光(1001)的相关色温、显色指数和色点中的一项或多项。
2.根据权利要求1所述的光生成设备(1000),其中
(i)所述第一光源(110)包括第一激光光源(10)和准直元件(15),所述第一激光光源(10)被配置为生成第一激光光源光(11),所述准直元件(15)被配置为提供经准直的第一激光光源光(11),并且
(ii)所述第二光源(120)包括第二激光光源(20)和准直元件(25),所述第二激光光源(20)被配置为生成第二激光光源光(21),所述准直元件(25)被配置为提供经准直的第二激光光源光(21),并且其中所述准直器(15,25)包括抛物面反射器。
3.根据前述权利要求中任一项所述的光生成设备(1000),包括导热体(400),其中所述数目为n的多个光源(100)和所述棱镜元件(300)与所述导热体(400)热耦合。
4.根据前述权利要求1至3中任一项所述的光生成设备(1000),其中所述棱镜元件(300)对于所述第一光源光(111)和所述第二光源光(121)是反射性的。
5.根据权利要求4所述的光生成设备(1000),其中所述棱镜元件(300)的所述第一棱镜面(201)和所述第二棱镜面(202)限定选自120°±10°的范围的第一顶角(γ1)。
6.根据前述权利要求4至5中任一项所述的光生成设备(1000),其中相对于平面(330),所述棱镜元件(300)的所述第一棱镜面(201)和所述第二棱镜面(202)具有选自30°±5°的范围的第一底角(β1),其中所述第一光源光(111)具有第一光轴(O1),并且其中所述第二光源光(121)具有第二光轴(O2),其中所述光轴(O1,O2)具有与所述平面(330)的光束角(α1,α2),所述光束角(α1,α2)等于或小于相应底角(β1)。
7.根据前述权利要求1至3中任一项所述的光生成设备(1000),其中所述棱镜元件(300)对于所述第一光源光(111)和所述第二光源光(121)是折射性的,并且其中(i)所述第一光源(110)被配置为照射所述第一棱镜面(201),其中所述第一光源光(111)经由所述棱镜元件(330)传播到所述第一棱镜面(201),并且(ii)所述第二光源(120)被配置为照射所述第二棱镜面(202),其中所述第二光源光(121)经由所述棱镜元件(300)传播到所述第二棱镜面(202)。
8.根据权利要求7所述的光生成设备(1000),其中所述棱镜元件(300)的所述第一棱镜面(201)和所述第二棱镜面(202)限定选自55°±10°的范围的第一顶角(γ1)。
9.根据前述权利要求7至8中任一项所述的光生成设备(1000),其中所述棱镜元件(300)包括基平面(1330),其中所述第一光源光(111)具有第一光轴(O1),并且其中所述第二光源光(121)具有第二光轴(O2),其中所述光轴(O1,O2)具有与所述基平面(1330)的法线(N)的光束入射角(θ1,θ2),所述光束入射角(θ1,θ2)选自45°±10°的范围。
10.根据前述权利要求中任一项所述的光生成设备(1000),包括透光体(1300),其中所述棱镜元件(300)由所述透光体(1300)构成。
11.根据前述权利要求中任一项所述的光生成设备(1000),还包括配置在所述棱镜元件(300)下游的发光材料(500),其中所述发光材料(500)被配置为将所述第一光源光(111)和所述第二光源光(121)中的一项或多项的至少一部分转换成发光材料光(501)。
12.根据权利要求11所述的光生成设备(1000),还包括配置在所述棱镜元件(300)下游的陶瓷体(1500),其中所述陶瓷体(1500)包括所述发光材料(500),并且其中所述陶瓷体(1500)对于所述第一光源光(111)和所述第二光源光(121)中的一项或多项中的至少一部分是透射性的。
13.根据前述权利要求中任一项所述的光生成设备(1000),其中所述光生成设备(1000)被配置为生成设备光(1001),所述设备光(1001)包括以下中的一项或多项:(i)所述第一光源光(111)、(ii)所述第二光源光(121)和(iii)根据前述权利要求11至12中任一项所述的发光材料光,其中所述光生成设备(1000)被配置为在所述光生成设备(1000)的一种或多种操作模式下生成白色设备光。
14.根据前述权利要求中任一项所述的光生成设备(1000),其中所述光生成设备被布置为用于生成白光,并且其中所述相关色温为至少85。
15.一种照明器(2),包括根据前述权利要求中任一项所述的光生成设备(1000)。
CN202080084275.1A 2019-12-03 2020-11-23 具有微棱镜反射器的紧凑型激光束组合器 Pending CN114761862A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19213077 2019-12-03
EP19213077.1 2019-12-03
PCT/EP2020/083063 WO2021110456A1 (en) 2019-12-03 2020-11-23 Compact laser beam combiner with micro-prism reflector

Publications (1)

Publication Number Publication Date
CN114761862A true CN114761862A (zh) 2022-07-15

Family

ID=68766552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080084275.1A Pending CN114761862A (zh) 2019-12-03 2020-11-23 具有微棱镜反射器的紧凑型激光束组合器

Country Status (4)

Country Link
US (1) US11892143B2 (zh)
EP (1) EP4070154A1 (zh)
CN (1) CN114761862A (zh)
WO (1) WO2021110456A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017925A (ja) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
US7780330B2 (en) 2007-05-16 2010-08-24 Rohm And Haas Electronics Materials Llc Elongated illuminators configuration for LCD displays
US9244284B2 (en) 2011-03-15 2016-01-26 3M Innovative Properties Company Microreplicated film for autostereoscopic displays
GB201109208D0 (en) 2011-06-01 2011-07-13 Barco Nv Apparatus and method for combining laser beams of different polarization
GB2495774A (en) * 2011-10-21 2013-04-24 Barco Nv Laser diode grid element comprised of standard laser diodes on a heat exchange plate and PCB
RU2648080C1 (ru) 2014-09-11 2018-03-22 Филипс Лайтинг Холдинг Б.В. Сид-модуль с преобразованием люминофором с улучшенными передачей белого цвета и эффективностью преобразования
US11437775B2 (en) * 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US20170271850A1 (en) * 2016-03-21 2017-09-21 Sandia Corporation Nanolasers for Solid-State Lighting
WO2017194315A1 (en) 2016-05-12 2017-11-16 Lumileds Holding B.V. Lighting arrangement with a light guide
US10775635B2 (en) 2017-05-16 2020-09-15 Signify Holding B.V. Color mixing in laser-based light source
CN111542772B (zh) 2017-11-03 2022-10-28 弗莱克斯照明第二有限责任公司 具有基于薄膜的光导和附加反射表面的光发射设备
CN110207025B (zh) * 2018-02-28 2021-11-12 深圳市绎立锐光科技开发有限公司 光源系统及照明装置
CN108919413A (zh) * 2018-06-29 2018-11-30 张家港康得新光电材料有限公司 一种侧光式导光膜

Also Published As

Publication number Publication date
WO2021110456A1 (en) 2021-06-10
US11892143B2 (en) 2024-02-06
US20230016179A1 (en) 2023-01-19
EP4070154A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
CN114364912B (zh) 具有高cri的高强度光源
EP4038312B1 (en) High-intensity color tunable white laser light source using green phosphor
CN114402161A (zh) 具有高cri的高强度光源
CN114270093B (zh) 通过红色磷光体的间接泵浦的高质量白色的基于激光的光源
EP4051951B1 (en) High intensity light source with high cri and r9
CN116324265A (zh) 具有改善的亮度和热管理的激光磷光体光源
WO2021219442A1 (en) High intensity light source with high cri for low ctt using green laser pumped phosphor
WO2021028426A1 (en) Adjustable ratio of converted to transmitted light in transparent luminescent converter
US20230408802A1 (en) Laser smd package with phosphor and light incoupler
US20240027887A1 (en) Increased red content in high cri high brightness light source
US11892143B2 (en) Compact laser beam combiner with micro-prism reflector
EP4165344A1 (en) High-intensity light source with high cri
JP6866537B2 (ja) 高ルーメン密度ランプの片面照明
CN117480343A (zh) 使用锥形光纤改善热管理的基于激光器的光引擎
CN116964175A (zh) 包括在介质中被磷光体颗粒包围的陶瓷磷光体砖块的像素化激光磷光体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination