CN114755759A - 一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器 - Google Patents

一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器 Download PDF

Info

Publication number
CN114755759A
CN114755759A CN202210247517.5A CN202210247517A CN114755759A CN 114755759 A CN114755759 A CN 114755759A CN 202210247517 A CN202210247517 A CN 202210247517A CN 114755759 A CN114755759 A CN 114755759A
Authority
CN
China
Prior art keywords
waveguide
grating
wavelength
sub
arrayed waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210247517.5A
Other languages
English (en)
Inventor
邹喜华
解长健
谢小军
潘炜
闫连山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210247517.5A priority Critical patent/CN114755759A/zh
Publication of CN114755759A publication Critical patent/CN114755759A/zh
Priority to US17/980,607 priority patent/US11860411B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Abstract

本发明公开了一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,由输入波导、第一平板波导、阵列波导、第二平板波导以及输出波导顺次连接组成;输入波导具有1个端口;输出波导具有8个端口;阵列波导由50个具有相等长度差的等效条形均匀波导组成,每一个等效条形均匀波导均为亚波长光栅结构,形成基于慢光效应增大群折射率或传输时延的效果。间隔为200GHz的8个信道的最低相邻信道串扰小于‑27dB,整体尺寸保持在300×230μm以内。本发明在保持200GHz信道间隔的良好工作性能下将器件整体集成尺寸降低了1个数量级,显著提升了器件的集成度。

Description

一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器
技术领域
本发明属于密集型波分复用技术领域,尤其涉及一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器。
背景技术
阵列波导光栅(ArrayedWaveguide Grating,AWG)是一种角色散型无源光集成器件,由输入波导、输入平板波导、阵列波导、输出平板波导、输出波导组成。目前基于硅基的阵列波导光栅,克服了以往氮化硅或二氧化硅材料下器件尺寸巨大,无法实现高密度集成这一问题;同时相对于其他结构的波分复用器(如微环,马赫曾德尔干涉仪等),阵列波导光栅结构更为简单,设计灵活性高,同时理论上也更易实现较大的波长复用数。其工作原理是当宽谱光经输入波导进入第一个平板波导时,光束会在其内部发生衍射后进入阵列波导,由于相邻的阵列波导具有ΔL的长度差,光束会在阵列波导内部产生相位差并在第二个平板波导发生干涉,不同波长的光聚焦到不同的输出波导处。
目前的硅基光波导阵列波导光栅设计中,主要关注的指标参数主要有损耗、串扰、信道数、信道间隔以及器件整体尺寸。针对8信道的阵列波导光栅研究较多,代表性的紧凑型阵列波导光栅相关论文包括:1)Park J,Kim G,Park H,et al.Performanceimprovement in silicon arrayed waveguide grating by suppression of scatteringnear the boundary of a star coupler[J].Applied Optics,2015,54(17):5597;2)HanQ,J St-Yves,Chen Y,et al.Polarization-insensitive silicon nitride arrayedwaveguide grating[J].Optics Letters,2019,44(16):3976.;3)Shang K,Pathak S,QinC,et al.Low-loss compact silicon nitride arrayed waveguide gratings forphotonic integrated circuits[J].IEEE Photonics Journal,2017,9(5):1-5。上述论文研究报道的输出信道数均为8个,采用的结构都是传统的三段式阵列波导光栅。论文(1)主要攻克的问题为器件整体的串扰与损耗,其采用深浅刻蚀结构,尽可能降低多模的产生,它的整体尺寸在400×240μm左右,但其信道间隔为400GHz;随着性能提高(信道间隔由400GHz升级到200GHz),其尺寸(主要是所需的相邻波导之间的长度差或时延差增大)将显著增大到4~6倍,面积将达到10mm2量级。论文(2)针对的问题和论文(1)基本一致,但着眼点在于偏振模式的干扰,通过构建波导,降低了器件整体对偏振的敏感性,从而实现器件整体性能的提升;但由于采用氮化硅材料,因此整体结构在4000×1500μm左右,面积约为10mm2量级。论文(3)和论文(2)采用的材料都是氮化硅,通过构造波导结构限制模式,提升性能的同时完成紧凑型设计,其整体尺寸在1800×600μm左右,面积约为10mm2量级。由此可见,目前对于器件尺寸的紧凑型设计,主要是通过材料的特性实现(即硅这一类高折射率对比性的材料),此外可利用的方法十分有限。
根据以上分析可知,硅基阵列波导光栅波分复用器集成度的提升依然是一个难点。
发明内容
为了利用慢光效应解决阵列波导光栅整体尺寸巨大,集成度无法继续提升的问题,本发明提供一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器。
本发明的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,由硅基器件输入波导、第一平板波导、亚波长光栅型阵列波导、第二平板波导以及输出波导顺次连接组成。输入波导具有1个端口;输出波导具有8个端口。亚波长光栅型阵列波导由50个具有相等长度差ΔL的条形亚波长光栅组成;每一个条形亚波长光栅作为等效均匀波导。第一平板波导和第二平板波导的基本结构为一个罗兰圆,即一个半径为R的圆以及半径为R/2的内切圆组成,且两个平板波导为对称设计。
进一步的,条形亚波长光栅的宽度为1μm,衍射阶数为10;相邻条形亚波长光栅之间的距离为1.5μm。每个亚波长光栅作为等效条形均匀波导,利用慢光效应显著增大群折射率。当群折射率增大时,可以利用更小的平板波导实现光的衍射以及聚焦,从而降低结构所需的阵列波导数量,最终体现为整体结构尺寸的降低。本发明提出的设计以较小的尺寸实现波分复用功能,获得更为精细的信道间隔(比如从400GHz降低到200GHz)。
输出波导的8个端口的输出波导之间的间距为1.5μm。
进一步的,阵列波导光栅波分复用器采用标准SOI晶圆设计:基底和上包层采用2μm厚二氧化硅材料,主体波导光栅结构采用220nm厚的硅材料。
进一步的,相邻条形亚波长光栅的长度差ΔL的由下式计算:
Figure BDA0003545426880000021
其中,m为阵列波导光栅的衍射阶数,λ0为中心波长,nc为阵列波导的模式有效折射率。此外,为了使入射光在波导内低损耗的传输,整体设计采用波导TE基模;然而根据模式匹配原理,当波导宽度骤然变化时引发的模式失配,会导致许多高阶模式被激发,导致相位误差被引入。因此在条形波导和自由传播区波导的连接处引入了抛物线锥形波导,拓宽了波导宽度,降低两种波导的折射率差,减少相位误差的引入。
进一步的,罗兰圆构成的平板波导的半径R与阵列波导光栅的衍射阶数m满足以下两式:
Figure BDA0003545426880000022
Figure BDA0003545426880000031
其中,dio为输入输出波导间距,ns为自由传播区波导的模式有效折射率,dg为阵列波导间距,Nch为输出通道数,λ0为中心波长,nc为阵列波导的模式有效折射率,Δλ为信道间隔,ng为阵列波导的模式群折射率。
此外,根据多个信道的均匀度要求将自由传播区波导半径设计为:
Figure BDA0003545426880000032
其中,Nch为输出通道数,信道平坦度参数(即不均匀度参数)
Figure BDA0003545426880000033
高斯远场等效宽度
Figure BDA0003545426880000034
θmax为远场衍射角,wg为阵列波导模场等效宽度。
同时罗兰圆半径和衍射阶数之间具有固定的乘积关系,其关系可以表示为:
Figure BDA0003545426880000035
可以看出:当群折射率ng增大,mR乘积的整体降低,同时所需的阵列波导数量也得以减少,实现器件整体尺寸的降低。
本发明的有益技术效果为:
1、通过设计超紧凑型亚波长光栅型阵列波导,利用亚波长光栅的慢光效应,将阵列波导光栅的整体结构大幅降低,整体尺寸控制在300×230μm以内,所需面积小于1mm2量级(0.7mm2)。
2、在保证整体结构超紧凑的前提下,实现了200GHz信道间隔的8信道输出。
3、本发明的超紧凑型阵列波导光栅波分复用器在光通信与光信号处理、波分复用/解复用系统中具有重要应用。
附图说明
图1为本发明基于亚波长光栅的超紧凑型阵列波导光栅波分复用器结构示意图。
图1中编号释义:1-输入波导;2-第一平板波导;3-阵列波导;4-第二平板波导;5-输出波导。
图2为亚波长光栅阵列波导结构示意。
图3为本发明基于亚波长光栅的超紧凑型阵列波导光栅波分复用器的传输响应。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细说明。
本发明的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器如图1所示,由硅基器件输入波导1、第一平板波导2、亚波长光栅型阵列波导3、第二平板波导4以及输出波导5顺次连接组成。主要功能结构分为三部分。第一部分为输入波导1和输出波导5,其中输入信道数为1,输出信道数为8,由条形波导组成;第二部分为由平板波导组成的自由传播区,由两个相切的圆组成,同时大圆的半径为小圆的两倍;第三部分为亚波长光栅型阵列波导3区域,引入相对时延差,并在第二个平板波导4内部发生干涉,完成波分复用功能。
亚波长光栅型阵列波导3由50个条形亚波长光栅组成,每个亚波长光栅作为等效条形均匀波导,利用慢光效应显著增大群折射率ng,当群折射率增大时,可以利用更小的平板波导实现光的衍射以及聚焦,从而减少结构所需的阵列波导数量,最终体现为整体结构尺寸的降低。本发明提出的设计以较小的尺寸实现波分复用功能,获得更为精细的信道间隔(比如从400GHz降低到200GHz)。本发明所用的亚波长光栅如图2所示,其周期为347nm,占空比为0.4。
相邻条形亚波长光栅的长度差ΔL的由下式计算:
Figure BDA0003545426880000041
其中,m为阵列波导光栅的衍射阶数,λ0为中心波长,nc为阵列波导的模式有效折射率。此外,为了使入射光在波导内低损耗的传输,整体设计采用波导TE基模;然而根据模式匹配原理,当波导宽度骤然变化时引发的模式失配,会导致许多高阶模式被激发,导致相位误差被引入。因此在条形波导和自由传播区波导的连接处引入了抛物线锥形波导,拓宽了波导宽度,降低两种波导的折射率差,减少相位误差的引入。
整体设计中关键参数是罗兰圆构成的平板波导的半径R与阵列波导光栅的衍射阶数m满足以下两式:
Figure BDA0003545426880000042
Figure BDA0003545426880000043
其中,dio为输入输出波导间距,ns为自由传播区波导的模式有效折射率,dg为阵列波导间距,Nch为输出通道数,λ0为中心波长,nc为阵列波导的模式有效折射率,Δλ为信道间隔,ng为阵列波导的模式群折射率。
本次设计中输出波导间距采用1.5μm,阵列波导间距为1.5μm,阵列波导宽度为1μm,衍射阶数m为10,罗兰圆半径为94.2μm。此时根据这些参数,验证由不均匀度而来的半径限制:
Figure BDA0003545426880000051
其中,Nch为输出通道数,信道平坦度参数(即不均匀度参数)
Figure BDA0003545426880000052
高斯远场等效宽度
Figure BDA0003545426880000053
θmax为远场衍射角,wg为阵列波导模场等效宽度。
同时罗兰圆半径和衍射阶数之间具有固定的乘积关系,其关系可以表示为:
Figure BDA0003545426880000054
可以看出:当群折射率ng增大,mR乘积的整体降低,同时所需的阵列波导数量也得以减少,实现器件整体尺寸的降低。
结合整体设计,即使用亚波长光栅作为阵列波导、锥形波导做连接波导,同时合理选择各关键参数,最终的设计结果如图3所示;最小相邻信道串扰低于-27dB。
综上,本发明具有如下特征:1、亚波长光栅型阵列波导光栅结构实现200GHz信道间隔、8信道输出的波分复用器;2、通过利用亚波长光栅的慢光效应,综合降低罗兰圆尺寸以及阵列波导数量,实现了器件的超紧凑化;将器件性能和整体尺寸保持平衡的前提下,将器件整体尺寸控制在300×230μm以内,面积仅为0.7mm2

Claims (5)

1.一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,其特征在于,由硅基器件输入波导(1)、第一平板波导(2)、亚波长光栅型阵列波导(3)、第二平板波导(4)以及输出波导(5)顺次连接组成;
所述输入波导(1)具有1个端口;输出波导(5)具有8个端口;
所述亚波长光栅型阵列波导(3)由50个具有相等长度差ΔL的条形亚波长光栅组成;每一个条形亚波长光栅作为等效均匀波导;
所述第一平板波导(2)和第二平板波导(4)的基本结构为一个罗兰圆,即一个半径为R的圆以及半径为R/2的内切圆组成,且两个平板波导为对称设计。
2.根据权利要求1所述的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,其特征在于,所述条形亚波长光栅的宽度为1μm,衍射阶数为10;相邻条形亚波长光栅之间的距离为1.5μm。
3.根据权利要求1所述的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,其特征在于,采用标准SOI晶圆设计:基底和上包层采用2μm厚二氧化硅材料,主体波导光栅结构采用220nm厚的硅材料。
4.根据权利要求1所述的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,其特征在于,所述相邻条形亚波长光栅的长度差ΔL的由下式计算:
Figure FDA0003545426870000011
其中,m为阵列波导光栅的衍射阶数,λ0为中心波长,nc为阵列波导的模式有效折射率。
5.根据权利要求1所述的一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器,其特征在于,所述罗兰圆构成的平板波导的半径R与阵列波导光栅的衍射阶数m满足以下两式:
Figure FDA0003545426870000012
Figure FDA0003545426870000013
其中,dio为输入输出波导间距,ns为自由传播区波导的模式有效折射率,dg为阵列波导间距,Nch为输出通道数,λ0为中心波长,nc为阵列波导的模式有效折射率,Δλ为信道间隔,ng为阵列波导的模式群折射率。
CN202210247517.5A 2022-03-14 2022-03-14 一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器 Pending CN114755759A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210247517.5A CN114755759A (zh) 2022-03-14 2022-03-14 一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器
US17/980,607 US11860411B2 (en) 2022-03-14 2022-11-04 Super-compact arrayed waveguide grating (AWG) wavelength division multiplexer based on sub-wavelength grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210247517.5A CN114755759A (zh) 2022-03-14 2022-03-14 一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器

Publications (1)

Publication Number Publication Date
CN114755759A true CN114755759A (zh) 2022-07-15

Family

ID=82326632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210247517.5A Pending CN114755759A (zh) 2022-03-14 2022-03-14 一种基于亚波长光栅的超紧凑型阵列波导光栅波分复用器

Country Status (2)

Country Link
US (1) US11860411B2 (zh)
CN (1) CN114755759A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117075265B (zh) * 2023-10-12 2024-03-15 之江实验室 一种基于亚波长光栅结构的硅光啁啾切趾光栅

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183250A1 (en) * 2011-01-18 2012-07-19 Pavel Cheben Composite subwavelength-structured waveguide in optical systems
CN112946815A (zh) * 2021-03-31 2021-06-11 西南交通大学 低串扰32信道硅基阵列波导光栅波分复用器
WO2021217240A1 (en) * 2020-04-27 2021-11-04 UNIVERSITé LAVAL Devices and methods exploiting waveguide supercells

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611246A1 (de) * 1986-04-04 1987-10-15 Kernforschungsz Karlsruhe Verfahren zum herstellen eines passiven optischen bauelements mit einem oder mehreren echelette-gittern und nach diesem verfahren hergestelltes bauelement
US4715027A (en) * 1986-05-29 1987-12-22 Polaroid Corporation Integrated optic multi/demultiplexer
FR2766920B1 (fr) * 1997-07-31 1999-08-27 Commissariat Energie Atomique Micromonochromateur et procede de realisation de celui-ci
US6829417B2 (en) * 2001-08-27 2004-12-07 Christoph M. Greiner Amplitude and phase control in distributed optical structures
US7054517B2 (en) * 2000-03-16 2006-05-30 Lightsmyth Technologies Inc Multiple-wavelength optical source
US6678429B2 (en) * 2001-08-27 2004-01-13 Lightsmyth Technologies, Inc. Amplitude and phase control in distributed optical structures
US6959129B2 (en) * 2000-12-22 2005-10-25 Metrophotonics Inc. Bidirectional multiplexer and demultiplexer based on a single echelle waveguide grating
US20030011833A1 (en) * 2001-04-26 2003-01-16 Vladimir Yankov Planar holographic multiplexer/demultiplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183250A1 (en) * 2011-01-18 2012-07-19 Pavel Cheben Composite subwavelength-structured waveguide in optical systems
WO2021217240A1 (en) * 2020-04-27 2021-11-04 UNIVERSITé LAVAL Devices and methods exploiting waveguide supercells
CN112946815A (zh) * 2021-03-31 2021-06-11 西南交通大学 低串扰32信道硅基阵列波导光栅波分复用器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANTOINE GERVAIS.ET.AL: "Design of Slow-Light Subwavelength Grating Waveguides for Enhanced On-Chip Methane Sensing by Absorption Spectroscopy", 《IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS》 *
朱杏子: "集成阵列波导光栅的仿真及其芯片版图设计研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Also Published As

Publication number Publication date
US11860411B2 (en) 2024-01-02
US20230288636A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
Cheben et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides
US6853769B2 (en) Arrayed waveguide grating with waveguides of unequal widths
Okamoto Wavelength-division-multiplexing devices in thin SOI: Advances and prospects
Liu et al. Four-channel CWDM (de) multiplexers using cascaded multimode waveguide gratings
Chen et al. Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer
JP4385224B2 (ja) 光導波路デバイス及び光導波路モジュール
JP2001141946A (ja) 合分波素子
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
Zheng et al. Design of 4-channel AWG multiplexer/demultiplexer for CWDM system
Chang et al. Low-loss broadband silicon-on-insulator demultiplexers in the $ O $-Band
US5978532A (en) Spectrographic multiplexer component having an array of waveguides
US11860411B2 (en) Super-compact arrayed waveguide grating (AWG) wavelength division multiplexer based on sub-wavelength grating
US7043120B2 (en) Array waveguide grating
Maru et al. 2.5%-/spl Delta/silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core
CN211180282U (zh) 一种实现片上多波长复用的系统
JP3797483B2 (ja) アレイ型導波路格子
Bidnyk et al. Configurable coarse wavelength division demultiplexers based on planar reflective gratings
CN114755764A (zh) 一种紧凑硅基阵列波导光栅的32信道密集型波分复用器
Yuan et al. Investigation and optimization of thin-film-lithium-niobate array-waveguide-grating with the influence of fabrication tolerance
US6650796B2 (en) Waveguide optical frequency router
Mestric et al. Design and fabrication of 1.31-1.55-/spl mu/m phased-array duplexer on InP
Lin Athermal metal-free planar waveguide concave grating demultiplexer
Su et al. Ultra-small size arbitrary-port-input reflective arrayed waveguide grating based on a silicon-on-insulator platform
KR20020008455A (ko) 광분배기와 파장분할다중화모듈을 위한 저손실다중모드간섭계
Takahashi Arrayed Waveguide Grating (AWG)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination