CN114757334A - Model construction method and device, storage medium and electronic equipment - Google Patents
Model construction method and device, storage medium and electronic equipment Download PDFInfo
- Publication number
- CN114757334A CN114757334A CN202210289158.XA CN202210289158A CN114757334A CN 114757334 A CN114757334 A CN 114757334A CN 202210289158 A CN202210289158 A CN 202210289158A CN 114757334 A CN114757334 A CN 114757334A
- Authority
- CN
- China
- Prior art keywords
- model
- brain
- network
- neural network
- spiking neural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010276 construction Methods 0.000 title claims abstract description 22
- 238000013528 artificial neural network Methods 0.000 claims abstract description 116
- 238000012421 spiking Methods 0.000 claims abstract description 111
- 210000004556 brain Anatomy 0.000 claims abstract description 94
- 230000003925 brain function Effects 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 238000012216 screening Methods 0.000 claims abstract description 6
- 238000005481 NMR spectroscopy Methods 0.000 claims abstract description 3
- 210000002569 neuron Anatomy 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 36
- 230000003956 synaptic plasticity Effects 0.000 claims description 32
- 230000002964 excitative effect Effects 0.000 claims description 30
- 238000002599 functional magnetic resonance imaging Methods 0.000 claims description 30
- 230000002401 inhibitory effect Effects 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 29
- 238000012937 correction Methods 0.000 claims description 23
- 238000007781 pre-processing Methods 0.000 claims description 10
- 230000004886 head movement Effects 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 4
- 230000005764 inhibitory process Effects 0.000 claims description 4
- 206010001497 Agitation Diseases 0.000 claims description 3
- 210000000225 synapse Anatomy 0.000 description 20
- 230000000946 synaptic effect Effects 0.000 description 20
- 238000010304 firing Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 5
- 230000001242 postsynaptic effect Effects 0.000 description 4
- 230000036982 action potential Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000002610 neuroimaging Methods 0.000 description 3
- 210000005215 presynaptic neuron Anatomy 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本公开属于计算神经学科技术领域,具体涉及一种模型构建方法及装置、存储介质及电子设备。The present disclosure belongs to the technical field of computational neuroscience, and in particular relates to a model construction method and device, a storage medium and an electronic device.
背景技术Background technique
近年来,计算神经学科迅速发展,人工神经网络模型的应用越来越广泛。脉冲神经网络作为新一代人工网络模型对复杂非线性时空信息有着强大的处理能力,在计算神经学科领域起着重要的作用,是计算神经学科必要的理论和模型基础。然而,随着计算神经学科向智能化方向的发展,类脑模型兴起,而基于脉冲神经网络构建的类脑模型缺乏生物脑结构约束,生物合理性不足的问题日益突出,因此限制了脉冲神经网络在计算神经学科的发展。In recent years, the subject of computational neuroscience has developed rapidly, and the application of artificial neural network models has become more and more extensive. As a new generation of artificial network model, spiking neural network has powerful processing ability for complex nonlinear spatiotemporal information, plays an important role in the field of computational neurology, and is the necessary theoretical and model basis for computational neuroscience. However, with the development of computational neuroscience toward intelligence, brain-inspired models have emerged, and brain-inspired models based on spiking neural networks lack the constraints of biological brain structure, and the problem of insufficient biological rationality has become increasingly prominent, thus limiting spiking neural networks. Developments in Computational Neuroscience.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开提供一种模型构建方法及装置、存储介质及电子设备,用于构建基于生物脑拓扑约束的脉冲神经网络类脑模型,以解决现有的脉冲神经网络类脑模型缺乏生物合理性的问题。In view of this, the present disclosure provides a model construction method and apparatus, storage medium and electronic device for constructing a spiking neural network brain-like model based on biological brain topology constraints, so as to solve the lack of biological question of rationality.
第一方面,本公开一实施例提供一种模型构建方法,用于构建基于生物脑拓扑约束的脉冲神经网络类脑模型。该模型构建方法包括:对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据;基于M个脑区影像数据,生成M个模型节点,其中,模型节点表征包含模型节点对应的脑区影像数据的脑区;基于M个模型节点之间的相关系数矩阵,生成N个模型边,其中,相关系数矩阵用于表示M个模型节点之间的脑功能网络连接强度;基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,其中,S为小于或等于N的正整数;基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束;基于拓扑约束,构建脉冲神经网络类脑模型。In a first aspect, an embodiment of the present disclosure provides a model building method for building a spiking neural network brain-like model based on biological brain topology constraints. The model building method includes: dividing the brain regions of the functional magnetic resonance image data to be processed to obtain M brain region image data; and generating M model nodes based on the M brain region image data, wherein the model node representation includes the corresponding model nodes is the brain region of the brain region image data; based on the correlation coefficient matrix between M model nodes, N model edges are generated, where the correlation coefficient matrix is used to represent the brain function network connection strength between the M model nodes; Set the network topology threshold, screen N model edges, and obtain S model edges that meet the preset conditions, where S is a positive integer less than or equal to N; based on M model nodes and S model edges, generate spiking neural networks The network brain-like model is based on the topological constraints of the biological brain function network; based on the topological constraints, a spiking neural network brain-like model is constructed.
结合第一方面,在第一方面的某些实现方式中,基于拓扑约束,构建脉冲神经网络类脑模型,包括:基于预设二阶神经元模型和M个模型节点,生成脉冲神经网络类脑模型的网络节点,其中,预设二阶神经元模型包括Izhikevich神经元模型;基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。With reference to the first aspect, in some implementations of the first aspect, building a spiking neural network brain-like model based on topological constraints, including: generating a spiking neural network brain-like model based on a preset second-order neuron model and M model nodes The network node of the model, wherein the preset second-order neuron model includes the Izhikevich neuron model; based on the network nodes and topology constraints of the spiking neural network brain-like model, the spiking neural network brain-like model is constructed.
结合第一方面,在第一方面的某些实现方式中,基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型,包括:基于预设突触可塑性模型和S个模型边,生成脉冲神经网络类脑模型的网络边;基于脉冲神经网络类脑模型的网络边、脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。In combination with the first aspect, in some implementations of the first aspect, building a spiking neural network brain-like model based on network nodes and topological constraints of the spiking neural network brain-like model, including: based on a preset synaptic plasticity model and S Model edge, generate the network edge of the spiking neural network brain-like model; based on the network edge of the spiking neural network brain-like model, network nodes and topology constraints of the spiking neural network brain-like model, construct the spiking neural network brain-like model.
结合第一方面,在第一方面的某些实现方式中,预设突触可塑性模型包括以兴奋性和抑制性共同调节的突触可塑性模型,在基于预设突触可塑性模型和S个模型边,生成类脑模型的网络边之前,该方法还包括:基于神经解剖学实验数据,确定突触可塑性模型包含的兴奋性神经元与抑制性神经元的数量比例;基于数量比例,生成预设突触可塑性模型。In combination with the first aspect, in some implementations of the first aspect, the preset synaptic plasticity model includes a synaptic plasticity model co-regulated by excitability and inhibition, and based on the preset synaptic plasticity model and the S models , before generating the network edges of the brain-like model, the method further includes: based on neuroanatomical experimental data, determining the number ratio of excitatory neurons and inhibitory neurons included in the synaptic plasticity model; based on the number ratio, generating preset synapses touch plasticity model.
结合第一方面,在第一方面的某些实现方式中,该模型构建方法还包括:预设网络拓扑阈值基于能够表征网络拓扑特性的参数确定。其中,表征网络拓扑特性的参数包括网络密度、平均节点度、小世界属性和无标度属性中的至少一种。With reference to the first aspect, in some implementations of the first aspect, the model building method further includes: a preset network topology threshold is determined based on parameters capable of characterizing network topology characteristics. The parameters characterizing the network topology characteristics include at least one of network density, average node degree, small-world attribute and scale-free attribute.
结合第一方面,在第一方面的某些实现方式中,M为980,对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据,包括:采用Zalesky_980模板,对待处理功能性核磁共振影响数据进行脑区划分,得到980个脑区影像数据。In combination with the first aspect, in some implementations of the first aspect, M is 980, and the functional MRI data to be processed is divided into brain regions to obtain M brain region image data, including: using the Zalesky_980 template, the function to be processed The brain regions were divided according to the MRI impact data, and the image data of 980 brain regions were obtained.
结合第一方面,在第一方面的某些实现方式中,在对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据之前,该方法还包括:获取受试者的初始功能性核磁共振影像数据;对初始功能性核磁共振影像数据进行预处理,得到待处理功能性核磁共振影像数据。其中,预处理包括时间层校正处理和空间标准化处理,预处理还包括头动校正处理、平滑处理和滤波处理。With reference to the first aspect, in some implementations of the first aspect, before dividing the functional magnetic resonance image data to be processed into brain regions to obtain the image data of M brain regions, the method further includes: acquiring the subject's initial Functional magnetic resonance imaging data; preprocessing the initial functional magnetic resonance imaging data to obtain functional magnetic resonance imaging data to be processed. Among them, the preprocessing includes temporal layer correction processing and spatial normalization processing, and the preprocessing also includes head motion correction processing, smoothing processing and filtering processing.
第二方面,本公开一实施例提供一种模型构建装置,用于构建基于生物脑拓扑约束的脉冲神经网络类脑模型,该模型构建装置包括:脑区划分模块,用于对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据;第一生成模块,用于基于M个脑区影像数据,生成M个模型节点,其中,模型节点表征包含模型节点对应的脑区影像数据的脑区;第二生成模块,用于基于M个模型节点之间的相关系数矩阵,生成N个模型边,其中,相关系数矩阵用于表示M个模型节点之间的脑功能网络连接强度;筛选模块,用于基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,其中,S为小于或等于N的正整数;第三生成模块,用于基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束;构建模块,基于拓扑约束,构建脉冲神经网络类脑模型。In a second aspect, an embodiment of the present disclosure provides a model building device for building a spiking neural network brain-like model based on biological brain topology constraints, the model building device includes: a brain region division module, used for functional nuclear magnetic resonance to be processed The resonance image data is divided into brain regions to obtain M brain region image data; the first generation module is used to generate M model nodes based on the M brain region image data, wherein the model node representation includes the brain region images corresponding to the model nodes The brain area of the data; the second generation module is used to generate N model edges based on the correlation coefficient matrix between the M model nodes, wherein the correlation coefficient matrix is used to represent the brain function network connection strength between the M model nodes ; the screening module is used to screen the N model edges based on the preset network topology threshold to obtain S model edges that meet the preset conditions, where S is a positive integer less than or equal to N; the third generation module, using Based on the M model nodes and S model edges, the topological constraints based on the biological brain function network of the spiking neural network brain-like model are generated; the building module is based on the topology constraints, and the spiking neural network brain-like model is constructed.
第三方面,本公开一实施例提供一种电子设备,该电子设备包括处理器;用于存储处理器可执行指令的存储器,其中,处理器用于执行上述第一方面所提及的方法。In a third aspect, an embodiment of the present disclosure provides an electronic device, the electronic device includes a processor; and a memory for storing instructions executable by the processor, wherein the processor is configured to execute the method mentioned in the first aspect.
第四方面,本公开一实施例提供一种计算机可读存储介质,该存储介质存储有计算机程序,计算机程序用于执行上述第一方面所提及的方法。In a fourth aspect, an embodiment of the present disclosure provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute the method mentioned in the first aspect.
本公开实施例提供的模型构建方法,用于构建基于生物脑拓扑约束的脉冲神经网络类脑模型,由于模型的拓扑约束是基于功能性核磁共振影像数据确定的,因此,本公开实施例能够充分利用生物脑功能网络拓扑特性,进而利用生物脑功能网络为拓扑约束构建脉冲神经网络,从而实现了提高基于脉冲神经网络的类脑模型的生物合理性的目的。结合本公开实施例,能够有效地提高基于脉冲神经网络的类脑模型的生物合理性,从而使得脉冲神经网络在计算神经学科运用更加广泛。The model construction method provided by the embodiment of the present disclosure is used to construct a spiking neural network brain-like model based on biological brain topology constraints. Since the topological constraints of the model are determined based on functional magnetic resonance image data, the embodiments of the present disclosure can fully Using the topological characteristics of the biological brain function network, and then using the biological brain function network to construct a spiking neural network for topological constraints, the purpose of improving the biological rationality of the brain-like model based on the spiking neural network is achieved. In combination with the embodiments of the present disclosure, the biological rationality of the brain-like model based on the spiking neural network can be effectively improved, thereby making the spiking neural network more widely used in computational neuroscience.
附图说明Description of drawings
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。The above and other objects, features and advantages of the present disclosure will become more apparent from the more detailed description of the embodiments of the present disclosure in conjunction with the accompanying drawings. The accompanying drawings are used to provide a further understanding of the embodiments of the present disclosure, and constitute a part of the specification, and are used to explain the present disclosure together with the embodiments of the present disclosure, and do not limit the present disclosure.
图1所示为本公开一实施例提供的应用场景示意图。FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present disclosure.
图2所示为本公开一实施例提供的一种模型构建方法的流程示意图。FIG. 2 is a schematic flowchart of a model construction method according to an embodiment of the present disclosure.
图3所示为本公开一实施例提供的基于拓扑约束,构建脉冲神经网络类脑模型的流程示意图。FIG. 3 is a schematic flowchart of building a brain-like model of a spiking neural network based on topology constraints according to an embodiment of the present disclosure.
图4所示为本公开一实施例提供的基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型的流程示意图。FIG. 4 shows a schematic flowchart of building a spiking neural network brain-like model based on network nodes and topology constraints of the spiking neural network brain-like model according to an embodiment of the present disclosure.
图5所示为本公开另一实施例提供的基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型的流程示意图。FIG. 5 shows a schematic flowchart of building a spiking neural network brain-like model based on network nodes and topology constraints of the spiking neural network brain-like model provided by another embodiment of the present disclosure.
图6所示为本公开一实施例提供的确定预设网络拓扑阈值的流程示意图。FIG. 6 is a schematic flowchart of determining a preset network topology threshold according to an embodiment of the present disclosure.
图7所示为本公开另一实施例提供的模型构建方法的流程示意图。FIG. 7 is a schematic flowchart of a model construction method provided by another embodiment of the present disclosure.
图8所示为本公开一实施例提供的模型构建装置的结构示意图。FIG. 8 is a schematic structural diagram of a model building apparatus according to an embodiment of the present disclosure.
图9所示为本公开一实施例提供的电子设备的结构示意图。FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
具体实施方式Detailed ways
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all of the embodiments.
计算神经科学将认知神经科学、电子工程学、信息科学和计算机科学等多领域交叉融合,其目的是从多学科角度解释一系列与生物大脑神经系统相关的现象,对未来类脑智能和神经系统疾病研究的发展起着重要作用。随着信息产业的发展,计算神经科学越来越受到重视,进一步推动了信息科学、脑科学的发展。因此,人工神经网络模型的应用越来越广泛,而脉冲神经网络作为新一代人工网络模型,不同于传统人工神经网络模型,脉冲神经网络对复杂非线性时空信息有着强大的处理能力,在计算神经学科领域起着重要的作用,是计算神经学科必要的理论和模型基础。但随着计算神经学科向智能化的方向发展,类脑模型兴起,而基于脉冲神经网络构建的类脑模型缺乏生物脑结构约束,生物合理性不足的问题日益突出,因此限制了脉冲神经网络在计算神经学科的发展。Computational neuroscience integrates cognitive neuroscience, electrical engineering, information science and computer science and other fields. Its purpose is to explain a series of phenomena related to the biological brain nervous system from a multidisciplinary perspective. The development of systemic disease research plays an important role. With the development of the information industry, more and more attention has been paid to computational neuroscience, which has further promoted the development of information science and brain science. Therefore, the application of artificial neural network models is becoming more and more extensive, and the spiking neural network, as a new generation artificial network model, is different from the traditional artificial neural network model. The subject area plays an important role and is the necessary theoretical and model basis for computational neuroscience. However, with the development of computational neuroscience in the direction of intelligence, brain-inspired models have emerged, and brain-inspired models based on spiking neural networks lack biological brain structure constraints, and the problem of insufficient biological rationality has become increasingly prominent. Developments in Computational Neuroscience.
由此可见,如何提高基于脉冲神经网络构建的类脑模型的生物合理性是亟需解决的问题。为了解决上述问题,本公开实施例提供一种模型构建方法,用于构建脉冲神经网络类脑模型,以解决现有的基于脉冲神经网络的类脑模型缺乏生物合理性的问题。It can be seen that how to improve the biological rationality of brain-like models based on spiking neural networks is an urgent problem to be solved. In order to solve the above problem, the embodiments of the present disclosure provide a model construction method for constructing a spiking neural network brain-like model, so as to solve the problem that the existing spiking neural network-based brain-like model lacks biological rationality.
下面结合图1对本公开实施例的应用场景进行简单的介绍。The following briefly introduces application scenarios of the embodiments of the present disclosure with reference to FIG. 1 .
图1所示本公开一实施例提供的应用场景示意图。如图1所示,该场景为构建脉冲神经网络类脑模型的场景。具体而言,构建脉冲神经网络类脑模型的场景包括服务器110、分别与服务器110通信连接的用户终端120和功能性核磁共振影像数据的存储设备130,服务器110用于执行本公开实施例提及的模型构建方法。示例性地,服务器110用于执行:对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据;基于M个脑区影像数据,生成M个模型节点,其中,模型节点表征包含模型节点对应的脑区影像数据的脑区;基于M个模型节点之间的相关系数矩阵,生成N个模型边,其中,相关系数矩阵用于表示M个模型节点之间的脑功能网络连接强度;基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,其中,S为小于或等于N的正整数;基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束;基于类脑模型的拓扑约束,构建脉冲神经网络类脑模型。FIG. 1 shows a schematic diagram of an application scenario provided by an embodiment of the present disclosure. As shown in Figure 1, this scene is a scene for building a brain-like model of a spiking neural network. Specifically, the scenario for constructing the spiking neural network brain-like model includes a server 110 , a user terminal 120 communicatively connected to the server 110 , and a
示例性地,在实际应用过程中,用户利用用户终端120向服务器110发出针对A某构建脉冲神经网络类脑模型的指令。在服务器110接收到该指令后,调出在存储设备130中的A某的功能性核磁共振影像数据,基于功能性核磁共振影像数据生成针对A某构建的脉冲神经网络类脑模型,继而向用户终端120输出该模型,以便用户终端120应用该脉冲神经网络类脑模型。Exemplarily, in the actual application process, the user uses the user terminal 120 to send an instruction to the server 110 to construct an spiking neural network brain-like model for A. After the server 110 receives the instruction, it calls out the functional magnetic resonance image data of A in the
示例性地,上述提及的用户终端120包括但不限于台式电脑、笔记本电脑等计算机终端。上述提及的存储设备130存储的数据包括但不限于Neurolmaging Tools&ResourcesCollaboratory(NITRC)公开神经影像数据库中的数据、用户输入的功能性核磁共振影像数据等影像数据。Exemplarily, the user terminal 120 mentioned above includes, but is not limited to, computer terminals such as desktop computers and notebook computers. The data stored in the above-mentioned
下面结合图2至图7对本公开的模型构建方法进行简单的介绍。The model building method of the present disclosure will be briefly introduced below with reference to FIGS. 2 to 7 .
图2所示本公开一实施例提供的一种模型构建方法的流程示意图。如图2所示,本公开实施例提供的模型构建方法包括如下步骤。FIG. 2 is a schematic flowchart of a model construction method provided by an embodiment of the present disclosure. As shown in FIG. 2 , the model construction method provided by the embodiment of the present disclosure includes the following steps.
步骤S210,对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据。其中,M为正整数。Step S210, dividing the functional magnetic resonance image data to be processed into brain regions to obtain M brain region image data. Among them, M is a positive integer.
示例性地,选取的待处理功能性核磁共振影像(Functional Magnetic ResonanceImaging,FMRI)数据是选自NITRC公开神经影像数据库中的一名健康成年男性影像数据,然后对获取的影像数据进行脑区的划分,获得M个脑区影像数据。Exemplarily, the selected functional magnetic resonance imaging (Functional Magnetic Resonance Imaging, FMRI) data is selected from the image data of a healthy adult male in the NITRC public neuroimaging database, and then the obtained image data is divided into brain regions. , to obtain image data of M brain regions.
步骤S220,基于M个脑区影像数据,生成M个模型节点。Step S220, based on the image data of the M brain regions, generate M model nodes.
示例性地,模型节点包含对应的脑区影像数据,即,将每个脑区作为脑功能网络的一个节点,每个节点代表包含功能性核磁共振影像(FMRI)数据划分后对应的脑区。比如,根据M个脑区影像数据,将M个脑区做为脑功能网络的节点,生成M个网络节点。Exemplarily, the model node contains the corresponding brain region image data, that is, each brain region is regarded as a node of the brain function network, and each node represents the corresponding brain region containing functional magnetic resonance imaging (FMRI) data after division. For example, according to the image data of M brain regions, M brain regions are used as nodes of the brain function network, and M network nodes are generated.
步骤S230,基于M个模型节点之间的相关系数矩阵,生成N个模型边。Step S230, based on the correlation coefficient matrix between the M model nodes, generate N model edges.
示例性地,模型节点之间的相关系数矩阵是用于表示M个模型节点之间的脑功能网络连接强度,即节点间的功能连接强度通过不同节点平均时间序列间的Pearson相关系数确定。Exemplarily, the correlation coefficient matrix between model nodes is used to represent the brain functional network connection strength between M model nodes, that is, the functional connection strength between nodes is determined by the Pearson correlation coefficient between the average time series of different nodes.
示例地,通过Pearson相关系数相关公式计算,获得M*M的对称的相关系数矩阵,其中不为0的相关系数为2*N,即获得N个模型的边。Pearson相关系数的数学表达式具体如下述所示。For example, by calculating with the Pearson correlation coefficient correlation formula, a symmetric correlation coefficient matrix of M*M is obtained, wherein the correlation coefficient that is not 0 is 2*N, that is, the edges of N models are obtained. The mathematical expression of the Pearson correlation coefficient is specifically as follows.
其中,xi(t)和xj(t)分别为节点i和节点j在t时刻的平均时间序列;和分别为节点i和节点j的平均时间序列;rij为节点i和节点j间的相关系数;T为时间点数。Among them, x i (t) and x j (t) are the average time series of node i and node j at time t, respectively; and are the average time series of node i and node j, respectively; r ij is the correlation coefficient between node i and node j; T is the number of time points.
步骤S240,基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,其中,S为小于或等于N的正整数。Step S240 , based on a preset network topology threshold, filter N model edges to obtain S model edges that meet preset conditions, where S is a positive integer less than or equal to N.
示例性地,预设网络拓扑阈值选取符合生物脑网络的阈值,根据预设网络拓扑阈值,得到网络节点的连接情况。根据网络节点连接情况,对N个模型边进行筛选,获得符合预设网络拓扑阈值的S个模型边。Exemplarily, the preset network topology threshold is selected as a threshold that conforms to the biological brain network, and the connection status of network nodes is obtained according to the preset network topology threshold. According to the connection of network nodes, N model edges are screened to obtain S model edges that meet the preset network topology threshold.
步骤S250,基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束。Step S250 , based on the M model nodes and the S model edges, the topological constraints based on the biological brain function network of the spiking neural network brain-like model are generated.
示例性地,根据M个模型节点和S个模型的边,可以获得一个二值矩阵,该二值矩阵即为脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束。Exemplarily, according to the M model nodes and the S model edges, a binary matrix can be obtained, and the binary matrix is the topological constraint based on the biological brain function network of the spiking neural network brain-like model.
步骤S260,基于拓扑约束,构建脉冲神经网络类脑模型。Step S260, building a brain-like model of a spiking neural network based on topological constraints.
示例性地,基于上述拓扑约束,构建基于脉冲神经网络的类脑模型。Exemplarily, based on the above topological constraints, a brain-like model based on a spiking neural network is constructed.
在实际应用过程中,首先对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据,基于M个脑区影像数据,生成M个模型节点,然后基于M个模型节点之间的相关系数矩阵,生成N个模型边,然后基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,继而基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束,最终基于拓扑约束,构建脉冲神经网络类脑模型。In the actual application process, the functional magnetic resonance imaging data to be processed is first divided into brain regions to obtain M brain region image data, and M model nodes are generated based on the M brain region image data, and then M model nodes are generated based on the relationship between the M model nodes. Then, based on the preset network topology threshold, the N model edges are screened to obtain S model edges that meet the preset conditions, and then based on M model nodes and S model edges, Generate the spiking neural network brain-like model based on the topological constraints of the biological brain functional network, and finally build the spiking neural network brain-like model based on the topological constraints.
由于构建类脑模型采用的网络拓扑是根据功能性核磁共振影像数据获得的,即基于生物脑结构为网络拓扑约束,因此,本公开实施例能依据生物脑结构为网络拓扑约束生成基于脉冲神经网络的类脑模型,使得脉冲神经网络能够反应真实脑网络连接,让脉冲神经网络更具有生物合理性,解决了当前基于脉冲神经网络的类脑模型缺乏生物合理性的问题。Since the network topology used in constructing the brain-like model is obtained from functional MRI data, that is, based on the biological brain structure as the network topology constraint, the embodiments of the present disclosure can generate a spike-based neural network based on the biological brain structure as the network topology constraint. The brain-inspired model of SPI enables the spiking neural network to reflect the real brain network connection, making the spiking neural network more biologically rational, and solves the problem that the current brain-like model based on the spiking neural network lacks biological rationality.
图3所示为本公开一实施例提供的基于拓扑约束,构建脉冲神经网络类脑模型的流程示意图。在图2所示实施例基础上延伸出图3所示实施例,下面着重叙述图3所示实施例与图2所示实施例的不同之处,相同之处不再赘述。FIG. 3 is a schematic flowchart of building a brain-like model of a spiking neural network based on topology constraints according to an embodiment of the present disclosure. On the basis of the embodiment shown in FIG. 2 , the embodiment shown in FIG. 3 is extended, and the following focuses on describing the differences between the embodiment shown in FIG. 3 and the embodiment shown in FIG. 2 , and the similarities will not be repeated.
如图3所示,在本公开实施例中,基于拓扑约束,构建脉冲神经网络类脑模型的步骤,包括如下步骤。As shown in FIG. 3 , in the embodiment of the present disclosure, the steps of constructing a brain-like model of a spiking neural network based on topological constraints include the following steps.
步骤S310,基于预设二阶神经元模型和M个模型节点,生成脉冲神经网络类脑模型的网络节点。Step S310 , based on the preset second-order neuron model and the M model nodes, generate network nodes of the spiking neural network brain-like model.
示例性地,预设的二阶神经元模型选取Izhikevich神经元模型,Izhikevich神经元模型能很好地反应生物神经元的放电特性,时间复杂度低,适用于大规模网络的构建,因此,在构建脉冲神经网络类脑模型时,以Izhikevich神经元模型作为脉冲神经网络类脑模型的节点。本实施例中选取Izhikevich神经元模型包括两种放电模式,包括规则放电模式和低阈值放电模式,规则放电模式模拟兴奋性神经元放电,低阈值放电模式模拟抑制性神经元放电。Izhikevich神经元模型的数学模型中的无量纲参数,分别选取不同数值,以表示两种放电模式。可以理解,预设的二阶神经元模型包括但不限于Izhikevich神经元模型。Exemplarily, the preset second-order neuron model selects the Izhikevich neuron model. The Izhikevich neuron model can well reflect the discharge characteristics of biological neurons and has low time complexity, which is suitable for the construction of large-scale networks. When building the spiking neural network brain-like model, the Izhikevich neuron model is used as the node of the spiking neural network brain-like model. In this embodiment, the selected Izhikevich neuron model includes two firing modes, including regular firing mode and low-threshold firing mode. The regular firing mode simulates excitatory neuron firing, and the low-threshold firing mode simulates inhibitory neuron firing. For the dimensionless parameters in the mathematical model of the Izhikevich neuron model, different values are selected to represent the two firing modes. It can be understood that the preset second-order neuron model includes, but is not limited to, the Izhikevich neuron model.
示例性地,Izhikevich神经元模型的数学模型如下述所示。Exemplarily, the mathematical model of the Izhikevich neuron model is shown below.
if if
其中,VI是神经元膜电压;u是膜电压恢复变量;I是外界输入电流和经多个突触传导来的电流的和。a是恢复变量u的时间尺度;b是恢复变量u对膜电压的域下波动的敏感性;c是快速高阈值钾电导引起的膜电压的复位值;d是慢速高阈值钾和钠电导引起的恢复变量的复位值。a,b,c和d均为无量纲参数,通过调节其数值可以模拟神经元的多种放电模式。综上,本实施例中以规则放电模式模拟兴奋性神经元放电,选取参数如下:a=0.02,b=0.2,c=-65,d=8;以低阈值放电模式模拟抑制性神经元放电,选取参数如下:a=0.02,b=0.25,c=-65,d=2。Among them, VI is the neuron membrane voltage; u is the membrane voltage recovery variable; I is the sum of the external input current and the current conducted through multiple synapses. a is the time scale of the recovery variable u; b is the sensitivity of the recovery variable u to subdomain fluctuations in membrane voltage; c is the reset value of the membrane voltage induced by the fast high-threshold potassium conductance; d is the slow high-threshold potassium and sodium conductances Caused to restore the reset value of the variable. a, b, c and d are all dimensionless parameters, and various firing patterns of neurons can be simulated by adjusting their values. To sum up, in this embodiment, the excitatory neuron firing is simulated in a regular firing mode, and the parameters are selected as follows: a=0.02, b=0.2, c=-65, d=8; the inhibitory neuron firing is simulated in a low-threshold firing mode , the selected parameters are as follows: a=0.02, b=0.25, c=-65, d=2.
步骤S320,基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。Step S320 , build a spiking neural network brain-like model based on the network nodes and topology constraints of the spiking neural network brain-like model.
示例性地,在上述拓扑约束下构建的类脑模型中,设置Izhikevich神经元模型为类脑模型网络节点,构成脉冲神经网络类脑模型。Exemplarily, in the brain-like model constructed under the above topological constraints, the Izhikevich neuron model is set as the brain-like model network node to constitute the spiking neural network brain-like model.
由于Izhikevich神经元模型能够很好地反应生物神经元的放电特性,选取的Izhikevich神经元模型能够表达生物神经元的两种放电模式,能够很好地表达兴奋性神经元放电和抑制性神经元放电,从网络节点的角度,进一步增加了构建的类脑模型的生物合理性。由此可见,本公开实施例能够基于拓扑约束,在类脑模型的节点的方向上,进一步增加了基于脉冲神经网络的类脑模型的生物合理性。Since the Izhikevich neuron model can well reflect the firing characteristics of biological neurons, the selected Izhikevich neuron model can express the two firing modes of biological neurons, and can well express the firing of excitatory neurons and the firing of inhibitory neurons. , which further increases the biological rationality of the constructed brain-like model from the perspective of network nodes. It can be seen that the embodiments of the present disclosure can further increase the biological rationality of the brain-like model based on the spiking neural network in the direction of the nodes of the brain-like model based on topological constraints.
图4所示为本公开一实施例提供的基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建类脑模型的流程示意图。在图3所示实施例基础上延伸出图4所示实施例,下面着重叙述图4所示实施例与图3所示实施例的不同之处,相同之处不再赘述。FIG. 4 shows a schematic flowchart of building a brain-like model based on network nodes and topology constraints of the spiking neural network brain-like model provided by an embodiment of the present disclosure. On the basis of the embodiment shown in FIG. 3 , the embodiment shown in FIG. 4 is extended. The following focuses on describing the differences between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 3 , and the similarities will not be repeated.
如图4所示,在本公开实施例中,基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型的步骤,包括如下步骤。As shown in FIG. 4 , in the embodiment of the present disclosure, based on the network nodes and topology constraints of the spiking neural network brain-like model, the steps of constructing the spiking neural network brain-like model include the following steps.
步骤S410,基于预设突触可塑性模型和S个模型边,生成脉冲神经网络类脑模型的网络边。Step S410 , based on the preset synaptic plasticity model and the S model edges, generate network edges of the spiking neural network brain-like model.
示例性地,预设突触可塑性模型是选用兴奋性和抑制性共同调节的突出可塑性模型,兴奋性突触和抑制性突触均通过突触电导的改变实现对脉冲神经网络的调节。根据调节规律,预设兴奋性突触和抑制性突触在兴奋和抑制两种状态下的影响参数,包括反转电位、兴奋性突触权重、抑制性突触权重、兴奋性突触电导的衰减常数、抑制性突触电导的衰减常数、兴奋性突触电导的最大修正值、兴奋性突触电导的最小修正值以及抑制性突触电导的最大修正值和抑制性突触电导的最小修正值。根据参数设定,得到突触可塑性模型,将得到的突触可塑性模型结合S个模型边,生成类脑模型的边。Exemplarily, the preset synaptic plasticity model is a prominent plasticity model in which excitatory and inhibitory synapses are jointly regulated, and both excitatory synapses and inhibitory synapses can regulate the spiking neural network through changes in synaptic conductance. According to the regulation law, preset the influence parameters of excitatory synapse and inhibitory synapse in both excitation and inhibition states, including reversal potential, excitatory synapse weight, inhibitory synapse weight, excitatory synapse conductance Decay Constant, Decay Constant of Inhibitory Synapse Conductance, Maximum Correction of Excitatory Synaptic Conductance, Minimum Correction of Excitatory Synaptic Conductance, Maximum Correction of Inhibitory Synaptic Conductance and Minimum Correction of Inhibitory Synaptic Conductance value. According to the parameter setting, a synaptic plasticity model is obtained, and the obtained synaptic plasticity model is combined with S model edges to generate edges of the brain-like model.
示例性地,突触输出电流与输入电压近似呈线性关系,其数学描述如下述所示。Illustratively, the synaptic output current has an approximately linear relationship with the input voltage, which is mathematically described as follows.
Isyn=gsyn(t)(E-Vj(t))I syn = g syn (t)(EV j (t))
其中,Isyn是突触电流;gsyn是突触电导;Vj(t)为突触后神经元的膜电位;E为反转电位。本实施例中,选取兴奋性突触的反转电位Eex为0mV,抑制性突触的反转电位Ein为-70mV。兴奋性突触和抑制性突触均通过突触电导的改变实现对脉冲神经网络的调节,当突触后神经元j没有接收到突触前神经元i的动作电位时,兴奋性突触和抑制性突触的突触电导呈指数衰减,具体表达如下述所示。Among them, I syn is the synaptic current; g syn is the synaptic conductance; V j (t) is the membrane potential of the postsynaptic neuron; E is the reversal potential. In this embodiment, the reversal potential E ex of excitatory synapses is selected to be 0 mV, and the reversal potential E in of inhibitory synapses is selected to be -70 mV. Both excitatory synapses and inhibitory synapses achieve regulation of spiking neural networks through changes in synaptic conductance. When postsynaptic neuron j does not receive the action potential of presynaptic neuron i, excitatory synapses and The synaptic conductance of inhibitory synapses decays exponentially, as shown below.
其中,gex表示兴奋性突触权重,gin表示抑制性突触权重;τex和τin分别表示兴奋性突触电导和抑制性突触电导的衰减常数。Among them, g ex represents the excitatory synaptic weight, gin represents the inhibitory synaptic weight; τ ex and τ in represent the decay constants of the excitatory synaptic conductance and inhibitory synaptic conductance , respectively.
当突触后神经元j接收到突触前神经元i的动作电位时,兴奋性突触电导和抑制性突触电导变化如下述所示。When postsynaptic neuron j receives an action potential from presynaptic neuron i, the excitatory synaptic conductance and inhibitory synaptic conductance change as shown below.
其中,和为由动作电位引起的兴奋性电导增量和抑制性电导增量,分别由兴奋性修正函数wij和抑制性修正函数mij进行调节。兴奋性修正函数wij和抑制性修正函数mij的数学描述如下述所示。in, and are the excitatory and inhibitory conductance increments caused by action potentials, which are adjusted by the excitatory correction function w ij and the inhibitory correction function m ij , respectively. The mathematical description of the excitatory correction function w ij and the inhibitory correction function m ij is as follows.
其中,A+和A-分别为兴奋性突触电导的最大修正值和最小修正值;B+和B-分别为抑制性突触电导的最大修正值和最小修正值。Δt为突触前神经元和突触后神经元间的放电间隔。τ+和τ-分别为突触增强和突触减弱时神经元放电的时间间隔范围。综上,本实施例中,参数的选取为:和的最大值和最小值分别0.015和0;τ+=τ-=20ms,A+=0.1,A-=0.105,B+=0.02,B-=0.003Among them, A + and A - are the maximum correction value and minimum correction value of excitatory synaptic conductance, respectively; B + and B - are the maximum correction value and minimum correction value of inhibitory synaptic conductance, respectively. Δt is the firing interval between presynaptic neurons and postsynaptic neurons. τ + and τ- are the time interval ranges of neuron firing during synaptic strengthening and synaptic weakening , respectively. To sum up, in this embodiment, the selection of parameters is: and The maximum and minimum values are 0.015 and 0, respectively; τ + =τ - =20ms, A + =0.1, A - =0.105, B + =0.02, B - =0.003
步骤S420,基于脉冲神经网络类脑模型的网络边、脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。Step S420 , based on the network edges of the spiking neural network brain-like model, network nodes and topology constraints of the spiking neural network brain-like model, construct the spiking neural network brain-like model.
示例性地,在上述基于拓扑约束和网络节点构建类脑模型中,设置上述突触可塑性模型为类脑模型网络的边,构成脉冲神经网络类脑模型。Exemplarily, in the above-mentioned construction of the brain-like model based on topological constraints and network nodes, the above-mentioned synaptic plasticity model is set as an edge of the brain-like model network to form a spiking neural network brain-like model.
根据生物突触研究成果可知,兴奋性突触和抑制性突触共同调节的类脑模型更具有生物完备性,从网络边的角度,提高了脉冲神经网络类脑模型的生物完备性,增加了脉冲神经网络类脑模型的生物合理性。由此可见,本公开实施例能够基于脉冲神经网络类脑模型的网络节点和拓扑约束,在脉冲神经网络类脑模型的边的方向上,进一步增加了基于脉冲神经网络的类脑模型的生物合理性。According to the research results of biological synapses, the brain-like model co-regulated by excitatory synapses and inhibitory synapses is more biologically complete. Biological plausibility of spiking neural network brain-like models. It can be seen that, based on the network nodes and topology constraints of the spiking neural network brain-like model, the embodiments of the present disclosure can further increase the biological rationality of the spiking neural network-based brain-like model in the direction of the edges of the spiking neural network brain-like model. sex.
结合图5进一步说明基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型具体执行的流程。The specific execution process of constructing the spiking neural network brain-like model based on the network nodes and topology constraints of the spiking neural network brain-like model is further described with reference to FIG. 5 .
图5所示为本公开另一实施例提供的基于脉冲神经网络类脑模型网络的节点和拓扑约束,构建脉冲神经网络类脑模型的流程示意图。在图4所示实施例的基础上延伸出图5所示实施例,下面着重叙述图5与图4所示实施例的不同之处,相同之处不再赘述。FIG. 5 shows a schematic flowchart of constructing a brain-like model of a spiking neural network based on nodes and topology constraints of a spiking neural network brain-like model network provided by another embodiment of the present disclosure. The embodiment shown in FIG. 5 is extended on the basis of the embodiment shown in FIG. 4 . The following focuses on the differences between the embodiment shown in FIG. 5 and the embodiment shown in FIG. 4 , and the similarities are not repeated.
如图5所示,在本公开另一实施例中,预设突触可塑性模型包括以兴奋性和抑制性共同调节的突触可塑性模型,在基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型步骤之前,还包括如下步骤。As shown in FIG. 5 , in another embodiment of the present disclosure, the preset synaptic plasticity model includes a synaptic plasticity model co-regulated by excitability and inhibition, and the network nodes and topological constraints based on the spiking neural network brain-like model , before the step of constructing the spiking neural network brain-like model, the following steps are also included.
步骤S510,基于神经解剖学实验数据,确定突触可塑性模型包含的兴奋性神经元与抑制性神经元的数量比例。Step S510, based on the experimental data of neuroanatomy, determine the number ratio of excitatory neurons and inhibitory neurons included in the synaptic plasticity model.
示例性地,基于神经解刨学实验数据,可以选取兴奋性神经元与抑制性神经元的比例为4:1,确定突触可塑性模型中包含的兴奋性神经元和抑制性神经元的模型比例。Exemplarily, based on the experimental data of neuroanatomy, the ratio of excitatory neurons to inhibitory neurons can be selected to be 4:1 to determine the model ratio of excitatory neurons and inhibitory neurons included in the synaptic plasticity model. .
步骤S520,基于数量比例,生成预设突触可塑性模型。Step S520, based on the quantity ratio, generate a preset synaptic plasticity model.
示例性地,按照上述兴奋性神经元与抑制性神经元的比例,突触可塑性模型中兴奋性神经元和抑制性神经元的模型按照4:1的比例随机分布,生成预设突触可塑性模型。Exemplarily, according to the above ratio of excitatory neurons to inhibitory neurons, the models of excitatory neurons and inhibitory neurons in the synaptic plasticity model are randomly distributed at a ratio of 4:1 to generate a preset synaptic plasticity model. .
由于突触可塑性模型的兴奋性神经元和抑制性神经元的数量比例是依据神经解刨学实验数据,使得突触可塑性模型更具生物合理性。由此可见,本公开实施例能够基于脉冲神经网络类脑模型的网络节点和网络拓扑约束,构建脉冲神经网络类脑模型,采用更具生物合理性的突触可塑性模型,为进一步增加基于脉冲神经网络构建的类脑模型的生物合理性提供了前提。Since the ratio of the number of excitatory neurons and inhibitory neurons in the synaptic plasticity model is based on the experimental data of neuroanatomy, the synaptic plasticity model is more biologically reasonable. It can be seen from this that the embodiments of the present disclosure can build a spiking neural network brain-like model based on the network nodes and network topology constraints of the spiking neural network brain-like model, and adopt a more biologically rational synaptic plasticity model. The biological rationality of the brain-like model constructed by the network provides a premise.
图6所示为本公开一实施例提供的确定预设网络拓扑阈值的流程示意图。在图2所示实施例基础上延伸出图6所示实施例,下面着重叙述图6所示实施例与图2所示实施例的不同之处,相同之处不再赘述。FIG. 6 is a schematic flowchart of determining a preset network topology threshold according to an embodiment of the present disclosure. On the basis of the embodiment shown in FIG. 2 , the embodiment shown in FIG. 6 is extended. The following focuses on describing the differences between the embodiment shown in FIG. 6 and the embodiment shown in FIG. 2 , and the similarities will not be repeated.
如图6所示,在本公开实施例中,确定预设网络拓扑阈值的步骤,包括如下步骤。As shown in FIG. 6 , in this embodiment of the present disclosure, the step of determining a preset network topology threshold includes the following steps.
步骤S610,在一定范围内调节阈值,获取不同阈值下所生成的表达网络拓扑特性的参数。In step S610, the threshold is adjusted within a certain range, and the parameters representing the network topology characteristics generated under different thresholds are obtained.
示例性地,选取调节阈值的范围为0.1-0.6之间,设置步长为0.1,根据不同的阈值,可生成不同表达网络拓扑特性的参数。本实施例中选取表达网络拓扑特性的参数为网络密度、平均节点度、小世界属性和幂律指数,根据不同的阈值,获得不同的网络密度、平均节点度、小世界属性和幂律指数。Exemplarily, the range of the adjustment threshold is selected to be between 0.1 and 0.6, and the step size is set to 0.1. According to different thresholds, different parameters expressing network topology characteristics can be generated. In this embodiment, the parameters representing the network topology characteristics are selected as network density, average node degree, small-world attribute and power-law index, and different network densities, average node-degree, small-world attribute and power-law index are obtained according to different thresholds.
示例性地,网络密度根据定义公式得出,网络密度定义公式如下述所示。Exemplarily, the network density is obtained according to a definition formula, and the definition formula of the network density is as follows.
其中,N表示网络的节点数,L表示网络中实际存在的连边数。Among them, N represents the number of nodes in the network, and L represents the actual number of connections in the network.
示例性地,平均节点度根据定义公式得出,平均节点度的定义公式如下述所示。Exemplarily, the average node degree is obtained according to a definition formula, and the definition formula of the average node degree is as follows.
其中,Di为节点i的度。Di的数学表达式如下述所示。where D i is the degree of node i. The mathematical expression of D i is as follows.
其中,hij表示节点i和节点j之间是否存在连接,若存在连接则为1,不存在连接则为0。Among them, h ij indicates whether there is a connection between node i and node j, if there is a connection, it is 1, and if there is no connection, it is 0.
示例性地,小世界属性用σ来判定,当σ>1时,表示网络具有小世界属性,其数学表达式如下述所示。Exemplarily, the small-world attribute is determined by σ. When σ>1, it means that the network has the small-world attribute, and its mathematical expression is shown below.
其中,Creal和Crandom分别表示所构建网络和随机网络的聚类系数;Lreal和Lrandom分别表示所构建网络和随机网络的最短路径长度。Among them, C real and C random represent the clustering coefficients of the constructed network and random network, respectively; L real and L random represent the shortest path length of the constructed network and random network, respectively.
步骤S620,根据获得的不同网络拓扑特性参数,确定预设网络拓扑阈值。Step S620: Determine a preset network topology threshold according to the obtained different network topology characteristic parameters.
示例性地,依据生物脑拓扑的特点,网络密度一般所处的范围为5%-40%,网络具有小世界属性和无标度属性,幂律指数在2左右且聚类系数较高,根据上述生物脑拓扑的特点,本实施例综合考虑,选取的阈值为0.2。Exemplarily, according to the characteristics of biological brain topology, the network density is generally in the range of 5%-40%, the network has small-world properties and scale-free properties, the power-law index is around 2 and the clustering coefficient is high, according to The above-mentioned characteristics of the biological brain topology are comprehensively considered in this embodiment, and the selected threshold is 0.2.
由于网络拓扑阈值的选取依据生物脑网络拓扑的特性,因此增加了脉冲神经网络类脑模型的生物合理性。Since the selection of the network topology threshold is based on the characteristics of the biological brain network topology, the biological rationality of the spiking neural network brain-like model is increased.
在本公开实施例中,对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据的步骤,包括采用Zalesky_980模板,对待处理功能性核磁共振影像数据进行脑区划分,得到980个脑区影像数据。In the embodiment of the present disclosure, the step of dividing the functional MRI data to be processed into brain regions to obtain M brain region image data includes using the Zalesky_980 template to divide the functional MRI data to be processed into brain regions, and obtaining 980 image data of brain regions.
结合图7进一步说明构建模型具体执行的流程。The specific execution process of building the model is further described with reference to FIG. 7 .
图7所示为本公开另一实施例提供的模型构建方法的流程示意图。在图2所示实施例基础上延伸出图7所示实施例,下面着重叙述图7所示实施例与图2所示实施例不同之处,相同之处不在赘述。FIG. 7 is a schematic flowchart of a model construction method provided by another embodiment of the present disclosure. On the basis of the embodiment shown in FIG. 2 , the embodiment shown in FIG. 7 is extended. The following focuses on describing the differences between the embodiment shown in FIG. 7 and the embodiment shown in FIG. 2 , and the similarities will not be repeated.
如图7所示,在本公开另一实施例中,对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据之前,还包括如下步骤。As shown in FIG. 7 , in another embodiment of the present disclosure, the following steps are further included before dividing the functional magnetic resonance image data to be processed into brain regions to obtain image data of M brain regions.
步骤S710,获取受试者的初始功能性核磁共振影像数据。Step S710, acquiring initial functional magnetic resonance image data of the subject.
步骤S720,对初始功能性核磁共振影像数据进行预处理,得到待处理功能性核磁共振影像数据。Step S720, preprocessing the initial functional magnetic resonance image data to obtain functional magnetic resonance image data to be processed.
示例性地,对初始功能性核磁共振影像数据进行预处理,包括时间层校正处理和空间标准化处理。根据实际应用情况,初始功能性核磁共振影像数据存在层与层之间的时间偏移,需要进行时间层校正处理。空间标准化是为了消除大脑在形状和大小上存在的差异,把初始功能性核磁共振影像数据转换到标准MNI空间。根据综合考虑,本实施例中对初始功能性核磁共振影像数据的预处理不仅包括时间层校正处理和空间标准化处理,还进行了头动校正处理、平滑处理和滤波处理。在获取功能性核磁共振影像数据的期间,受试者会不可避免的存在头动现象,因此进行头动校正处理,以消除头动现象对图像定位产生的影响;为了减少随机噪声的影响,提高数据的信噪比,需要对功能性核磁共振影像数据进行平滑处理;为了降低低频漂移和高频生理噪声,通过选取带通滤波器对功能性核磁共振影像数据数据进行滤波处理。Exemplarily, the initial functional magnetic resonance imaging data is preprocessed, including temporal slice correction processing and spatial normalization processing. According to the actual application, the initial functional magnetic resonance imaging data has a time offset between slices, which requires time slice correction processing. Spatial normalization transforms the original fMRI data into standard MNI space to remove differences in brain shape and size. According to comprehensive consideration, the preprocessing of the initial functional MRI data in this embodiment not only includes temporal layer correction processing and spatial normalization processing, but also performs head motion correction processing, smoothing processing, and filtering processing. During the acquisition of functional MRI image data, subjects will inevitably have head movement, so head movement correction processing is performed to eliminate the influence of head movement on image positioning; in order to reduce the influence of random noise, improve To determine the signal-to-noise ratio of the data, the functional MRI data needs to be smoothed; in order to reduce low-frequency drift and high-frequency physiological noise, the functional MRI data is filtered by selecting a band-pass filter.
上文结合图2至图7,详细描述了本公开的方法实施例,下面结合图8和图9,详细描述本公开的装置实施例。此外,应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。The method embodiments of the present disclosure are described in detail above with reference to FIGS. 2 to 7 , and the apparatus embodiments of the present disclosure are described in detail below with reference to FIGS. 8 and 9 . In addition, it should be understood that the descriptions of the method embodiments correspond to the descriptions of the apparatus embodiments, and therefore, for the parts not described in detail, reference may be made to the foregoing method embodiments.
图8所示为本公开一实施例提供的模型构建装置的结构示意图。如图8所示,本公开实施例提供的模型构建装置包括脑区划分模块810、第一生成模块820、第二生成模块830、筛选模块840、第三生成模块850以及构建模块860。FIG. 8 is a schematic structural diagram of a model building apparatus according to an embodiment of the present disclosure. As shown in FIG. 8 , the model construction apparatus provided by the embodiment of the present disclosure includes a brain
具体地,脑区划分模块810用于对待处理功能性核磁共振影像数据进行脑区划分,得到M个脑区影像数据。第一生成模块820用于基于M个脑区影像数据,生成M个模型节点,其中,模型节点表征包含模型节点对应的脑区影像数据的脑区。第二生成模块830用于基于M个模型节点之间的相关系数矩阵,生成N个模型边,其中,相关系数矩阵用于表示M个模型节点之间的脑功能网络连接强度。筛选模块840用于基于预设网络拓扑阈值,对N个模型边进行筛选,得到符合预设条件的S个模型边,其中,S为小于或等于N的正整数。第三生成模块850用于基于M个模型节点和S个模型边,生成脉冲神经网络类脑模型的基于生物脑功能网络的拓扑约束。构建模块860用于基于拓扑约束,构建脉冲神经网络类脑模型。Specifically, the brain
在一些实施例中,构建模块860还用于,基于预设二阶神经元模型和M个模型节点,生成脉冲神经网络类脑模型的网络节点,其中,预设二阶神经元模型包括Izhikevich神经元模型;基于脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。In some embodiments, the
在一些实施例中,构建模块860还用于,基于突触可塑性模型和S个模型边,生成脉冲神经网络类脑模型的网络边;基于脉冲神经网络类脑模型的网络边、脉冲神经网络类脑模型的网络节点和拓扑约束,构建脉冲神经网络类脑模型。In some embodiments, the
在一些实施例中,构建模块860还用于,确定预设突触可塑性模型。其中确定预设突触可塑性模型,包括:基于神经解剖学实验数据,确定突触可塑性模型包含的兴奋性神经元与抑制性神经元的数量比例;基于数量比例,生成预设突触可塑性模型。In some embodiments, the
在一些实施例中,筛选模块840还用于,预设网络拓扑阈值的确定。具体地,依据能够表征网络拓扑特性的参数来确定网络阈值,其中,表征网络拓扑特性的参数包括网络密度、平均节点度、小世界属性和无标度属性中的至少一种。In some embodiments, the
在一些实施例中,第一生成模块820还用于,预设M为980,生成M个影像数据。其中预设M为980,生成M个影像数据,包括:待处理功能性核磁共振影像数据进行脑区划分,得到980个脑区影像数据。In some embodiments, the
在一些实施例中,第一生成模块820还用于,生成待处理功能性核磁共振影像数据。具体地,获取受试者的初始功能性核磁共振影像数据;对初始功能性核磁共振影像数据进行预处理,得到待处理功能性核磁共振影像数据,其中,预处理包括时间层校正处理和空间标准化处理,预处理还包括头动校正处理、平滑处理和滤波处理。In some embodiments, the
图9所示为本公开一实施例提供的电子设备的结构示意图。图9所示的电子设备900(该电子设备900具体可以是一种计算机设备)包括存储器901、处理器902、通信接口903以及总线904。其中,存储器901、处理器902、通信接口903通过总线904实现彼此之间的通信连接。FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure. The electronic device 900 shown in FIG. 9 (the electronic device 900 may specifically be a computer device) includes a memory 901 , a processor 902 , a communication interface 903 and a bus 904 . The memory 901 , the processor 902 , and the communication interface 903 are connected to each other through the bus 904 for communication.
存储器901可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器901可以存储程序,当存储器901中存储的程序被处理器902执行时,处理器902和通信接口903用于执行本公开实施例的模型构建方法的各个步骤。The memory 901 may be a read only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device, or a random access memory (Random Access Memory, RAM). The memory 901 may store a program, and when the program stored in the memory 901 is executed by the processor 902, the processor 902 and the communication interface 903 are used to execute various steps of the model building method of the embodiment of the present disclosure.
处理器902可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(Graphics Processing Unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本公开实施例的模型构建装置中的各个单元所需执行的功能。The processor 902 may use a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a graphics processing unit (Graphics Processing Unit, GPU), or one or more The integrated circuit is used to execute the relevant program, so as to realize the functions required to be performed by each unit in the model building apparatus of the embodiment of the present disclosure.
处理器902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本公开的模型构建方法的各个步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902还可以是通用处理器、数字信号处理器(Digital SignalProcessing,DSP)、专用集成电路(ASIC)、现场可编程门阵列(Field Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器902读取存储器901中的信息,结合其硬件完成本公开实施例的模型构建装置中包括的单元所需执行的功能,或者执行本公开方法实施例的模型构建方法。The processor 902 may also be an integrated circuit chip with signal processing capability. In the implementation process, each step of the model building method of the present disclosure may be completed by hardware integrated logic circuits in the processor 902 or instructions in the form of software. The above-mentioned processor 902 may also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete Gate or transistor logic devices, discrete hardware components. The disclosed methods, steps and logical block diagrams in the embodiments of the present disclosure can be implemented or executed. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present disclosure may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor. The software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art. The storage medium is located in the memory 901, and the processor 902 reads the information in the memory 901 and, in combination with its hardware, completes the functions required to be performed by the units included in the model building apparatus of the embodiment of the present disclosure, or executes the model building of the method embodiment of the present disclosure method.
通信接口903使用例如但不限于收发器一类的收发装置,来实现电子设备900与其他设备或通信网络之间的通信。例如,可以通过通信接口903获取处理功能性核磁共振影像数据信号。The communication interface 903 implements communication between the electronic device 900 and other devices or a communication network using a transceiving device such as, but not limited to, a transceiver. For example, the functional magnetic resonance imaging data signal can be acquired and processed through the communication interface 903 .
总线904可包括在电子设备900各个部件(例如,存储器901、处理器902、通信接口903)之间传送信息的通路。Bus 904 may include a pathway for communicating information between various components of electronic device 900 (eg, memory 901, processor 902, communication interface 903).
应注意,尽管图9所示的电子设备900仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,电子设备900还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,电子设备900还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,电子设备900也可仅仅包括实现本公开实施例所必须的器件,而不必包括图9中所示的全部器件。It should be noted that although the electronic device 900 shown in FIG. 9 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the electronic device 900 also includes necessary components for normal operation. other devices. Meanwhile, according to specific needs, those skilled in the art should understand that the electronic device 900 may further include hardware devices that implement other additional functions. In addition, those skilled in the art should understand that the electronic device 900 may also only include the necessary devices for implementing the embodiments of the present disclosure, and does not necessarily include all the devices shown in FIG. 9 .
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this disclosure.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the above-described systems, devices and units may refer to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present disclosure, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. For example, the device embodiments described above are only illustrative. For example, the division of units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。The functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions. The computer software products are stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure. The aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present disclosure, but the protection scope of the present disclosure is not limited to this. should be included within the scope of protection of the present disclosure. Therefore, the protection scope of the present disclosure should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210289158.XA CN114757334A (en) | 2022-03-23 | 2022-03-23 | Model construction method and device, storage medium and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210289158.XA CN114757334A (en) | 2022-03-23 | 2022-03-23 | Model construction method and device, storage medium and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114757334A true CN114757334A (en) | 2022-07-15 |
Family
ID=82327993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210289158.XA Pending CN114757334A (en) | 2022-03-23 | 2022-03-23 | Model construction method and device, storage medium and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114757334A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024046463A1 (en) * | 2022-09-02 | 2024-03-07 | 深圳忆海原识科技有限公司 | Model construction method, apparatus and platform, electronic device and storage medium |
WO2024119338A1 (en) * | 2022-12-05 | 2024-06-13 | 中国科学院深圳先进技术研究院 | Knowledge- and data-driven brain network computational method and apparatus, electronic device, and storage medium |
-
2022
- 2022-03-23 CN CN202210289158.XA patent/CN114757334A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024046463A1 (en) * | 2022-09-02 | 2024-03-07 | 深圳忆海原识科技有限公司 | Model construction method, apparatus and platform, electronic device and storage medium |
WO2024119338A1 (en) * | 2022-12-05 | 2024-06-13 | 中国科学院深圳先进技术研究院 | Knowledge- and data-driven brain network computational method and apparatus, electronic device, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110263921B (en) | A training method and device for a federated learning model | |
Wang et al. | Variational-based mixed noise removal with CNN deep learning regularization | |
van Wyk et al. | Evolutionary neural architecture search for image restoration | |
Ioannidis et al. | Semi-blind inference of topologies and dynamical processes over dynamic graphs | |
Shi et al. | Unsharp mask guided filtering | |
CN114757334A (en) | Model construction method and device, storage medium and electronic equipment | |
CN112232325B (en) | Sample data processing method and device, storage medium and electronic equipment | |
CN112529069B (en) | Semi-supervised node classification method, system, computer equipment and storage medium | |
CN111738435A (en) | A mobile device-based online sparse training method and system | |
CN108022171A (en) | A kind of data processing method and equipment | |
JP2022045893A (en) | Mesh noise removing method based on graph convolution network | |
Bui et al. | Structured sparsity of convolutional neural networks via nonconvex sparse group regularization | |
CN111714124A (en) | Magnetic resonance cine imaging method, device, imaging device and storage medium | |
CN111027610A (en) | Image feature fusion method, apparatus, and medium | |
CN111198897A (en) | Research hot topic analysis methods, devices and electronic equipment | |
Geng et al. | Partially linear additive Gaussian graphical models | |
Lu et al. | Image-specific prior adaptation for denoising | |
Baldassarre et al. | A general framework for structured sparsity via proximal optimization | |
Suo et al. | Hierarchical sparse modeling using spike and slab priors | |
Pachitariu et al. | Recurrent linear models of simultaneously-recorded neural populations | |
CN111815520A (en) | A Fast Processing Method of Remote Sensing Image Based on GPU-CUDA Coding Model | |
CN110287761A (en) | A Face Age Estimation Method Based on Convolutional Neural Network and Latent Variable Analysis | |
CN109784406A (en) | A kind of user draws a portrait method, apparatus, readable storage medium storing program for executing and terminal device | |
Wang et al. | Spectral permutation test on persistence diagrams | |
Xia et al. | Analysis and application of matrix-form neural networks for fast matrix-variable convex optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |