CN114757058A - Automobile time domain load extrapolation method and device based on particle swarm optimization - Google Patents
Automobile time domain load extrapolation method and device based on particle swarm optimization Download PDFInfo
- Publication number
- CN114757058A CN114757058A CN202210665472.3A CN202210665472A CN114757058A CN 114757058 A CN114757058 A CN 114757058A CN 202210665472 A CN202210665472 A CN 202210665472A CN 114757058 A CN114757058 A CN 114757058A
- Authority
- CN
- China
- Prior art keywords
- load signal
- signal data
- vehicle
- particle
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 172
- 238000013213 extrapolation Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005457 optimization Methods 0.000 title description 3
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 33
- 238000004364 calculation method Methods 0.000 claims abstract description 18
- 238000005315 distribution function Methods 0.000 claims abstract description 14
- 230000006870 function Effects 0.000 claims description 62
- 230000001133 acceleration Effects 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000035772 mutation Effects 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 8
- 230000009351 contact transmission Effects 0.000 claims description 5
- 238000012804 iterative process Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 7
- 230000014509 gene expression Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000013480 data collection Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000013502 data validation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- General Health & Medical Sciences (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于车辆耐久试验领域,尤其涉及一种基于粒子群算法的汽车时域载荷外推方法及装置。The invention belongs to the field of vehicle durability test, and in particular relates to a method and device for extrapolating vehicle time domain load based on particle swarm algorithm.
背景技术Background technique
汽车在研发阶段会在试车场内进行大量的整车耐久道路试验。而采集汽车在公共道路的载荷信号是制定汽车在试车场内进行整车耐久道路试验的重要输入。汽车整车的设计寿命一般为24万公里到30万公里,而汽车在公共道路进行载荷信号采集往往由于时间及费用的限制条件,最多只能采集几万公里的载荷信号,所以采集得到的汽车在公共道路的载荷信号需要进行外推,从而估算出汽车在整个生命周期内的载荷信号,才能更加合理的应用于制定整车耐久道路试验规范。During the research and development stage, a large number of vehicle durability road tests will be carried out in the test field. The collection of the load signal of the car on the public road is an important input for the vehicle to carry out the vehicle durability road test in the test field. The design life of the entire vehicle is generally 240,000 kilometers to 300,000 kilometers, and the collection of load signals on public roads is often limited by time and cost, and at most, only tens of thousands of kilometers of load signals can be collected. The load signal on the public road needs to be extrapolated to estimate the load signal of the vehicle in the whole life cycle, which can be more reasonably applied to formulate the vehicle durability road test specification.
时域外推方法是直接在时域信号上进行外推,时域信号极值符合广义帕累托分布,进行时域信号外推的核心步骤就是求解广义帕累托分布概率密度函数对应的参数。而以往求解广义帕累托分布概率密度函数的参数往往不是解空间内的最优解、且精度不够,会导致通过时域外推方法所得到的载荷信号数据不准确。The time-domain extrapolation method is to extrapolate directly on the time-domain signal. The extreme value of the time-domain signal conforms to the generalized Pareto distribution. The core step of time-domain signal extrapolation is to solve the parameters corresponding to the probability density function of the generalized Pareto distribution. In the past, the parameters for solving the probability density function of generalized Pareto distribution are often not the optimal solution in the solution space, and the precision is not enough, which will lead to the inaccuracy of the load signal data obtained by the time-domain extrapolation method.
发明内容SUMMARY OF THE INVENTION
鉴于现有技术存在上述技术问题,本发明实施例提供了一种基于粒子群算法的汽车时域载荷外推方法及装置。In view of the above-mentioned technical problems in the prior art, the embodiments of the present invention provide a method and device for extrapolating a vehicle time-domain load based on a particle swarm algorithm.
第一方面,本发明实施例提供了一种基于粒子群算法的汽车时域载荷外推方法,包括:In a first aspect, an embodiment of the present invention provides a particle swarm algorithm-based vehicle time-domain load extrapolation method, including:
采集车辆在公共道路的载荷信号数据;Collect vehicle load signal data on public roads;
根据所述在公共道路的载荷信号数据建立时域载荷外推计算模型,其中,所述时域载荷外推计算模型包括超阀值概率分布函数和超阀值概率密度函数;A time-domain load extrapolation calculation model is established according to the load signal data on the public road, wherein the time-domain load extrapolation calculation model includes a super-threshold probability distribution function and a super-threshold probability density function;
采用粒子群算法对所述超阀值概率密度函数进行求解,并根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据。The particle swarm algorithm is used to solve the over-threshold probability density function, and the time-domain load extrapolation is performed according to the solution result of the over-threshold probability density function to obtain the load signal data of the vehicle in the whole life cycle. .
可选地,所述采集车辆在公共道路的载荷信号数据,包括:Optionally, the collecting the load signal data of the vehicle on the public road includes:
在所述车辆上布置轮心六分力传感器和三向加速度传感器、在所述车辆的传动轴上布置非接触式传动轴扭矩传感器、以及在所述车辆的悬架杆件上布置杆件力传感器;A wheel center six-component force sensor and a three-way acceleration sensor are arranged on the vehicle, a non-contact drive shaft torque sensor is arranged on a drive shaft of the vehicle, and a rod force is arranged on a suspension rod of the vehicle sensor;
规划在公共道路行驶的合计里程及在每种公共道路的行驶路线,其中,所述合计里程中,城市道路的里程占比为,高速道路的里程占比为,郊区道路的里程占比为,国省道道路的里程占比为,坏路道路的里程占比为,山区道路的里程占比为,其中:;The total mileage planned on public roads and the driving route on each public road, wherein, in the total mileage, the proportion of urban road mileage is , the mileage ratio of expressways is , the proportion of mileage of suburban roads is , the proportion of mileage of national and provincial roads is , the mileage proportion of bad roads is , the mileage ratio of mountain roads is ,in: ;
在所述车辆行驶于所述公共道路过程中,通过如下任意一种方式采集在公共道路的载荷信号数据:所述车辆上布置的轮心六分力传感器采集轮心六分力信号、通过适应于车辆上布置的三向加速度传感器采集轮心三向加速度信号、通过所述车辆的传动轴上布置的非接触式传动轴扭矩传感器采集传动轴扭矩信号、以及通过所述车辆的悬架杆件上布置杆件力传感器采集杆件力信号;When the vehicle is driving on the public road, the load signal data on the public road is collected in any one of the following ways: the wheel center six-component force sensor arranged on the vehicle collects the wheel center six-component force signal, and by adapting The three-way acceleration sensor arranged on the vehicle collects the three-way acceleration signal of the wheel center, the non-contact transmission shaft torque sensor arranged on the transmission shaft of the vehicle collects the transmission shaft torque signal, and the suspension rod of the vehicle collects the transmission shaft torque signal. The rod force sensor is arranged on the upper part to collect the rod force signal;
对所述在公共道路的载荷信号数据进行检查和清洗。Check and clean the load signal data on the public road.
可选地,还包括:Optionally, also include:
设定所述车辆在全生命周期内的目标里程;setting the target mileage of the vehicle throughout its life cycle;
根据所述目标里程和所述车辆在多种公共道路上行驶的合计里程,确定对所述在公共道路的载荷信号进行外推的倍数N。A multiple N for extrapolating the load signal on the public road is determined according to the target distance and the total distance traveled by the vehicle on various public roads.
可选地,所述根据所述在公共道路的载荷信号数据建立时域载荷外推计算模型,包括:Optionally, establishing a time-domain load extrapolation calculation model according to the load signal data on the public road, including:
定义所述在公共道路的载荷信号数据;define the load signal data on the public road;
定义阀值参数、形状参数以及尺寸参数;Define threshold parameters, shape parameters and size parameters;
定义大于所述阀值参数的载荷信号数据为超阀值;Define the load signal data larger than the threshold parameter as the over-threshold value;
根据所述公共道路的载荷信号数据、所述阀值参数、所述形状参数以及所述尺寸参数,建立所述超阀值概率分布函数和所述超阀值概率密度函数。The super-threshold probability distribution function and the super-threshold probability density function are established according to the load signal data of the public road, the threshold parameter, the shape parameter and the size parameter.
可选地,所述采用粒子群算法对所述超阀值概率密度函数进行求解,包括:Optionally, using particle swarm algorithm to solve the super-threshold probability density function, including:
步骤1:均匀随机产生粒子构成粒子群集合,其中,所述粒子群集合中每一个粒子包括位置向量及速度向量;Step 1: uniformly and randomly generating particles to form a particle swarm set, wherein each particle in the particle swarm set includes a position vector and a velocity vector;
步骤2:计算所述粒子群集合中每一个粒子的适应度函数;Step 2: Calculate the fitness function of each particle in the particle swarm set;
步骤3:定义个体最优粒子位置及全局最优粒子位置;Step 3: Define the individual optimal particle position and the global optimal particle position;
步骤4:针对所述粒子群集合所有粒子进行变异操作;Step 4: perform mutation operation on all particles in the particle swarm set;
步骤5:针对粒子进行速度向量及位置向量更新;Step 5: Update the velocity vector and position vector for the particle;
步骤6:判断是否满足迭代结束条件,如果满足则终止迭代,并求解得到粒子的位置向量解集合,如果不满足则跳转至执行所述步骤2、步骤3、步骤4以及步骤5,直到满足迭代结束条件或者达到最大迭代次数;Step 6: Determine whether the iteration end condition is met, if so, terminate the iteration, and solve to obtain the particle's position vector solution set, if not, jump to execute the steps 2, 3, 4 and 5 until the The iteration end condition or the maximum number of iterations is reached;
步骤7:取所述位置向量解集合中阀值参数最大的粒子位置作为载荷信号超阀值的概率密度函数的求解结果。Step 7: Take the particle position with the largest threshold parameter in the position vector solution set as the solution result of the probability density function of the load signal exceeding the threshold.
可选地,所述个体最优粒子位置定义为针对个体粒子在迭代过程中适应度数值最大时对应的粒子位置;所述全局最优粒子位置定义为针对粒子群在迭代过程中适应度数值最大对应的粒子位置。Optionally, the individual optimal particle position is defined as the particle position corresponding to the maximum fitness value for the individual particle in the iterative process; the global optimal particle position is defined as the maximum fitness value for the particle swarm in the iterative process. the corresponding particle position.
可选地,所述根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据,包括:Optionally, the time-domain load extrapolation is performed according to the solution result of the over-threshold probability density function to obtain the load signal data of the vehicle in the whole life cycle, including:
从所述在公共道路的载荷信号数据中,提取超过阀值参数的数据;from the load signal data on the public road, extracting data exceeding the threshold parameter;
针对所述超过阀值参数的数据,采用超阀值概率密度函数的求解结果重复进行N次操作,每次操作随机产生新的载荷信号数据进行替换原数据;For the data exceeding the threshold parameter, the operation is repeated for N times using the solution result of the probability density function exceeding the threshold, and new load signal data is randomly generated for each operation to replace the original data;
将重复进行N次操作所生成的载荷信号数据进行首尾相连,得到外推N倍的时域载荷信号;Connect the payload signal data generated by repeating N times of operations end-to-end to obtain a time-domain payload signal that is extrapolated N times;
将所述外推N倍的时域载荷信号作为所述车辆在全生命周期内的载荷信号数据。The time-domain load signal extrapolated by N times is used as the load signal data of the vehicle in the whole life cycle.
第二方面,本发明实施例提供了一种基于粒子群算法的汽车时域载荷外推装置,包括:In a second aspect, an embodiment of the present invention provides a particle swarm algorithm-based vehicle time-domain load extrapolation device, including:
数据采集单元,用于采集车辆在公共道路的载荷信号数据;The data acquisition unit is used to collect the load signal data of the vehicle on the public road;
模型建立单元,用于根据所述在公共道路的载荷信号数据建立时域载荷外推计算模型,其中,所述时域载荷外推计算模型包括超阀值概率分布函数和超阀值概率密度函数;A model establishment unit for establishing a time-domain load extrapolation calculation model according to the load signal data on the public road, wherein the time-domain load extrapolation calculation model includes an over-threshold probability distribution function and an over-threshold probability density function ;
模型求解单元,用于采用粒子群算法对所述超阀值概率密度函数进行求解;a model solving unit, used for solving the super-threshold probability density function by using the particle swarm algorithm;
外推执行单元,用于根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据。The extrapolation execution unit is configured to extrapolate the load in the time domain according to the solution result of the probability density function of the over-threshold value, so as to obtain the load signal data of the vehicle in the whole life cycle.
第三方面,本发明实施例提供了一种基于粒子群算法进行汽车时域载荷外推的电子设备,包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的代码,所述处理器在执行所述代码时实现第一方面任一实施方式所述方法。In a third aspect, an embodiment of the present invention provides an electronic device for extrapolating vehicle time-domain load based on particle swarm algorithm, including: a memory, a processor, and an electronic device stored in the memory and running on the processor code, the processor implements the method of any one of the embodiments of the first aspect when executing the code.
第四方面,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面任一实施方式所述方法。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method described in any one of the implementation manners of the first aspect.
本发明实施例提供的一个或者多个技术方案,至少实现了如下技术效果或者优点:One or more technical solutions provided by the embodiments of the present invention achieve at least the following technical effects or advantages:
通过粒子群算法采集车辆在公共道路的载荷信号数据;根据在公共道路的载荷信号数据建立时域载荷外推计算模型,时域载荷外推计算模型包括超阀值概率分布函数和超阀值概率密度函数;采用粒子群算法对超阀值概率密度函数进行求解,并根据对超阀值概率密度函数的求解结果进行时域载荷外推,得到车辆在全生命周期内的载荷信号数据。采用粒子群算法求解得到的广义帕累托分布概率密度函数,能够满足与采集数据的误差精度,求解精度较高,适用于任何时域载荷信号的外推。因此,实现了自动化外推载荷信号,且得到的全生命周期内的载荷信号数据更准确。The load signal data of the vehicle on the public road is collected by the particle swarm algorithm; the time-domain load extrapolation calculation model is established according to the load signal data on the public road. The time-domain load extrapolation calculation model includes the over-threshold probability distribution function and the over-threshold probability. Density function; the particle swarm algorithm is used to solve the over-threshold probability density function, and according to the solution result of the over-threshold probability density function, the time-domain load is extrapolated to obtain the load signal data of the vehicle in the whole life cycle. The generalized Pareto distribution probability density function obtained by the particle swarm algorithm can meet the error accuracy of the collected data, and the solution accuracy is high, which is suitable for the extrapolation of any time-domain load signal. Therefore, the automatic extrapolation of the load signal is realized, and the obtained load signal data in the whole life cycle is more accurate.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1为本发明实施例中基于粒子群算法的汽车时域载荷外推方法的流程图;1 is a flowchart of a method for extrapolating vehicle time-domain load based on particle swarm algorithm in an embodiment of the present invention;
图2为本发明实施例中基于粒子群算法的汽车时域载荷外推装置的结构示意图;2 is a schematic structural diagram of a vehicle time-domain load extrapolation device based on a particle swarm algorithm in an embodiment of the present invention;
图3为本发明实施例中基于粒子群算法的电子设备的结构示意图。FIG. 3 is a schematic structural diagram of an electronic device based on a particle swarm algorithm in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
参考图1所示,本发明实施例提供了一种基于粒子群算法的汽车时域载荷外推方法,包括如下步骤S101~S103:Referring to FIG. 1 , an embodiment of the present invention provides a method for extrapolating vehicle time-domain load based on a particle swarm algorithm, including the following steps S101 to S103:
S101、采集车辆在公共道路的载荷信号数据。S101. Collect load signal data of a vehicle on a public road.
在一些实施方式下,步骤S101具体包括如下多个子步骤:In some embodiments, step S101 specifically includes the following sub-steps:
S1011、在车辆上布置轮心六分力传感器和三向加速度传感器、在车辆的传动轴上布置非接触式传动轴扭矩传感器、以及在车辆的悬架杆件上布置杆件力传感器。S1011 , arranging a wheel center six-component force sensor and a three-way acceleration sensor on the vehicle, arranging a non-contact transmission shaft torque sensor on a transmission shaft of the vehicle, and arranging a rod force sensor on a suspension rod of the vehicle.
应当理解的是,可以根据需要采集的载荷信号数据的类型仅布置其中一种或者多种传感器。It should be understood that only one or more of the sensors may be arranged according to the type of load signal data to be collected.
S1012、规划在公共道路行驶的合计里程及在每种公共道路的行驶路线。S1012 , planning the total mileage traveled on the public road and the travel route on each public road.
其中,在合计里程A中,城市道路的里程占比为,高速道路的里程占比为,郊区道路的里程占比为,国省道道路的里程占比为,坏路道路的里程占比为,山区道路的里程占比为,且满足。Among them, in the total mileage A, the proportion of urban road mileage is , the mileage ratio of expressways is , the proportion of mileage of suburban roads is , the proportion of mileage of national and provincial roads is , the mileage proportion of bad roads is , the mileage ratio of mountain roads is , and satisfy .
具体的,需要针对如下每种公共道路规划各自的行驶路线:城市道路、高速道路、郊区道路、国省道道路、坏路道路、山区道路规划行驶路线。Specifically, it is necessary to plan respective driving routes for each of the following public roads: urban roads, expressways, suburban roads, national and provincial roads, bad roads, and mountain roads.
S1013、在所述车辆行驶于所述公共道路过程中,通过如下任意一种或者多种方式采集在公共道路的载荷信号数据:所述车辆上布置的轮心六分力传感器采集轮心六分力信号、通过适应于车辆上布置的三向加速度传感器采集轮心三向加速度信号、通过所述车辆的传动轴上布置的非接触式传动轴扭矩传感器采集传动轴扭矩信号、以及通过所述车辆的悬架杆件上布置杆件力传感器采集杆件力信号;S1013. While the vehicle is driving on the public road, collect the load signal data on the public road by any one or more of the following methods: the wheel center six-component force sensor arranged on the vehicle collects the wheel center six-point force sensor force signal, collecting the wheel center three-way acceleration signal through a three-way acceleration sensor arranged on the vehicle, collecting the drive shaft torque signal through a non-contact drive shaft torque sensor arranged on the drive shaft of the vehicle, and collecting the drive shaft torque signal through the vehicle The rod force sensor is arranged on the suspension rod to collect the rod force signal;
S1014、对所采集的在公共道路的载荷信号数据进行检查和清洗。S1014. Check and clean the collected load signal data on the public road.
具体而言,对采集到的在公共道路的载荷信号,需要经过数据有效性核查、去毛刺、漂移等数据检查及清洗。Specifically, the collected load signals on public roads need to be checked and cleaned by data validation, deburring, drift and other data.
进一步的,在步骤S101中,还包括:Further, in step S101, it also includes:
设定车辆在全生命周期内的目标里程;根据目标里程和车辆在多种公共道路上行驶的合计里程,确定对在公共道路的载荷信号进行外推的倍数N。Set the target mileage of the vehicle in the whole life cycle; according to the target mileage and the total mileage of the vehicle on various public roads, determine the multiple N for extrapolating the load signal on the public road.
设定车辆在全生命周期的目标里程为B,需要针对采集的载荷信号进行外推N倍,其表达式如下:The target mileage of the vehicle in the whole life cycle is set as B, which needs to be extrapolated by N times for the collected load signal, and its expression is as follows:
其中:表示车辆在全生命周期的目标里程,表示采集载荷信号的合计里程,表示外推的倍数。in: Indicates the target mileage of the vehicle in the whole life cycle, represents the total mileage of the collected load signal, Represents a multiple of extrapolation.
S102、根据所述在公共道路的载荷信号数据建立时域载荷外推计算模型,其中,所述时域载荷外推计算模型包括超阀值概率分布函数和超阀值概率密度函数。S102. Establish a time-domain load extrapolation calculation model according to the load signal data on the public road, wherein the time-domain load extrapolation calculation model includes a super-threshold probability distribution function and a super-threshold probability density function.
采集的载荷信号数据可以是上述步骤S101所采集的轮心六分力载荷信号或者轮心三向加速度信号或者传动轴扭矩信号或者杆件力信号。The collected load signal data may be the wheel center six-component force load signal or the wheel center three-directional acceleration signal or the transmission shaft torque signal or the rod force signal collected in the above step S101 .
定义所述在公共道路的载荷信号数据;定义阀值参数、形状参数以及尺寸参数;定义大于所述阀值参数的载荷信号数据为超阀值;根据所述公共道路的载荷信号数据、所述阀值参数、所述形状参数以及所述尺寸参数,建立所述超阀值概率分布函数和所述超阀值概率密度函数。Define the load signal data on the public road; define threshold parameters, shape parameters and size parameters; define the load signal data greater than the threshold parameter as an over-threshold value; according to the load signal data of the public road, the The threshold parameter, the shape parameter, and the size parameter establish the over-threshold probability distribution function and the over-threshold probability density function.
具体来讲,定义采集的载荷信号数据为,定义为数据阀值参数,定义采集的载荷信号数据中,绝对值大于数据阀值参数的载荷信号数据为超阀值,其表达式如下:Specifically, the collected load signal data is defined as ,definition For the data threshold parameter, it defines that in the collected load signal data, the absolute value is greater than the data threshold parameter The load signal data of is over-threshold , whose expression is as follows:
其中,表示超阀值,即绝对值大于阀值参数u的载荷信号数据,表示采集的载荷信号数据;表示阀值参数。in, Indicates the super-threshold, that is, the load signal data whose absolute value is greater than the threshold parameter u, Indicates the collected load signal data; Represents the threshold parameter.
其中,采集的载荷信号数据的超阀值概率分布函数及概率密度函数表达式如下:Among them, the super-threshold probability distribution function of the collected load signal data and the probability density function The expression is as follows:
其中,表示超阀值概率分布函数;表示超阀值概率密度函数;表示超阀值,即绝对值大于阀值参数u的载荷信号数据;——表示采集的载荷信号数据;表示阀值参数;表示形状参数;表示尺寸参数。in, represents the probability distribution function of the super-threshold; represents the super-threshold probability density function; Indicates the over-threshold, that is, the load signal data whose absolute value is greater than the threshold parameter u; ——represents the collected load signal data; Represents the threshold parameter; represents the shape parameter; Indicates the size parameter.
S103、采用粒子群算法对所述超阀值概率密度函数进行求解,并根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据。S103. Use the particle swarm algorithm to solve the over-threshold probability density function, and extrapolate the time-domain load according to the solution result of the over-threshold probability density function to obtain the load of the vehicle in the entire life cycle signal data.
在步骤S103中,所述采用粒子群算法对所述超阀值概率密度函数进行求解,包括:In step S103, the particle swarm algorithm is used to solve the super-threshold probability density function, including:
步骤1:均匀随机产生粒子构成粒子群集合,其中,所述粒子群集合中每一个粒子包括位置向量及速度向量;Step 1: uniformly and randomly generating particles to form a particle swarm set, wherein each particle in the particle swarm set includes a position vector and a velocity vector;
具体而言,在步骤1中,均匀随机产生个粒子构成粒子群集合:Specifically, in step 1, uniformly randomly generated The particles form a particle swarm set:
, ,
其中,粒子群集合中任意一个粒子的位置向量及速度向量其表达式如下:Among them, any particle in the particle swarm set the position vector of and velocity vector Its expression is as follows:
其中:in:
表示粒子群集合中粒子的个数合计,为使最终求解的结果更加多样性,的数值可以取较大数值; represents the total number of particles in the particle swarm set. In order to make the final solution result more diverse, The value of can take a larger value;
表示粒子群集合中任意一个粒子的位置向量; Represents any particle in the particle swarm set the position vector of ;
表示粒子群集合中任意一个粒子的速度向量; Represents any particle in the particle swarm set the velocity vector of ;
表示粒子群集合中任意一个粒子i的位置向量的第一行数值、第二行数值、第三行数值; Represents the first row value, the second row value, and the third row value of the position vector of any particle i in the particle swarm set;
表示粒子群集合中任意一个粒子i的速度向量第一行数值、第二行数值、第三行数值; Represents the first row value, the second row value, and the third row value of the velocity vector of any particle i in the particle swarm set;
表示粒子的位置向量与速度向量的相关系数常数参数; Represents the constant parameter of the correlation coefficient between the position vector and the velocity vector of the particle;
及表示粒子群集合的位置向量第j行数值的最小值及最大值常数;后续进行粒子位置向量迭代时,当粒子位置向量第j行数值小于最小值常数或者大于最大值常数,则将最小值常数或者最大值常数赋值给粒子位置向量的第j行数值; and Represents the minimum and maximum constants of the value in the jth row of the position vector of the particle swarm set; when the particle position vector is iterated later, when the value of the jth row of the particle position vector is smaller than the minimum value constant or greater than the maximum value constant, the minimum value constant Or the maximum value constant is assigned to the value of the jth row of the particle position vector;
及表示粒子群集合的速度向量第j行数值的最小值及最大值常数;后续进行粒子位置速度迭代时,当粒子速度向量第j行数值小于最小值常数或者大于最大值常数,则将最小值常数或者最大值常数赋值给粒子速度向量的第j行数值; and Represents the minimum and maximum constants of the value in the jth row of the velocity vector of the particle swarm set; in the subsequent iteration of particle position and velocity, when the value of the jth row of the particle velocity vector is smaller than the minimum value constant or greater than the maximum value constant, the minimum value constant Or the maximum value constant is assigned to the value of the jth row of the particle velocity vector;
表示粒子i的位置向量对应的超阀值概率密度函数的阀值参数; represents the threshold parameter of the super-threshold probability density function corresponding to the position vector of particle i;
表示粒子i的位置向量对应的超阀值概率密度函数的形状参数; represents the shape parameter of the super-threshold probability density function corresponding to the position vector of particle i;
表示粒子i的位置向量对应的超阀值概率密度函数的尺寸参数。 Represents the size parameter of the super-threshold probability density function corresponding to the position vector of particle i.
步骤2:计算所述粒子群集合中每一个粒子的适应度函数。其中,任意一个粒子i的适应度函数的表达式如下:Step 2: Calculate the fitness function of each particle in the particle swarm set. Among them, the expression of the fitness function of any particle i is as follows:
迭代结束条件: Iteration end condition:
其中:in:
表示表示超阀值,即绝对值大于阀值参数u的载荷信号数据;表示粒子i的位置向量对应的超阀值概率密度函数对应的数据;m表示载荷信号数据个数; 表示任意粒子i的适应度数值;表示迭代误差常数。 Indicates the over-threshold, that is, the load signal data whose absolute value is greater than the threshold parameter u; Represents the data corresponding to the super-threshold probability density function corresponding to the position vector of particle i; m represents the number of load signal data; represents the fitness value of any particle i; represents the iteration error constant.
需要说明的是,均匀随机产生D个粒子的规则为:针对粒子的位置向量及速度向量的每一行的最小值及最大值区间分割为E段,取每一段的中心为初始数据。It should be noted that the rule for generating D particles uniformly and randomly is: the minimum and maximum intervals of each row of the particle's position vector and velocity vector are divided into E segments, and the center of each segment is taken as the initial data.
步骤3:定义个体最优粒子位置及全局最优粒子位置。Step 3: Define the individual optimal particle position and the global optimal particle position.
其中,个体最优粒子位置定义为针对个体粒子在迭代过程中适应度数值最大时对应的粒子位置,全局最优粒子位置定义为针对粒子群在迭代过程中适应度数值最大对应的粒子位置。Among them, the individual optimal particle position is defined as the particle position corresponding to the maximum fitness value for the individual particle during the iteration process, and the global optimal particle position is defined as the particle position corresponding to the maximum fitness value for the particle swarm during the iteration process.
步骤4:针对所述粒子群集合所有粒子进行变异操作。Step 4: Perform mutation operation on all particles in the particle swarm set.
其中,在步骤4中,针对粒子群集合中每一个粒子i,分别随机生产一个区间在之间的均匀随机数。根据产生的均匀随机数以及变异概率对粒子i进行变异操作。Among them, in step 4, for each particle i in the particle swarm set, randomly generate an interval in uniform random number between . Perform mutation operation on particle i according to the generated uniform random number and mutation probability.
在具体实施过程中,变异概率的表达式如下:In the specific implementation process, the mutation probability The expression is as follows:
; ;
; ;
; ;
; ;
; ;
其中:表示变异概率;为区间的随机数;及表示误差常数参数;表示误差计算变量;表示粒子群适应度数值的平均值;表示粒子i的适应度数值;表示粒子i个体最优位置的适应度数值;表示粒子群集合的粒子个数;表示粒子的适应度函数的理论最优解;表示表示迭代误差常数;表示表示粒子的适应度中间计算变量。in: represents the probability of mutation; for the interval the random number; and Represents the error constant parameter; represents the error calculation variable; Represents the average value of particle swarm fitness values; represents the fitness value of particle i; Represents the fitness value of the individual optimal position of particle i; Represents the number of particles in the particle swarm set; represents the theoretical optimal solution of the fitness function of the particle; represents the iteration error constant; Represents an intermediate computational variable representing the fitness of the particle.
进行变异操作具体是指:如果,则针对粒子i的个体最优位置进行更新,再随机产生一个符合正太分布的随机数,粒子i的个体最优位置的表达式如下:The mutation operation specifically refers to: if , then update the individual optimal position of particle i, and then randomly generate a random distribution that conforms to the normal distribution random number of , the expression of the individual optimal position of particle i is as follows:
其中:表示粒子i的位置向量在第k次迭代时的个体最优位置的第j行数据;表示符合正太分布的随机数。in: The jth row of data representing the individual optimal position of the position vector of particle i at the kth iteration; Indicates that it fits the normal distribution of random numbers.
步骤5:针对粒子进行速度向量及位置向量更新。Step 5: Update the velocity vector and the position vector for the particle.
具体来讲,可以基于如下表达式对粒子i进行速度向量及位置向量更新:Specifically, the velocity vector and position vector of particle i can be updated based on the following expressions:
其中:in:
表示粒子i的速度向量的第j行数据在第k+1次迭代的数值; The value of the jth row of data representing the velocity vector of particle i at the k+1th iteration;
表示粒子i的速度向量的第j行数据在第k次迭代的数值; The value of the jth row of data representing the velocity vector of particle i at the kth iteration;
表示第k次迭代的惯性参数; Represents the inertia parameter of the k-th iteration;
及表示惯性参数的最大值常数参数及最小值常数参数,一般最大值取0.9,最小值取0.4; and Indicates the maximum value constant parameter and the minimum value constant parameter of the inertia parameter, generally the maximum value is 0.9, and the minimum value is 0.4;
表示迭代次数; Indicates the number of iterations;
表示最大迭代次数常数参数; Indicates the constant parameter of the maximum number of iterations;
及表示学习因子参数; and represents the learning factor parameter;
及表示学习因子初始值参数; and represents the initial value parameter of the learning factor;
及表示学习因子终止值参数; and represents the learning factor termination value parameter;
表示时间因子参数, 及表示之间的随机数; represents the time factor parameter, and express random numbers between;
表示粒子i的位置向量在第k次迭代时的个体最优位置的第j行数据; The jth row of data representing the individual optimal position of the position vector of particle i at the kth iteration;
表示粒子群位置向量在第k次迭代时的全局最优位置的第j行数据; The jth row of data representing the global optimal position of the particle swarm position vector at the kth iteration;
表示粒子i的位置向量的第j行数据在第k+1次迭代的数值; The value of the jth row of data representing the position vector of particle i at the k+1th iteration;
表示粒子i的位置向量的第j行数据在第k次迭代的数值。 The value of the jth row of data representing the position vector of particle i at the kth iteration.
步骤6:判断是否满足迭代结束条件,如果满足迭代结束条件则终止迭代,并求解得到粒子的位置向量解集合,如果不满足迭代结束条件跳转至执行步骤2、步骤3、步骤4以及步骤5,直到满足迭代结束条件或者达到最大迭代次数时,停止迭代。Step 6: Determine whether the iteration end condition is met. If the iteration end condition is met, the iteration is terminated, and the solution set of the particle's position vector is obtained by solving. If the iteration end condition is not met, jump to step 2, step 3, step 4 and step 5. , stop the iteration until the iteration end condition is met or the maximum number of iterations is reached.
粒子群且前为止搜索到的最优位置满足适应度函数的最小允许误差或者达到迭代最大次数,都会结束迭代。为使最终求解的结果更加多样性,迭代最大次数的数值可以取较大数值。Particle swarm and the optimal position searched so far satisfies the minimum allowable error of the fitness function or reaches the maximum number of iterations , will end the iteration. In order to make the final solution more diverse, the maximum number of iterations can take larger values.
具体而言,求解得到粒子的位置向量解集合,其表达式如下:Specifically, the solution set of the position vector of the particle is obtained by solving , whose expression is as follows:
其中:in:
表示粒子的位置向量解集合; represents the position vector solution set of the particle;
表示粒子j的位置向量解; represents the position vector solution of particle j;
表示粒子j的位置向量第一行数值解; Represents the numerical solution of the first row of the position vector of particle j;
表示粒子j的位置向量第二行数值解; represents the second row of the numerical solution of the position vector of particle j;
表示粒子j的位置向量第三行数值解; Represents the numerical solution of the third row of the position vector of particle j;
表示粒子j的位置向量对应的超阀值的概率密度函数的阀值参数; Threshold parameter representing the probability density function of the super-threshold corresponding to the position vector of particle j;
表示粒子j的位置向量对应的超阀值的概率密度函数的形状参数; The shape parameter of the probability density function representing the super-threshold value corresponding to the position vector of particle j;
表示粒子j的位置向量对应的超阀值的概率密度函数的尺寸参数。 The size parameter of the probability density function representing the super-threshold value corresponding to the position vector of particle j.
步骤7:取所述位置向量解集合中阀值参数最大的粒子位置作为载荷信号超阀值的概率密度函数的求解结果。Step 7: Take the particle position with the largest threshold parameter in the position vector solution set as the solution result of the probability density function of the load signal exceeding the threshold.
取位置向量解集合中,阀值参数最大的粒子位置作为载荷信号超阀值的概率密度函数的参数,这些参数包括:阀值参数、形状参数、尺寸参数。Take the position vector solution set , the particle position with the largest threshold parameter is used as the parameter of the probability density function of the load signal exceeding the threshold. These parameters include: threshold parameter , shape parameters ,Size parameters .
在根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据,包括:Carrying out the time-domain load extrapolation according to the solution result of the probability density function of the over-threshold value, to obtain the load signal data of the vehicle in the whole life cycle, including:
从在公共道路的载荷信号数据中提取超过阀值参数的数据;针对所述超过阀值参数的数据,采用超阀值概率密度函数的求解结果重复进行N次操作,每次操作随机产生新的载荷信号数据进行替换原数据;将重复进行N次操作所生成的载荷信号数据进行首尾相连,得到外推N倍的时域载荷信号;将所述外推N倍的时域载荷信号作为所述车辆在全生命周期内的载荷信号数据。Extract the data exceeding the threshold parameter from the load signal data on the public road; for the data exceeding the threshold parameter, repeat the operation N times using the solution result of the probability density function exceeding the threshold, and each operation randomly generates a new The load signal data is replaced with the original data; the load signal data generated by repeating N times of operations are connected end to end to obtain an extrapolated N times time domain load signal; The load signal data of the vehicle in the whole life cycle.
具体来讲,针对采集的载荷信号数据为,提取其中超过阀值参数的数据;针对这些超过阀值参数的数据,采用超阀值概率密度函数随机产生数据替换原数据,将此过程重复N次(N为外推倍数),再将重复进行N次操作生成的载荷信号数据进行首尾相连,即得到外推N倍的时域载荷信号。求解的超阀值概率密度函数,其表达式如下:Specifically, the collected load signal data is: , extract the parameters which exceed the threshold data; for these over-threshold parameters data, using the over-threshold probability density function Randomly generate data to replace the original data, repeat this process N times (N is the extrapolation multiple), and then connect the payload signal data generated by repeating N times of operations to the end to obtain the extrapolated time-domain payload signal N times. Solved overthreshold probability density function , whose expression is as follows:
其中:表示超阀值,即大于阀值参数u的载荷信号数据;表示采集的载荷信号数据; 表示阀值参数;表示形状参数;表示尺寸参数。in: Indicates the over-threshold, that is, the load signal data greater than the threshold parameter u; Indicates the collected load signal data; Represents the threshold parameter; represents the shape parameter; Indicates the size parameter.
本发明实施例由于应用粒子群寻优求解算法,从而提高了求解精度,求解得到的广义帕累托分布概率密度函数能够满足与采集数据的误差精度,并且求解的是解空间的所有解集合,解决以往求解阀值参数不能得到解空间中的最优解问题;适用于任何时域载荷信号的外推;且本发明实施例流程化程度较高,基于软件编程可以实现时域载荷信号外推自动化处理工作。Due to the application of the particle swarm optimization solution algorithm in the embodiment of the present invention, the solution accuracy is improved, the obtained generalized Pareto distribution probability density function can satisfy the error accuracy with the collected data, and the solution is all solution sets in the solution space, Solve the problem that the optimal solution in the solution space cannot be obtained by solving the threshold parameters in the past; it is suitable for the extrapolation of any time-domain load signal; and the embodiment of the present invention has a high degree of process flow, and can realize the time-domain load signal extrapolation based on software programming Automate processing work.
基于同一发明构思,本发明实施例提供了一种基于粒子群算法的汽车时域载荷外推装置,参考图2所示,该装置包括:Based on the same inventive concept, an embodiment of the present invention provides a vehicle time-domain load extrapolation device based on particle swarm algorithm. Referring to FIG. 2 , the device includes:
数据采集单元201,用于采集车辆在公共道路的载荷信号数据;The
模型建立单元202,用于根据所述在公共道路的载荷信号数据建立时域载荷外推计算模型,其中,所述时域载荷外推计算模型包括超阀值概率分布函数和超阀值概率密度函数;A
模型求解单元203,用于采用粒子群算法对所述超阀值概率密度函数进行求解;A
外推执行单元204,用于根据对所述超阀值概率密度函数的求解结果进行时域载荷外推,得到所述车辆在全生命周期内的载荷信号数据。The
在一些实施方式下,数据采集单元201,包括:In some embodiments, the
布置子单元,用于在所述车辆上布置轮心六分力传感器和三向加速度传感器、在所述车辆的传动轴上布置非接触式传动轴扭矩传感器、以及在所述车辆的悬架杆件上布置杆件力传感器;arranging subunits for arranging wheel center six-component force sensors and three-way acceleration sensors on the vehicle, arranging a non-contact drive shaft torque sensor on the drive shaft of the vehicle, and a suspension rod on the vehicle The rod force sensor is arranged on the piece;
规划子单元,用于规划在公共道路行驶的合计里程及在每种公共道路的行驶路线,其中,所述合计里程中,城市道路的里程占比为,高速道路的里程占比为,郊区道路的里程占比为,国省道道路的里程占比为,坏路道路的里程占比为,山区道路的里程占比为,其中:;The planning sub-unit is used to plan the total mileage on public roads and the driving route on each public road, wherein, in the total mileage, the proportion of urban road mileage is , the mileage ratio of expressways is , the proportion of mileage of suburban roads is , the proportion of mileage of national and provincial roads is , the mileage proportion of bad roads is , the mileage ratio of mountain roads is ,in: ;
采集子单元,用于在所述车辆行驶于所述公共道路过程中,通过如下任意一种方式采集在公共道路的载荷信号数据:所述车辆上布置的轮心六分力传感器采集轮心六分力信号、通过适应于车辆上布置的三向加速度传感器采集轮心三向加速度信号、通过所述车辆的传动轴上布置的非接触式传动轴扭矩传感器采集传动轴扭矩信号、以及通过所述车辆的悬架杆件上布置杆件力传感器采集杆件力信号;The collection subunit is used to collect the load signal data on the public road in any one of the following ways when the vehicle is driving on the public road: the wheel center six-component force sensor arranged on the vehicle collects the wheel center six-component force sensor. component force signal, collecting the three-way acceleration signal of the wheel center through a three-way acceleration sensor arranged on the vehicle, collecting the transmission shaft torque signal through the non-contact transmission shaft torque sensor arranged on the transmission shaft of the vehicle, and collecting the transmission shaft torque signal through the A rod force sensor is arranged on the suspension rod of the vehicle to collect the rod force signal;
处理子单元,用于对所述在公共道路的载荷信号数据进行检查和清洗。The processing sub-unit is used for checking and cleaning the load signal data on the public road.
在一些实施方式下,数据采集单元201,包括:In some embodiments, the
设定子单元,用于设定所述车辆在全生命周期内的目标里程;a setting subunit, used for setting the target mileage of the vehicle in the whole life cycle;
倍数确定子单元,用于根据所述目标里程和所述车辆在多种公共道路上行驶的合计里程,确定对所述在公共道路的载荷信号进行外推的倍数N。The multiple determination subunit is configured to determine the multiple N for extrapolating the load signal on the public road according to the target distance and the total distance traveled by the vehicle on various public roads.
在一些实施方式下,模型建立单元202具体用于:定义所述在公共道路的载荷信号数据;定义阀值参数、形状参数以及尺寸参数;定义大于所述阀值参数的载荷信号数据为超阀值;根据所述公共道路的载荷信号数据、所述阀值参数、所述形状参数以及所述尺寸参数,建立所述超阀值概率分布函数和所述超阀值概率密度函数。In some embodiments, the
在一些实施方式下,模型求解单元203具体用于执行如下步骤1~7:In some embodiments, the
步骤1:均匀随机产生粒子构成粒子群集合,其中,所述粒子群集合中每一个粒子包括位置向量及速度向量;Step 1: uniformly and randomly generating particles to form a particle swarm set, wherein each particle in the particle swarm set includes a position vector and a velocity vector;
步骤2:计算所述粒子群集合中每一个粒子的适应度函数;Step 2: Calculate the fitness function of each particle in the particle swarm set;
步骤3:定义个体最优粒子位置及全局最优粒子位置;Step 3: Define the individual optimal particle position and the global optimal particle position;
步骤4:针对所述粒子群集合所有粒子进行变异操作;Step 4: perform mutation operation on all particles in the particle swarm set;
步骤5:针对粒子进行速度向量及位置向量更新;Step 5: Update the velocity vector and position vector for the particle;
步骤6:判断是否满足迭代结束条件,如果满足则终止迭代,并求解得到粒子的位置向量解集合,如果不满足则跳转至执行所述步骤2、步骤3、步骤4以及步骤5,直到足迭代结束条件或者达到最大迭代次数。Step 6: Judging whether the iteration end condition is met, if so, terminate the iteration, and solve the set of position vector solutions of the particles. The iteration end condition or the maximum number of iterations is reached.
步骤7:取所述位置向量解集合中阀值参数最大的粒子位置作为载荷信号超阀值的概率密度函数的求解结果。Step 7: Take the particle position with the largest threshold parameter in the position vector solution set as the solution result of the probability density function of the load signal exceeding the threshold.
在一些实施方式下,所述个体最优粒子位置定义为针对个体粒子在迭代过程中适应度数值最大时对应的粒子位置;所述全局最优粒子位置定义为针对粒子群在迭代过程中适应度数值最大对应的粒子位置。In some embodiments, the individual optimal particle position is defined as the particle position corresponding to the individual particle in the iterative process when the fitness value is the largest; the global optimal particle position is defined as the fitness of the particle swarm in the iterative process The particle position corresponding to the largest value.
在一些实施方式下,外推执行单元204具体用于:从所述在公共道路的载荷信号数据中,提取超过阀值参数的数据;针对所述超过阀值参数的数据,采用超阀值概率密度函数的求解结果重复进行N次操作,每次操作随机产生新的载荷信号数据进行替换原数据;将重复进行N次操作所生成的载荷信号数据进行首尾相连,得到外推N倍的时域载荷信号;将所述外推N倍的时域载荷信号作为所述车辆在全生命周期内的载荷信号数据。In some embodiments, the
上述基于粒子群算法的汽车时域载荷外推装置为用于执行前述基于粒子群算法的汽车时域载荷外推方法的装置,该装置的更多实施细节可以参考前述基于粒子群算法的汽车时域载荷外推方法实施例,在此不再赘述。The above-mentioned vehicle time-domain load extrapolation device based on particle swarm algorithm is a device for executing the aforementioned method for vehicle time-domain load extrapolation based on particle swarm optimization algorithm. Embodiments of the domain load extrapolation method are not repeated here.
基于同一发明构思,本发明实施例提供了一种基于粒子群算法进行汽车时域载荷外推的电子设备,如图3所示,该电子设备包括存储器304、处理器302及存储在存储器304上并可在处理器302上运行的计算机程序,所述处理器302执行所述程序时实现前述基于粒子群算法的汽车时域载荷外推方法。Based on the same inventive concept, an embodiment of the present invention provides an electronic device for extrapolating vehicle time-domain load based on particle swarm algorithm. As shown in FIG. And a computer program that can be run on the
其中,在图3中,总线300可以包括任意数量的互联的总线和桥,总线300将包括由处理器302代表的一个或多个处理器和存储器304代表的存储器的各种电路链接在一起。总线300还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口306在总线300和接收器301和发送器303之间提供接口。接收器301和发送器303可以是同一个元件,即收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器302负责管理总线300和通常的处理,而存储器304可以被用于存储处理器302在执行操作时所使用的数据。3, the
基于同一发明构思,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述基于粒子群算法的汽车时域载荷外推方法。Based on the same inventive concept, an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the aforementioned particle swarm algorithm-based vehicle time-domain load extrapolation method.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210665472.3A CN114757058A (en) | 2022-06-14 | 2022-06-14 | Automobile time domain load extrapolation method and device based on particle swarm optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210665472.3A CN114757058A (en) | 2022-06-14 | 2022-06-14 | Automobile time domain load extrapolation method and device based on particle swarm optimization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114757058A true CN114757058A (en) | 2022-07-15 |
Family
ID=82337095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210665472.3A Pending CN114757058A (en) | 2022-06-14 | 2022-06-14 | Automobile time domain load extrapolation method and device based on particle swarm optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114757058A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104933490A (en) * | 2015-07-03 | 2015-09-23 | 浙江大学 | Earth-rock deployment optimization method of earth and rockfill dam engineering considering social vehicle |
CN108108532A (en) * | 2017-12-06 | 2018-06-01 | 华南理工大学 | With the method for particle cluster algorithm optimization power electronic circuit |
CN113435018A (en) * | 2021-06-09 | 2021-09-24 | 中国汽车技术研究中心有限公司 | Damage calculation method for road load spectrum of automobile user |
CN113919047A (en) * | 2021-08-23 | 2022-01-11 | 中汽研汽车检验中心(天津)有限公司 | Complete vehicle test field durability user association modeling solving method |
-
2022
- 2022-06-14 CN CN202210665472.3A patent/CN114757058A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104933490A (en) * | 2015-07-03 | 2015-09-23 | 浙江大学 | Earth-rock deployment optimization method of earth and rockfill dam engineering considering social vehicle |
CN108108532A (en) * | 2017-12-06 | 2018-06-01 | 华南理工大学 | With the method for particle cluster algorithm optimization power electronic circuit |
CN113435018A (en) * | 2021-06-09 | 2021-09-24 | 中国汽车技术研究中心有限公司 | Damage calculation method for road load spectrum of automobile user |
CN113919047A (en) * | 2021-08-23 | 2022-01-11 | 中汽研汽车检验中心(天津)有限公司 | Complete vehicle test field durability user association modeling solving method |
Non-Patent Citations (6)
Title |
---|
N. HIGASHI等: "Particle Swarm Optimization with Gaussian Mutation", 《PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM》 * |
YAN HUANG等: "Generalized Pareto Model Based on Particle Swarm Optimization for Anomaly Detection", 《IEEE ACCESS》 * |
杨小兵: "基于道路载荷的轿车轮毂疲劳寿命研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
王剑峰: "洪水超定量序列频率分析计算", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
田维波等: "常用载荷谱外推算法概述", 《南方农机》 * |
马国庆等: "学习因子和时间因子随权重调整的粒子群算法", 《计算机应用研究》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160176309A1 (en) | Method and apparatus for estimating state of charge (soc) of battery in electric vehicle | |
CN103077275B (en) | The parameter calibration method of highway ramp simulation model | |
CN106777549B (en) | Bridge multi-scale finite element simulation method for load test | |
CN113607392B (en) | A spring arm durability test method and device | |
CN116702096B (en) | Method and device for measuring and calculating road sliding resistance of vehicle plateau environment | |
CN114676598A (en) | Acceleration method and device for vehicle road durability test of automobile body system | |
CN107608208A (en) | A kind of in-orbit reconstructing method of spacecraft attitude control system of oriented mission constraint | |
CN111832744A (en) | Method for determining driving trends | |
CN114778141B (en) | Method, device and equipment for formulating durability test of automobile electric drive assembly rack | |
CN115481531B (en) | SUMO-based road network traffic flow real-time twin method and system | |
CN109918455A (en) | A Preference-based Shortest Path Search Method for Directed Graphs | |
CN111506408B (en) | Edge computing task scheduling method based on associated data set | |
WO2021088373A1 (en) | Method for measuring and calculating health state and maintenance costs of road, bridge and tunnel based on markov model | |
CN113268709B (en) | Urban electric vehicle charging demand prediction method and system based on intelligent agent simulation | |
CN114757058A (en) | Automobile time domain load extrapolation method and device based on particle swarm optimization | |
CN117669993B (en) | Progressive charging facility planning method, progressive charging facility planning device, terminal and storage medium | |
CN111761583B (en) | A kind of intelligent robot motion positioning method and system | |
CN117744248A (en) | Energy feedback detection method and system for new energy vehicles, new energy vehicles | |
CN118092525A (en) | A speed control method, device, equipment and medium for an autonomous driving vehicle | |
CN117291304A (en) | Method, device, equipment and medium for predicting charge-discharge adjustable capacity of electric automobile | |
CN113450565B (en) | Method and system for reducing noise of asphalt pavement | |
CN111609878B (en) | Monitoring method of sensor operation state of three-degree-of-freedom helicopter system | |
CN113785333B (en) | Method for determining a load forecast for a component of a motor vehicle | |
CN113420942A (en) | Sanitation truck real-time route planning method based on deep Q learning | |
CN115688957A (en) | Vehicle energy consumption determination method and device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220715 |
|
RJ01 | Rejection of invention patent application after publication |